Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/5957

Title: PROPORTIONALLY MODULAR DIOPHANTINE INEQUALITIES AND THEIR MULTIPLICITY
Authors: Rosales, J.C.
Branco, M.B.
Vasco, P
Editors: Springer- Verlag Berlin Heidelberg
Keywords: numerical semigroup
Diophantine inequality
multiplicity
Frobenius number
Issue Date: 15-Oct-2010
Publisher: Acta Mathematica Sinica, English Series
Abstract: Let I be an interval of positive rational numbers. Then the set S(I ) Æ T \N, where T is the submonoid of ¡ QÅ 0 ,Å ¢ generated by T , is a numerical semigroup. These numerical semigroups are called proportionally modular and can be characterized as the set of integer solutions of aDiophantine inequality of the form ax mod b · cx. In this paper we are interested in the study of the maximal intervals I subject to the condition that S(I ) has a given multiplicity. We also characterize the numerical semigroups associated to these maximal intervals.
URI: http://hdl.handle.net/10174/5957
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
proportionally-modular-diophantine-inequalities-and-multiplicity.pdf154.31 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois