Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/29966

Title: A question-answering machine learning system for FAQs
Authors: Haque, Sazzadul
Advisors: Quaresma, Paulo Miguel
Gonçalves, Teresa
Keywords: Question Answering
Closed Domain QA systems
Similarity Measures
Sentence Embedding
BERT
Unsupervised Learning
Machine Learning
Pergunta-Resposta
Sistemas de Pergunta-Resposta de domínio fechado
Medidas de similaridade
Embbeding de frases
BERT
Aprendizagem não supervisionada
Aprendizagem Automática
Issue Date: 28-May-2021
Publisher: Universidade de Évora
Abstract: With the increase in usage and dependence on the internet for gathering information, it’s now essential to efficiently retrieve information according to users’ needs. Question Answering (QA) systems aim to fulfill this need by trying to provide the most relevant answer for a user’s query expressed in natural language text or speech. Virtual assistants like Apple Siri and automated FAQ systems have become very popular and with this the constant rush of developing an efficient, advanced and expedient QA system is reaching new limits. In the field of QA systems, this thesis addresses the problem of finding the FAQ question that is most similar to a user’s query. Finding semantic similarities between database question banks and natural language text is its foremost step. The work aims at exploring unsupervised approaches for measuring semantic similarities for developing a closed domain QA system. To meet this objective modern sentence representation techniques, such as BERT and FLAIR GloVe, are coupled with various similarity measures (cosine, Euclidean and Manhattan) to identify the best model. The developed models were tested with three FAQs and SemEval 2015 datasets for English language; the best results were obtained from the coupling of BERT embedding with Euclidean distance similarity measure with a performance of 85.956% on a FAQ dataset. The model is also tested for Portuguese language with Portuguese Health support phone line SNS24 dataset; Sumário: Um sistema de pergunta-resposta de aprendizagem automatica para FAQs Com o aumento da utilização e da dependência da internet para a recolha de informação, tornou-se essencial recuperar a informação de forma eficiente de acordo com as necessidades dos utilizadores. Os Sistemas de Pergunta- Resposta (PR) visam responder a essa necessidade, tentando fornecer a resposta mais relevante para a consulta de um utilizador expressa em texto em linguagem natural escrita ou falada. Os assistentes virtuais como o Apple Siri e sistemas automatizados de perguntas frequentes tornaram-se muito populares aumentando a necessidade de desenvolver um sistema de controle de qualidade eficiente, avançado e conveniente. No campo dos sistemas de PR, esta dissertação aborda o problema de encontrar a pergunta que mais se assemelha à consulta de um utilizador. Encontrar semelhanças semânticas entre a base de dados de perguntas e o texto em linguagem natural é a sua etapa mais importante. Neste sentido, esta dissertação tem como objetivo explorar abordagens não supervisionadas para medir similaridades semânticas para o desenvolvimento de um sistema de pergunta-resposta de domínio fechado. Neste sentido, técnicas modernas de representação de frases como o BERT e FLAIR GloVe são utilizadas em conjunto com várias medidas de similaridade (cosseno, Euclidiana e Manhattan) para identificar os melhores modelos. Os modelos desenvolvidos foram testados com conjuntos de dados de três FAQ e o SemEval 2015; os melhores resultados foram obtidos da combinação entre modelos de embedding BERT e a distância euclidiana, tendo-se obtido um desempenho máximo de 85,956% num conjunto de dados FAQ. O modelo também é testado para a língua portuguesa com o conjunto de dados SNS24 da linha telefónica de suporte de saúde em português.
URI: http://hdl.handle.net/10174/29966
Type: masterThesis
Appears in Collections:BIB - Formação Avançada - Teses de Mestrado

Files in This Item:

File Description SizeFormat
Mestrado-Engenharia_Informatica-Sazzadul_Haque.pdf1.76 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois