Please use this identifier to cite or link to this item:

Title: Geodesic length spectrum on compact Riemann surfaces
Authors: Grácio, Clara
Ramos, José Sousa
Keywords: geodesic
Issue Date: 2010
Publisher: Journal of Geometry and Physics
Citation: Clara Grácio e J. Sousa Ramos , “Geodesic length spectrum on compact Riemann surfaces”, Journal of Geometry and Physics, 60, pgs 1643-1655, 2010.
Abstract: In this paper we use techniques linking combinatorial structures (symbolic dynamics) and algebraic-geometric structures to study the variation of the geodesic length spectrum, with the Fenchel-Nielsen coordinates, which parametrize the surface of genus τ = 2. We explicitly compute length spectra, for all closed orientable hyperbolic genus two surfaces, identifying the exponential growth rate and the first terms of growth series.
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
GEOPHY_1725[1].pdf683.28 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois