Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/20022

Full metadata record

DC FieldValueLanguage
dc.contributor.authorCarlota, Clara-
dc.contributor.authorChá, Sílvia-
dc.contributor.authorOrnelas, António-
dc.date.accessioned2017-01-24T15:44:18Z-
dc.date.available2017-01-24T15:44:18Z-
dc.date.issued2016-07-05-
dc.identifier.citationCarlota, Clara, Sílvia Chá, and António Ornelas. "A pointwise constrained version of the Liapunov convexity theorem for vectorial linear first-order control systems." Journal of Differential Equations 261.1 (2016) 296-318.por
dc.identifier.issn0022-0396-
dc.identifier.uri//www.sciencedirect.com/science/article/pii/S002203961600108X-
dc.identifier.urihttp://hdl.handle.net/10174/20022-
dc.description.abstractWe generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).por
dc.language.isoengpor
dc.publisherElsevierpor
dc.rightsrestrictedAccesspor
dc.subjectLiapunov convexity theorempor
dc.subjectNonconvex linear differential inclusionspor
dc.subjectPointwise constraintspor
dc.subjectLinear boundary value control problemspor
dc.titleA pointwise constrained version of the Liapunov convexity theorem for vectorial linear first-order control systemspor
dc.typearticlepor
dc.identifier.authoremailccarlota@uevora.pt-
dc.identifier.authoremailsilviaaccha@hotmail.com-
dc.identifier.authoremailantonioornelas@icloud.com-
dc.peerreviewedyespor
dc.identifier.scientificarea334por
dc.identifier.doi10.1016/j.jde.2016.03.009por
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
CCO-Liapunov control.pdf224.96 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois