Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/2503

Title: Splitting criteria for vector bundles on the symplectic isotropic Grassmannian
Authors: Macias Marques, Pedro
Oeding, Luke
Keywords: geometria algébrica
fibrados vectoriais
grassmaniano
Issue Date: 2009
Publisher: Dipartimento di Matematica e Informatica, Università degli Studi di Catania
Abstract: We extend a theorem of Ottaviani on cohomological splitting criterion for vector bundles over the Grassmannian to the case of the symplectic isotropic Grassmanian. We find necessary and sufficient conditions for the case of the Grassmanian of symplectic isotropic lines. For the general case the generalization of Ottaviani's conditions are sufficient for vector bundles over the symplectic isotropic Grassmannian. By a calculation in the program LiE, we find that Ottaviani's conditions are necessary for Lagrangian Grassmannian of isotropic $k$-planes for k<7, but they fail to be necessary for the case of the Lagrangian Grassmannian of isotropic 7-planes. Finally, we find a related set of necessary and sufficient splitting criteria for the Lagrangian Grassmannian.
URI: http://hdl.handle.net/10174/2503
ISSN: 0373-3505
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2009MMO-ArXiv.pdf227.11 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois