


BorArAm - Catalytic Asymmetric Arylating Cyclizations: A New Route to Chiral Bicyclic Amines

H. Viana, C. S. Marques, Paulo J. Mendes, Anthony J. Burke

Departamento de Química, Centro de Química de Évora e LADECA, Universidade de Évora
Rua Romão Ramalho 59, 7000 Évora, PORTUGAL.

ajb@uevora.pt, hugoricardoviana@gmail.com

Nowadays neurodegenerative diseases such as Alzheimer's disease and Parkinson disease represent a worldwide health threat. Rasagiline is one well-known medication for the treatment of Parkinson's disease, but more and cheaper alternatives are required.¹ For this reason, our group is currently investigating a new catalytic asymmetric arylating² cyclization route - borylation-arylation-amination (BorArAm) (**Scheme 1**) giving useful potential lead compounds based on the rasagiline core structure for treating these diseases. Our results will be discussed in this communication.

Scheme 1: Reaction sequence for the synthesis of chiral bicyclic amines.

Acknowledgements: This work is supported by the project: INMOLFARM - Molecular Innovation and Drug Discovery (ALENT-57-2011-20) financed from the FEDER-INALENTEJO program ALENTE-07-0224-FEDER-001743, as well as PEst-OE/QUI/UI0619/2011 (CQE-UE).

References:

1. Orly Weinreb, Tamar Amit, Orit Bar-Am, Moussa B.H. Youdim, *Progress in Neurobiology*, **2010**, 92, 330–344;
2. C. S. Marques, A. J. Burke, *ChemCatChem*, **2011**, 3, 635-645.