Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/40420

Title: Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps. Communications in Nonlinear Science and Numerical Simulation
Authors: Silva, Teresa
Silva, Luís
Fernandes, Sara
Keywords: Nonautonomous periodic systems
Rates of convergence
Stunted tent maps
Symbolic dynamics
Issue Date: 2020
Publisher: Elsevier
Citation: Silva, T.M., Silva, L., Fernandes, S., Convergence rates for sequences of bifurcation parameters of nonautonomous dynamical systems generated by flat top tent maps. Communications in Nonlinear Science and Numerical Simulation, 81, 105007(2020).
Abstract: In this paper we study a 2-parameter family of 2-periodic nonautonomous systems generated by the alternate iteration of two stunted tent maps. Using symbolic dynamics, renormalization and star product in the nonautonomous setting, we compute the convergence rates of sequences of parameters obtained through consecutive star products/renormalizations, extending in this way Feigenbaum’s convergence rates. We also define sequences in the parameter space corresponding to anharmonic period doubling bifurcations and compute their convergence rates. In both cases we show that the convergence rates are independent of the initial point, concluding that the nonautonomous setting has universal properties of the type found by Feigenbaum in families of autonomous systems.
URI: https://doi.org/10.1016/j.cnsns.2019.105007
http://hdl.handle.net/10174/40420
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
1-s2.0-S1007570419303260-main-2.pdf1.09 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois