Please use this identifier to cite or link to this item:

Title: Using Support Vector Machine Model for Fault Detection along a Water canal
Authors: Duarte, J
Rato, L
Rijo, M
Editors: Alexandre, L
Proença, H
Fazendeiro, P
Keywords: Water
Fault detection
deteção de avarias
Issue Date: 31-Oct-2014
Publisher: APRP - Associação Portuguesa de Reconhecimento de Padrões
Citation: Duarte, J, Rato, L, Rijo, M;Using Support Vector Machine model for fault detection along a water canal, RECPAD2014, 20th Portuguese Conference on Pattern Recognition, 48-49, 2014.
Abstract: This paper reports a work in progress, the training of a Support Vector Machine model to detect faults in an experimental water supply canal. The work took place at the experimental canal of Núcleo de Hidráulica e Controlo de Canais at the Universidade de Évora. The main objective is to identify faults in the water depth sensors and to detect unauthorized water withdrawals using pattern recognition. The preliminary accuracy tests, in and out of sample, have shown an accuracy over 90% to identify 28 different patterns.
Type: article
Appears in Collections:CITIUE - Artigos em Livros de Actas/Proceedings
INF - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
7_Duarte2014 - final version-recpad2014.pdf298.66 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois