|
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/33112
|
Title: | Modeling Gd 3+ Complexes for Molecular Dynamics Simulations: Toward a Rational Optimization of MRI Contrast Agents |
Authors: | Oliveira, Alexandre C. Filipe, Hugo Prates Ramalho, João P. Salvador, Armindo Geraldes, Carlos F G C Moreno, Maria João Loura, Luís M S |
Issue Date: | 2022 |
Publisher: | American Chemical Society Publications |
Citation: | Oliveira, A. C., Filipe, H. A., Ramalho, J. P., Salvador, A., Geraldes, C. F., Moreno, M. J., & Loura, L. M. (2022). Modeling GD3+ complexes for molecular dynamics simulations: Toward a rational optimization of MRI contrast agents. Inorganic Chemistry, 61(30), 11837-11858. doi:10.1021/acs.inorgchem.2c01597 |
Abstract: | The correct parametrization of lanthanide complexes is of the utmost importance for their characterization using computational tools such as molecular dynamics simulations. This allows the optimization of their properties for a wide range of applications, including medical imaging. Here we present a systematic study to establish the best strategies for the correct parametrization of lanthanide complexes using [Gd(DOTA)]− as a reference, which is used as a contrast agent in MRI. We chose the bonded model to parametrize the lanthanide complexes, which is especially important when considering the study of the complex as a whole (e.g., for the study of the dynamics of its interaction with proteins or membranes). We followed two strategies: a so-called heuristic approach employing strategies already published by other authors and another based on the more recent MCPB.py tool. Adjustment of the Lennard-Jones parameters of the metal was required. The final topologies obtained with both strategies were able to reproduce the experimental ion to oxygen distance, vibrational frequencies, and other structural properties. We report a new strategy to adjust the Lennard-Jones parameters of the metal ion in order to capture dynamic properties such as the residence time of the capping water (τm). For the first time, the correct assessment of the τm value for Gd-based complexes was possible by recording the dissociative events over up to 10 μs all-atom simulations. The MCPB.py tool allowed the accurate parametrization of [Gd(DOTA)]− in a simpler procedure, and in this case, the dynamics of the water molecules in the outer hydration sphere was also characterized. This sphere was divided into the first hydration layer, an intermediate region, and an outer hydration layer, with a residence time of 18, 10 and 19 ps, respectively, independent of the nonbonded parameters chosen for Gd3+. The Lennard-Jones parameters of Gd3+ obtained here for [Gd(DOTA)]− may be used with similarly structured gadolinium MRI contrast agents. This allows the use of molecular dynamics simulations to characterize and optimize the contrast agent properties. The characterization of their interaction with membranes and proteins will permit the design of new targeted contrast agents with improved pharmacokinetics. |
URI: | http://hdl.handle.net/10174/33112 |
Type: | article |
Appears in Collections: | LAVQ-REQUIMTE - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|