Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/12608

Title: Regularity of a kind of marginal functions in Hilbert spaces
Authors: Goncharov, Vladimir V.
Pereira, Fatima F.
Editors: Butenko, Sergiy
Rassias, Themistocles M.
Floudas, Christodoulos A.
Keywords: marginal function
metric projection
optimal time control problem
Hamilton-Jacobi equation
viscosity solution
uniform rotundity
duality mapping
proximal normals
Fréchet differentiability
Hölder continuity
Issue Date: 2014
Publisher: Springer
Citation: Pereira F., Goncharov V. Regularity of a kind of marginal functions in Hilbert spaces, In: S. Butenko, Ch. Floudas, Th. Rassias (eds). On global optimization in science and engineering, in honor of Prof. Panos Pardalos, 423-464 (2014)
Abstract: We study well-posedness of some mathematical programming problem depending on a parameter that generalizes in a certain sense the metric projection onto a closed nonconvex set. We are interested in regularity of the set of minimizers as well as of the value function, which can be seen, on one hand, as the viscosity solution to a Hamilton-Jacobi equation, while, on the other, as the minimal time in some related optimal time control problem. The regularity includes both the Fréchet differentiability of the value function and the Hölder continuity of its (Fréchet) gradient.
URI: http://link.springer.com/chapter/10.1007/978-1-4939-0808-0_22
http://hdl.handle.net/10174/12608
ISBN: 978-1-4939-0807-3
Type: bookPart
Appears in Collections:CIMA - Publicações - Capítulos de Livros

Files in This Item:

File Description SizeFormat
Regularity_Marginal_functions.pdf417.76 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois