Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/32425

Title: Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure
Authors: Cuervas-Mons, José
Zêzere, José L.
Domínguez-Cuesta, Maria J.
Barra, Anna
Reyes-Carmona, Cristina
Monserrat, Oriol
Oliveira, Sérgio C.
Melo, Raquel
Keywords: A-DInSAR
ADA
Sentinel-1
urban subsidence
Lisbon metropolitan area
Issue Date: 2022
Publisher: MDPI
Citation: Cuervas-Mons, J.; Zêzere, J.L.; Domínguez-Cuesta, M.J.; Barra, A.; Reyes-Carmona, C.; Monserrat, O.; Oliveira, S.C.; Melo, R. Assessment of Urban Subsidence in the Lisbon Metropolitan Area (Central-West of Portugal) Applying Sentinel-1 SAR Dataset and Active Deformation Areas Procedure. Remote Sens. 2022, 14, 4084. https://doi.org/10.3390/rs14164084
Abstract: The Lisbon metropolitan area (LMA, central-west of Portugal) has been severely affected by different geohazards (flooding episodes, landslides, subsidence, and earthquakes) that have generated considerable damage to properties and infrastructures, in the order of millions of euros per year. This study is focused on the analysis of subsidence, as related to urban and industrial activity. Utilizing the A-DInSAR dataset and applying active deformation areas (ADA) processing at the regional scale has allowed us to perform a detailed analysis of subsidence phenomena in the LMA. The dataset consisted of 48 ascending and 61 descending SAR IW-SLC images acquired by the Sen tinel-1 A satellite between January 2018 and April 2020. The line-of-sight (LOS), mean deformation velocity (VLOS) maps (mm year−1), and deformation time series (mm) were obtained via the Geohazard Exploitation Platform service of the European Space Agency. The maximum VLOS detected, with ascending and descending datasets, were −38.0 and −32.2 mm year−1, respectively. ADA processing over the LMA allowed for 592 ascending and 560 descending ADAs to be extracted and delimited. From the VLOS measured in both trajectories, a vertical velocity with a maximum value of −32.4 mm year−1 was estimated. The analyzed subsidence was associated to four ascending and three descending ADAs and characterized by maximum VLOS of −25.5 and −25.2 mm year−1. The maximum vertical velocity associated with urban subsidence was −32.4 mm year−1. This subsidence is mainly linked to the compaction of the alluvial and anthropic deposits in the areas where urban and industrial sectors are located. The results of this work have allowed to: (1) detect and assess, from a quantitative point of view, the subsidence phenomena in populated and industrial areas of LMA; (2) establish the relationships between the subsidence phenomena and geological and hydrological characteristics.
URI: https://www.mdpi.com/2072-4292/14/16/4084
http://hdl.handle.net/10174/32425
Type: article
Appears in Collections:GEO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Cuervas_etal_2022.pdf7.7 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois