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Abstract

In this paper we develop a conceptual framework for the payout phase in which annuity
providers and policyholders share longevity and investment risks in a flexible way. To
be more precise, we develop an participating life annuity product in which systematic
longevity risk, i.e., the risk associated with systematic deviations from mortality rates
extracted from prospective life tables derived for the Portuguese population, is shared
between both counterparties. This will address some of the main demand and supply
constraints in annuity markets, namely the inexistence of prospective life tables for the
Portuguese population, the perception of unfair pricing, the consideration of bequest
motives, adverse selection problems or the lack of financial instruments to hedge against
longevity risk. Contrary to traditional GSA’s, in which surviving policyholders bear both
systematic and unsystematic longevity risk, we devise a contract in which, in exchange for
a relatively small premium, annuitants will bear only the part of longevity that exceeds
pre-determined thresholds.
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1 Introduction

Longevity risk, i.e., the risk that members of some reference population might live
longer, on average, than anticipated, has recently emerged as one of the largest
sources of risk faced by individuals, life insurance companies, pension funds and
annuity providers. This risk is amplified by the current problems in defined benefit
(DB) pension systems (either PAYGO financed or funded and public or private), in
which the amount of retirement benefits is determined largely by years of service,
that will inevitably force the systems to moderate benefit promises in the future.
Additionally, the international pension environment is shifting towards defined
contribution (DC) systems, in which retirement wealth depends on how much
individuals save and how successfully they allocate their assets accumulated in
DC plans, forcing individuals to be much more aware and active in managing this
risk. The efficient allocation of these assets requires the managing of a number
of risks, such as the investment risk, timing of annuitization and longevity risk
(i.e. the possibility of exhausting assets before passing away). It also depends on
the existence of solutions to manage both financial and demographic risks, on the
regulatory environment and on type of options and products available.

If in recent years pension discussions were mainly focused on questions such
as system design or on ways to encourage saving in the accumulation phase, the
design of the payout phase and the different retirement options for DC plans will
soon be at the center of the debate. The main problem will be on how to en-
courage certain retirement payout options in order to guarantee that people will
have appropriate retirement income and longevity protection, while considering
liquidity, health-care costs or bequest motives. The regulatory implications of the
guarantees offered to retirees will need to be balanced so that capital reserves
required (e.g., life insurance companies) in excess of what can be fairly and prof-
itably delivered by private providers don’t result in the lack of products or in
inefficient allocation of resources.

Assets accumulated in DC pension plans may be allocated in the payout phase
in three alternative ways: lump-sum payments, programmed withdrawals, and an-
nuities, although we can envisage mixed arrangements involving any combination
of these. With lump-sums, individuals receive the entire value of the assets ac-
cumulated for retirement as a single payment. Under programmed withdrawals,
individuals establish a schedule of periodic fixed or variable payments. Finally,
“plain vanilla” life annuities involve a constant stream of income paid at some reg-

ular interval for as long as the individual lives. The main factors that differentiate



between these options are the degree of flexibility and exposure to investment risk
versus the degree of protection against longevity risk.

The main purpose of this project is to develop a conceptual framework for the
payout phase in which annuity providers and policyholders share longevity and
investment risks in a flexible way. To be more precise, we develop an participating
life annuity product in which systematic longevity risk, i.e., the risk associated
with systematic deviations from mortality rates derived using prospective life
tables for the Portuguese population, is shared between both counterparties. This
will address some of the main demand and supply constraints in annuity markets,
namely the inexistence of prospective life tables for the Portuguese population,
the perception of unfair pricing, the consideration of bequest motives, adverse
selection problems or the lack of financial instruments to hedge against longevity
risk. We hope the results of this project will contribute to the development of an
efficient annuity market in Portugal.

The paper is organized in four main parts. In Section 1 we briefly review the
main demographic trends observed worldwide and discuss the macroeconomics
and financial implications of longevity risk. Next, we discuss the type of retire-
ment payout options for accumulated assets in savings accounts or DC pensions,
emphasizing the importance of annuity markets in protecting individuals from
longevity risk. Next, we discuss the main demand and supply constraints un-
dermining the development of annuity markets in Portugal and in most OECD
countries. Finally, we briefly introduce traditional and stochastic mortality ap-
proaches in mortality modelling.

In Section 2 we analyse in detail the main features of a special type of partic-
ipating life annuity called Guaranteed (or pooled) Self Annuitization (GSA) an-
nuity fund. The advantages and limitations of this contract in hedging longevity
risk are highlighted in comparison with standard “plain vanilla” annuities. In
Section 3 we derive the first prospective lifetables for the Portuguese population.
This provides us with new tools for the analysis of mortality trends, namely the
possibility to investigate the evolution of mortality not only in terms of calendar
time but also in terms of year of birth or cohort. In Section 4 we use stochas-
tic differential equations to model the random evolution of survival probabilities.
Specifically, we propose (and calibrate) a new SDE for the force of mortality. The
model is then embedded into an affine-jump term structure framework in order
to derive closed-form solutions for the survival probability, a key element when
pricing life insurance contracts. In Section 5 we develop a new participating life

annuity with a longevity risk sharing mechanism. Section 6 concludes.



1.1 Demographic trends

It is well documented that the population of the industrialized world underwent
a major mortality transition over the last decades. Improved hygiene and liv-
ing standards, breakthrough medical progresses, generally healthier lifestyles, the
absence of both major pandemic crisis and global military conflicts have created
the conditions for individuals to enjoy raising life expectancy at all ages. Based
on all available demographic databases, historical trends show that both average
and the maximum lifetime have increased gradually during the last century, with
human life span showing no signs of approaching a fixed limit imposed by biology.
In Portugal, life expectancy at birth increased from 48.08 (52.12) years in 1930-31
to 75.49 (81.74) in 2006-08 for the male (female) population.

As in other developed countries, the mortality decline has been dominated
by two major trends: a huge reduction in mortality due to infectious diseases
affecting mainly young ages, more evident during the first half of the century, and
a decrease in mortality at older ages, more pronounced during the second half.
As a consequence, the number of those surviving up to older ages (e.g., 80 years
and above) has increased significantly representing, in 2006, 4.9% (2.9%) of the
Portuguese female (male) population. Additionally, the number of deaths of the
oldest-old accounts for an increasing proportion of all deaths, with reductions of
mortality beyond these ages having a growing contribution to future gains in life
expectancy. Decreasing mortality at old ages raised longevity to values considered
impossible in the past. In Portugal, life expectancy at age 65 raised from11.49
(13.09) years in 1930-31 to 16.25 (19.61) years in 2006-08.

The general downward trend in mortality rates at almost all ages means that
an increasing proportion of the members of a given generation lives up to very old
ages (around 75-85 years), shifting the survival function upwards and to the right
to a more rectangular shape in what is know in the literature as the rectangular-
ization phenomena. At the same time, we can observe that the age of maximum
mortality gradually shifted towards older ages, in what is sometimes called the
expansion phenomenon of the survival curve.

At the same time, fertility rates are declining. Recent data shows that while
in 1960 each Portuguese woman gave birth to 3.1 children on average, nowadays
the ratio in only 1.4, far below the threshold of around 2.1 necessary to keep
the population of a developed country constant. In fact, in Portugal as in many
developed countries low fertility rates are, together with increasing life expectancy,
the main drivers of an ageing population.

The immediate consequence of higher life expectancy and low fertility rates



in unambiguous. According to the United Nations, in 2050 27% of the European
population will be older than 65 years (16% in 2005) and around 10% will be
older than 85 (compared with 3.5% in 2005). This has important consequences in
terms of population mix, as can be seen, for example, by looking at the evolution of
young-age and old-age dependency ratios. In Portugal, the young-age dependency
ratio has been cut by more than half from 46.0 in 1960 to 22.8 in 2007. In opposite
direction, the old-age dependency ratio has increased steadily from 15.6 in 1970
to 25.9 in 2007. Considering the ageing (or vitality) index, while in 1970 there
were 34 old people for each young people, in 2007 this relation has dramatically
shifted to 114 old for 100 young people.

1.2 Financial implications of longevity risk

Mortality improvements are naturally viewed as a positive change for individuals
and as a substantial social achievement for developed countries. Nonetheless, the
combination of longer life and low fertility rates poses a huge challenge to both
societies and individuals since they are now exposed to increasing longevity risk.
Macroeconomics effects of population ageing range from impacts on labour sup-
ply and its rate of utilization to investment, productivity and saving/consumption
patterns, external balances and cross-border capital flows, consumer preferences
and corporate strategies, health-care and social security systems. In the insur-
ance market, mortality improvements have an obvious impact on the pricing and
reserving for any kind of long-term living benefits, particularly on annuities.

The demographic scenario described above is also driving to important changes
in the income mix of retirees. First, as a consequence of a rising old-age depen-
dency ratio, the number of wage and salary earners is becoming insufficient to
fund a growing number of retirees. Traditional PAYGO social security systems
will progressively become unsustainable and will require substantial reforms. Al-
ternative solutions involve an increase in the contribution rates, a reduction in
pension/salary replacement rates, an increase in retirement age, a search for new
funding sources. Changes in public pension systems are likely to imply, ceteris
paribus, a noteworthy reduction in the retirement income relative to wages. i.e.,
a relative reduction in state-provided pension income.

Second, there is a clear market trend away from defined-benefit (DB) corporate
pension schemes to defined-contribution (DC) schemes. In these arrangements,
retirement benefits are largely determined by how much workers save and how
successfully they allocate their assets accumulated in DC plans. The efficient

allocation of these assets requires the managing of risks, such as the timing of



annuitization and longevity risk, i.e., the possibility of outliving one’s retirement
income. It also depends on the type of options and products available and on the
regulatory environment. This means that employer-related pension benefits could
equally become more uncertain in the future.

Third, the extended mobility of the workforce has broken down traditional
family networks, thus reducing in practice the ability of younger members of a
family to take care of the older ones, the main source of intergenerational solidarity
mechanism in the past. The changing pattern observed in labour markets towards
more flexible and less stable arrangements will probably induce erratic social
security contribution patterns, essentially dependent on salaries profiles over time.

This said, individuals will have to become in a near future more self-reliant
and will want to supplement and diversify their sources of income in retirement,
assigning greater weight to private solutions and increasing the flow of saving
allocated to fund retirement. In addition, increases in life expectancy will probably
not be followed by an equivalent upward adjustment in the retirement age and
thus individuals will have to put aside an increasing proportion of their lifetime
income in order to fund their extended lifetime.

Moreover, increases in life expectancy have consistently exceeded forecasts,
i.e., individuals are faced with longevity risk, something that must also be consid-

ered in order to ensure that the elderly do not experience drops in consumption.

1.3 Options for the Payout-Phase

Given the importance of addressing retiree’s needs in their financial needs, both in
their accumulation and decumulation (or payout) phases, in this section we briefly
review the main retirement options available for the payout-phase. Individuals
with assets accumulated in DC plans or individual saving accounts have roughly
three main options for the payout phase: lump-sum payments, programmed with-
drawals and annuities. Combined solutions involve any possible combination be-
tween these three alternatives are of course possible.

With lump-sums, individuals simply receive the entire value of the assets ac-
cumulated for retirement as a single payment. That amount can then be freely
allocated, for example, to buy discretionary items, to pay down debts, to buy
annuities, to cover for contingencies (e.g., medical expenses). Under programmed
withdrawals, individual agree on a set of periodic payments (fixed or variable),
which can be determined on different ways (e.g., by dividing the accumulated
capital by a fixed number of years) and allow for some flexibility, for example

to adjust for unexpected contingency payments. Finally, a traditional whole life



annuity is a stream of income payments paid at some regular interval for as long
as individual lives.

The main factors that differentiate between these options are the degree of
flexibility versus the degree of protection from longevity risk. Lump-sum payments
are fully flexible and provide complete liquidity, allowing individuals to dispose
and allocate their wealth as they wish, including the option to leave bequests.

However, lump-sum payments do not provide protection from outliving one’s
own resources, i.e., individuals bear in this case all longevity risk. According to
life-cycle theory, in a world with no uncertainty rational individuals would save
optimally and, on retirement, would merely allocate their wealth by spreading
assets over their remaining years of life, so as to ensure optimal retirement con-
sumption (and cover bequest motives, if any). In a dynamic environment, future
life expectancy is unknown and as such individuals are faced with the prospect
of outliving their expected life spans. In a scenario of unknown longevity, indi-
viduals rely heavily on financial discipline to manage their resources. Retirees
can reduce the risk of exhausting assets before passing away by consuming less
per year, but such a tactic then increases the chance that they might die with
too much wealth left unconsumed. In other words, dying with too little wealth
is undesirable, but having too much wealth is also undesirable, since it represents
foregone consumption opportunities.

Programmed withdrawals provide more financial discipline than lump-sums,
while maintaining some degree of flexibility, access to liquidity and the possibility
to cover bequest motives, but fail once again to provide any kind of protection
from longevity risk.

Finally, life annuities offer full protection against longevity risk, but at least in
their "plain vanilla" form, are inflexible and illiquid and do not provide for bequest
motives. Nevertheless, in some countries annuity markets offer today a wide range
of complex annuity products, including embedded guarantees that protect against
interest rate, inflation, market volatility, and early death, accommodate liquidity
and contingency payments and offer tax advantages. However, up to now little
attention has been devoted to the development of annuity products in which
mortality and longevity risks are shared and payouts linked to the evolution of
demographic variables. In this paper tackle this problem and develop an annuity
product in which mortality and longevity risks are shared between annuitants and
life insurance companies.

The decision as to which of these three main retirement payout options is pre-

ferred relies mostly on individual preferences, the type of pension arrangements



in place, the “generosity” of PAYGO pension systems, as measured for example
by the replacement rates, the availability of other sources of income in retirement,
tax incentives, the existence of individual account type systems, financial educa-
tion, mandatory annuitization constraints or the level of development of insurance
markets.

Overall, the life insurance industry should be prepared to help retirees to meet
their financial needs, both in the accumulation and payout phases. In the accu-
mulation phase, companies should help individuals to build up a desired level of
savings throughout their working years in a flexible and efficient way. In a flexible
way, assisting individuals to choose the amount and timing of their contributions
to the capitalisation plan. In an efficient way via, for example, investment diversi-
fication strategies, gradual adjustment of the risk/return profile according to age,
tax incentives.

As to the decumulation phase, life insurance companies have a crucial role
in allowing individuals to have access and run their asset pool in a flexible and
smooth way, while offering protection against longevity, inflation and investment
risks. This can be done by offering various types of annuities, with alternative
payout mechanisms (fixed or variable, inflation-linked, equity-linked, participating
arrangements, additional embedded guarantees), through health care and long-
term care insurance or through wealth monetisation (e.g., reverse mortgages) for

those whose assets are not in liquid form.

1.4 Main constraints facing annuity markets

Life annuity products have been sold in the past primarily as retirement accumu-
lation vehicles, rather than decumulation products (Brown et al., 2001). This may
explain why annuity markets in Portugal and in most OECD countries have been
relatively underdeveloped to date. However, annuity markets suffer from a wide
range of demand and supply constraints'!. On the demand side, limitations to
the development of annuity markets include, first, the level of annuitization from
PAY GO-financed pensions, i.e., the degree on which annuities are crowded out by
social security provision and the degree on which they are crowded out by other
forms of pension saving such as DB occupational schemes. Second, annuities are
perceived to be unfairly priced, mostly because life insurance companies do not
fully disclose information on the technical basis used to calculate annuity premi-
ums. Third, the motive to bequest assets on death to dependents is not covered

by “plain vanilla” annuities. Fourth, the demand for annuities is determined to

'Tor a detailed discussion on this subject see, for example, Stewart (2007) and Rusconi (2008).
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some extent by personal considerations such as family support, the need to cover
the costs of unexpected medical expenses, the inexistence of sufficient liquid assets
to purchase an annuity or liquidity concerns. For example, for older people, the
risk of having to pay large medical bills or cover special health care costs induces
them to retain at least a fraction of their assets instead of annuitising them.

Fifth, fiscal incentives are considered insufficient to stimulate insurance protec-
tion against longevity risk. In modern competitive markets, individual financial
decisions are also driven by people’s perceptions about the appeal of alternative
investments, both during their working lifetime and after retirement. For instance,
some individuals may avoid annuitisation on the grounds that they can manage
their assets better than institutional fund managers. In this scenario, introducing
tax incentives (or tax-favoured competing assets) could undermine saving deci-
sions in favour of buying annuity protection. Finally, in some cases there is a
general mistrust of institutions providing annuities.

On the supply side, the type and scope of the limitations to the development
of annuity markets is also significant. First, high-quality information on mortality
tables depicting a particular group’s distribution of expected remaining lifetime is
required. Projected mortality tables should take into consideration the stochas-
tic nature of the remaining lifetime and encompass cohort effects. Uncertainty
regarding mortality tables can cause insurance companies to prices annuities con-
servatively, exacerbating adverse selection problems and lowering the access to
the market. Additionally, uncertainty regarding mortality data can cause indi-
viduals to seriously underestimate their survival prospects, which, in turn, can
lead them to undervalue the importance of longevity insurance. Dissemination
of mortality should, in this sense, be considered a matter of public interest and
form part of a clear supervision policy. In Portugal, there are not regulatory
lifetables (neither contemporaneous lifetables nor prospective lifetable) either for
the Portuguese overall population or for life insured populations. As a result, life
insurance companies are forced to use as their technical basis lifetables adopted in
other countries. Although this practice is authorized by the supervising authori-
ties, using a survival law drawn up from other population’s experience, potentially
biased when compared to the demographic conditions observed in Portugal, in-
volves significant basis risks, in particular the risk of overestimating the mortality
risk of the population. In Section 3 we address this issue and derive the first
prospective lifetables for the Portuguese general population.

Second, annuity markets are often affected by strong adverse-selection prob-

lems. This arises if buyers of annuities prove to be live longer than average,
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inducing insurance companies to devise separate mortality tables for annuitants
as opposed to those for the general population. The existence of adverse selection
problems induces companies to include significant margins when pricing for annu-
ity contracts. Whether adverse selection is quantitatively important may depend
on whether annuitisation is considered optional or mandatory. In this sense, in-
creasing compulsory annuitisation can significantly reduce adverse-selection prob-
lems.

Third, the potential for growth in annuity markets cannot be fully accom-
modated if insurance companies lack assets with which to back the long-term
promises represented by annuities. Appropriate asset types either do not exist or
are available in insufficient quantity. Insurance companies offering annuity prod-
ucts are faced with two major risk sources: interest-rate risk and longevity risk.
Standard immunisation theory suggests that in order to protect themselves from
small changes in the term structure of interest rates, insurance companies should
back their annuity portfolios with assets whose respective durations equal those
of the annuity liabilities, and whose respective convexities are larger than those of
the annuity liabilities. This is difficult in practice, since long-term bonds are not
available in most bond markets. Moreover, if real annuities are to be provided,
real long-term bonds will have to be issued as well. This means that annuity mar-
kets would definitely benefit from the issuance of long-term government bonds.
Moreover, recent events in Argentina and Russia have shown that the quality of
assets considered is important, since the possibility of default is real.

On the other hand, longevity risk, i.e., the chance that entire cohorts live
longer than anticipated in projected mortality tables, remains a real concern for
insurance companies selling annuity products, since substantial changes in mortal-
ity patterns could seriously challenge their profitability. Insurance companies can,
for example, hedge longevity risk with offsetting life insurance contracts, reducing
(but not eliminating completely) the impact of negative mortality scenarios. Some
advocate that governments (or private companies) should issue cohort “survivor
bonds” (or longevity bonds), i.e., bonds whose future coupons payments depend
on a survivorship index (for example, the percentage of the whole population of
retirement age - say 65 - on the issue date still alive on the future coupon payment
dates).?

Although survivor bonds are good candidates for hedging aggregate mortality
risk, they do not provide a perfect hedge against the particular characteristics

of a company’s pool of annuitants. In this sense, there is basis risk between the

2See, e.g., Blake and Burrows (2001) and Blake et al. (2006a).
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reference population mortality and the mortality experienced by any individual
pool of annuitants. Other problems related to the issuance of survivor bonds
include: i) the ability of dealing with a business involving huge amounts of cap-
ital, i) pricing complications related to the adoption of a particular (stochastic)
representation of mortality uncertainty and the estimation of the market price
of longevity risk and iii) the importance of attractive contract design in order to
boost market liquidity for traded securities and reduce credit risk. Once a well
organised and liquid market for survivor bonds is in place, a whole new avenue is
open for the development of survivor-derivative products (for example, mortality
options based on a certain mortality index, futures contracts based on survival
forecasts, survivor swaps interchanging cash flows based on two different mortality
experiences, longevity forwards?).

Finally, alternative methods of hedging longevity risk include the use of tradi-
tional reinsurance methods, or through risk-sharing in the capital markets, which
are particularly attractive for investors because of the low or negative correla-
tion with traditional risk factors such as financial market indexes, or through the
option of annuity securitisation, which would benefit insurance companies by pro-
viding them with alternative means for offloading their mortality improvements
risk exposure.

Fourth, traditional annuity markets are incomplete in the sense that do not of-
fer protection against inflation, they lack equity market exposure, they are illiquid
and do not insure against multiple shocks. Finally, there are concerns regarding
regulatory capital requirements or with the strength of existing providers that
would make it difficult for new entrants to survive.

In order to address these problems, many policy options exist to encourage and
promote annuity markets. Examples include mandating annuitization, improving

financial literacy, dealing with longevity risk or producing longevity indexes.

1.5 Modeling mortality and longevity risk

One of the key conditions for the development of longevity-linked products and
markets and for the hedging of longevity risk is the development of generally
agreed market models for risk measurement. Whereas traditional market risks
such as equity market, interest rate, exchange rate, credit and commodity risks
have well consolidated methodologies for quantifying risk-based capital and for
establishing market prices, longevity and mortality risk has historically been a

very opaque risk. For a long time, only demographers, actuaries and insurance

3For a detailed discussion see, e.g., Blake et al. (2006a,b) and Bravo (2007).
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companies showed any interest in measuring and managing this risk, mainly for
pricing purposes. A number of explanations can be given for this, particularly
the fact that it is a non-financial risk that has been measured and analyzed in
a different way from financial risks, generally adopting deterministic or scenario
based approaches.

Historically, actuaries have been calculating premiums and mathematical re-
serves using a deterministic approach, by considering a deterministic mortality
intensity, which is a function of the age only, extracted from available (static)
lifetables and by setting a flat (“best estimate”) interest rate to discount cash
flows over time. Since neither the mortality intensity nor interest rates are ac-
tually deterministic, life insurance companies are exposed to both financial and
mortality (systematic and unsystematic) risks when pricing and reserving for any
kind of long-term living benefits, particularly on annuities. In particular, the cal-
culation of expected present values requires an appropriate mortality projection
in order to avoid significant underestimation of future costs.

In order to protect the company from mortality improvements, actuaries have
different solutions, among them to resort to projected (dynamic or prospective)
lifetables, i.e., lifetables including a forecast of future trends of mortality instead
of static lifetables. Static lifetables are obtained using data collected during a
specific period (1 to 4 years) whereas dynamic lifetables incorporate mortality
projections. In a situation where longevity is increasing over time, static lifetables
underestimate lifelengths and thus premiums relating to life insurance contracts.
Conversely, dynamic lifetables will project mortality into the future accounting
for longevity improvements.

Since the future mortality is actually unknown, there is enormous likelihood
that future death rates will turn out to be different from the projected ones, and
so a better assessment of longevity risk would be one that consists of both a mean
estimate and a measure of uncertainty. Such assessment can only be performed
using stochastic models to describe both demographic and financial risks. In the
following sections, we review both the traditional “dynamic approach” and the

new “stochastic mortality approach”.

2 Group Self Annuitization life annuities

2.1 Risk pooling principle

Through “plain vanilla” annuities, life insurers offer their policyholders protection

against two broad classes of risk: biometric risks, such as longevity and mortality
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risks, and macroeconomic and financial market risks, such as interest rate, infla-
tion, equity market or credit market risk. In this kind of product insurers bear
all risk, both systematic (e.g., longevity risk, the risk that people systematically
live longer than predicted) and unsystematic or idiosyncratic risk (e.g., financial
market volatility, mortality deviations around predicted values,...).

To introduce a special type of participating life annuity called Guaranteed
(or pooled) Self Annuitization (GSA) annuity fund consider the following simple
example. Let us take a group of ten 90-year-old Portuguese women, who are
concerned about outliving their financial wealth over the next year. Statistically,
the latest estimations show that there is an approximately 20% probability of
death in the next year. To protect against longevity risk, they agree to contribute
EUR 100 to a common fund, which will redistribute the capital and investment
return (say 5% yield pa) amongst survivors. At the end of the year each of them
will get between EUR 105 (if no-one dies) and EUR 1050 (if nine out of ten die),
based on actual mortality experience.

What this example highlights is that by pooling mortality risk and ceding be-
quest, individuals seem to all gain. In fact, ex-ante all fund participants receive
some protection against longevity risk over the duration of the contract. If the
agreement between the ten old ladies were to be intermediated by an insurance
company, involved a large number of people, and lasted for the remaining lifetime
of participants’ lives, it would constitute a special type of participating life an-
nuity called Guaranteed Self Annuitization annuity fund. Through this kind of
arrangement, with a large investment pool, and assuming that longevity risk is
null, the funds contributed by those who die earlier than expected on the basis of
expected mortality rates are "inherited" by those who survive and supplement the
pool’s capital market gains, offering thus a larger benefit than could be achieved
through individual investments.

Stated more formally, consider a standard GSA annuity fund.* Without loss
of generality, the pool starts (at time ¢ = 0) with an initial size of [, homogeneous
insured persons in the sense of identical age, gender and cohort, identical monetary
amounts and identical risk exposures. We assume that contracts are sold to
policyholders in exchange for a single upfront premium Fp, given exogenously
throughout the entire analysis. The contract provides a flat benefit By paid once

a year. Given these assumptions and the best estimate of future mortality, the

“For a comprehensible introduction GSA’s see, for instance, Piggott and Detzel (2004) and
Richter and Weber (2009).
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starting total fund is
Fy =1, By (1)

where d, is the standard actuarial notation for the present value of whole life
annuity-due, determined using the mortality information and projections available
at time ¢ = 0 and assuming a constant discrete interest rate of ¢ per period (we
will use the year as the period, any generalizations can be made using the usual
approaches, e.g., interpolation). Such a pure annuity provides a unit payment for
the remaining lifetime of an insured person initially aged z, i.e., contingent on the

insured’s survival. Using the equivalence premium principle, a, is given by

K(=)

i, =B Zout :ZO{'Ut'tpx} (2)

where K = K(z) = [T'(x)] is the number of completed future years lived by (),
also denominated the curtate future lifetime of z (see, for instance, Gerber [1997]),
and where v = (1 + i)~ " denotes the standard discount factor. This starting total
fund can also be considered the initial total reserve, i.e., Fy = V.

In a GSA, the future value of annuity benefits remains constant over the whole
contract unless deviations from expected mortality rates are observed. If that is
not the case, i.e., if the number of those surviving up to higher ages is different form
expected, the remaining reserves have to be redistributed among the remaining
survivors. Assuming that realized investment rates will be as expected®, the total
fund at time ¢ = 1 comprises the initial value less annuity payments accrued at

the technical interest rate

Redistributing this reserve among the actual [7  ; remaining survivors for their
expected future lifetime, including the reserves “inherited” from non-surviving

members, the future value of annuity benefits becomes, after some algebra

B— g =5 () (1
r+1 pa:

where p, and p; denotes, respectively, the expected and realized survival prob-

abilities for an individual aged x at time ¢ = 0 in the time interval (¢,¢ + 1).

®The extension to the case where the realized investment earnings pattern is different from
the assumed constant rate ¢ is straightforward (see, e.g., Piggott et al., 2004)
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Proceeding inductively, at any time ¢ in the future the benefit payment will be

B; = By <tpx> (5)

tPg

determined by

From (5) it is clear that future annuity payments depend on the ratio of
survivorship rates. In a scenario of longevity risk, i.e., in a scenario where the
number of those surviving to age x + t is systematically higher than initially ex-
pected benefit payments will inevitably drop in order to prevent fund imbalance.
This contrasts with traditional life annuity contracts that guarantee a level pay-
ment for the remainder of recipient’s lifetime independently of future mortality
developments.

From (5) it also clear that benefit payments at time ¢ can be expressed as

min (By, By), £z <1

tPy

fi(Br) = Bo, =1 (6)

tPy

max (By, By), £ >1

tPy

For instance, in a scenario of longevity risk the benefit payment is given by the

o

current value of the reference fund distributed among the actual I3

11 remaining
survivors capped by its inception value By. This benefit can be expressed in terms
of the final (maturity) payoff of an European put option with strike equal to the

annuity benefit at inception, i.e.,
fi (By) = By — max {By — By; 0} (7)

If, for the contrary, actual remaining survivors are less than initially estimated,
benefit payments at time ¢ are floored by the annuity benefit at inception and can
be expressed in terms of the final payoff of an European call option with strike
equal to By, i.e.,

fi (By) = By + max {B; — By; 0} (8)

Equations (8) and (7) show that GSA annuity contracts include option features
that, up to our knowledge, have never been considered in the design and pricing of
these contracts. In fact, insurance companies adopt an over-simplified approach
and completely ignore embedded options, resorting to consolidated actuarial tech-
niques for pricing (and hedging) the contract. After all, in a GSA annuity fund
all actual losses/profits are beared by the remaining survivors, whose benefits
fluctuate according to mortality developments.

However, this solution may have a disastrous effect from a marketability point
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of view. For example, in a scenario of longevity risk future benefits will decrease
and this may spread discontent through those who weren’t aware of the poten-
tial impact of future mortality improvements on their “apparently guaranteed”
income and may feel they didn’t receive any compensation for being short in put
option contract. Compared to standard life annuities, policyholders in a GSA may
question the fact that insurance companies don’t pay a premium for the option
to cut back annuity payments in case of adverse mortality improvements.

On the other hand, if actual longevity developments are worst than initially
expected, benefit payments in a GSA will increase due to a higher “inheritance
effect” or “survivor bonus” since the accumulated funds will be spread across a
smaller surviving group. Compared to standard life annuities, in this case life
insurance companies will not be compensated for the “lost” reserves. Individu-
als assessing the possibility of annuitizing their wealth but disbelief about their
longevity prospects may feel attracted to buy an GSA annuity contract type if
given the chance to increase annuity payments if their prospects confirm. More-
over, in this case life insurance companies may sell a separates call options on
future benefit payments, upgrading thus the value of the overall line of business.

Although the framework of GSA is interesting at a theoretical level it as no
practical interest in life insurance competitive markets for a number of reasons.
Firstly, as in other variable annuity contracts the annuitant does not know in
advance the rate of return of the pool, hence it carries some risk. In particular,
GSA without additional guarantees are structured so that individuals share both
mortality and investment risk in upside and downside times. Second, annuitants
can see theirs payments dropping below a reasonable value in the presence of
longevity risk. Third, there will be no payments for lives above the technical
limit of the mortality table used to first price annuities, i.e., individuals might
end up with no resources to fund consumption. Fourth, insurance companies (or
fund’s manager) does not bear any kind of risk, either actuarial or financial, either
systematic of idiosyncratic. In fact, this is a simple approach to the diffusion of
risk since, in the classical framework of GSA, there is no need to use a risk bearer
(as an insurer or fund’s manager) since the funds are periodically reallocated to
the annuitants, based on the previous payment adjusted for any deviations in
mortality and interest from expectations.

Fifth, in its simplest form, a GSA does not give pool member’s access to the
principal investment nor to any accumulated fund. This means that the product
does not cover legacy motives. Finally, buyers of such product tend to be people

who expect to live longer, raising once again the question of adverse selection.
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The apparent advantage of GSA’s over self-insuring is that the risk exposure is
not immediate in that is borne by the pool and it’s smoothed out by the insurance
company over a long time horizon. In addition, since mortality and investment are
largely uncorrelated, there is some chance that a negative return on investments
may be partially offset by a positive “inheritance effect” or vice-versa. In other
words, the effects of the overall risk exposure might be mitigated and postponed
at the individual level when considered in a pooling structure.

To address these concerns, we propose in Section 5 a new participating life
annuity contract in which mortality and longevity risks are shared between pol-
icyholders and insurance companies. The contract includes option-like features
that adjust benefits if future mortality developments are significantly different

from expected.

2.2 Annuity portfolio losses

A different way to understand the option-like features of annuity contracts is to
analyse the relation between survival probabilities and annuity portfolio losses.
Consider a classic life annuity contract with level payment By. The loss on the

underlying annuity portfolio at time ¢ is defined as

la
Ly = (Ii(t)Bo — B [Li(t) Bo)) " (9)

i=1
where I;(t) = 1, is an indicator function that jumps from 1 to 0 at the time of
death 7; of the annuitant. Note that E[I;(t)] =: ps. Losses on the portfolio are
the amount that the annuity payments at time ¢ exceed the expected payments.
For a given population survival probability ¢p,, the distribution of the number

alive at time ¢ is binomial
Lot ~ Binomial (I, pz) |¢ps (10)

As recognized by Lin and Cox (2005), there are two sources of uncertainty in
the portfolio loss at time t. This first is due to uncertain lifetimes given the actual
mortality rates. The second is attributed to the stochastic nature of survival
probabilities. Given this, the total variability in the portfolio is the unconditional

variance of the compound binomial distribution

Var (lo+) = B[Var [(le+) lipe]] + Var [B[(L+¢) [pz]] (11)
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For large portfolios of annuitants, the main source of uncertainty will come
from changes in mortality rates impacting all lives in the portfolio rather than the
variability in the number of deaths at a particular age given the mortality rate.
In other words, the randomness in l,4; will mainly be due to the uncertainty in
tPzx-

Life insurance companies pool mortality risks by the Law of Large Numbers,
ie., limy, oo E[Var|[(lz4¢) |¢pz]] — 0. However, from (11) we can conclude that
the assumption that mortality and longevity risks can be diversified away by
writing a large number of policies in incorrect if we take into account the dynamics

of the underlying mortality rates, i.e.,

Var [E[(ly4¢) |¢pz]] # 0

Mortality dynamics is influenced by a complex setting of socioeconomic fac-
tors, biological variables, government policies, environmental effects, health con-
ditions and social behaviours. Since the future mortality is actually unknown,
there is always the likelihood that future death rates will turn out to be differ-
ent from the projected ones and thus mortality shocks can destroy the insurance
pooling mechanism. For example, for an annuity portfolio the risk is that the
annuitants will systematically live longer than expected at the policies inception.
Systematic mortality risk cannot be eliminated by diversification and thus should
have a market price.

The portfolio loss in equation (9) can be written as

Ly =1,By [tp; —t paz]+ (12)

Redistributing among the remaining survivors we have

L .B o —
l°t — ;o—o [1pS —¢ pe] T = B max [(M) ;0]
T+t T+t tPr

Bo max [(1 - Zii) ;o] (13)

Equation (13) shows that the loss "inherited" by each surviving policyholder

includes an option feature that depends on ratio of survivorship rates. To be
more specific, the loss has an embedded put option with strike equal to unity
and underlying equal to the ratio between estimated and actual survivorship
rates. To value this option we can resort to traditional discrete-time (Binomial)

or continuous-time approaches (Black-Scholes), with proper adjustments for an
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incomplete markets situation. Alternatively, we can resort to Monte-Carlo simu-

lation techniques.b

3 Deriving Prospective Lifetables for Portugal

In this section we derive prospective lifetables for the Portuguese general popula-
tion. The results are then compared with that of classical static lifetable approach
to give an indication of the longevity risk currently faced by portuguese insurance

companies.

3.1 Notation, assumptions and quantities of interest

The basic idea underlying projected lifetable methods is to analyse changes in
mortality as a function of both age x and time ¢. Let p, (t) denote the force
of mortality at age = during calendar year t. Let g, (t) and p, (t) = 1 — g (¢)
represent, respectively, the one-year death probability at age x in year t and the
corresponding survival probability. Let D, ; denote the number of deaths recorded
at age x during year ¢, from an exposure-to-risk (i.e., the number of person years
from which D, ; arise) Ej ;.

Consider now the classic Lexis diagram, that is, a coordinate system that has
calendar time as abscissa and age as coordinate. If we assume that both time
scales are divided into yearly bands, the Lexis plane is partitioned into squared
segments. In this paper, we assume that the age-specific forces of mortality are
constant within bands of time and age, but authorized to change from one band
to the next. Formally, given any integer age x and calendar year ¢, we assume
that

Pogge (B +T) = p, (t) forany 0 < &7 <1 (14)

In other words, assumption (14) means that mortality rates are constant within
each square of the Lexis diagram, but allowed to vary between squares. From (14)
the calculation of the probability of an individual aged z in year ¢, p, (t), and of
the corresponding death probability g, (t) =1 — p, (¢) simplifies to

Pz (t) = exp (—p, (1) = 1 = px (2) (15)

Several markers are regularly used by demographers to measure the evolution

of mortality, namely life expectancies, variance of residual lifetime, median lifetime

5The valuation of options embedded in GSA funds is being performed in an accompanying
paper.
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or the entropy of a lifetable. Let é,(t) denote the (complete) life expectancy of
an x-aged individual in year ¢, i.e., the average number of years he is expected to
survive. This means we expect this individual will die in year ¢ + é,(t) then aged
x+é,(t). Contrary to classic static lifetables, the use of projected lifetables allows
us to estimate the “true” (diagonal) expected residual lifetime of an individual.

The appropriate formula for é, () is given by

k
éu(t) = Z prﬂ‘ (t+7)
k>0 | j=0
o 1- exp (_Maz (t))
I (¢) v
k-1 o | L= exp =gy (E+E))
+; jHoeXp (=tags (t+2) Ho g (£ 4 K)

The actual computation of é,(t) requires the knowledge of i, (7) (or pe (7))
forzx <¢ <wandt <7 <t+w—x, where w denotes the ultimate (maximum)
age. Since these survival probabilities are knot known at time ¢, they have to be
estimated using extrapolation methods based on past trends. The next section
gives an example of how this can be done in practice.

For life insurance companies and annuity providers, the net single premium
of an immediate life annuity sold to an z-aged individual in year ¢, a, (t), is of
special interest. In a dynamic approach, the appropriate formula for a,(t) is given
by

k
ax (t) =Y [[pes (t+4) p o (17)
k>0 | j=0
where v = (1+) ! is the classic discount factor considering a flat term structure.
As can be seen, mortality projections and projected survival probabilities are par-

ticularly important to price correctly annuity and other life insurance contracts.

3.2 Mortality projection method

The literature on the construction of projected lifetables is vast and growing.” The
classical approach is to fit an appropriate parametric function (e.g. Makeham
model) to each calendar year data. Then, each of the parameter estimates is
treated as independent time series, extrapolating their behaviour to the future in

order to provide the actuary with projected lifetables (see, e.g., CMIB (1976) and

7A detailed review of mortality projection methods can be found in Tuljapurkar and Boe
(1998), Pitacco (2004), Wong-Fupuy and Haberman (2004) and Bravo (2007).
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Heligman e Pollard (1980)). Despite simple, this approach has serious limitations.
In the first place, this approach strongly relies on the appropriateness of the
parametric function adopted. Secondly, parameter estimates are very unstable
a feature that undermines the reliability of univariate extrapolations. Thirdly,
the time series for parameter estimates are not independent and often robustly
correlated. Although applying multivariate time series methods for the parameter
estimates is theoretically possible, this will complicate the approach and introduce
new problems.

Lee and Carter (1992) developed a simple model for describing the long term
trends in mortality as a function of a simple time index. The method models
the logarithm of a time series of age-specific death rates i, (t) as the sum of an
age-specific component ¢, that is independent of time, and a second component,
expressed as a product of a time-varying parameter denoting the general level of
mortality x;, and an age-specific component 3, that signals the sensitiveness of
mortality rates at each age when the general level of mortality changes. Formally,
we have

Inp, (t) = ag + Bykt + €xt, (18)

where €;+ ~ Nor (0, a?) is a white-noise, representing transitory shocks. Para-

meters oy, B, and k; have to be constrained by

tmax Tmax
Z kt =0 and Z By =1, (19)
t=tmin T=Tmin

in order to ensure model identification.
Parameter estimates are obtained by ordinary least squares, i.e., by solving

the following minimization program

Tmax tmax
R I VD O CYAUEVSE M NCE
L=ZTmin t=lmin

Lee and Carter (1992) solve (20) by resorting to Singular Value Decomposition
techniques but alternative estimation procedures can be implemented considering
iterative methods (see, e.g., Bravo (2007)) or Weighted Least-Squares (see, e.g.,
Wilmoth (1993)). The resulting time-varying parameter estimates are then mod-
elled and forecasted using standard Box-Jenkins time series methods. Finally,
from this forecast of the general level of mortality, projected age-specific death
rates are derived using the estimated age-specific parameters.

There have been several extensions to the Lee-Carter model including different
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error assumptions and estimation procedures.® Bell (1997), Booth et al. (2002a)
and Renshaw and Haberman (2003c,d) include a second log-bilinear term in (18)
and estimate parameters by considering the first two term in a SVD. Additionally,
they adopt a multivariate setting in order to project the evolution of the two time
indices k¢; (1 = 1,2,). Carter and Prskawetz (2001) consider the possibility of
time varying parameters «, and (,. Renshaw and Haberman (2003a) include
additional non-linear age factors when modeling the so-called “mortality reduction
factors” within a Generalized Linear Models (GLM’s) approach. Renshaw and
Haberman (2006) and Currie et al. (2004) include a cohort factor including year
of birth as a factor impacting the rate of longevity improvement. This cohort
factor is found to be significant in UK mortality data.

Renshaw e Haberman (2005) and Bravo (2007) develop a version of the Lee-
Carter model considering positive asymptotic mortality. This result is, for most
age groups, more consistent with observed mortality patterns when compared with
that of the original model. Wilmoth and Valkonen (2002) develop an extension
of the Lee-Carter model aimed to investigate differential mortality by considering
a number of alternative covariates other than age and calendar time. Cairns,
Blake and Dowd (2006b) develop and apply a two-factor model similar to the
Lee-Carter model with a smoothing of age effects using a logit transformation of
mortality rates. Cairns et al. (2007) analyze England and Wales and US mortality
data showing that models that allow for an age effect, a quadratic age effect and
a cohort effect fit the data best although the analysis of error distributions in
these models revealed disappointing. De Jong and Tickle (2006) formulate the
Lee-Carter model in a state space framework.

Brouhns et al. (2002a) and Renshaw and Haberman (2003c) develop an ex-
tension of the Lee-Carter model allowing for Poisson error assumptions and apply

it to Belgian data. This Poisson log-bilinear approach can be stated as
Dyt ~ Poisson (fu, (t) Ept), (21)

where D, ; denotes the number of deaths recorded at age x during year ¢, from
an exposure-to-risk (i.e., the number of person-years from which D, ; arise), E ,
and p, (t) is given once again by (18). This model has several advantages over
the Lee-Carter specification. First, the model doesn’t assume that errors are

homoskedastic, an unrealistic assumption since the logarithm of the force of mor-

8See Lee (2000), Lee and Miller (2001), Tuljapurkar and Boe (1998), Brouhns et al. (2002a),
Wong-Fupuy and Haberman (2004), Bravo (2007) and Cairns et al. (2007) for a detailed discus-
sion of Lee-Carter model and extensions.
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tality is much more variable at older ages that at younger ages. Second, contrary
to Lee-Carter model, the Poisson log-bilinear approach doesn’t requires a com-
plete matrix of observed death rates. Finally, one of the main advantages over the
Lee-Carter model is that specification (21) allows us to use maximum-likelihood
methods to estimate the parameters instead of resorting to least squares (SVD)
methods. Formally, we estimate the parameters o, 5, and x; by maximizing the
log-likelihood derived from model (18)-(21)

tmax Tmax

nV(a,B,k) = Z Z {Dyzt (g + Bykt) — Ezrexp (an + Byke)} + ¢, (22)

t=tmin L=Tmin

!/
Where o = (Oéxmin""?axmax)/’ B = (ﬁazmina"'aﬁazmax) ? K = (K'xmin""”‘{'xmax)/

and c is a constant.

The presence of the log-bilinear term 3, x; makes it impossible to estimate the
model using standard statistical packages that include Poisson regression. Because
of this, we resort in this paper to an iterative method proposed by Goodman
(1979). The algorithm, which is essentially a Newton-Raphson standard method,
states that in iteration v+ 1, a single set of parameters is updated fixing the other
parameters at their current estimates according to the following updating scheme

H+1)

A (v ©) /90,
b _ ) oL /06

J i 82[,(“)/89? (23)
where L) = E(“)(é(v)). Recall that in our case we have three sets of parameters,

corresponding to the a,, 5, and k; terms.

~ (0
The updating scheme is as follows: starting with a given initial vector (@550) B; )/%(0)
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then:

R — ~() | A) L (v)
al+) = &év)_ttminifjt e exp (ax T(ix Rt )}
S [ (4 205
B(v-&-l —Bi:v’ ~(v+1) _ kiv) (24

T

J(02) o (uF1) _ 2=Tmin
Ry = o Tmax /4 (p41)\ 2 (v+1) (v+1) (v+1) ’
_ Z (ﬁx ) [Extexp( —l—ﬁ )}
a2 — g1 FHD _ gl
tmax v v
6 L9 1 £ (69 1 A0
-~ (0+3) A (0+2)  t=tmin
/Bx = /Bx o tmax ( +2 ’
- o )
t tmln
&C(CU-&-?:) :(I: )’ A(U+3) Ig

We use as a criterion to stop the iterative procedure a very small increase of
the log-likelihood function.

The maximum-likelihood estimations of the parameters generated by (24) do
not match the identification constraints (??), and have thus to be adapted. This

is guaranteed by changing the parameterization in the following manner:

. B
ki = (R —R)K and ] =" (25)
t > B

where K denotes average value for ¢, i.e.

" 2(:max tmin + 1 t; it
and where K is given by
Tmax
K= > b
L=ZTmin
from which we finally calculate
ol = G + PR (26)



The new estimates o, fs and x; fulfill the constraints (??) and provide the
same D, ; since &, + B,k = of + B kF. Note also that differentiating the log-

likelihood function with respect to «, yields the equality
ZDx,t = Zf)az,t = Z E, texp (ééx + By‘%)
t t t

This means that the estimated k;’s are such that the resulting death rates
applied to the actual risk exposure produce the total number of deaths actually

observed in the data for each age x.

3.3 Modelling the time-factor

In the Poisson log-bilinear methodology, the time factor x; is intrinsically viewed
as stochastic process. In this sense, standard Box-Jenkins techniques are used to
estimate and forecast x; within an ARIMA(p, d, q) time series model. Recall that
the model takes the general form
B
(1- B ry = pt+ 2Bl (27)
q

where B is the delay operator (i.e., B (k) = Ke—1, B? (ki) = ki—2,...), 1 —
B is the difference operator (i.e., (1 —B)r; = ky — k1, (1 —B)?ky = Ky —
2ki—1 + Kt—2,...), O¢(B) is the Moving Average polynomial, with coefficients

0 = (601,02,...,0,), ®,(B) is the Autoregressive polynomial, with coefficients
2

z.
The method used to derive estimates for the ARIMA parameters u, 6, ¢

and o, is conditional least squares. From these, forecasted values of the time

¢ = (¢1,02,--.,¢,), and ¢ is white noise with variance o

parameter, denoted by kf, are derived. Finally, the parameter estimates of the
Poisson model and the forecasts x; can be inserted in (??) to obtain age-specific
mortality rates, prospective lifetables, life expectancies, annuities single premiums
and other related markers. In the following we apply the Poisson modelling to

Portugal’s general population data in order to derive prospective lifetables.

3.4 Data

The model used in this paper is fitted to the matrix of crude Portuguese death
rates, from year 1970 to 2004 and for ages 0 to 84. The data, discriminated by
age and sex, refers to the entire Portuguese population and has been supplied by
Statistics Portugal(INE - Instituto Nacional de Estatistica).
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Figure 1: Crude mortality rates for the period 1970-2004, males
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Figure 2: Crude mortality rates for the period 1970-2004, females
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The database for this study comprises two elements: the observed number
of death d,: given by age and year of death, and the observed population size
ly+ at December 31 of each year. We follow the INE definition of population at
risk using the population counts at the beginning and at the end of a year and
take migration into account. Figures 1 and 2 give us a first indication of mortality
trends in Portugal during this period. Two trends dominated the global mortality
decline: (i) a reduction in mortality due to infectious diseases, affecting mainly

young ages, (ii) decreasing mortality at old ages.

3.5 Results
3.5.1 Parameter estimates

We apply the Poisson modelling to the Portuguese data presented above. The
Poisson parameters o, 3, and k; implicated in (??) are estimated by maximum-
likelihood methods using the iterative procedure described in Section ?77. We
started the updating scheme considering the following initial values @ECO) = 0,
B;O) =1, and /%go) = 0.1. The criterion to stop the iterative procedure is a very
small increase of the log-likelihood function (in our case we used 107°). The
routine was implemented within the SAS package. Figure 3 plots the estimated
oz, B, and K.

We note that the é,’s represent the average of the In i, (¢) across the time
period. As expected, the average mortality rates are relatively high for newborn
and childhood ages, then decrease rapidly towards their minimum (around age
12), increasing then in z, reflecting higher mortality at older ages. The only ex-
ception refers to the well know “mortality hump” around ages 20-25, more visible
in the male population, a phenomena normally associated with accident or suicide
mortality. We can see that young ages tend to be more affected by changes in the
general time trends of mortality, probably due the evolution of medicine in reduc-
ing infantile and juvenile mortality. In effect, the Bx’s decrease with age, except
for the mortality hump phenomena, but remain positive for all ages. Note also
that the sensitiveness of the male population to variations in parameter k; tends
to be grater than that of the female population, which has a more stable pattern.
Finally, we can see that the &;’s exhibit a clear decreasing trend (approximately
linear). This reveals the significant improvements of mortality at all ages both for

men and women in the last 35 years.
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Figure 3: Estimations of «,, 5, and k; for men (left panels) and women (right

panels).
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3.5.2 Extrapolating time trends

Let {#¢,t = tmin, - - - , tmax } denote a realization of the finite chronologic time series
K = {k¢,t € N}. Following the work of Lee and Carter (1992) and Brouhn et al.
(2002a,b), we use standard Box-Jenkins methodology to identify, estimate and
extrapolate the appropriate ARIMA (p,d, q) time series model for the male and
female time indexes k;.

A good model for the male population is ARIMA(0, 1, 1), which is a moving
average (MA(1)) model

(1= B)r" =p™ +0"e”y + & (28)

whereas for women the ARIMA(1,1,0) autoregressive model was identified as a
good candidate
(1— B) AP = o + VK, +ep (29)

where € and ¢ are white noise error terms with variance o2, and o2,

tively. The estimated parameters for the ARIMA (p,d,q) models (28) and (29)

are given in Table 1. Note that all parameters are significant at a 5% significance

respec-

level.

‘ Sex ‘ Parameter ‘ Estimate ‘ Std error ‘ t—value ‘ p—value ‘
P -1.64623 | 0.11663 | -14.11 | <.0001
Men o™ 0.64315 | 0.14831 4.34 0.0001
Om 1.800992
pv -2.14802 | 0.23969 -8.96 <.0001
Women o -0.63606 | 0.15145 -4.20 0.0002
Ow 2.263249

Table 1: Estimation of the parameters of the ARIMA(p,d,q) models

In Figure 4 we show the estimated values of x; together with the s} projected

and the corresponding 95% confidence interval forecasts.
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Figure 4: Estimated and projected values of k; with their 95% confidence intervals

for males (left panel) and females (right panel)

Given the forecasted values of k; {R3p044s:5=1,2,...}, the reconstituted

sex-specific forces of mortality are given by
[, (2004 + s) = exp(d, + Bx/%§004+5), s=1,2,... (30)
and then used to generate sex-specific life expectancies and life annuities.

3.5.3 Projecting the mortality for the oldest-old: Closing Lifetables
According to the United Nations, it is estimated that in 2001 72 million of the 6.1

billion inhabitants of the world were 80 year or older. In the developing world,
the population of the oldest-old (e.g., those 80 years and older) still represents
a small fraction of the world’s population but it is the fastest growing segment
of the population. In addition, because life expectancy will continue to increase,
not only we should expect to have an increasing number of people surviving to
very old ages, but also anticipate that the deaths of the oldest-old will account
for an increasing proportion of all deaths in a given population. In view of this,

it is important to have detailed information about the age structure of the oldest-

32



old and about the behaviour of mortality at these ages. Unfortunately, in most
countries reliable data on both the age distribution of population at risk and death
counts of the oldest-old is not yet available. This is also our case since Portuguese
statistics did not provide for this period an age breakdown for the group aged 85
and over. This poses a serious problem when it comes to complete lifetables.
Because of this, a number of research papers has addressed the issue of pro-
jecting mortality for the oldest-old (see, e.g., Buettner (2002)). In this paper we
adopt the method proposed by Denuit and Goderniaux (2005) to extrapolate mor-
tality rates at very old ages. The method is a two step method: first, a quadratic
function is fitted to age-specific estimated mortality rates in a given age-band;
second, the estimated function is used to extrapolated mortality rates up to a
pre-determined maximum age. Formally, the following log-quadratic model is

fitted by weighted least-squares
Ing, () =a(t)+b(t)x +c(t)2® + e, (t) (31)

to age-specific mortality rates observed at older ages, where €, () ~ N (0,02 (t)),

with additional constraints

qgi20 = 1 (32)
q/120 =0 (33)

where ¢/, denotes the first derivative of g, with respect to age x. Constraints (32)
and (33) impose a concave configuration to the curve of mortality rates at old ages
and the existence of a horizontal tangent at x = 120. We then use this function to
extrapolated mortality rates up to age 120. Figures 5 and 6 show the final result

of this procedure.

3.5.4 Mortality Projections

3.5.4.1 By chronologic year Considering the prospective lifetables derived
in the previous section, we can now analyse the evolution of mortality across time.
Figure 7 represents the evolution of observed and estimated forces of mortality
from 1970 to 2050 for both genders. In Figure 8 we can observe the evolution of
observed and estimated mortality rates from 1970 to 2050 for both genders and

some representative ages.
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Figure 6: Mortality rates for closed lifetables, females
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Figure 7: Evolution of pu, (t) for men (left panel) and women (right panel)
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Figure 8: Evolution of ¢, for some representative ages, from 1970 to 2124, for

men (left) and women (right)
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Overall, we can observe a clear and continuous decline in mortality throughout
this period. It is also apparent that this mortality decline is more noticeable
within younger ages. The mortality hump phenomenon is surprisingly persistent
and tends to be more significant for the male population. In effect, we can observe
a sort of mortality stagnation within this age-band. For older ages, we predict a

decline in mortality rates.

3.5.4.2 By Cohort Prospective lifetables provide us with new tools for the
analysis of mortality trends, namely the possibility to investigate the evolution
of mortality not only in terms of calendar time but also in terms of year of birth
or cohort. In brief, by using prospective lifetables we switch from a transversal
approach to a longitudinal (or diagonal) approach to mortality.

In Figure 9 we can observe the evolution of the force of mortality for some

representative generations born between 1970 and 2004.

1970
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6
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6
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Figure 9: Evolution of the instantaneous force of mortality for some representative

generations for men (left panel) and women (right panel)

We note that the main mortality features identified in the previous section
within the transversal approach (decreasing mortality trends, mortality hump,...)

are again easily recognized within the cohort approach. It should be mentioned,
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however, that the evolution of mortality for successive generations seems to be
more reliable and plausible when compared with that provided by the classic static
approach.

In figure 10 we compare mortality rates obtained in both a transversal and
diagonal approach for selected cohorts (and calendar years). We can observe
that, in decreasing mortality environment, the predicted values within a diagonal
approach are, as expected, lower than those estimated via a transversal approach.
Note also that the differences in the projected values increase with the age of the
individual and with the generation’s year of birth. The only exception refers, once
again, to the mortality hump phenomena, for which we project a stagnation (and

even a slight increase) in mortality rates.

3.5.5 Life expectancy

In this section we analyse the evolution of life expectancy e, (¢) in terms of cal-
endar year t = 1970,...,2004 for some representative ages x = 0 and z = 65. In
Section 7?7 we showed that within the transversal approach e, (t) is calculated on
the basis of mortality rates observed (or estimated) in year ¢ (i.e., using proba-
bilities g1 (t), K = 0,1,2,...). For the contrary, within the diagonal approach
e (t) represents the “true” remaining lifetime for individuals aged z in year t,
and is calculated on the basis of mortality rates projected for that generation
(i.e., using probabilities g,k (t+ k), k = 0,1,2,...). Table 2 summarizes the
results obtained for the life expectancy calculated at birth and at age 65 for two
selected calendar years. Column A, indicates the average annual gain (measured

in days) in the life expectancy registered between 1970 and 2004.
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Men eo (1) es (1)

>

t Long | A, |Trans| A, | Long | A, | Trans
1970 71.99 63.21 13.16 12.21
2004 83.30 | 117.9 | 74.55 | 118.3 | 16.91 | 39.2 | 15.84 | 38.0

Women eo (t) ess (1)
t Long Ay Trans Ay Long Ay Trans Ay
1970 80.37 69.32 16.24 14.53

2004 90.63 | 107.0 | 81.05 | 122.4 | 20.87 | 48.3 | 19.22 | 49.0

Table 2: Evolution of life expectancy at birth and at age 65 calculated according

to both a transversal and diagonal approach

The first noticeable aspect refers to the spectacular life expectancy gains ob-
served during this period. In effect, when we can consider the transversal ap-
proach we observe that over this period life expectancy at birth increased, on
an annual average, by approximately four months for both sexes (more precisely
118.3 and 122.4 days for men and women, respectively). These gains are slightly
more moderate when considering the diagonal approach, particularly for the fe-
male population, with average annual gains amounting to 117.9 and 107.0 days
for men and women, respectively. Similar conclusions may be stated when we
examine the evolution of life expectancy at the age of 65.

The second main conclusion has do to with the significant difference between
life expectancies estimated using the two approaches. In effect, when we use
prospective lifetables we estimate that the “true” life expectancy at birth for an
individual born in 2004 will be of 83.30 and 90.63 years for men and women, re-
spectively, whereas the corresponding values estimated using the classic transver-
sal approach are 74.55 and 81.05 years. In other words, when we project past
trends observed in mortality to the future we conclude that adopting a transver-
sal approach underestimates life expectancy at birth in 8.75 and 9.58 years for
men and women, respectively. This apparently surprising conclusion highlights
the importance of using prospective lifetables in life insurance and pension busi-
nesses. Actually, long-term calculations based on periodic lifetables are erroneous
since they do not incorporate expected longevity improvements.

In Figure 11 we can see that the differentials between the values of eq (t) and
egs (t) calculated according to the two methodologies considered are, for both

sexes, relatively stable across the time period analysed.
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Figure 11: Life expectancy e, (t) calculated at x = 0,65 for men (left panel) and

women (right panel)

Finally, Figure 12 gives us a long term perspective of the evolution of e (t)

and egs (1) across the time period analysed.
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Figure 12: Projected life expectancy at birth and at age 65, calculated according

a transversal approach
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Our model estimates that life expectancy will continue to increase in the future

in both sexes, although we expect longevity improvements to slow down.

3.5.6 Annuity prices

In this section we are interested in the evolution of the net single premium of an
immediate life annuity sold to an z-aged individual in year ¢, a, (t) considered both
a transversal and a diagonal approach. For simplicity of exposition, we assume
a flat technical interest rate at 3%, i.e. 1 = 3%. This means that we concentrate
our analysis on the impact of longevity improvements on annuity prices. Given

this, we examine the evolution of a, (t) for « € [0;65] years.

Men
t ao (t) A, ao (1) A,
Longitudinal | (annual) | Transversal | (annual)
1970 26.84 25.90
2004 29.82 0.085 29.02 0.089
Women
t ao (t) A, ao (1) A,
Longitudinal | (annual) | Transversal | (annual)
1970 28.18 27.06
2004 30.72 0.073 29.89 0.081
Men
t aes (t) A, aes (1) A,
Longitudinal | (annual) | Transversal | (annual)
1970 9.88 9.29
2004 12.22 0.0668 11.64 0.0671
Women
t ags (t) A, ags (t) A,
Longitudinal | (annual) | Transversal | (annual)
1970 11.86 10.85
2004 14.56 0.077 13.70 0.081

Table 3: Evolution of a,(t) for x = 0 and = = 65

In Table 3 we can appreciate the underestimation of annuity prices resulting
from classic transversal lifetables. For example, the net single premium of an

immediate life annuity sold to a female individual aged 65 in year 2004, ags (2004) ,
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will be 0.86$ higher (14.56 — 13.70) or 6.3% when compared with that calculated
using classic static lifetables. Values in column A, (annual) indicate the average

annual gains in a, (t) registered between 1970 and 2004.

4 Affine-Jump diffusion processes for mortality

Models following the approach of Lee and Carter typically adapt discrete-time
time series models to capture the random element in the stochastic development of
mortality rates. Given the unknown nature of future mortality, some authors have
recently developed models in a continuous-time framework by modeling mortality
intensity as a stochastic process (see, e.g., Milevsky and Promislow (2001), Dahl
(2004), Biffis and Millossovich (2004, 2006), Biffis (2005), Dahl and Mgller (2005),
Miltersen and Persson (2005), Cairns et al. (2006a), Schrager (2006), Bravo (2007)
and references therein).

Modelling the mortality intensity as a stochastic process allows us to capture
two of its more significant features: time dependency and uncertainty of the future
development. Additionally, this framework provides a more accurate description
of both premiums and liabilities of life insurance companies and contributes to a
proper quantification of systematic mortality risk faced by them. This framework
and model application provides the theoretical foundation for financial pricing of
longevity dependent financial claims and for the development of longevity risk
hedging tools, namely mortality-linked contracts such as longevity bonds or other
longevity-linked derivatives.

In this section we draw a parallel between insurance contracts and certain
credit-sensitive securities and exploit some results of the intensity-based approach
to credit risk modelling. Specifically, we use doubly stochastic processes (also
known as Cox processes) in order to model the random evolution of the stochastic
force of mortality of an individual aged x in a manner that is common in the
credit risk literature. The model is then embedded into the well know affine-jump
term structure framework, widely used in the term structure literature, in order
to derive closed-form solutions for the survival probability, an key element when

pricing life insurance contracts.

4.1 Mathematical framework

We are given a filtered probability space (2, F,F,P) and concentrate on an indi-
vidual aged = at time 0. Following the pioneering work of Artzner and Delbaen
(1995) in the credit risk literature and the proposals by Dahl (2004) and Biffis
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(2005) among others in the mortality area, we model his/her random lifetime as
an F-stopping time 7, admitting a random intensity p,. Specifically, we consider
T, as the first jump-time of a nonexplosive F-counting process N recording at
each time ¢ > 0 whether the individual has died (/N # 0) or survived (V; =0).
The stopping time 7, is said to admit an intensity p, if the compensator of N
does, i.e., if p,, is a nonnegative predictable process such that fot Wy (s)ds < oo for
all t > 0 and such that the compensated process M; = {Nt — fot ty(s)ds:t > 0}

is a local F-martingale. If the stronger condition E ( fg ux(s)ds> < 00 is satisfied,
then M, is an F-martingale.

From this, we derive

t+At
B(Niar =N A) =B ([ o)
t

f) | (34)

based on which we can write
E (Nyrae — Nl Fr) = p () At + 0 (A2), (35)

an expression comparable with that of the instantaneous probability of death
AtQz+¢ derived in the traditional deterministic context.

By further assuming that N is a Cox (or doubly stochastic) process driven by
a subfiltration G of F, with F-predictable intensity w it can be shown, by using
the law of iterated expectations, that the probability of an individual aged x + ¢

at time ¢ surviving up to time 7' > ¢, on the set {7 > t}, is given by

P(r>T|F)=E [e_ S o s(s)ds

ft} . (36)

Readers who are familiar with mathematical finance and, in particular, with
the interest rate literature, can without difficulty observe that the right-hand-side
of equation (36) represents the price at time ¢ of a unitary default-free zero coupon
bond with maturity at time 7" > ¢, if the intensity u is to represent the short-term
interest rate.

One of the main advantages of this mathematical framework is that we can
approach the survival probability (36) by using well known affine-jump diffusion
processes. In particular, an R™-valued affine-jump diffusion process X is an F-

Markov process whose dynamics is given by

dX, = 6(t, X,)dt + o (t, Xp)dW, + > dJ}", (37)
h=1
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where W is a F-standard Brownian motion in R™ and each component J” is
a pure-jump process in R” with jump-arrival intensity {nh (t, X3) : t > 0} and
time-dependent jump distribution v on R”. An important requirement of affine
processes is that the drift 6 : D — R"™, the instantaneous covariance matrix
ool : D — R™™ and the jump-arrival intensity 7" : D — Ry must all have an
affine dependency on X . The jump-size distribution is determined by its Laplace
transform.

The convenience of adopting affine processes in modelling the mortality inten-
sity comes from the fact that, for any a € C", for given T' > t and an affine function
R defined by R (t, X) = po (t) + p; (t) - X, under certain technical conditions we
have

¥ (a, X0, t,T) = B [6_ Ir R(s,Xs)ds ,a- X7

ft} — ea(t)+5(t)~Xt’ (38)

where a (-) = a(;a,T), () = B(-;a,T) satisfy generalized Ricatti ordinary
differential equations, that can be solved at least numerically and, in some cases,

as we will see below, analytically.

4.2 Mortality intensity as a stochastic process

To be useful for pricing purposes, the approach described above must specify an
appropriate model for mortality dynamics. In Bravo (2007) the author tested a
number of alternative specifications, considering mean-reverting and non-mean
reverting stochastic processes, including or not jump components. Empirical re-
sults showed that one of best solutions is given by the classic Feller equation with
jumps, an approach that we replicate in this paper. Formally, we assume that the

mortality intensity s, ,(t) solves the following stochastic differential equation

Apty 41 (8) = iy (B)dE + 0y ) pp 1 (£) AW (8) + d T (2) (39)
fhg1£(0) = Flg

with

J(t) = Zté‘z (40)

where i, >0,a > 0,0 >0 and W (t) is a standard Brownian motion.

We assume that J(¢) is a compound Poisson process, independent of W, with
constant jump-arrival intensity n > 0, where {g; : ¢ =1,...,00} are i.i.d. vari-
ables. Following the results by Kou (2002), among others, we consider jump

sizes that are random variables double asymmetric exponentially distributed with
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density

f(x)=m <Uil> _“_zlﬂ{zz(J} + 2 <U%> 6“_22]1{z<0} (41)
where m1,m > 0, my + mo = 1, represent, respectively, the probabilities of a
positive (with average size v; > 0) and negative (with average size vy > 0) jump.
By setting m1 = 0 we are interested only on the importance of longevity risk (see,
e.g., Biffis, 2005). By setting n = 0 the model becomes deterministic. When
V1 = U9 and m; = w9 = % we get the so-called “first Laplace law”. By adopting
equation (41) we consider the significance of both positive mortality shocks (e.g.,
new medical breakthroughs) and negative mortality shifts (e.g., bird flu).

In the spirit of (38), let us now assume that the survival probability 7_¢p,4+(t)
is represented by an exponentially affine function. By applying the framework
described above, we have that

T tDert(t) = AT FB(T) 15 44(2) (42)
where 7 =T —t.

It can be shown that the solution to this problem admits the following Feynman-

Kac representation
. . o2
v (e (0) { ~A() = B0+ e (OB() + G (057

1 <1 - ;13(7) 1T Z;B(T) - 1) - ’”Ht(“} =5 (43)

where v (£, ptp14(t)) =7—t Pare(t).
Dividing both sides of this equation by v (¢, y1,,(t)) we get

[—B(T) +aB(r) + 5 B(r) - 1] gt (8) (44)

+ [—A(r) +1) <1 _;18(7) + +Z;B(T) _ 1)] o,

where A(7) and B(7) are solutions to the following system of ODEs’

B(r) = aB(r) +50’B (7)1 (45)
A = <1 - ’U118(7') 1 + ’UQQB(T) a 1) (46)

B(0) =0, A(0) = 0. (47)



where B(1) = ZB(7), A(r) = L A().

T

By solving the system (45)-(46)-(47), we get the following closed-form solutions
for A(1) and B(r)

B apT vi (oo + 1) [In (g + a1) — In (e — v1 + (a1 +v1)e")]
Alr) = m { (co—v) | ( /;(060 —wv1) (a1 +v1) }
QgT vy (Qp + a1
+nms { (o0 + v3) + (1 — 02) (0 + 02) [—In (g + 1) (48)
+ In (och+ va + (a1 —v2)e™)]} —n7
Blr) = ——— (19)

with K = Va2 + 202, ap = (aLZH) and o = (F”;a), defined for
1 1
—— < B(1) < —. (50)

We observe that the model stipulates an increasing (deterministic) trend for
the mortality intensity, around which random fluctuations occur due to the sto-
chastic component and due to the jump component. Additionally, the model
offers a realistic process for the stochastic mortality rate since it ensures that
the variable cannot take negative values. The model assumes that both negative
and positive jumps can be registered in mortality, a feature that contrasts with
similar models that are interested in sudden improvements in mortality (e.g., due
to medical advances) only. We think this gives a more appropriate description of
mortality, in which unexpected increases in mortality can occur (e.g., caused by
natural catastrophes or epidemics). The model offers a nice analytical solution,

easy to use in pricing and reserving applications within the life insurance industry.

4.3 Calibration to the Portuguese projected lifetables

We have calibrated model (39) to the Portuguese projected lifetables derived
in Section 3. In fitting the model, we have adopted the ordinary least squares
method, i.e., we minimize the quadratic deviations between the model survival
probabilities, 7_¢pE°4el(¢), and the prospective lifetable ones, 7_pas (t) for an
individual aged 65. Formally, parameter estimates © solve the following opti-

mization problem
t+ (xmax _65) +1

. 2
O=agmind @ = Y (ral@) i) 6
T=t+1
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where Ty = 120 and ¢ € {1970, 1980, 1990, 2004} .

Table 4 reports the optimal values of the parameters, the calibration error and
the initial value of 11, (t), pgs(t), chosen to be equal to —In (pes(t)), for both
male and female populations. Figure 13 report, for the generations aged 65 in
t € [1970,2004], the survival function of the stochastic process analysed and of

the prospective lifetable one.

Male
t=1970 t = 1980 t = 1990 t = 2004
g5 (t) 0.02765901 0.02774125 0.02558451 0.01689187
a 0.09516212 0.09033169 0.08739382 0.09949474
o 0.00001013 0.00001131 0.00000981 0.00000978
n 0.0117887 0.03936915 0.06544481 0.05226689
U1 0.02654017 0.02876439 0.02726195 0.02757463
Vg 0.001128449 0.0001023 0.0001102 | 0.00009724921
Q? 0.000483312 | 0.001135141 | 0.00423265 0.007431117
Female
t=1970 t = 1980 t = 1990 t = 2004
g5 (t) 0.01472793 0.01375416 0.01163745 0.007780187
a 0.1119171 0.1096041 0.1101916 0.1199389
o 0.00001044 0.00001033 0.00001082 0.00001049
n 0.01180289 0.03190069 0.05536174 0.05693019
U1 0.0284391 0.02890383 0.02727089 0.02644525
Vg 0.0001189 0.0001098 0.0001072 0.0001066
Q? 0.0003536312 | 0.0007131984 | 0.003482145 | 0.006155311

Table 4: Parameter estimates

The calibration error is quite small and the parameter estimates show that the
value of ¢ is very low, particularly when compared with that of both positive and
negative average size jumps. This is to some extent explained by the fact that the
model is fitted to data that is partially smoothed by the closing procedure. We
can also observe that the fit is very good, even when we consider the importance
of the rectangularization phenomena, highly significant in the 2004 generation.
The results also suggest that jumps seem to be an appropriate way to describe

the random variations observed in mortality.
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Figure 13: Survival probability 7_;pes(t) as a function of age z+7T —t for ¢t = 1970
and t = 2004 (the left panel corresponds to the male population)

5 Participating life annuity with longevity risk sharing mechanism

5.1 Structure of the contract

At lest for developed markets, GSA doesn’t seems to be a practical approach in
trying to solve the problems posed to insurance companies by risk-averse individ-
uals (who value annuities highly), since one of the main motivations to acquire
an annuity is not fulfilled, because an annuitant can outlive his resources or, in
is older ages, to be receiving a very small amount, when compared with the face
values of the initial annuities.

At the same time, companies are still very reluctant to keep doing business as
usual in what concerns annuities, the main reason being the industry’s perception
that systematic risk, in the form of breakthrough life-prolonging technical innova-
tion, may bankrupt an insurance company with a large life-annuity portfolio. In
order to surpass this problem, companies usually use “very high” loadings, espe-

cially for small portfolios, where deviations in a few lives from the expected values
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have a large impact in the final result of the business. All this factors produce a
low voluntary demand for annuities, despite the fact that people, mainly at old
age are risk averse and would be willing to pay the “true” price and share part of
a “comprehensible” risk.

From the discussion in Section 2, the authors will now try to show that a
partition of the risk is possible, with the advantage of having a - what we believe
- marketable life-insurance product. Of course, we will use as the classical life
annuity to compare results. In brief, a classical annuity does not provide the
possibility for the provider to adjust benefits in any fashion since those will fixed
at the inception of the contract. Hence, the possible loss or profit will is dependent
on actual mortality experience within the portfolio under investigation.

At this point we introduce a very simple model, that, we believe can be a
starting point for the insurance and reinsurance companies to stat taking a dif-
ferent approach to the annuities business. We consider that the risk bearers are
in the presence of the adverse form of systematic risk, whenever the number of
annuitants is above a defined threshold. In other words, assume that the limits of
the confidence interval correspond to the value above which systematic deviations
from projected survival rates will be observed, i.e., longevity risk is observed.

Whenever this happens, that is, the observed number of annuitants is larger
than the defined boundary, we apply the same principle proposed in the GSA,
but with a difference. In our model, we propose to reduce the annuity benefit
payment, proportionally between the annuitants, but assume that benefits will be
reduced only by an amount proportional to systematic risk, i.e., by an amount
proportional to the difference between the observed number of annuitants and
that o the pre-determined threshold.

When there is no violation of the threshold trigger, the future value of annuity
benefits will remain constant, that is, we assume the reduction is not permanent,
happening only when the number of observed annuitants systematically exceeded
the expected one.

Using a simulation procedure, we show that even when we consider that the
thresholds can be exceeded with a law that has a heavier tail than the (natural) bi-
nomial distribution, the price for the incorporation of this safeguard is considered
acceptable, the underlying risk can be easily be explained and understood by the
annuitants and, at the same time, by bringing together insurance and reinsurance
companies we believe that the business is feasible.

For instance, let us suppose that the company started an annuity contract,

with a single cohort of annuitants, all age . At the inception of the contract,
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the company will state what are the thresholds to be observed during the lifetime
of the this contract, that is, for each instant (presumably the end of the year)
t = 1,...,n. Let us now consider that, the the threshold is surpassed at time
t = n, meaning that the number of annuitants alive [7,, is greater than pre-
determined threshold for that age, l;ojr)n

In this case, the underlying fund would only pay up to the limit defined by
the threshold, so that annuity payments are reduced proportionally between all
the survivors, meaning that everybody would suffer a reduction of the annuities

payment. In this case the benefit for year n will be

o _ l(Oé) l(a)
B:I:—H’LZBO (1_M> = By ( JO»‘-H’L ) (52)

T+n r+n

In what follows, we develop only formulae for risk premiums, so that, all the
usual loads should be applied (contingency, expenses, profit,...). For simplicity of
exposition, we consider a single cohort that, namely a cohort aged z = 65 at the
inception of the contract. In this case the initial fund (risk premium) should be

obtained by the following expression:
+00 +
Fo = Bolyii, — B (Bo > o (L(x ) — li”ﬁn) ) (53)
t=1

where L(z +t) is the number of annuitants alive, and (z — a)™ is a function that
is equal to (z — a), if z > a, and is equal to 0 if z < a.

We will simulate the evolution of this fund in the case where the distribu-
tion of L(z + t) is negative binomial, allowing thus for greater variance when

compared to the traditional Binomial model, so producing a higher value for
+
E <Z:rof (L(x +1t) — l;ojr)n> ) in the above expression.

5.2 Simulations

Since we are trying to show that the model is robust and adequate to analyze
situations that, in time, start to deviate from the expected value, we start to
notice that, our risk premium (7) is determined by the difference of 2 factors.
The first is the risk premium as determined by the classical formulae, and the
second factor, will be evaluated using a distribution with a heavier tail than what
is used in the classical model and that was used to valuate the first term.

In this way, it is expected that a company that uses the formula (53), to

determine the premium applied to the contract defined above will end up with a
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loss, since the possibility of the heavy tail, in this case the negative binomial, was
not incorporated in the determination of the first factor. We use this approach
since, in this way, we can valuate the impact of a deviation caused by the increase
of the longevity, that, in a systematic way, increases the cost of the contract and
that was not predictable at the inception of the contract.

In this simulation we use the prospective lifetables derived in Section 3. Al-
though this table considers already a relative high life expectancy in that ii
projects future mortality rates and “allows” people to live up to 120 years, we
will see that it’s not enough to support the costs associated with deviations of
observed survivors from their expected value, originated by a distribution with a
heavier tail than the one used to valuate the annuity.

We will model the situation of a single cohort aged x = 65 in 2004 and size lg5.
We consider an initial benefit By = 1. To evaluate d, we will use a determinist in-
terest rate of 3.5% per annum. As explained before, in order to incorporate larger
deviations from the expected values and from the thresholds to be defined, we will
consider that L(z + t) in formula (53) does not follows a binomial distribution
with parameters lg;, the cohort size at the contract inception and ;p,. Instead,
we consider a negative binomial with the same set of parameters, allowing in this
way for larger deviations from the expected value and from the thresholds defined.
We will define the thresholds equal to the 95%—quantiles for the binomial with
parameters lg; and ;p,. Tables 5 and 6 exhibit the simulation results considering

cohorts of different size.

‘ Initial age ‘ cohort size ﬂ Premium, ‘ Premiums ‘ Premium ‘
\ 65 | 1000 | 1215576 | 451,93 (3,72%) | 11.703,83 |
‘ Simulations ‘ Result H Mean Benefit ‘ Load ‘ ‘
100 —1.534, 48 0,9973538 3,71%
200 —1.528,85 0,9972818 3,70%

Table 5: Simulated premiums (cohort size 1.000)

In each table, Premium; and Premiums (the value in parenthesis corresponds
to Premiumsy in percentage of Premium,) denote, respectively, the first and
second terms in expression (53). The column ” Result” refers to the mean result
of the contracts in the simulations conducted, "Mean Benefit" represents the mean
benefit paid, and ” Load” denotes the % of the premium necessary to have a null

result for the contract.
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‘ Initial age ‘ cohort size ‘ Premium, ‘ Premiums ‘ Premium ‘

\ 65 | 10.000 | 121.557,6 | 4.776,47 (3,93%) | 116.781,1 |
‘ Simulations ‘ Result ‘ Mean Benefit ‘ Load ‘ ‘
100 —17.989,98 | 0,9983938 3,98%
200 —17.739,60 | 0,99900191 3,92%

Table 6: Simulated premiums (cohort size 10.000)

We can understand from the simulations that, by establishing a threshold that
is high enough, as the number of simulations increase, Premiumsa converges to
the value that would be necessary to add to the premium in order to obtain a
risk premium according to the principle of equivalence. In other words, we show
in exchange for a relatively small extra premium it is possible to have a contract
that protects both annuitants and the insurance companies.

Annuitants will gain since in this way companies will be more wiling to accept
this type of risk, and this can be done by accepting an expected small penalty
in the presence of the adverse form of systematic risk. The model seems to be
robust, since, even in the case of a small cohort (1000 annuitants) and a small
number of simulations (100), the value of Load converges to premium2 although

a lot of work would still be necessary to fully confirm the simulations conducted.

6 Conclusion

Longevity risk, i.e., the risk that members of some reference population might live
longer, on average, than anticipated, has recently emerged as one of the largest
sources of risk faced by individuals, life insurance companies, pension funds and
annuity providers. In order to measure the significance of longevity dynamics in
Portugal, we derive in this paper the first prospective lifetables for the Portuguese
general population. Contrary to classic static lifetables, the use of projected
lifetables allows us to estimate the “true” (diagonal) expected residual lifetime
of an individual. Comparing the results with that derived from classical static
lifetables, we gave an indication of the longevity risk currently faced by insurance
companies.

Using an innovative approach to mortality modelling, we argue that a better
assessment of longevity risk would be one that consists of both a mean estimate
and a measure of uncertainty. In this sense, we use affine-jump stochastic differen-

tial equations in order to derive closed-form solutions for the survival probability.
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The development of generally agreed market models for longevity risk measure-
ment is seen as one of the key conditions for the development of longevity-linked
products and markets and for the hedging of longevity risk, a crucial element
when developing annuity markets.

In this paper, we consider traditional pooled Group Self Annuitization life
annuities and develop a new participating life annuity product in which the risk
associated with systematic deviations from mortality rates derived using prospec-
tive life tables for the Portuguese population is shared between policyholders and
life insurance companies. Contrary to traditional GSA’s, in which surviving pol-
icyholders bear both systematic and unsystematic longevity risk, we propose a
contract in which, in exchange for a relatively small premium, annuitants will
bear only the part of longevity that exceeds pre-determined thresholds. Using a
simulation procedure, we show that in exchange for an extra premium it is possible
to have a contract that protects both annuitants and the insurance companies.

Future research will analyse the robustness of the simulation results derived

in this paper and seek for alternative contract specifications.
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