Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/40319

Title: Vector fields with big and small volume on the 2-sphere
Authors: Albuquerque, Rui
Keywords: campo vetorial
volume mínimo
esfera
Issue Date: Jul-2023
Publisher: Hiroshima University, Mathematics Program
Citation: Rui Albuquerque. "Vector fields with big and small volume on the 2-sphere." Hiroshima Math. J. 53 (2) 225 - 239, July 2023. https://doi.org/10.32917/h2022009
Abstract: We consider the problem of minimal volume vector fields on a given Riemann surface, specialising on the case of M*, that is, the arbitrary radius 2-sphere with two antipodal points removed. We discuss the homology theory of the unit tangent bundle (T^1M*,∂T^1M*) in relation with calibrations and a certain minimal volume equation. A particular family X_m,k , k ∈ N, of minimal vector fields on M* is found in an original fashion. The family has unbounded volume, lim_k vol(X_m,k|Ω)=+∞, on any given open subset Ω of M* and indeed satisfies the necessary differential equation for minimality. Another vector field X_l is discovered on a region Ω_1 ⊂ S^2, with volume smaller than any other known optimal vector field restricted to Ω_1.
URI: https://doi.org/10.32917/h2022009
http://hdl.handle.net/10174/40319
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2110.07759v2.pdf506.21 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois