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Abstract

In this paper we develop a conceptual framework for the payout phase in which annuity

providers and policyholders share longevity and investment risks in a ‡exible way. To
be more precise, we develop an participating life annuity product in which systematic

longevity risk, i.e., the risk associated with systematic deviations from mortality rates
extracted from prospective life tables derived for the Portuguese population, is shared

between both counterparties. This will address some of the main demand and supply
constraints in annuity markets, namely the inexistence of prospective life tables for the
Portuguese population, the perception of unfair pricing, the consideration of bequest

motives, adverse selection problems or the lack of …nancial instruments to hedge against
longevity risk. Contrary to traditional GSA’s, in which surviving policyholders bear both

systematic and unsystematic longevity risk, we devise a contract in which, in exchange for
a relatively small premium, annuitants will bear only the part of longevity that exceeds

pre-determined thresholds.
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1 Introduction

Longevity risk, i.e., the risk that members of some reference population might live

longer, on average, than anticipated, has recently emerged as one of the largest

sources of risk faced by individuals, life insurance companies, pension funds and

annuity providers. This risk is ampli…ed by the current problems in de…ned bene…t

(DB) pension systems (either PAYGO …nanced or funded and public or private), in

which the amount of retirement bene…ts is determined largely by years of service,

that will inevitably force the systems to moderate bene…t promises in the future.

Additionally, the international pension environment is shifting towards de…ned

contribution (DC) systems, in which retirement wealth depends on how much

individuals save and how successfully they allocate their assets accumulated in

DC plans, forcing individuals to be much more aware and active in managing this

risk. The e¢cient allocation of these assets requires the managing of a number

of risks, such as the investment risk, timing of annuitization and longevity risk

(i.e. the possibility of exhausting assets before passing away). It also depends on

the existence of solutions to manage both …nancial and demographic risks, on the

regulatory environment and on type of options and products available.

If in recent years pension discussions were mainly focused on questions such

as system design or on ways to encourage saving in the accumulation phase, the

design of the payout phase and the di¤erent retirement options for DC plans will

soon be at the center of the debate. The main problem will be on how to en-

courage certain retirement payout options in order to guarantee that people will

have appropriate retirement income and longevity protection, while considering

liquidity, health-care costs or bequest motives. The regulatory implications of the

guarantees o¤ered to retirees will need to be balanced so that capital reserves

required (e.g., life insurance companies) in excess of what can be fairly and prof-

itably delivered by private providers don’t result in the lack of products or in

ine¢cient allocation of resources.

Assets accumulated in DC pension plans may be allocated in the payout phase

in three alternative ways: lump-sum payments, programmed withdrawals, and an-

nuities, although we can envisage mixed arrangements involving any combination

of these. With lump-sums, individuals receive the entire value of the assets ac-

cumulated for retirement as a single payment. Under programmed withdrawals,

individuals establish a schedule of periodic …xed or variable payments. Finally,

“plain vanilla” life annuities involve a constant stream of income paid at some reg-

ular interval for as long as the individual lives. The main factors that di¤erentiate
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between these options are the degree of ‡exibility and exposure to investment risk

versus the degree of protection against longevity risk.

The main purpose of this project is to develop a conceptual framework for the

payout phase in which annuity providers and policyholders share longevity and

investment risks in a ‡exible way. To be more precise, we develop an participating

life annuity product in which systematic longevity risk, i.e., the risk associated

with systematic deviations from mortality rates derived using prospective life

tables for the Portuguese population, is shared between both counterparties. This

will address some of the main demand and supply constraints in annuity markets,

namely the inexistence of prospective life tables for the Portuguese population,

the perception of unfair pricing, the consideration of bequest motives, adverse

selection problems or the lack of …nancial instruments to hedge against longevity

risk. We hope the results of this project will contribute to the development of an

e¢cient annuity market in Portugal.

The paper is organized in four main parts. In Section 1 we brie‡y review the

main demographic trends observed worldwide and discuss the macroeconomics

and …nancial implications of longevity risk. Next, we discuss the type of retire-

ment payout options for accumulated assets in savings accounts or DC pensions,

emphasizing the importance of annuity markets in protecting individuals from

longevity risk. Next, we discuss the main demand and supply constraints un-

dermining the development of annuity markets in Portugal and in most OECD

countries. Finally, we brie‡y introduce traditional and stochastic mortality ap-

proaches in mortality modelling.

In Section 2 we analyse in detail the main features of a special type of partic-

ipating life annuity called Guaranteed (or pooled) Self Annuitization (GSA) an-

nuity fund. The advantages and limitations of this contract in hedging longevity

risk are highlighted in comparison with standard “plain vanilla” annuities. In

Section 3 we derive the …rst prospective lifetables for the Portuguese population.

This provides us with new tools for the analysis of mortality trends, namely the

possibility to investigate the evolution of mortality not only in terms of calendar

time but also in terms of year of birth or cohort. In Section 4 we use stochas-

tic di¤erential equations to model the random evolution of survival probabilities.

Speci…cally, we propose (and calibrate) a new SDE for the force of mortality. The

model is then embedded into an a¢ne-jump term structure framework in order

to derive closed-form solutions for the survival probability, a key element when

pricing life insurance contracts. In Section 5 we develop a new participating life

annuity with a longevity risk sharing mechanism. Section 6 concludes.
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1.1 Demographic trends

It is well documented that the population of the industrialized world underwent

a major mortality transition over the last decades. Improved hygiene and liv-

ing standards, breakthrough medical progresses, generally healthier lifestyles, the

absence of both major pandemic crisis and global military con‡icts have created

the conditions for individuals to enjoy raising life expectancy at all ages. Based

on all available demographic databases, historical trends show that both average

and the maximum lifetime have increased gradually during the last century, with

human life span showing no signs of approaching a …xed limit imposed by biology.

In Portugal, life expectancy at birth increased from 48.08 (52.12) years in 1930-31

to 75.49 (81.74) in 2006-08 for the male (female) population.

As in other developed countries, the mortality decline has been dominated

by two major trends: a huge reduction in mortality due to infectious diseases

a¤ecting mainly young ages, more evident during the …rst half of the century, and

a decrease in mortality at older ages, more pronounced during the second half.

As a consequence, the number of those surviving up to older ages (e.g., 80 years

and above) has increased signi…cantly representing, in 2006, 4.9% (2.9%) of the

Portuguese female (male) population. Additionally, the number of deaths of the

oldest-old accounts for an increasing proportion of all deaths, with reductions of

mortality beyond these ages having a growing contribution to future gains in life

expectancy. Decreasing mortality at old ages raised longevity to values considered

impossible in the past. In Portugal, life expectancy at age 65 raised from11.49

(13.09) years in 1930-31 to 16.25 (19.61) years in 2006-08.

The general downward trend in mortality rates at almost all ages means that

an increasing proportion of the members of a given generation lives up to very old

ages (around 75-85 years), shifting the survival function upwards and to the right

to a more rectangular shape in what is know in the literature as the rectangular-

ization phenomena. At the same time, we can observe that the age of maximum

mortality gradually shifted towards older ages, in what is sometimes called the

expansion phenomenon of the survival curve.

At the same time, fertility rates are declining. Recent data shows that while

in 1960 each Portuguese woman gave birth to 3.1 children on average, nowadays

the ratio in only 1.4, far below the threshold of around 2.1 necessary to keep

the population of a developed country constant. In fact, in Portugal as in many

developed countries low fertility rates are, together with increasing life expectancy,

the main drivers of an ageing population.

The immediate consequence of higher life expectancy and low fertility rates

6



in unambiguous. According to the United Nations, in 2050 27% of the European

population will be older than 65 years (16% in 2005) and around 10% will be

older than 85 (compared with 3.5% in 2005). This has important consequences in

terms of population mix, as can be seen, for example, by looking at the evolution of

young-age and old-age dependency ratios. In Portugal, the young-age dependency

ratio has been cut by more than half from 46.0 in 1960 to 22.8 in 2007. In opposite

direction, the old-age dependency ratio has increased steadily from 15.6 in 1970

to 25.9 in 2007. Considering the ageing (or vitality) index, while in 1970 there

were 34 old people for each young people, in 2007 this relation has dramatically

shifted to 114 old for 100 young people.

1.2 Financial implications of longevity risk

Mortality improvements are naturally viewed as a positive change for individuals

and as a substantial social achievement for developed countries. Nonetheless, the

combination of longer life and low fertility rates poses a huge challenge to both

societies and individuals since they are now exposed to increasing longevity risk.

Macroeconomics e¤ects of population ageing range from impacts on labour sup-

ply and its rate of utilization to investment, productivity and saving/consumption

patterns, external balances and cross-border capital ‡ows, consumer preferences

and corporate strategies, health-care and social security systems. In the insur-

ance market, mortality improvements have an obvious impact on the pricing and

reserving for any kind of long-term living bene…ts, particularly on annuities.

The demographic scenario described above is also driving to important changes

in the income mix of retirees. First, as a consequence of a rising old-age depen-

dency ratio, the number of wage and salary earners is becoming insu¢cient to

fund a growing number of retirees. Traditional PAYGO social security systems

will progressively become unsustainable and will require substantial reforms. Al-

ternative solutions involve an increase in the contribution rates, a reduction in

pension/salary replacement rates, an increase in retirement age, a search for new

funding sources. Changes in public pension systems are likely to imply, ceteris

paribus, a noteworthy reduction in the retirement income relative to wages. i.e.,

a relative reduction in state-provided pension income.

Second, there is a clear market trend away from de…ned-bene…t (DB) corporate

pension schemes to de…ned-contribution (DC) schemes. In these arrangements,

retirement bene…ts are largely determined by how much workers save and how

successfully they allocate their assets accumulated in DC plans. The e¢cient

allocation of these assets requires the managing of risks, such as the timing of
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annuitization and longevity risk, i.e., the possibility of outliving one’s retirement

income. It also depends on the type of options and products available and on the

regulatory environment. This means that employer-related pension bene…ts could

equally become more uncertain in the future.

Third, the extended mobility of the workforce has broken down traditional

family networks, thus reducing in practice the ability of younger members of a

family to take care of the older ones, the main source of intergenerational solidarity

mechanism in the past. The changing pattern observed in labour markets towards

more ‡exible and less stable arrangements will probably induce erratic social

security contribution patterns, essentially dependent on salaries pro…les over time.

This said, individuals will have to become in a near future more self-reliant

and will want to supplement and diversify their sources of income in retirement,

assigning greater weight to private solutions and increasing the ‡ow of saving

allocated to fund retirement. In addition, increases in life expectancy will probably

not be followed by an equivalent upward adjustment in the retirement age and

thus individuals will have to put aside an increasing proportion of their lifetime

income in order to fund their extended lifetime.

Moreover, increases in life expectancy have consistently exceeded forecasts,

i.e., individuals are faced with longevity risk, something that must also be consid-

ered in order to ensure that the elderly do not experience drops in consumption.

1.3 Options for the Payout-Phase

Given the importance of addressing retiree’s needs in their …nancial needs, both in

their accumulation and decumulation (or payout) phases, in this section we brie‡y

review the main retirement options available for the payout-phase. Individuals

with assets accumulated in DC plans or individual saving accounts have roughly

three main options for the payout phase: lump-sum payments, programmed with-

drawals and annuities. Combined solutions involve any possible combination be-

tween these three alternatives are of course possible.

With lump-sums, individuals simply receive the entire value of the assets ac-

cumulated for retirement as a single payment. That amount can then be freely

allocated, for example, to buy discretionary items, to pay down debts, to buy

annuities, to cover for contingencies (e.g., medical expenses). Under programmed

withdrawals, individual agree on a set of periodic payments (…xed or variable),

which can be determined on di¤erent ways (e.g., by dividing the accumulated

capital by a …xed number of years) and allow for some ‡exibility, for example

to adjust for unexpected contingency payments. Finally, a traditional whole life
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annuity is a stream of income payments paid at some regular interval for as long

as individual lives.

The main factors that di¤erentiate between these options are the degree of

‡exibility versus the degree of protection from longevity risk. Lump-sum payments

are fully ‡exible and provide complete liquidity, allowing individuals to dispose

and allocate their wealth as they wish, including the option to leave bequests.

However, lump-sum payments do not provide protection from outliving one’s

own resources, i.e., individuals bear in this case all longevity risk. According to

life-cycle theory, in a world with no uncertainty rational individuals would save

optimally and, on retirement, would merely allocate their wealth by spreading

assets over their remaining years of life, so as to ensure optimal retirement con-

sumption (and cover bequest motives, if any). In a dynamic environment, future

life expectancy is unknown and as such individuals are faced with the prospect

of outliving their expected life spans. In a scenario of unknown longevity, indi-

viduals rely heavily on …nancial discipline to manage their resources. Retirees

can reduce the risk of exhausting assets before passing away by consuming less

per year, but such a tactic then increases the chance that they might die with

too much wealth left unconsumed. In other words, dying with too little wealth

is undesirable, but having too much wealth is also undesirable, since it represents

foregone consumption opportunities.

Programmed withdrawals provide more …nancial discipline than lump-sums,

while maintaining some degree of ‡exibility, access to liquidity and the possibility

to cover bequest motives, but fail once again to provide any kind of protection

from longevity risk.

Finally, life annuities o¤er full protection against longevity risk, but at least in

their "plain vanilla" form, are in‡exible and illiquid and do not provide for bequest

motives. Nevertheless, in some countries annuity markets o¤er today a wide range

of complex annuity products, including embedded guarantees that protect against

interest rate, in‡ation, market volatility, and early death, accommodate liquidity

and contingency payments and o¤er tax advantages. However, up to now little

attention has been devoted to the development of annuity products in which

mortality and longevity risks are shared and payouts linked to the evolution of

demographic variables. In this paper tackle this problem and develop an annuity

product in which mortality and longevity risks are shared between annuitants and

life insurance companies.

The decision as to which of these three main retirement payout options is pre-

ferred relies mostly on individual preferences, the type of pension arrangements
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in place, the “generosity” of PAYGO pension systems, as measured for example

by the replacement rates, the availability of other sources of income in retirement,

tax incentives, the existence of individual account type systems, …nancial educa-

tion, mandatory annuitization constraints or the level of development of insurance

markets.

Overall, the life insurance industry should be prepared to help retirees to meet

their …nancial needs, both in the accumulation and payout phases. In the accu-

mulation phase, companies should help individuals to build up a desired level of

savings throughout their working years in a ‡exible and e¢cient way. In a ‡exible

way, assisting individuals to choose the amount and timing of their contributions

to the capitalisation plan. In an e¢cient way via, for example, investment diversi-

…cation strategies, gradual adjustment of the risk/return pro…le according to age,

tax incentives.

As to the decumulation phase, life insurance companies have a crucial role

in allowing individuals to have access and run their asset pool in a ‡exible and

smooth way, while o¤ering protection against longevity, in‡ation and investment

risks. This can be done by o¤ering various types of annuities, with alternative

payout mechanisms (…xed or variable, in‡ation-linked, equity-linked, participating

arrangements, additional embedded guarantees), through health care and long-

term care insurance or through wealth monetisation (e.g., reverse mortgages) for

those whose assets are not in liquid form.

1.4 Main constraints facing annuity markets

Life annuity products have been sold in the past primarily as retirement accumu-

lation vehicles, rather than decumulation products (Brown et al., 2001). This may

explain why annuity markets in Portugal and in most OECD countries have been

relatively underdeveloped to date. However, annuity markets su¤er from a wide

range of demand and supply constraints1. On the demand side, limitations to

the development of annuity markets include, …rst, the level of annuitization from

PAYGO-…nanced pensions, i.e., the degree on which annuities are crowded out by

social security provision and the degree on which they are crowded out by other

forms of pension saving such as DB occupational schemes. Second, annuities are

perceived to be unfairly priced, mostly because life insurance companies do not

fully disclose information on the technical basis used to calculate annuity premi-

ums. Third, the motive to bequest assets on death to dependents is not covered

by “plain vanilla” annuities. Fourth, the demand for annuities is determined to

1For a detailed discussion on this subject see, for example, Stewart (2007) and Rusconi (2008).
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some extent by personal considerations such as family support, the need to cover

the costs of unexpected medical expenses, the inexistence of su¢cient liquid assets

to purchase an annuity or liquidity concerns. For example, for older people, the

risk of having to pay large medical bills or cover special health care costs induces

them to retain at least a fraction of their assets instead of annuitising them.

Fifth, …scal incentives are considered insu¢cient to stimulate insurance protec-

tion against longevity risk. In modern competitive markets, individual …nancial

decisions are also driven by people’s perceptions about the appeal of alternative

investments, both during their working lifetime and after retirement. For instance,

some individuals may avoid annuitisation on the grounds that they can manage

their assets better than institutional fund managers. In this scenario, introducing

tax incentives (or tax-favoured competing assets) could undermine saving deci-

sions in favour of buying annuity protection. Finally, in some cases there is a

general mistrust of institutions providing annuities.

On the supply side, the type and scope of the limitations to the development

of annuity markets is also signi…cant. First, high-quality information on mortality

tables depicting a particular group’s distribution of expected remaining lifetime is

required. Projected mortality tables should take into consideration the stochas-

tic nature of the remaining lifetime and encompass cohort e¤ects. Uncertainty

regarding mortality tables can cause insurance companies to prices annuities con-

servatively, exacerbating adverse selection problems and lowering the access to

the market. Additionally, uncertainty regarding mortality data can cause indi-

viduals to seriously underestimate their survival prospects, which, in turn, can

lead them to undervalue the importance of longevity insurance. Dissemination

of mortality should, in this sense, be considered a matter of public interest and

form part of a clear supervision policy. In Portugal, there are not regulatory

lifetables (neither contemporaneous lifetables nor prospective lifetable) either for

the Portuguese overall population or for life insured populations. As a result, life

insurance companies are forced to use as their technical basis lifetables adopted in

other countries. Although this practice is authorized by the supervising authori-

ties, using a survival law drawn up from other population’s experience, potentially

biased when compared to the demographic conditions observed in Portugal, in-

volves signi…cant basis risks, in particular the risk of overestimating the mortality

risk of the population. In Section 3 we address this issue and derive the …rst

prospective lifetables for the Portuguese general population.

Second, annuity markets are often a¤ected by strong adverse-selection prob-

lems. This arises if buyers of annuities prove to be live longer than average,
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inducing insurance companies to devise separate mortality tables for annuitants

as opposed to those for the general population. The existence of adverse selection

problems induces companies to include signi…cant margins when pricing for annu-

ity contracts. Whether adverse selection is quantitatively important may depend

on whether annuitisation is considered optional or mandatory. In this sense, in-

creasing compulsory annuitisation can signi…cantly reduce adverse-selection prob-

lems.

Third, the potential for growth in annuity markets cannot be fully accom-

modated if insurance companies lack assets with which to back the long-term

promises represented by annuities. Appropriate asset types either do not exist or

are available in insu¢cient quantity. Insurance companies o¤ering annuity prod-

ucts are faced with two major risk sources: interest-rate risk and longevity risk.

Standard immunisation theory suggests that in order to protect themselves from

small changes in the term structure of interest rates, insurance companies should

back their annuity portfolios with assets whose respective durations equal those

of the annuity liabilities, and whose respective convexities are larger than those of

the annuity liabilities. This is di¢cult in practice, since long-term bonds are not

available in most bond markets. Moreover, if real annuities are to be provided,

real long-term bonds will have to be issued as well. This means that annuity mar-

kets would de…nitely bene…t from the issuance of long-term government bonds.

Moreover, recent events in Argentina and Russia have shown that the quality of

assets considered is important, since the possibility of default is real.

On the other hand, longevity risk, i.e., the chance that entire cohorts live

longer than anticipated in projected mortality tables, remains a real concern for

insurance companies selling annuity products, since substantial changes in mortal-

ity patterns could seriously challenge their pro…tability. Insurance companies can,

for example, hedge longevity risk with o¤setting life insurance contracts, reducing

(but not eliminating completely) the impact of negative mortality scenarios. Some

advocate that governments (or private companies) should issue cohort “survivor

bonds” (or longevity bonds), i.e., bonds whose future coupons payments depend

on a survivorship index (for example, the percentage of the whole population of

retirement age - say 65 - on the issue date still alive on the future coupon payment

dates).2

Although survivor bonds are good candidates for hedging aggregate mortality

risk, they do not provide a perfect hedge against the particular characteristics

of a company’s pool of annuitants. In this sense, there is basis risk between the

2See, e.g., Blake and Burrows (2001) and Blake et al. (2006a).
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reference population mortality and the mortality experienced by any individual

pool of annuitants. Other problems related to the issuance of survivor bonds

include: i) the ability of dealing with a business involving huge amounts of cap-

ital, ii) pricing complications related to the adoption of a particular (stochastic)

representation of mortality uncertainty and the estimation of the market price

of longevity risk and iii) the importance of attractive contract design in order to

boost market liquidity for traded securities and reduce credit risk. Once a well

organised and liquid market for survivor bonds is in place, a whole new avenue is

open for the development of survivor-derivative products (for example, mortality

options based on a certain mortality index, futures contracts based on survival

forecasts, survivor swaps interchanging cash ‡ows based on two di¤erent mortality

experiences, longevity forwards3).

Finally, alternative methods of hedging longevity risk include the use of tradi-

tional reinsurance methods, or through risk-sharing in the capital markets, which

are particularly attractive for investors because of the low or negative correla-

tion with traditional risk factors such as …nancial market indexes, or through the

option of annuity securitisation, which would bene…t insurance companies by pro-

viding them with alternative means for o­oading their mortality improvements

risk exposure.

Fourth, traditional annuity markets are incomplete in the sense that do not of-

fer protection against in‡ation, they lack equity market exposure, they are illiquid

and do not insure against multiple shocks. Finally, there are concerns regarding

regulatory capital requirements or with the strength of existing providers that

would make it di¢cult for new entrants to survive.

In order to address these problems, many policy options exist to encourage and

promote annuity markets. Examples include mandating annuitization, improving

…nancial literacy, dealing with longevity risk or producing longevity indexes.

1.5 Modeling mortality and longevity risk

One of the key conditions for the development of longevity-linked products and

markets and for the hedging of longevity risk is the development of generally

agreed market models for risk measurement. Whereas traditional market risks

such as equity market, interest rate, exchange rate, credit and commodity risks

have well consolidated methodologies for quantifying risk-based capital and for

establishing market prices, longevity and mortality risk has historically been a

very opaque risk. For a long time, only demographers, actuaries and insurance

3For a detailed discussion see, e.g., Blake et al. (2006a,b) and Bravo (2007).
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companies showed any interest in measuring and managing this risk, mainly for

pricing purposes. A number of explanations can be given for this, particularly

the fact that it is a non-…nancial risk that has been measured and analyzed in

a di¤erent way from …nancial risks, generally adopting deterministic or scenario

based approaches.

Historically, actuaries have been calculating premiums and mathematical re-

serves using a deterministic approach, by considering a deterministic mortality

intensity, which is a function of the age only, extracted from available (static)

lifetables and by setting a ‡at (“best estimate”) interest rate to discount cash

‡ows over time. Since neither the mortality intensity nor interest rates are ac-

tually deterministic, life insurance companies are exposed to both …nancial and

mortality (systematic and unsystematic) risks when pricing and reserving for any

kind of long-term living bene…ts, particularly on annuities. In particular, the cal-

culation of expected present values requires an appropriate mortality projection

in order to avoid signi…cant underestimation of future costs.

In order to protect the company from mortality improvements, actuaries have

di¤erent solutions, among them to resort to projected (dynamic or prospective)

lifetables, i.e., lifetables including a forecast of future trends of mortality instead

of static lifetables. Static lifetables are obtained using data collected during a

speci…c period (1 to 4 years) whereas dynamic lifetables incorporate mortality

projections. In a situation where longevity is increasing over time, static lifetables

underestimate lifelengths and thus premiums relating to life insurance contracts.

Conversely, dynamic lifetables will project mortality into the future accounting

for longevity improvements.

Since the future mortality is actually unknown, there is enormous likelihood

that future death rates will turn out to be di¤erent from the projected ones, and

so a better assessment of longevity risk would be one that consists of both a mean

estimate and a measure of uncertainty. Such assessment can only be performed

using stochastic models to describe both demographic and …nancial risks. In the

following sections, we review both the traditional “dynamic approach” and the

new “stochastic mortality approach”.

2 Group Self Annuitization life annuities

2.1 Risk pooling principle

Through “plain vanilla” annuities, life insurers o¤er their policyholders protection

against two broad classes of risk: biometric risks, such as longevity and mortality
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risks, and macroeconomic and …nancial market risks, such as interest rate, in‡a-

tion, equity market or credit market risk. In this kind of product insurers bear

all risk, both systematic (e.g., longevity risk, the risk that people systematically

live longer than predicted) and unsystematic or idiosyncratic risk (e.g., …nancial

market volatility, mortality deviations around predicted values,...).

To introduce a special type of participating life annuity called Guaranteed

(or pooled) Self Annuitization (GSA) annuity fund consider the following simple

example. Let us take a group of ten 90-year-old Portuguese women, who are

concerned about outliving their …nancial wealth over the next year. Statistically,

the latest estimations show that there is an approximately 20% probability of

death in the next year. To protect against longevity risk, they agree to contribute

EUR 100 to a common fund, which will redistribute the capital and investment

return (say 5% yield pa) amongst survivors. At the end of the year each of them

will get between EUR 105 (if no-one dies) and EUR 1050 (if nine out of ten die),

based on actual mortality experience.

What this example highlights is that by pooling mortality risk and ceding be-

quest, individuals seem to all gain. In fact, ex-ante all fund participants receive

some protection against longevity risk over the duration of the contract. If the

agreement between the ten old ladies were to be intermediated by an insurance

company, involved a large number of people, and lasted for the remaining lifetime

of participants’ lives, it would constitute a special type of participating life an-

nuity called Guaranteed Self Annuitization annuity fund. Through this kind of

arrangement, with a large investment pool, and assuming that longevity risk is

null, the funds contributed by those who die earlier than expected on the basis of

expected mortality rates are "inherited" by those who survive and supplement the

pool’s capital market gains, o¤ering thus a larger bene…t than could be achieved

through individual investments.

Stated more formally, consider a standard GSA annuity fund.4 Without loss

of generality, the pool starts (at time  = 0) with an initial size of  homogeneous

insured persons in the sense of identical age, gender and cohort, identical monetary

amounts and identical risk exposures. We assume that contracts are sold to

policyholders in exchange for a single upfront premium 0 given exogenously

throughout the entire analysis. The contract provides a ‡at bene…t 0 paid once

a year. Given these assumptions and the best estimate of future mortality, the

4For a comprehensible introduction GSA’s see, for instance, Piggott and Detzel (2004) and
Richter and Weber (2009).
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starting total fund is

0 = 0Ä (1)

where Ä is the standard actuarial notation for the present value of whole life

annuity-due, determined using the mortality information and projections available

at time  = 0 and assuming a constant discrete interest rate of  per period (we

will use the year as the period, any generalizations can be made using the usual

approaches, e.g., interpolation). Such a pure annuity provides a unit payment for

the remaining lifetime of an insured person initially aged , i.e., contingent on the

insured’s survival. Using the equivalence premium principle, Ä is given by

Ä = E

0
@

()X

=0



1
A =

1X

=0

©
 ¢ 

ª
(2)

where  = () = [ ()] is the number of completed future years lived by (),

also denominated the curtate future lifetime of  (see, for instance, Gerber [1997]),

and where  = (1 + )¡1 denotes the standard discount factor. This starting total

fund can also be considered the initial total reserve, i.e., 0 = 0

In a GSA, the future value of annuity bene…ts remains constant over the whole

contract unless deviations from expected mortality rates are observed. If that is

not the case, i.e., if the number of those surviving up to higher ages is di¤erent form

expected, the remaining reserves have to be redistributed among the remaining

survivors. Assuming that realized investment rates will be as expected5, the total

fund at time  = 1 comprises the initial value less annuity payments accrued at

the technical interest rate

1 = 1 = (0 ¡ 0) (1 + ) (3)

Redistributing this reserve among the actual ±+1 remaining survivors for their

expected future lifetime, including the reserves “inherited” from non-surviving

members, the future value of annuity bene…ts becomes, after some algebra

1 =
1
±+1

= 0

µ

±

¶
(4)

where  and ± denotes, respectively, the expected and realized survival prob-

abilities for an individual aged  at time  = 0 in the time interval (  + 1)

5The extension to the case where the realized investment earnings pattern is di¤erent from
the assumed constant rate  is straightforward (see, e.g., Piggott et al., 2004)
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Proceeding inductively, at any time  in the future the bene…t payment will be

determined by

 = 0

µ


±

¶
(5)

From (5) it is clear that future annuity payments depend on the ratio of

survivorship rates. In a scenario of longevity risk, i.e., in a scenario where the

number of those surviving to age +  is systematically higher than initially ex-

pected bene…t payments will inevitably drop in order to prevent fund imbalance.

This contrasts with traditional life annuity contracts that guarantee a level pay-

ment for the remainder of recipient’s lifetime independently of future mortality

developments.

From (5) it also clear that bene…t payments at time  can be expressed as

 () =

8
>><
>>:

min (0 ) 

¤

 1

0 
¤

= 1

max (0 )  
¤

 1

(6)

For instance, in a scenario of longevity risk the bene…t payment is given by the

current value of the reference fund distributed among the actual ±+1 remaining

survivors capped by its inception value 0 This bene…t can be expressed in terms

of the …nal (maturity) payo¤ of an European put option with strike equal to the

annuity bene…t at inception, i.e.,

 () = 0 ¡ max f0 ¡; 0g (7)

If, for the contrary, actual remaining survivors are less than initially estimated,

bene…t payments at time  are ‡oored by the annuity bene…t at inception and can

be expressed in terms of the …nal payo¤ of an European call option with strike

equal to 0, i.e.,

 () = 0 + max f ¡0; 0g (8)

Equations (8) and (7) show that GSA annuity contracts include option features

that, up to our knowledge, have never been considered in the design and pricing of

these contracts. In fact, insurance companies adopt an over-simpli…ed approach

and completely ignore embedded options, resorting to consolidated actuarial tech-

niques for pricing (and hedging) the contract. After all, in a GSA annuity fund

all actual losses/pro…ts are beared by the remaining survivors, whose bene…ts

‡uctuate according to mortality developments.

However, this solution may have a disastrous e¤ect from a marketability point
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of view. For example, in a scenario of longevity risk future bene…ts will decrease

and this may spread discontent through those who weren’t aware of the poten-

tial impact of future mortality improvements on their “apparently guaranteed”

income and may feel they didn’t receive any compensation for being short in put

option contract. Compared to standard life annuities, policyholders in a GSA may

question the fact that insurance companies don’t pay a premium for the option

to cut back annuity payments in case of adverse mortality improvements.

On the other hand, if actual longevity developments are worst than initially

expected, bene…t payments in a GSA will increase due to a higher “inheritance

e¤ect” or “survivor bonus” since the accumulated funds will be spread across a

smaller surviving group. Compared to standard life annuities, in this case life

insurance companies will not be compensated for the “lost” reserves. Individu-

als assessing the possibility of annuitizing their wealth but disbelief about their

longevity prospects may feel attracted to buy an GSA annuity contract type if

given the chance to increase annuity payments if their prospects con…rm. More-

over, in this case life insurance companies may sell a separates call options on

future bene…t payments, upgrading thus the value of the overall line of business.

Although the framework of GSA is interesting at a theoretical level it as no

practical interest in life insurance competitive markets for a number of reasons.

Firstly, as in other variable annuity contracts the annuitant does not know in

advance the rate of return of the pool, hence it carries some risk. In particular,

GSA without additional guarantees are structured so that individuals share both

mortality and investment risk in upside and downside times. Second, annuitants

can see theirs payments dropping below a reasonable value in the presence of

longevity risk. Third, there will be no payments for lives above the technical

limit of the mortality table used to …rst price annuities, i.e., individuals might

end up with no resources to fund consumption. Fourth, insurance companies (or

fund’s manager) does not bear any kind of risk, either actuarial or …nancial, either

systematic of idiosyncratic. In fact, this is a simple approach to the di¤usion of

risk since, in the classical framework of GSA, there is no need to use a risk bearer

(as an insurer or fund’s manager) since the funds are periodically reallocated to

the annuitants, based on the previous payment adjusted for any deviations in

mortality and interest from expectations.

Fifth, in its simplest form, a GSA does not give pool member’s access to the

principal investment nor to any accumulated fund. This means that the product

does not cover legacy motives. Finally, buyers of such product tend to be people

who expect to live longer, raising once again the question of adverse selection.
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The apparent advantage of GSA’s over self-insuring is that the risk exposure is

not immediate in that is borne by the pool and it’s smoothed out by the insurance

company over a long time horizon. In addition, since mortality and investment are

largely uncorrelated, there is some chance that a negative return on investments

may be partially o¤set by a positive “inheritance e¤ect” or vice-versa. In other

words, the e¤ects of the overall risk exposure might be mitigated and postponed

at the individual level when considered in a pooling structure.

To address these concerns, we propose in Section 5 a new participating life

annuity contract in which mortality and longevity risks are shared between pol-

icyholders and insurance companies. The contract includes option-like features

that adjust bene…ts if future mortality developments are signi…cantly di¤erent

from expected.

2.2 Annuity portfolio losses

A di¤erent way to understand the option-like features of annuity contracts is to

analyse the relation between survival probabilities and annuity portfolio losses.

Consider a classic life annuity contract with level payment 0. The loss on the

underlying annuity portfolio at time  is de…ned as

 =
X

=1

(()0 ¡ E [()0])
+ (9)

where () = 1  is an indicator function that jumps from 1 to 0 at the time of

death   of the annuitant. Note that E [()] =  Losses on the portfolio are

the amount that the annuity payments at time  exceed the expected payments.

For a given population survival probability , the distribution of the number

alive at time  is binomial

+ » B ( ) j (10)

As recognized by Lin and Cox (2005), there are two sources of uncertainty in

the portfolio loss at time  This …rst is due to uncertain lifetimes given the actual

mortality rates. The second is attributed to the stochastic nature of survival

probabilities. Given this, the total variability in the portfolio is the unconditional

variance of the compound binomial distribution

  (+) = E [  [(+) j ]] +   [E [(+) j ]] (11)
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For large portfolios of annuitants, the main source of uncertainty will come

from changes in mortality rates impacting all lives in the portfolio rather than the

variability in the number of deaths at a particular age given the mortality rate.

In other words, the randomness in + will mainly be due to the uncertainty in



Life insurance companies pool mortality risks by the Law of Large Numbers,

i.e., lim!1 E [  [(+) j ]] ! 0 However, from (11) we can conclude that

the assumption that mortality and longevity risks can be diversi…ed away by

writing a large number of policies in incorrect if we take into account the dynamics

of the underlying mortality rates, i.e.,

  [E [(+) j ]] 6= 0

Mortality dynamics is in‡uenced by a complex setting of socioeconomic fac-

tors, biological variables, government policies, environmental e¤ects, health con-

ditions and social behaviours. Since the future mortality is actually unknown,

there is always the likelihood that future death rates will turn out to be di¤er-

ent from the projected ones and thus mortality shocks can destroy the insurance

pooling mechanism. For example, for an annuity portfolio the risk is that the

annuitants will systematically live longer than expected at the policies inception.

Systematic mortality risk cannot be eliminated by diversi…cation and thus should

have a market price.

The portfolio loss in equation (9) can be written as

 = 0 [
±
 ¡ ]

+ (12)

Redistributing among the remaining survivors we have



±+
=

0
±+

[
±
 ¡ ]

+ = 0max

·µ
± ¡ 

±

¶
; 0

¸

= 0 max

·µ
1 ¡ 

±

¶
; 0

¸
(13)

Equation (13) shows that the loss "inherited" by each surviving policyholder

includes an option feature that depends on ratio of survivorship rates. To be

more speci…c, the loss has an embedded put option with strike equal to unity

and underlying equal to the ratio between estimated and actual survivorship

rates. To value this option we can resort to traditional discrete-time (Binomial)

or continuous-time approaches (Black-Scholes), with proper adjustments for an
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incomplete markets situation. Alternatively, we can resort to Monte-Carlo simu-

lation techniques.6

3 Deriving Prospective Lifetables for Portugal

In this section we derive prospective lifetables for the Portuguese general popula-

tion. The results are then compared with that of classical static lifetable approach

to give an indication of the longevity risk currently faced by portuguese insurance

companies.

3.1 Notation, assumptions and quantities of interest

The basic idea underlying projected lifetable methods is to analyse changes in

mortality as a function of both age  and time . Let  () denote the force

of mortality at age  during calendar year . Let  () and  () = 1 ¡  ()

represent, respectively, the one-year death probability at age  in year  and the

corresponding survival probability. Let  denote the number of deaths recorded

at age  during year  from an exposure-to-risk (i.e., the number of person years

from which  arise) 

Consider now the classic Lexis diagram, that is, a coordinate system that has

calendar time as abscissa and age as coordinate. If we assume that both time

scales are divided into yearly bands, the Lexis plane is partitioned into squared

segments. In this paper, we assume that the age-speci…c forces of mortality are

constant within bands of time and age, but authorized to change from one band

to the next. Formally, given any integer age  and calendar year , we assume

that

+ (+ ) =  () for any 0 ·    1 (14)

In other words, assumption (14) means that mortality rates are constant within

each square of the Lexis diagram, but allowed to vary between squares. From (14)

the calculation of the probability of an individual aged  in year ,  ()  and of

the corresponding death probability  () = 1 ¡  () simpli…es to

 () = exp (¡ ()) = 1 ¡  () (15)

Several markers are regularly used by demographers to measure the evolution

of mortality, namely life expectancies, variance of residual lifetime, median lifetime

6The valuation of options embedded in GSA funds is being performed in an accompanying
paper.
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or the entropy of a lifetable. Let º() denote the (complete) life expectancy of

an -aged individual in year  i.e., the average number of years he is expected to

survive. This means we expect this individual will die in year +º() then aged

+º() Contrary to classic static lifetables, the use of projected lifetables allows

us to estimate the “true” (diagonal) expected residual lifetime of an individual.

The appropriate formula for º() is given by

º() =
X

¸0

8
<
:

Y

=0

+ ( + )

9
=
;

=
1 ¡ exp (¡ ())

 ()
(16)

+
X

¸1

8
<
:

¡1Y

=0

exp
¡
¡+ ( + )

¢
9
=
;

1 ¡ exp
¡
¡+ (+ )

¢

+ ( + )

The actual computation of º() requires the knowledge of  () (or  ())

for  ·  ·  and  ·  ·  +  ¡  where  denotes the ultimate (maximum)

age. Since these survival probabilities are knot known at time  they have to be

estimated using extrapolation methods based on past trends. The next section

gives an example of how this can be done in practice.

For life insurance companies and annuity providers, the net single premium

of an immediate life annuity sold to an -aged individual in year   ()  is of

special interest. In a dynamic approach, the appropriate formula for () is given

by

 () =
X

¸0

8
<
:

Y

=0

+ (+ )

9
=
;+1 (17)

where  = (1 + )¡1 is the classic discount factor considering a ‡at term structure.

As can be seen, mortality projections and projected survival probabilities are par-

ticularly important to price correctly annuity and other life insurance contracts.

3.2 Mortality projection method

The literature on the construction of projected lifetables is vast and growing.7 The

classical approach is to …t an appropriate parametric function (e.g. Makeham

model) to each calendar year data. Then, each of the parameter estimates is

treated as independent time series, extrapolating their behaviour to the future in

order to provide the actuary with projected lifetables (see, e.g., CMIB (1976) and

7A detailed review of mortality projection methods can be found in Tuljapurkar and Boe
(1998), Pitacco (2004), Wong-Fupuy and Haberman (2004) and Bravo (2007).
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Heligman e Pollard (1980)). Despite simple, this approach has serious limitations.

In the …rst place, this approach strongly relies on the appropriateness of the

parametric function adopted. Secondly, parameter estimates are very unstable

a feature that undermines the reliability of univariate extrapolations. Thirdly,

the time series for parameter estimates are not independent and often robustly

correlated. Although applying multivariate time series methods for the parameter

estimates is theoretically possible, this will complicate the approach and introduce

new problems.

Lee and Carter (1992) developed a simple model for describing the long term

trends in mortality as a function of a simple time index. The method models

the logarithm of a time series of age-speci…c death rates  () as the sum of an

age-speci…c component  that is independent of time, and a second component,

expressed as a product of a time-varying parameter denoting the general level of

mortality , and an age-speci…c component  that signals the sensitiveness of

mortality rates at each age when the general level of mortality changes. Formally,

we have

ln () =  +  +  (18)

where  » N
¡
0 2

¢
is a white-noise, representing transitory shocks. Para-

meters ,  and  have to be constrained by

maxX

=min

 = 0 and
maxX

=min

 = 1 (19)

in order to ensure model identi…cation.

Parameter estimates are obtained by ordinary least squares, i.e., by solving

the following minimization program

(̂ ̂ ̂) = arg min


(
maxX

=min

maxX

=min

(ln () ¡  ¡ )
2

)
 (20)

Lee and Carter (1992) solve (20) by resorting to Singular Value Decomposition

techniques but alternative estimation procedures can be implemented considering

iterative methods (see, e.g., Bravo (2007)) or Weighted Least-Squares (see, e.g.,

Wilmoth (1993)). The resulting time-varying parameter estimates are then mod-

elled and forecasted using standard Box-Jenkins time series methods. Finally,

from this forecast of the general level of mortality, projected age-speci…c death

rates are derived using the estimated age-speci…c parameters.

There have been several extensions to the Lee-Carter model including di¤erent
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error assumptions and estimation procedures.8 Bell (1997), Booth et al. (2002a)

and Renshaw and Haberman (2003c,d) include a second log-bilinear term in (18)

and estimate parameters by considering the …rst two term in a SVD. Additionally,

they adopt a multivariate setting in order to project the evolution of the two time

indices  ( = 1 2 ) Carter and Prskawetz (2001) consider the possibility of

time varying parameters  and . Renshaw and Haberman (2003a) include

additional non-linear age factors when modeling the so-called “mortality reduction

factors” within a Generalized Linear Models (GLM’s) approach. Renshaw and

Haberman (2006) and Currie et al. (2004) include a cohort factor including year

of birth as a factor impacting the rate of longevity improvement. This cohort

factor is found to be signi…cant in UK mortality data.

Renshaw e Haberman (2005) and Bravo (2007) develop a version of the Lee-

Carter model considering positive asymptotic mortality. This result is, for most

age groups, more consistent with observed mortality patterns when compared with

that of the original model. Wilmoth and Valkonen (2002) develop an extension

of the Lee-Carter model aimed to investigate di¤erential mortality by considering

a number of alternative covariates other than age and calendar time. Cairns,

Blake and Dowd (2006b) develop and apply a two-factor model similar to the

Lee-Carter model with a smoothing of age e¤ects using a logit transformation of

mortality rates. Cairns et al. (2007) analyze England and Wales and US mortality

data showing that models that allow for an age e¤ect, a quadratic age e¤ect and

a cohort e¤ect …t the data best although the analysis of error distributions in

these models revealed disappointing. De Jong and Tickle (2006) formulate the

Lee-Carter model in a state space framework.

Brouhns et al. (2002a) and Renshaw and Haberman (2003c) develop an ex-

tension of the Lee-Carter model allowing for Poisson error assumptions and apply

it to Belgian data. This Poisson log-bilinear approach can be stated as

 » P ( ())  (21)

where  denotes the number of deaths recorded at age  during year  from

an exposure-to-risk (i.e., the number of person-years from which  arise), ,

and  () is given once again by (18). This model has several advantages over

the Lee-Carter speci…cation. First, the model doesn’t assume that errors are

homoskedastic, an unrealistic assumption since the logarithm of the force of mor-

8See Lee (2000), Lee and Miller (2001), Tuljapurkar and Boe (1998), Brouhns et al. (2002a),
Wong-Fupuy and Haberman (2004), Bravo (2007) and Cairns et al. (2007) for a detailed discus-
sion of Lee-Carter model and extensions.
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tality is much more variable at older ages that at younger ages. Second, contrary

to Lee-Carter model, the Poisson log-bilinear approach doesn’t requires a com-

plete matrix of observed death rates. Finally, one of the main advantages over the

Lee-Carter model is that speci…cation (21) allows us to use maximum-likelihood

methods to estimate the parameters instead of resorting to least squares (SVD)

methods. Formally, we estimate the parameters ,  and  by maximizing the

log-likelihood derived from model (18)-(21)

lnV (®¯·) =
maxX

=min

maxX

=min

f ( + ) ¡ exp ( + )g +  (22)

where ® = (min      max)
0  ¯ =

¡
min      max

¢0
 · = (min      max)

0

and  is a constant.

The presence of the log-bilinear term  makes it impossible to estimate the

model using standard statistical packages that include Poisson regression. Because

of this, we resort in this paper to an iterative method proposed by Goodman

(1979). The algorithm, which is essentially a Newton-Raphson standard method,

states that in iteration +1 a single set of parameters is updated …xing the other

parameters at their current estimates according to the following updating scheme

̂
(+1)

 = ̂
()

 ¡ L()
2L()2

(23)

where L() = L()(̂()) Recall that in our case we have three sets of parameters,

corresponding to the   and  terms.

The updating scheme is as follows: starting with a given initial vector (̂
(0)
 ̂

(0)

 ̂
(0)
 )
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then:

̂(+1) = ̂() ¡

maxP
=min

h
 ¡  exp

³
̂
()
 + ̂

()

 ̂
()


´i

¡
maxP
=min

h
 exp

³
̂
()
 + ̂

()

 ̂
()


´i 

̂
(+1)

 = ̂
()

  ̂
(+1)
 = ̂

()
 (24)

̂
(+2)
 = ̂

(+1)
 ¡

maxP
=min

̂
(+1)


h
 ¡ exp

³
̂
(+1)
 + ̂

(+1)
 ̂

(+1)


´i

¡
maxP

=min

³
̂
(+1)


´2 h
 exp

³
̂
(+1)
 + ̂

(+1)
 ̂

(+1)


´i 

̂(+2) = ̂(+1)  ̂
(+2)

 = ̂
(+1)



̂
(+3)
 = ̂

(+2)
 ¡

maxP
=min

̂
(+1)


h
 ¡ exp

³
̂
(+2)
 + ̂

(+2)
 ̂

(+2)


´i

¡
maxP
=min

³
̂
(+2)


´2 h
 exp

³
̂
(+2)
 + ̂

(+2)

 ̂
(+2)


´i 

̂(+3) = ̂(+2)  ̂
(+3)
 = ̂

(+2)


We use as a criterion to stop the iterative procedure a very small increase of

the log-likelihood function.

The maximum-likelihood estimations of the parameters generated by (24) do

not match the identi…cation constraints (??), and have thus to be adapted. This

is guaranteed by changing the parameterization in the following manner:

¤ = (̂ ¡ ¹) and ¤ =
̂Pmax

=min
̂

(25)

where ¹ denotes average value for ̂ i.e.

¹ =
1

max ¡ min + 1

maxX

=min

̂

and where  is given by

 =
maxX

=min

̂

from which we …nally calculate

¤ = ̂ + ̂¹ (26)
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The new estimates ¤ 
¤
 and ¤ ful…ll the constraints (??) and provide the

same ̂ since ̂ + ̂̂ = ¤ + ¤
¤
  Note also that di¤erentiating the log-

likelihood function with respect to  yields the equality

X



 =
X



̂ =
X



 exp
³
̂ + ̂̂

´

This means that the estimated ’s are such that the resulting death rates

applied to the actual risk exposure produce the total number of deaths actually

observed in the data for each age .

3.3 Modelling the time-factor

In the Poisson log-bilinear methodology, the time factor  is intrinsically viewed

as stochastic process. In this sense, standard Box-Jenkins techniques are used to

estimate and forecast  within an ARIMA(  ) time series model. Recall that

the model takes the general form

(1 ¡ )  = +
£ () 
© ()

(27)

where  is the delay operator (i.e.,  () = ¡1 2 () = ¡2   ), 1 ¡
 is the di¤erence operator (i.e., (1 ¡ )  =  ¡ ¡1 (1 ¡)2  =  ¡
2¡1 + ¡2   ), £ () is the Moving Average polynomial, with coe¢cients

µ = (1 2     ), © () is the Autoregressive polynomial, with coe¢cients

Á =
¡
1 2     

¢
, and  is white noise with variance 2 

The method used to derive estimates for the ARIMA parameters  µ; Á

and  is conditional least squares. From these, forecasted values of the time

parameter, denoted by ¤ , are derived. Finally, the parameter estimates of the

Poisson model and the forecasts ¤ can be inserted in (??) to obtain age-speci…c

mortality rates, prospective lifetables, life expectancies, annuities single premiums

and other related markers. In the following we apply the Poisson modelling to

Portugal’s general population data in order to derive prospective lifetables.

3.4 Data

The model used in this paper is …tted to the matrix of crude Portuguese death

rates, from year 1970 to 2004 and for ages 0 to 84 The data, discriminated by

age and sex, refers to the entire Portuguese population and has been supplied by

Statistics Portugal(INE - Instituto Nacional de Estatística).
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Figure 1: Crude mortality rates for the period 1970-2004, males

Figure 2: Crude mortality rates for the period 1970-2004, females

28



The database for this study comprises two elements: the observed number

of death  given by age and year of death, and the observed population size

 at December 31 of each year. We follow the INE de…nition of population at

risk using the population counts at the beginning and at the end of a year and

take migration into account. Figures 1 and 2 give us a …rst indication of mortality

trends in Portugal during this period. Two trends dominated the global mortality

decline: (i) a reduction in mortality due to infectious diseases, a¤ecting mainly

young ages, (ii) decreasing mortality at old ages.

3.5 Results

3.5.1 Parameter estimates

We apply the Poisson modelling to the Portuguese data presented above. The

Poisson parameters   and  implicated in (??) are estimated by maximum-

likelihood methods using the iterative procedure described in Section ??. We

started the updating scheme considering the following initial values ̂
(0)
 = 0

̂
(0)

 = 1 and ̂
(0)
 = 01 The criterion to stop the iterative procedure is a very

small increase of the log-likelihood function (in our case we used 10¡5). The

routine was implemented within the SAS package. Figure 3 plots the estimated

  and .

We note that the ̂’s represent the average of the ln ̂ () across the time

period. As expected, the average mortality rates are relatively high for newborn

and childhood ages, then decrease rapidly towards their minimum (around age

12), increasing then in  re‡ecting higher mortality at older ages. The only ex-

ception refers to the well know “mortality hump” around ages 20-25, more visible

in the male population, a phenomena normally associated with accident or suicide

mortality. We can see that young ages tend to be more a¤ected by changes in the

general time trends of mortality, probably due the evolution of medicine in reduc-

ing infantile and juvenile mortality. In e¤ect, the ̂’s decrease with age, except

for the mortality hump phenomena, but remain positive for all ages. Note also

that the sensitiveness of the male population to variations in parameter  tends

to be grater than that of the female population, which has a more stable pattern.

Finally, we can see that the ̂’s exhibit a clear decreasing trend (approximately

linear). This reveals the signi…cant improvements of mortality at all ages both for

men and women in the last 35 years.
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Figure 3: Estimations of   and  for men (left panels) and women (right

panels).
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3.5.2 Extrapolating time trends

Let f̂  = min     maxg denote a realization of the …nite chronologic time series

K = f  2 Ng  Following the work of Lee and Carter (1992) and Brouhn et al.

(2002a,b), we use standard Box-Jenkins methodology to identify, estimate and

extrapolate the appropriate ARIMA (  ) time series model for the male and

female time indexes 

A good model for the male population is ARIMA(0 1 1), which is a moving

average (MA(1)) model

(1 ¡ ) =  + ¡1 +  (28)

whereas for women the ARIMA(1,1,0) autoregressive model was identi…ed as a

good candidate

(1 ¡) =  + ¡1 +  (29)

where  and  are white noise error terms with variance 2 and 2 respec-

tively. The estimated parameters for the ARIMA (  ) models (28) and (29)

are given in Table 1. Note that all parameters are signi…cant at a 5% signi…cance

level.

Sex Parameter Estimate Std error ¡value ¡value

 -1.64623 0.11663 -14.11 .0001
Men  0.64315 0.14831 4.34 0.0001

 1.800992

 -2.14802 0.23969 -8.96 .0001
Women  -0.63606 0.15145 -4.20 0.0002

 2.263249

Table 1: Estimation of the parameters of the ARIMA(p,d,q) models

In Figure 4 we show the estimated values of  together with the ¤ projected

and the corresponding 95% con…dence interval forecasts.
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Figure 4: Estimated and projected values of  with their 95% con…dence intervals

for males (left panel) and females (right panel)

Given the forecasted values of 
©
̂¤2004+ :  = 1 2   

ª
 the reconstituted

sex-speci…c forces of mortality are given by

̂ (2004 + ) = exp(̂ + ̂̂
¤
2004+)  = 1 2    (30)

and then used to generate sex-speci…c life expectancies and life annuities.

3.5.3 Projecting the mortality for the oldest-old: Closing Lifetables

According to the United Nations, it is estimated that in 2001 72 million of the 6.1

billion inhabitants of the world were 80 year or older. In the developing world,

the population of the oldest-old (e.g., those 80 years and older) still represents

a small fraction of the world’s population but it is the fastest growing segment

of the population. In addition, because life expectancy will continue to increase,

not only we should expect to have an increasing number of people surviving to

very old ages, but also anticipate that the deaths of the oldest-old will account

for an increasing proportion of all deaths in a given population. In view of this,

it is important to have detailed information about the age structure of the oldest-
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old and about the behaviour of mortality at these ages. Unfortunately, in most

countries reliable data on both the age distribution of population at risk and death

counts of the oldest-old is not yet available. This is also our case since Portuguese

statistics did not provide for this period an age breakdown for the group aged 85

and over. This poses a serious problem when it comes to complete lifetables.

Because of this, a number of research papers has addressed the issue of pro-

jecting mortality for the oldest-old (see, e.g., Buettner (2002)). In this paper we

adopt the method proposed by Denuit and Goderniaux (2005) to extrapolate mor-

tality rates at very old ages. The method is a two step method: …rst, a quadratic

function is …tted to age-speci…c estimated mortality rates in a given age-band;

second, the estimated function is used to extrapolated mortality rates up to a

pre-determined maximum age. Formally, the following log-quadratic model is

…tted by weighted least-squares

ln ̂ () =  () +  () +  () 2 +  () (31)

to age-speci…c mortality rates observed at older ages, where  () » N
¡
0 2 ()

¢
,

with additional constraints

120 = 1 (32)

0120 = 0 (33)

where 0 denotes the …rst derivative of  with respect to age . Constraints (32)

and (33) impose a concave con…guration to the curve of mortality rates at old ages

and the existence of a horizontal tangent at  = 120 We then use this function to

extrapolated mortality rates up to age 120. Figures 5 and 6 show the …nal result

of this procedure.

3.5.4 Mortality Projections

3.5.4.1 By chronologic year Considering the prospective lifetables derived

in the previous section, we can now analyse the evolution of mortality across time.

Figure 7 represents the evolution of observed and estimated forces of mortality

from 1970 to 2050 for both genders. In Figure 8 we can observe the evolution of

observed and estimated mortality rates from 1970 to 2050 for both genders and

some representative ages.
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Figure 5: Mortality rates for closed lifetables, males

Figure 6: Mortality rates for closed lifetables, females
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Overall, we can observe a clear and continuous decline in mortality throughout

this period. It is also apparent that this mortality decline is more noticeable

within younger ages. The mortality hump phenomenon is surprisingly persistent

and tends to be more signi…cant for the male population. In e¤ect, we can observe

a sort of mortality stagnation within this age-band. For older ages, we predict a

decline in mortality rates.

3.5.4.2 By Cohort Prospective lifetables provide us with new tools for the

analysis of mortality trends, namely the possibility to investigate the evolution

of mortality not only in terms of calendar time but also in terms of year of birth

or cohort. In brief, by using prospective lifetables we switch from a transversal

approach to a longitudinal (or diagonal) approach to mortality.

In Figure 9 we can observe the evolution of the force of mortality for some

representative generations born between 1970 and 2004.
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Figure 9: Evolution of the instantaneous force of mortality for some representative

generations for men (left panel) and women (right panel)

We note that the main mortality features identi…ed in the previous section

within the transversal approach (decreasing mortality trends, mortality hump,...)

are again easily recognized within the cohort approach. It should be mentioned,
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however, that the evolution of mortality for successive generations seems to be

more reliable and plausible when compared with that provided by the classic static

approach.

In …gure 10 we compare mortality rates obtained in both a transversal and

diagonal approach for selected cohorts (and calendar years). We can observe

that, in decreasing mortality environment, the predicted values within a diagonal

approach are, as expected, lower than those estimated via a transversal approach.

Note also that the di¤erences in the projected values increase with the age of the

individual and with the generation’s year of birth. The only exception refers, once

again, to the mortality hump phenomena, for which we project a stagnation (and

even a slight increase) in mortality rates.

3.5.5 Life expectancy

In this section we analyse the evolution of life expectancy  () in terms of cal-

endar year  = 1970     2004 for some representative ages  = 0 and  = 65 In

Section ?? we showed that within the transversal approach  () is calculated on

the basis of mortality rates observed (or estimated) in year  (i.e., using proba-

bilities + ()   = 0 1 2   ). For the contrary, within the diagonal approach

 () represents the “true” remaining lifetime for individuals aged  in year 

and is calculated on the basis of mortality rates projected for that generation

(i.e., using probabilities + ( + )   = 0 1 2   ). Table 2 summarizes the

results obtained for the life expectancy calculated at birth and at age 65 for two

selected calendar years. Column ¹¢ indicates the average annual gain (measured

in days) in the life expectancy registered between 1970 and 2004.
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Figure 10: Transversal vs cohort approach, for selected calendar years, for men

(left panel) and women (right panel)
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Men 0 () 65 ()

 Long ¹¢ Trans ¹¢ Long ¹¢ Trans ¹¢

1970 71.99 63.21 13.16 12.21

2004 83.30 117.9 74.55 118.3 16.91 39.2 15.84 38.0

Women 0 () 65 ()

 Long ¹¢ Trans ¹¢ Long ¹¢ Trans ¹¢

1970 80.37 69.32 16.24 14.53

2004 90.63 107.0 81.05 122.4 20.87 48.3 19.22 49.0

Table 2: Evolution of life expectancy at birth and at age 65 calculated according

to both a transversal and diagonal approach

The …rst noticeable aspect refers to the spectacular life expectancy gains ob-

served during this period. In e¤ect, when we can consider the transversal ap-

proach we observe that over this period life expectancy at birth increased, on

an annual average, by approximately four months for both sexes (more precisely

118.3 and 122.4 days for men and women, respectively). These gains are slightly

more moderate when considering the diagonal approach, particularly for the fe-

male population, with average annual gains amounting to 117.9 and 107.0 days

for men and women, respectively. Similar conclusions may be stated when we

examine the evolution of life expectancy at the age of 65.

The second main conclusion has do to with the signi…cant di¤erence between

life expectancies estimated using the two approaches. In e¤ect, when we use

prospective lifetables we estimate that the “true” life expectancy at birth for an

individual born in 2004 will be of 83.30 and 90.63 years for men and women, re-

spectively, whereas the corresponding values estimated using the classic transver-

sal approach are 74.55 and 81.05 years. In other words, when we project past

trends observed in mortality to the future we conclude that adopting a transver-

sal approach underestimates life expectancy at birth in 8.75 and 9.58 years for

men and women, respectively. This apparently surprising conclusion highlights

the importance of using prospective lifetables in life insurance and pension busi-

nesses. Actually, long-term calculations based on periodic lifetables are erroneous

since they do not incorporate expected longevity improvements.

In Figure 11 we can see that the di¤erentials between the values of 0 () and

65 () calculated according to the two methodologies considered are, for both

sexes, relatively stable across the time period analysed.

39



year

1970 1980 1990 2000

11
12

13
14

15
16

17

e65(t)

longitudinal approach
tranversal approach

year

1970 1980 1990 2000

14
16

18
20

e65(t)

longitudinal approach
tranversal approach

Figure 11: Life expectancy  () calculated at  = 0 65 for men (left panel) and

women (right panel)

Finally, Figure 12 gives us a long term perspective of the evolution of 0 ()

and 65 () across the time period analysed.
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Figure 12: Projected life expectancy at birth and at age 65, calculated according

a transversal approach
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Our model estimates that life expectancy will continue to increase in the future

in both sexes, although we expect longevity improvements to slow down.

3.5.6 Annuity prices

In this section we are interested in the evolution of the net single premium of an

immediate life annuity sold to an -aged individual in year   () considered both

a transversal and a diagonal approach. For simplicity of exposition, we assume

a ‡at technical interest rate at 3%, i.e.  = 3% This means that we concentrate

our analysis on the impact of longevity improvements on annuity prices. Given

this, we examine the evolution of  () for  2 [0; 65] years.

Men

 0 () ¹¢ 0 () ¹¢

Longitudinal (annual) Transversal (annual)

1970 26.84 25.90

2004 29.82 0.085 29.02 0.089

Women

 0 () ¹¢ 0 () ¹¢

Longitudinal (annual) Transversal (annual)

1970 28.18 27.06

2004 30.72 0.073 29.89 0.081

Men

 65 () ¹¢ 65 () ¹¢

Longitudinal (annual) Transversal (annual)

1970 9.88 9.29

2004 12.22 0.0668 11.64 0.0671

Women

 65 () ¹¢ 65 () ¹¢

Longitudinal (annual) Transversal (annual)

1970 11.86 10.85

2004 14.56 0.077 13.70 0.081

Table 3: Evolution of () for  = 0 and  = 65

In Table 3 we can appreciate the underestimation of annuity prices resulting

from classic transversal lifetables. For example, the net single premium of an

immediate life annuity sold to a female individual aged 65 in year 2004 65 (2004) 
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will be 086$ higher (1456 ¡ 1370) or 63% when compared with that calculated

using classic static lifetables. Values in column ¹¢(annual) indicate the average

annual gains in  () registered between 1970 and 2004.

4 A¢ne-Jump di¤usion processes for mortality

Models following the approach of Lee and Carter typically adapt discrete-time

time series models to capture the random element in the stochastic development of

mortality rates. Given the unknown nature of future mortality, some authors have

recently developed models in a continuous-time framework by modeling mortality

intensity as a stochastic process (see, e.g., Milevsky and Promislow (2001), Dahl

(2004), Bi¢s and Millossovich (2004, 2006), Bi¢s (2005), Dahl and Møller (2005),

Miltersen and Persson (2005), Cairns et al. (2006a), Schrager (2006), Bravo (2007)

and references therein).

Modelling the mortality intensity as a stochastic process allows us to capture

two of its more signi…cant features: time dependency and uncertainty of the future

development. Additionally, this framework provides a more accurate description

of both premiums and liabilities of life insurance companies and contributes to a

proper quanti…cation of systematic mortality risk faced by them. This framework

and model application provides the theoretical foundation for …nancial pricing of

longevity dependent …nancial claims and for the development of longevity risk

hedging tools, namely mortality-linked contracts such as longevity bonds or other

longevity-linked derivatives.

In this section we draw a parallel between insurance contracts and certain

credit-sensitive securities and exploit some results of the intensity-based approach

to credit risk modelling. Speci…cally, we use doubly stochastic processes (also

known as Cox processes) in order to model the random evolution of the stochastic

force of mortality of an individual aged  in a manner that is common in the

credit risk literature. The model is then embedded into the well know a¢ne-jump

term structure framework, widely used in the term structure literature, in order

to derive closed-form solutions for the survival probability, an key element when

pricing life insurance contracts.

4.1 Mathematical framework

We are given a …ltered probability space (­F FP) and concentrate on an indi-

vidual aged  at time 0 Following the pioneering work of Artzner and Delbaen

(1995) in the credit risk literature and the proposals by Dahl (2004) and Bi¢s
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(2005) among others in the mortality area, we model his/her random lifetime as

an F-stopping time  admitting a random intensity  Speci…cally, we consider

 as the …rst jump-time of a nonexplosive F-counting process  recording at

each time  ¸ 0 whether the individual has died ( 6= 0) or survived ( = 0) 

The stopping time  is said to admit an intensity  if the compensator of 

does, i.e., if  is a nonnegative predictable process such that
R 
0 ()  1 for

all  ¸ 0 and such that the compensated process  =
n
 ¡

R 
0 () :  ¸ 0

o

is a local F-martingale. If the stronger condition E
³R 
0 ()

´
 1 is satis…ed,

then  is an F-martingale.

From this, we derive

E (+¢ ¡j F) = E
µZ +¢


()

¯̄
¯̄ F

¶
 (34)

based on which we can write

 (+¢ ¡j F) = ()¢ +  (¢)  (35)

an expression comparable with that of the instantaneous probability of death

¢+ derived in the traditional deterministic context.

By further assuming that  is a Cox (or doubly stochastic) process driven by

a sub…ltration G of F with F-predictable intensity  it can be shown, by using

the law of iterated expectations, that the probability of an individual aged  + 

at time  surviving up to time  ¸  on the set f  g  is given by

P (   j F) = E
h
¡

 

+()

¯̄
¯ F

i
 (36)

Readers who are familiar with mathematical …nance and, in particular, with

the interest rate literature, can without di¢culty observe that the right-hand-side

of equation (36) represents the price at time  of a unitary default-free zero coupon

bond with maturity at time    if the intensity  is to represent the short-term

interest rate.

One of the main advantages of this mathematical framework is that we can

approach the survival probability (36) by using well known a¢ne-jump di¤usion

processes. In particular, an R-valued a¢ne-jump di¤usion process  is an F-

Markov process whose dynamics is given by

 = ()+ ( ) +
X

=1

  (37)
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where  is a F-standard Brownian motion in R and each component  is

a pure-jump process in R with jump-arrival intensity
©
 () :  ¸ 0

ª
and

time-dependent jump distribution  on R An important requirement of a¢ne

processes is that the drift  :  ! R the instantaneous covariance matrix

T :  ! R£ and the jump-arrival intensity  :  ! R+ must all have an

a¢ne dependency on  . The jump-size distribution is determined by its Laplace

transform.

The convenience of adopting a¢ne processes in modelling the mortality inten-

sity comes from the fact that, for any  2 C for given  ¸  and an a¢ne function

 de…ned by  () = 0 () + 1 () ¢  under certain technical conditions we

have

X (   ) $ E
h
¡

 
 ()¢

¯̄
¯F

i
= ()+()¢  (38)

where  (¢) 
=  (¢;  )   (¢) 

=  (¢;  ) satisfy generalized Ricatti ordinary

di¤erential equations, that can be solved at least numerically and, in some cases,

as we will see below, analytically.

4.2 Mortality intensity as a stochastic process

To be useful for pricing purposes, the approach described above must specify an

appropriate model for mortality dynamics. In Bravo (2007) the author tested a

number of alternative speci…cations, considering mean-reverting and non-mean

reverting stochastic processes, including or not jump components. Empirical re-

sults showed that one of best solutions is given by the classic Feller equation with

jumps, an approach that we replicate in this paper. Formally, we assume that the

mortality intensity +() solves the following stochastic di¤erential equation

+() = +() + 
q
+() () + () (39)

+(0) = ¹

with

() =
X

=1

 (40)

where ¹  0   0,  ¸ 0 and  () is a standard Brownian motion.

We assume that () is a compound Poisson process, independent of  , with

constant jump-arrival intensity  ¸ 0, where f :  = 1    1g are i.i.d. vari-

ables. Following the results by Kou (2002), among others, we consider jump

sizes that are random variables double asymmetric exponentially distributed with
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density

 () = 1

µ
1

1

¶

¡ 

1 If¸0g + 2

µ
1

2

¶



2 If0g (41)

where 1 2 ¸ 0 1 + 2 = 1 represent, respectively, the probabilities of a

positive (with average size 1  0) and negative (with average size 2  0) jump.

By setting 1 = 0 we are interested only on the importance of longevity risk (see,

e.g., Bi¢s, 2005). By setting  = 0 the model becomes deterministic. When

1 = 2 and 1 = 2 = 1
2 we get the so-called “…rst Laplace law”. By adopting

equation (41) we consider the signi…cance of both positive mortality shocks (e.g.,

new medical breakthroughs) and negative mortality shifts (e.g., bird ‡u).

In the spirit of (38), let us now assume that the survival probability ¡+()

is represented by an exponentially a¢ne function. By applying the framework

described above, we have that

¡+() ´ A()+B( )¢+() (42)

where  =  ¡ 

It can be shown that the solution to this problem admits the following Feynman-

Kac representation


¡
 +()

¢½
¡ _A() ¡ _B()() + +()B() +

2

2
+()B2()

+

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
¡ +()

¾
= 0 (43)

where 
¡
 +()

¢
=¡ +().

Dividing both sides of this equation by 
¡
 +()

¢
we get

·
¡ _B() + B() +

2

2
B2( ) ¡ 1

¸
+() (44)

+

·
¡ _A() + 

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶¸
= 0

where () and () are solutions to the following system of ODEs’

_B() = B() +
1

2
2B2() ¡ 1 (45)

_A() = 

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
(46)

with boundary conditions

B(0) = 0 A(0) = 0 (47)
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where _B() = 
 B() _A() = 

A().

By solving the system (45)-(46)-(47), we get the following closed-form solutions

for A() and B()

A() = 1

½
0

(0 ¡ 1)
+

1 (0 + 1) [ln (0 + 1) ¡ ln (0 ¡ 1 + (1 + 1)
 )]

 (0 ¡ 1) (1 + 1)

¾

+2

½
0

(0 + 2)
+

2 (0 + 1)

 (1 ¡ 2) (0 + 2)
[¡ ln (0 + 1) (48)

+ ln (0 + 2 + (1 ¡ 2)
 )]g ¡ 

B() =
1 ¡ 

0 + 1
(49)

with  =
p
2 + 22 0 =

(+)
2 and 1 =

(¡)
2 , de…ned for

¡ 1

2
 B() 

1

1
 (50)

We observe that the model stipulates an increasing (deterministic) trend for

the mortality intensity, around which random ‡uctuations occur due to the sto-

chastic component and due to the jump component. Additionally, the model

o¤ers a realistic process for the stochastic mortality rate since it ensures that

the variable cannot take negative values. The model assumes that both negative

and positive jumps can be registered in mortality, a feature that contrasts with

similar models that are interested in sudden improvements in mortality (e.g., due

to medical advances) only. We think this gives a more appropriate description of

mortality, in which unexpected increases in mortality can occur (e.g., caused by

natural catastrophes or epidemics). The model o¤ers a nice analytical solution,

easy to use in pricing and reserving applications within the life insurance industry.

4.3 Calibration to the Portuguese projected lifetables

We have calibrated model (39) to the Portuguese projected lifetables derived

in Section 3. In …tting the model, we have adopted the ordinary least squares

method, i.e., we minimize the quadratic deviations between the model survival

probabilities, ¡model
65 () and the prospective lifetable ones, ¡TP

65 () for an

individual aged 65. Formally, parameter estimates £ solve the following opti-

mization problem

£̂ = arg min
£

8
<
:Q2 =

+(max¡65)+1X

=+1

³
¡

model
65 () ¡¡ 

TP
65 ()

´2
9
=
; (51)
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where max = 120 and  2 f1970 1980 1990 2004g
Table 4 reports the optimal values of the parameters, the calibration error and

the initial value of +() 65() chosen to be equal to ¡ ln (65())  for both

male and female populations. Figure 13 report, for the generations aged 65 in

 2 [1970 2004]  the survival function of the stochastic process analysed and of

the prospective lifetable one.

Male
 = 1970  = 1980  = 1990  = 2004

65() 0.02765901 0.02774125 0.02558451 0.01689187
 0.09516212 0.09033169 0.08739382 0.09949474
 0.00001013 0.00001131 0.00000981 0.00000978
 0.0117887 0.03936915 0.06544481 0.05226689
1 0.02654017 0.02876439 0.02726195 0.02757463
2 0.001128449 0.0001023 0.0001102 0.00009724921
Q2 0.000483312 0.001135141 0.00423265 0.007431117

Female
 = 1970  = 1980  = 1990  = 2004

65() 0.01472793 0.01375416 0.01163745 0.007780187
 0.1119171 0.1096041 0.1101916 0.1199389
 0.00001044 0.00001033 0.00001082 0.00001049
 0.01180289 0.03190069 0.05536174 0.05693019
1 0.0284391 0.02890383 0.02727089 0.02644525
2 0.0001189 0.0001098 0.0001072 0.0001066
Q2 0.0003536312 0.0007131984 0.003482145 0.006155311

Table 4: Parameter estimates

The calibration error is quite small and the parameter estimates show that the

value of  is very low, particularly when compared with that of both positive and

negative average size jumps. This is to some extent explained by the fact that the

model is …tted to data that is partially smoothed by the closing procedure. We

can also observe that the …t is very good, even when we consider the importance

of the rectangularization phenomena, highly signi…cant in the 2004 generation.

The results also suggest that jumps seem to be an appropriate way to describe

the random variations observed in mortality.
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Figure 13: Survival probability ¡65() as a function of age + ¡ for  = 1970

and  = 2004 (the left panel corresponds to the male population)

5 Participating life annuity with longevity risk sharing mechanism

5.1 Structure of the contract

At lest for developed markets, GSA doesn’t seems to be a practical approach in

trying to solve the problems posed to insurance companies by risk-averse individ-

uals (who value annuities highly), since one of the main motivations to acquire

an annuity is not ful…lled, because an annuitant can outlive his resources or, in

is older ages, to be receiving a very small amount, when compared with the face

values of the initial annuities.

At the same time, companies are still very reluctant to keep doing business as

usual in what concerns annuities, the main reason being the industry’s perception

that systematic risk, in the form of breakthrough life-prolonging technical innova-

tion, may bankrupt an insurance company with a large life-annuity portfolio. In

order to surpass this problem, companies usually use “very high” loadings, espe-

cially for small portfolios, where deviations in a few lives from the expected values
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have a large impact in the …nal result of the business. All this factors produce a

low voluntary demand for annuities, despite the fact that people, mainly at old

age are risk averse and would be willing to pay the “true” price and share part of

a “comprehensible” risk.

From the discussion in Section 2, the authors will now try to show that a

partition of the risk is possible, with the advantage of having a - what we believe

- marketable life-insurance product. Of course, we will use as the classical life

annuity to compare results. In brief, a classical annuity does not provide the

possibility for the provider to adjust bene…ts in any fashion since those will …xed

at the inception of the contract. Hence, the possible loss or pro…t will is dependent

on actual mortality experience within the portfolio under investigation.

At this point we introduce a very simple model, that, we believe can be a

starting point for the insurance and reinsurance companies to stat taking a dif-

ferent approach to the annuities business. We consider that the risk bearers are

in the presence of the adverse form of systematic risk, whenever the number of

annuitants is above a de…ned threshold. In other words, assume that the limits of

the con…dence interval correspond to the value above which systematic deviations

from projected survival rates will be observed, i.e., longevity risk is observed.

Whenever this happens, that is, the observed number of annuitants is larger

than the de…ned boundary, we apply the same principle proposed in the GSA,

but with a di¤erence. In our model, we propose to reduce the annuity bene…t

payment, proportionally between the annuitants, but assume that bene…ts will be

reduced only by an amount proportional to systematic risk, i.e., by an amount

proportional to the di¤erence between the observed number of annuitants and

that o the pre-determined threshold.

When there is no violation of the threshold trigger, the future value of annuity

bene…ts will remain constant, that is, we assume the reduction is not permanent,

happening only when the number of observed annuitants systematically exceeded

the expected one.

Using a simulation procedure, we show that even when we consider that the

thresholds can be exceeded with a law that has a heavier tail than the (natural) bi-

nomial distribution, the price for the incorporation of this safeguard is considered

acceptable, the underlying risk can be easily be explained and understood by the

annuitants and, at the same time, by bringing together insurance and reinsurance

companies we believe that the business is feasible.

For instance, let us suppose that the company started an annuity contract,

with a single cohort of annuitants, all age . At the inception of the contract,
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the company will state what are the thresholds to be observed during the lifetime

of the this contract, that is, for each instant (presumably the end of the year)

 = 1  . Let us now consider that, the the threshold is surpassed at time

 = , meaning that the number of annuitants alive ±+ is greater than pre-

determined threshold for that age, ()+

In this case, the underlying fund would only pay up to the limit de…ned by

the threshold, so that annuity payments are reduced proportionally between all

the survivors, meaning that everybody would su¤er a reduction of the annuities

payment. In this case the bene…t for year  will be

+ = 0

Ã
1 ¡ ±+ ¡ 

()
+

±+

!
= 0

Ã

()
+

±+

!
 (52)

In what follows, we develop only formulae for risk premiums, so that, all the

usual loads should be applied (contingency, expenses, pro…t,...). For simplicity of

exposition, we consider a single cohort that, namely a cohort aged  = 65 at the

inception of the contract. In this case the initial fund (risk premium) should be

obtained by the following expression:

0 = 0Ä ¡ E

Ã
0

+1X

=1


³
(+ ) ¡ 

()
+

´+
!

(53)

where (+ ) is the number of annuitants alive, and (¡ )+ is a function that

is equal to (¡ ), if  ¸ , and is equal to 0 if   .

We will simulate the evolution of this fund in the case where the distribu-

tion of ( + ) is negative binomial, allowing thus for greater variance when

compared to the traditional Binomial model, so producing a higher value for

E
µP+1

=1

³
( + ) ¡ 

()
+

´+¶
in the above expression.

5.2 Simulations

Since we are trying to show that the model is robust and adequate to analyze

situations that, in time, start to deviate from the expected value, we start to

notice that, our risk premium (7) is determined by the di¤erence of 2 factors.

The …rst is the risk premium as determined by the classical formulae, and the

second factor, will be evaluated using a distribution with a heavier tail than what

is used in the classical model and that was used to valuate the …rst term.

In this way, it is expected that a company that uses the formula (53), to

determine the premium applied to the contract de…ned above will end up with a

50



loss, since the possibility of the heavy tail, in this case the negative binomial, was

not incorporated in the determination of the …rst factor. We use this approach

since, in this way, we can valuate the impact of a deviation caused by the increase

of the longevity, that, in a systematic way, increases the cost of the contract and

that was not predictable at the inception of the contract.

In this simulation we use the prospective lifetables derived in Section 3. Al-

though this table considers already a relative high life expectancy in that ii

projects future mortality rates and “allows” people to live up to 120 years, we

will see that it’s not enough to support the costs associated with deviations of

observed survivors from their expected value, originated by a distribution with a

heavier tail than the one used to valuate the annuity.

We will model the situation of a single cohort aged  = 65 in 2004 and size 65.

We consider an initial bene…t 0 = 1. To evaluate Ä we will use a determinist in-

terest rate of 35% per annum. As explained before, in order to incorporate larger

deviations from the expected values and from the thresholds to be de…ned, we will

consider that ( + ) in formula (53) does not follows a binomial distribution

with parameters 65, the cohort size at the contract inception and  Instead,

we consider a negative binomial with the same set of parameters, allowing in this

way for larger deviations from the expected value and from the thresholds de…ned.

We will de…ne the thresholds equal to the 95%¡quantiles for the binomial with

parameters 65 and  Tables 5 and 6 exhibit the simulation results considering

cohorts of di¤erent size.

Initial age cohort size 1 2 

65 1000 12155 76 451 93 (3 72%) 11703 83

Simulations Result Mean Bene…t Load

100 ¡1534 48 0 9973538 3 71%
200 ¡1528 85 0 9972818 3 70%

Table 5: Simulated premiums (cohort size 1.000)

In each table, 1 and 2 (the value in parenthesis corresponds

to 2 in percentage of 1) denote, respectively, the …rst and

second terms in expression (53). The column "" refers to the mean result

of the contracts in the simulations conducted, "Mean Bene…t" represents the mean

bene…t paid, and "" denotes the % of the premium necessary to have a null

result for the contract.
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Initial age cohort size 1 2 

65 10000 121557 6 4776 47 (3 93%) 116781 1

Simulations Result Mean Bene…t Load

100 ¡17989 98 0 9983938 3 98%
200 ¡17739 60 0 99900191 3 92%

Table 6: Simulated premiums (cohort size 10.000)

We can understand from the simulations that, by establishing a threshold that

is high enough, as the number of simulations increase, 2 converges to

the value that would be necessary to add to the premium in order to obtain a

risk premium according to the principle of equivalence. In other words, we show

in exchange for a relatively small extra premium it is possible to have a contract

that protects both annuitants and the insurance companies.

Annuitants will gain since in this way companies will be more wiling to accept

this type of risk, and this can be done by accepting an expected small penalty

in the presence of the adverse form of systematic risk. The model seems to be

robust, since, even in the case of a small cohort (1000 annuitants) and a small

number of simulations (100), the value of Load converges to premium2 although

a lot of work would still be necessary to fully con…rm the simulations conducted.

6 Conclusion

Longevity risk, i.e., the risk that members of some reference population might live

longer, on average, than anticipated, has recently emerged as one of the largest

sources of risk faced by individuals, life insurance companies, pension funds and

annuity providers. In order to measure the signi…cance of longevity dynamics in

Portugal, we derive in this paper the …rst prospective lifetables for the Portuguese

general population. Contrary to classic static lifetables, the use of projected

lifetables allows us to estimate the “true” (diagonal) expected residual lifetime

of an individual. Comparing the results with that derived from classical static

lifetables, we gave an indication of the longevity risk currently faced by insurance

companies.

Using an innovative approach to mortality modelling, we argue that a better

assessment of longevity risk would be one that consists of both a mean estimate

and a measure of uncertainty. In this sense, we use a¢ne-jump stochastic di¤eren-

tial equations in order to derive closed-form solutions for the survival probability.
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The development of generally agreed market models for longevity risk measure-

ment is seen as one of the key conditions for the development of longevity-linked

products and markets and for the hedging of longevity risk, a crucial element

when developing annuity markets.

In this paper, we consider traditional pooled Group Self Annuitization life

annuities and develop a new participating life annuity product in which the risk

associated with systematic deviations from mortality rates derived using prospec-

tive life tables for the Portuguese population is shared between policyholders and

life insurance companies. Contrary to traditional GSA’s, in which surviving pol-

icyholders bear both systematic and unsystematic longevity risk, we propose a

contract in which, in exchange for a relatively small premium, annuitants will

bear only the part of longevity that exceeds pre-determined thresholds. Using a

simulation procedure, we show that in exchange for an extra premium it is possible

to have a contract that protects both annuitants and the insurance companies.

Future research will analyse the robustness of the simulation results derived

in this paper and seek for alternative contract speci…cations.
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