Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/28864

Title: Lidstone-type problems on the whole real line and homoclinic solutions applied to infinite beams
Authors: Minhós, Feliz
Carrasco, Hugo
Keywords: Problems in the whole real line
Fixed-point theory
Green’s functions
Beams simply supported on nonuniform elastic foundations
Issue Date: 24-Jan-2020
Publisher: Springer Link
Citation: Minhós, F., Carrasco, H. Lidstone-type problems on the whole real line and homoclinic solutions applied to infinite beams. Neural Comput & Applic (2020). https://doi.org/10.1007/s00521-020-04732-x
Abstract: This work provides sufficient conditions for the existence of solutions to fourth-order nonlinear ordinary differential equations with Lidstone-type boundary conditions on the real line. Using Green’s functions, we formulate a modified integral equation and correspondent integral operators, in which fixed points are the solutions of the initial problem. Moreover, it is proved that every solution of the Lidstone problem on the whole real line is an homoclinic solution.
URI: https://link.springer.com/article/10.1007%2Fs00521-020-04732-x
http://hdl.handle.net/10174/28864
ISSN: 0941-0643 (Print) 1433-3058 (Online)
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Lidstone_FMinhos+HC_R2_v1.pdf174.8 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois