Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/2502

Title: Stability of syzygy bundles
Authors: Macias Marques, Pedro
Miró Roig, Rosa María
Keywords: geometria algébrica
fibrados vectoriais
fibrados de sizígias
espaços de moduli
Issue Date: 2011
Publisher: American Mathematical Society
Abstract: We show that given integers $N$, $d$ and $n$ such that ${N\ge2}$, ${(N,d,n)\ne(2,2,5)}$, and ${N+1\le n\le\tbinom{d+N}{N}}$, there is a family of $n$ monomials in $K[X_0,\ldots,X_N]$ of degree $d$ such that their syzygy bundle is stable. Case ${N\ge3}$ was obtained independently by Coand\v{a} with a different choice of families of monomials [Coa09]. For ${(N,d,n)=(2,2,5)}$, there are $5$ monomials of degree~$2$ in $K[X_0,X_1,X_2]$ such that their syzygy bundle is semistable.
URI: http://hdl.handle.net/10174/2502
ISSN: 0002-9939
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
20100815MMMR.pdf201.94 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois