Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/26607

Title: Downscaling climate change of mean climatology and extremes of precipitation and temperature: Application to a Mediterranean climate basin
Authors: Zhang, Rong
Corte-Real, João
Moreira, Madalena
Kilsby, Chris
Burton, Aidan
Fowler, Hayley J.
Blenkinsop, Stephen
Forsythe, Nathan
Birkinshaw, Stephen
Nunes, João P.
Sampaio, Elsa
Editors: Radan, Huth
Keywords: dry spell
heat wave
hydrological impact assessment
Mediterranean climate
precipitation model
second-order autorregressive process
weather generator
Issue Date: 30-Apr-2019
Publisher: Radan Huth
Citation: Rong Zhang, João Corte‐Real, Madalena Moreira, Chris Kilsby, Aidan Burton, Hayley J. Fowler, Stephen Blenkinsop, Stephen Birkinshaw, Nathan Forsythe, João P. Nunes and Elsa Sampaio (2019). Downscaling climate change of mean climatology and extremes of precipitation and temperature: Application to a Mediterranean climate basin, International Journal of Climatology, Early View: 1-21. DOI: 10.1002/joc.6122
Abstract: Downscaling is usually necessary for robust hydrological impact assessments. This may be undertaken using a wide range of methods, including a combination of dynamical and statistical‐stochastic downscaling. This study uses the Spatial–Temporal Neyman‐Scott Rectangular Pulses model—RainSimV3, the precipitation‐conditioned daily weather generator—ICAAM‐WG, and the change factor approach for downscaling synthetic climate scenarios for robust hydrological impact assessment at middle‐sized basins. The ICAAM‐WG was developed based on the concept of the Climate Research Unit daily weather generator (CRU‐WG), motivated by the need for improved representation of heat waves by downscaling methods given the positive feedback between low soil moisture and high air temperature. We demonstrated the validity of the proposed methodology in the 705‐km2 Mediterranean climate basin in southern Portugal. The results show that, for the control period 1980–2010, both RainSimV3 and ICAAM‐WG reproduced not only the mean climatology, but also extreme wet and low precipitation events, as well as the extremes of temperature and heat waves. We found that downscaling with ICAAM‐WG (SIM6), which uses second‐order autoregressive processes for the simulation of temperature during consecutive dry and wet days, outperformed ICAAM‐WG (SIM4), which used only first‐order autoregressive processes, leading to improved simulation of heat waves. ICAAM‐WG (SIM6) well reproduced observed heatwave extremes with return periods of up to 30 years; however, ICAAM‐WG (SIM4) overestimated these extremes substantially. This indicates the importance of incorporating second‐order autoregressive processes in the simulation of heatwave length. In the context of climate warming, the proposed methodology provides a tool to improve downscaled projections of future extremes with confidence intervals for not only wet events but also dry spells and heat waves.
URI: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.6122
http://hdl.handle.net/10174/26607
Type: article
Appears in Collections:GEO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Downscaling climate changeof extremes.pdf8.44 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois