Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/22401

Title: Electrical sensing of the dynamical structure of the planetary boundary layer
Authors: Nicol, Keri
Harison, Giles
Silva, Hugo
Salgado, Rui
Melgão, Marta
Bortoli, Daniele
Issue Date: Jan-2018
Publisher: Elsevier
Citation: K.A. Nicoll, R.G. Harrison, H.G. Silva, R. Salgado, M. Melgâo, D. Bortoli, Electrical sensing of the dynamical structure of the planetary boundary layer, Atmospheric Research, 202, 81-95, https://doi.org/10.1016/j.atmosres.2017.11.009
Abstract: Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m− 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m− 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.
URI: https://doi.org/10.1016/j.atmosres.2017.11.009
http://hdl.handle.net/10174/22401
Type: article
Appears in Collections:ICT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Nicoll_et_al_2018.pdf3.08 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois