Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/1417

Title: Existence, nonexistence and multiplicity results for some beam equations
Authors: Minhós, Feliz Manuel
Keywords: Nagumo-type conditions
lower and upper solutions
Leray–Schauder degree
Ambrosetti–Prodi problems
beam equation
Issue Date: 2007
Publisher: Birkhauser Verlag
Abstract: This paper studies some fourth order nonlinear fully equations with a parameter s ∈ R, with two point boundary conditions. These problems model several phenomena, such as, a cantilevered beam with a linear relation between the curvature and the shear force at both endpoints. For some values of the real constants, it will be presented an Ambrosetti–Prodi type discussion on s. The arguments used apply lower and upper solutions technique, a priori estimations and topological degree theory.
URI: http://hdl.handle.net/10174/1417
ISBN: ISBN: 978-3-7643-8481-4
Type: bookPart
Appears in Collections:MAT - Publicações - Capítulos de Livros
CIMA - Publicações - Capítulos de Livros

Files in This Item:

File Description SizeFormat
4OrdAmbProdiAveiro(FM)Birkhauser2007.pdfArtigo476.81 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois