Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/31998

Title: Classifying Soil Type Using Radar Satellite Images
Authors: Ahmed, MD Sajib
Gonçalves, Teresa
Rato, Luís
Marques da Silva, José Rafael
Vieira, Filipe
Paixão, Luís
Salgueiro, Pedro
Keywords: Remote Sensing
Soil Electrical Conductivity
Sentinel-1, Machine Learning
Random Forest
Issue Date: 30-Oct-2020
Abstract: The growth of the crop is dependent on soil type, apart from atmospheric and geo-location characteristics. As of now, there is no direct and costfree method to measure soil property or to classify soil type. In this work, we proposed a machine learning model to classify soil type using Sentinel-1 satellite radar images. Further, the developed classifier achieved 72.17% F1-score classifying sandy, free and clayish on a set of 65003 data points collected over one year (from Oct 2018 to Sep 2019) over 14 corn parcels near Ourique, Portugal.
URI: https://recpad2020.uevora.pt/wp-content/uploads/2020/11/proceedings_recpad2020.pdf
http://hdl.handle.net/10174/31998
Type: article
Appears in Collections:INF - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
RECPAD_2020_paper_35 (1).pdf1.04 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois