Please use this identifier to cite or link to this item:

Title: Abaqus implementation of phase-field model for brittle fracture
Authors: Msehk, M.
Areias, P.
Sargado, Juan Michael
Jamshidian, Mostafa
Issue Date: 1-Aug-2015
Abstract: A phase-field model for brittle fracture is implemented in the commercial finite element software Abaqus by means of UEL and UMAT subroutines. The phase-field method considerably reduces the implementation complexity for fracture problems as it removes the need for numerical tracking of discontinuities in the displacement field that are characteristic of discrete crack methods. This is accomplished by replacing the sharp discontinuities with a scalar damage phase-field representing the diffuse crack topology wherein the amount of diffusion is controlled by a regularization parameter. The nonlinear coupled system consisting of the linear momentum equation and a diffusion-type equation governing the phase-field evolution is solved simultaneously via a Newton–Raphson approach. The implemented crack propagation model does not require predefined paths for crack growth or user-defined surfaces to simulate crack debonding. Post-processing of simulation results is performed via an additional subroutine implemented in the visualization module.
Type: article
Appears in Collections:FIS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
1-s2.0-S0927025614004133-main.pdf2.69 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois