Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/21483

Title: The Role of Non-Negative Polynomials For Rank-One Convexity and Quasi Convexity
Authors: Bandeira, Luís
Pedregal, Pablo
Editors: Chipot, Michel
Keywords: Rank-one convexity
quasi convexity
non-negative polynomials
Issue Date: 9-Jan-2017
Publisher: Springer
Citation: Bandeira, L. & Pedregal, P. J Elliptic Parabol Equ (2016) 2: 27.
Abstract: We stress the relationship between the non-negativeness of polynomials and quasi convexity and rank-one convexity. In particular, we translate the celebrated theorem of Hilbert ([3]) about non-negativeness of polynomials and sums of squares, into a test for rank-one convex functions defined on 2 × 2-matrices. Even if the density for an integral functional is a fourth-degree, homogeneous polynomial, quasi convexity cannot be reduced to the non-negativeness of polynomials of a fixed, finite number of variables.
URI: https://doi.org/10.1007/BF03377390
http://hdl.handle.net/10174/21483
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
paperJEPE.pdf89.38 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois