Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/5577

Title: Symbolic dynamics in boundary value problem for systems with two spatial variables
Authors: Severino, Ricardo
Sharkovsky, Alexander
Sousa Ramos, José
Vinagre, Sandra
Keywords: symbolic dynamics
boundary value problem
PDE systems with two spatial variables
Issue Date: 2006
Publisher: Grazer Mathematische Berichte
Citation: R. Severino, A. N. Sharkovsky, J. Sousa Ramos and S. Vinagre, Symbolic dynamics in boundary value problem for systems with two spatial variables, 210-224.
Abstract: We consider a linear hyperbolic system with constant coe cients with nonlinear boundary conditions and consistent initial conditions. According Sharkovsky et al in [6] the solution of this problem can be written via iterated maps of the interval. These maps characterize the evolution of vector fi elds given by the boundary value problem. The confi gurations of the streamlines of this vector field depends on the periodic orbits structure of the interval maps. Our objective is to characterize the dynamics of these maps using symbolic dynamics and to compute some topological invariants.
URI: http://hdl.handle.net/10174/5577
ISSN: 1016-7692
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Abstract_GMB2006_RSASSRSV.pdf62.38 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois