Please use this identifier to cite or link to this item:

Title: Cold-water corals and hydrocarbon-rich seepage in Pompeia Province (Gulf of Cádiz) – living on the edge
Authors: Rincón-Tomás, Blanca
Duda, Jan-Peter
Somoza, Luis
González, Francisco
Schneider, Dominik
Medialdea, Teresa
Santofimia, Esther
Lópes-Pamo, Enrique
Madureira, Pedro
Hoppert, Michael
Reitner, Joachim
Keywords: cold water corals
Mud volcanoes
Gulf of Cadiz
Issue Date: 16-Apr-2019
Publisher: Biogeosciences
Abstract: Azooxanthellate cold-water corals (CWCs) have a global distribution and have commonly been found in areas of active fluid seepage. The relationship between the CWCs and these fluids, however, is not well understood. This study aims to unravel the relationship between CWC development and hydrocarbon-rich seepage in Pompeia Province (Gulf of Cádiz, Atlantic Ocean). This region is comprised of mud volcanoes (MVs), coral ridges and fields of coral mounds, which are all affected by the tectonically driven seepage of hydrocarbon-rich fluids. These types of seepage, for example, focused, scattered, diffused or eruptive, is tightly controlled by a complex system of faults and diapirs. Early diagenetic carbonates from the currently active Al Gacel MV exhibit δ 13C signatures down to −28.77 ‰ Vienna Pee Dee Belemnite (VPDB), which indicate biologically derived methane as the main carbon source. The same samples contain 13C-depleted lipid biomarkers diagnostic for archaea such as crocetane (δ 13C down to −101.2 ‰ VPDB) and pentamethylicosane (PMI) (δ 13C down to −102.9 ‰ VPDB), which is evidence of microbially mediated anaerobic oxidation of methane (AOM). This is further supported by next generation DNA sequencing data, demonstrating the presence of AOM-related microorganisms (ANMEs, archaea, sulfate-reducing bacteria) in the carbonate. Embedded corals in some of the carbonates and CWC fragments exhibit less negative δ 13C values (−8.08 ‰ to −1.39 ‰ VPDB), pointing against the use of methane as the carbon source. Likewise, the absence of DNA from methane- and sulfideoxidizing microbes in sampled coral does not support the idea of these organisms having a chemosynthetic lifestyle. In light of these findings, it appears that the CWCs benefit rather indirectly from hydrocarbon-rich seepage by using methane-derived authigenic carbonates as a substratum for colonization. At the same time, chemosynthetic organisms at active sites prevent coral dissolution and necrosis by feeding on the seeping fluids (i.e., methane, sulfate, hydrogen sulfide), allowing cold-water corals to colonize carbonates currently affected by hydrocarbon-rich seepage.
Type: article
Appears in Collections:ICT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Rincón-Tomás_et_al_2019.pdf117.51 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois