Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/2483

Title: A decomposition theorem for neutrices
Authors: van den Berg, Imme
Keywords: Nonstandard analysis
external sets
neutrices
dimension
orthogonality
orders of magnitude
Issue Date: Apr-2010
Publisher: Elsevier
Abstract: Neutrices are convex subgroups of the nonstandard real number system, most of them are external sets. Because of the convexity and the invariance under some translations and multiplications, the external neutrices are models of orders of magnitude. A calculus of external numbers has been developped, which includes solving of equations, and even an analysis, for the structure of external numbers has a property of completeness. This paper contains a further step, towards linear algebra. We show that in R^{k}, with standard k, every neutrix is the direct sum of k neutrices of R. The components may be chosen orthogonal.
URI: http://hdl.handle.net/10174/2483
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
neutricesgecorrigeerd.pdfDocumento principal236.93 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois