Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/4087

Title: A damage model for ductile crack initiation and propagation
Authors: Areias, Pedro
Van Goethem, Nicolas
Borges Pires, Eduardo
Editors: Wriggers, Peter
Keywords: damage
ductile
Issue Date: 2011
Publisher: Springer
Abstract: Damage-induced ductile crack initiation and propagation is modeled using a constitutive law with asymmetrical contraction of the yield surface and tip remeshing combined with a nonlocal strain technique. In practice, this means that the void fraction depends on a nonlocal strain. Finite strain plasticity is used with smoothing of the complementarity condition. The prototype constitutive laws take into account pressure sensitivity and the Lode angle effect in the fracture strain. Two plane idealizations are tested: plane stress and plane strain. Thickness variation in the former is included by imposing a null out-of-plane normal stress component. In plane strain, pressure unknowns and bubble enrichment are adopted to avoid locking and ensure stability of the equilibrium equations. This approach allows the representation of some 3D effects, such as necking. The nonlocal approach is applied to the strains so that the void fraction value evolves up to one and this is verified numerically. Three verification examples are proposed and one validation example is shown, illustrating the excellent results of the proposed method. One of the verification examples includes both crack propagation in the continuum and rigid particle decohesion based on the same model.
URI: http://www.springerlink.com/content/w27h2j66120l2515/
http://hdl.handle.net/10174/4087
Type: article
Appears in Collections:FIS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
ductile1.pdf2.8 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois