01010

01010

Y information

Article

MultiLTR: Text Ranking with a Multi-Stage
Learning-to-Rank Approach

Hua Yang %*

check for
updates

Academic Editor: Shmuel Tomi Klein

Received: 13 February 2025
Revised: 4 April 2025
Accepted: 11 April 2025
Published: 13 April 2025

Citation: Yang, H.; Gongalves, T.
MultiLTR: Text Ranking with a
Multi-Stage Learning-to-Rank
Approach. Information 2025, 16, 308.
https://doi.org/10.3390/
info16040308

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

and Teresa Gongalves

3

School of Artificial Intelligence, Zhongyuan University of Technology, Zhengzhou 450007, China
VISTA Lab, Algoritmi Center, University of Evora, 7000-671 Evora, Portugal; tcg@uevora.pt
Department of Computer Science, University of Evora, 7000-671 Evora, Portugal
Correspondence: huayang@zut.edu.cn

@ N =

Abstract: The division of retrieval into multiple stages has evolved to balance efficiency
and effectiveness among various ranking models. Faster but less accurate models are
used to retrieve results from the entire corpus. Slower yet more precise models refine
the ranking within the top candidate list. This study proposes a multi-stage learning-to-
rank (MultiLTR) method. MultiLTR applies learning-to-rank techniques across multiple
stages. It incorporates text from different fields such as titles, body content, and abstracts to
produce a more comprehensive and accurate ranking. MultiLTR iteratively refines ranking
accuracy through sequential processing phases. It dynamically selects top-performing
rankers from a diverse candidate pool at each stage. Experiments were carried out on
benchmark datasets, MQ2007 and MQ2008, using three categories of learning-to-rank
algorithms. The results demonstrate that MultiLTR outperforms state-of-the-art ranking
approaches, particularly in field-based ranking tasks. This study improves ranking accuracy
and offers new insights into enhancing multi-stage ranking strategies.

Keywords: learning-to-rank; multi-stage ranking; field-based; text re-ranking

1. Introduction

The effectiveness of learning-to-rank (LTR) techniques within a multi-stage retrieval
framework remains underexplored. This paper introduces a multi-stage learning-to-rank
(MultiLTR) approach. MultiLTR integrates LTR techniques into a multi-stage retrieval
process. This approach leverages field-based information and addresses ranking challenges
in text re-ranking tasks. While existing methods demonstrate the value of field-based
feature aggregation [1], their static weighted-sum approach to combining field signals
exhibits some limitations, such as rigid interaction modeling that cannot adapt to query-
dependent feature importance; error propagation from separate field-level optimization to
final ranking; and context blindness in handling multi-stage retrieval dependencies.

The methodology presented in this article builds on previous research introduced in [1].
In that work, we proposed the field learning-to-rank (fLTR) framework and trained rankers
using field-based features; results from various text fields were aggregated. In the final
phase of the fLTR method, the ranking problem was reformulated as an aggregation task,
and the aggregation techniques significantly impacted the overall training outcomes. In
contrast, this article defines the task as an ordinal LTR problem and incorporates multistage
retrieval principles. We refer to this approach as the MultiLTR method.

In summary, this paper makes the following contributions:

Information 2025, 16, 308

https:/ /doi.org/10.3390/info16040308

https://doi.org/10.3390/info16040308
https://doi.org/10.3390/info16040308
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0001-6720-4831
https://orcid.org/0000-0002-1323-0249
https://doi.org/10.3390/info16040308
https://www.mdpi.com/article/10.3390/info16040308?type=check_update&version=2

Information 2025, 16, 308

2 of 22

* We propose a multi-stage ranking approach. The initial stage constructs a set of
retrieval models and utilizes features derived from a single text field. The subsequent
re-ranking stages build local and global rankers using learning-to-rank techniques.

¢ We introduce a mid-evaluation strategy to select the best-performing model. This
strategy evaluates a set of candidate models before generating the final ranking list.
The model achieving the highest performance acts as the final ranking model.

* We conduct empirical experiments on two publicly available benchmark datasets and
use three different LTR algorithms. We evaluate the results using widely adopted
assessment metrics.

The remainder of this paper is organized as follows: Section 2 reviews related work,
Section 3 describes the proposed approach, Section 4 presents the experiments and results,
Section 5 discusses the key findings. Finally, Section 6 concludes this paper and outlines
potential directions for future research.

2. Literature Review

This section reviews the multi-stage ranking approach, focusing on re-ranking tech-
niques. Additionally, it surveys neural ranking models and provides an overview of the
LTR techniques.

2.1. Multi-Stage Ranking Architectures

A multi-stage ranking architecture typically consists of an initial ranking phase and
one or more re-ranking stages [2-5]. Traditionally, the initial ranking uses classical term-
based retrieval models. The retrieved results are subsequently passed to the re-ranking
stage [6,7].

Recent studies have explored various approaches to multi-stage ranking tasks. In [8],
a hybrid re-ranking framework was introduced. It uses BM25 as the initial ranker and a
cross-attention neural model as the re-ranker. They are evaluated on two datasets, namely,
the MS MARCO passage retrieval dataset and the BEIR corpus for zero-shot retrieval. The
results demonstrate its effectiveness compared to baseline models and other approaches.

Wang et al. [9] proposed a multi-stage information search architecture to generate
semantic embeddings. It employs a post-fusion strategy to project items retrieved from
different stages into a common space. It utilizes multi-grained learning objectives to
preserve multi-level similarity. The authors conducted experiments on a billion-scale
corpus from the JD E-commerce website. They compared the results with those from
DSSM [10], DPSR [11], and RSR [12], demonstrating its effectiveness.

Hai et al. [13] developed a lightweight learning technique to train a first-stage ranker.
The paper used T5Mono for the second-stage ranking. They trained the two-stage model
on the CANARD dataset and evaluated the results on the TREC CAsT 2020-2021 datasets.
This approach is effective in conversational search tasks. In [14], Yang et al. proposed
a mixed-initiative query reformulation module within a two-stage retrieval pipeline. BM25
serves as the first-stage ranker. MonoT5 and DuoT5 are used as re-rankers. Experiments
were carried out on the TREC CAsT 20212022 datasets. The results showed that this
method achieved results comparable to two popular reformulators, namely, CANARD-T5
and the historical query reformulator.

Finally, the LCE (localized contrastive estimation) method proposed by Gao et al. [15]
re-ranks documents in a deep two-stage model. It aims to enhance initial rankings and
experiments on the MS MARCO dataset. The results demonstrate that LCE outperforms
the Vanilla method. The method achieves even higher scores when combined with HDCT
as the initial retriever. The findings suggest that LCE has strong potential for integrating
learning techniques with existing language models for re-ranking tasks.

Information 2025, 16, 308

30f22

2.2. Neural Ranking Models

In recent years, neural ranking models have been increasingly used for document
re-ranking [6,16-18]. In text re-ranking tasks, existing research demonstrates that pre-
trained neural network models can effectively learn text representations and text—pair
interactions for various applications. The scenario includes document ranking and re-
ranking, document summarization, query suggestion, and query parsing [7,19-21].

Neural ranking models can be categorized in two ways. On the one hand, they can
be classified based on whether they utilize transformer-based BERT models. And this
classification results in two groups, namely, pre-BERT- and BERT-based neural ranking
models [21]. BERT is one of the most significant transformer-based pre-trained models [22].
In text re-ranking, BERT and its variants have been widely adopted to estimate the relevance
between queries and documents [7,21]. Instead of relying on a single input representation,
dynamic memory networks [23] have been used to model sentence-level representations
and aggregate BERT output. They carry out the experiments on three passage-ranking
datasets, namely, ANTIQUE, InsuranceQA, and TREC-DL 2019. The results demonstrate
that incorporating sentence-level representations improves re-ranking performance over
fine-tuned baseline BERT models. Additionally, researchers found that training only the
DMN layer could achieve comparable performance to the full model while significantly
enhancing training efficiency [23]. Two BERT-based ranking variants, monoBERT, and
duoBERT, are proposed to address ranking problems [6]. monoBERT employs a point-wise
classification approach, while duoBERT follows a pairwise classification strategy. These
models are incorporated into a multi-stage ranking framework and evaluated on TREC
CAR and MS MARCO datasets. This method achieves comparable results when compared
to the state-of-the-art techniques.

On the other hand, neural ranking models can also be classified based on neural
network techniques’ applications: during the representation or interaction phase. This
results in three categories, namely, representation-based models, interaction-based models,
and hybrid models [7,21]. Representation-based models independently learn dense vector
representations for queries and documents. These representations are then compared using
similarity measures such as cosine similarity or inner products to determine relevance [7,21].
In contrast, interaction-based models compare the representations of individual query terms
with document terms. The interaction-based models construct a similarity matrix that
captures word interactions. This matrix further processes to derive a relevance score [7,21].
Hybrid models incorporate elements from both representation-based and interaction-
based approaches. A well-known example is Duet [24]. It integrates a representation-
learning component with an interaction-based component responsible for detecting exact
term matches.

Furthermore, Fan et al. [7] classified neural ranking models into two broader genera-
tions. The first generation, emerging around 2010, focused on word embedding techniques
for learning word representations. The second generation leveraged transformer-based
methods to learn text representations and interactions. Consequently, research that uses
classical word embedding methods—such as Word2Vec [25] and GloVe [26]—falls into the
pre-BERT category [7].

2.3. Learning-to-Rank Techniques

Semantic retrieval models and neural ranking models demonstrate their effectiveness
across various ranking tasks [27]. A key distinction between these models and LTR methods
is that they typically do not rely on additional manually crafted features to estimate
document relevance to a query [28]. However, their relative performance compared to
feature-based LTR methods remains an open question [29]. Additionally, feature-based

Information 2025, 16, 308

4 0f22

LTR methods continue to attract research interest, particularly in areas such as efficiency,
diversification, and permutation-invariant models [29]. Notably, recent efforts research on
bridging the performance gap between neural and ensemble-based models [30].

Learning-to-rank techniques and their corresponding models play a crucial role in
re-ranking within multi-stage ranking systems. These techniques are typically classified
into three categories, namely, pointwise, pairwise, and listwise approaches. Classical LTR
models include the following: MART [31], RankNet [32], RankBoost [32], AdaRank [33],
Coordinate ascent [34], LambdaMART [35], ListNet [36], and random forest [37]. In recent
years, several new LTR models have emerged, including the following: DirectRanker [38],
PairRank [39], DeepPLTR [40], DLCM [41], DeepQRank [42], SetRank [43], PiRank [44],
PoolRank [45], and ListMAP [46].

A study by Chen et al. [47] explored the use of a neural-based multi-layer perceptron
model in combination with the BM25 retrieval model for document ranking. Their experi-
ments on LambdaMART demonstrated that supervised learning-based re-rankers could
enhance ranking performance. Han et al. [48] introduced a machine learning algorithm
for document re-ranking. A learning-to-rank model was applied after encoding queries
and documents using BERT. Their approach led to a 4.3% improvement over their previ-
ous best-performing re-ranking method. Additionally, Awan et al. [49] proposed a deep
learning approach to address named entity normalization as a pairwise learning-to-rank
problem. Their method uses BM25 to generate candidate entities and then applies BERT
representations for re-ranking. Experimental results across various species entity types
have demonstrated the superiority of their method over existing state-of-the-art techniques.
One study highlighted the limitations of the traditional probability ranking principle (PRP)
in multi-stage information retrieval systems. This study proposes a generalized probability
ranking principle (GPRP). It integrates both stage-specific selection bias and user interests.
It implements GPRP through a full-stage LTR framework [4].

3. Methodology

This section introduces the proposed MultiLTR approach. It presents the overall
architecture and explains the MultiLTR framework in detail.

3.1. Architecture of the Proposed MultiLTR Approach

Given a query g and a set of documents ¢4, tp, ..., t, from a document collection T,
the objective of a ranking task is to order these documents based on their relevance to the
query. Documents with higher relevance scores appear at the top of the ranking list [8].
In a multi-stage ranking system, the initial retrieval stage identifies a set of candidate
documents, subsequent re-ranking phases refine their order, and the final stage returns
the ranked list to the user. Our primary goal is to enhance ranking performance through
effective re-ranking techniques.

The initial ranking layer employs classical text retrieval models to rank documents.
For example, if a user searches for “effective treatments for diabetes” in a medical database,
the initial retrieval might return all documents containing the keywords “diabetes” and
“treatments”. The re-ranking phase would then apply a model to refine the ranking. For
example, a TF-IDF-based algorithm can be used to prioritize documents based on keyword
frequency. However, this approach does not consider the context of the information. This
approach potentially ranks documents that mention “diabetes” and “treatments”. However,
it misses detailed or reliable information about effective treatments.

In contrast, our approach improves this by multiple re-ranking layers. The initial
layer generates preliminary results using BM25. And the local re-ranking layer applies
supervised LTR techniques. Each re-ranker focuses on a specific field, such as the title

Information 2025, 16, 308

50f22

or abstract. The global re-ranking layer integrates information from different fields. It
mitigates correlation issues by delaying feature combinations. Additionally, the mid-
evaluation layer assesses the ranker performance using standard evaluation metrics. We
select the best-performing model to construct the final re-ranked list. This ensures that the
most relevant and reliable documents are ranked at the top. This can provide users with
high-quality, contextually relevant information about effective treatments for diabetes.

Figure 1 illustrates the hierarchical structure of the MultiLTR and the flow of informa-
tion from input features to the final re-ranked output. The system begins with an initial
ranking stage. A series of re-ranking layers then refine and filter the results from the initial
retrieval. At each stage, we process and refine a ranked list of candidates from the previous
phase before passing to the next stage. Finally, we select the best-performing model for the
final process and return the ultimate ranking list to the user.

Normalization

\standardize the results
}nﬂgmatmg from various |

Global re-ranking |

e Al Y {employs supervised b . : on | icombine the contributions ;
: Fealure clustering | Y ILTR techniques to re-rank B 2 \from different fields :

the results i ichoose the optimallecal | 1
it < i ‘ranker.

Final re-ranking & Qutput |

\an intermediate
ievaluation

re-rank the resufisand

Input
Input 2

Field 2

; Field d e
Input s

ol[@][@][S][©] rankers

the step name

. features

—— the flow between stages

the ranking step name

Figure 1. MultiLTR architecture overview. Key stages: Input — Feature clustering — Initial ranking
— Local re-ranking (noise filtering) — Normalization — Dynamic model selection — Global re-
ranking — Mid-evaluation — Final re-ranking — Output.

To clarify the interactions between different ranking layers, we present the inputs
and outputs of each layer in Figure 2. Refining ranking performance is crucial in each
stage, ensuring an efficient and effective retrieval process. We define the key nota-
tions used in Table 1. Algorithm 1 provides the detailed pseudocode for the proposed

MultiLTR approach.

Information 2025, 16, 308 6 of 22
Algorithm 1: Pseudocode for the MultiLTR Approach.
Input: {f1, f2,..., fs, where f = E(q,t)}
fori=1,2,...,ddo
/* Feature_clustering: Cluster features based on relevance to
specific fields x/

e

Extract query-dependent or independent features from the given data
collection T;

Select features from the field i;

Filter features according to the set rules and maintain an equal and consistent
number of features to k across all fields;

/* Rank documents employing conventional text retrieval models x*/

rgd) = Initial ranking using features from field d { fl(d), fZ(d), e, k(d) };

/* Local re-ranking: Employ supervised LTR techniques to re-rank

the results from the initial ranking layer x/

select a set of LTR algorithms from previous research work;

for each LTR algorithm, build an LTR ranker using the features from field d
A A 1
(d)

15’ = Local re-ranking;
/* Standardize data by rescaling values to a consistent scale or
distribution */

(d)).

7

(@)

5y’ = Normalization (r
/* Choose the optimal local rankers x/
for j = pointwise, pairwise, listwised do

(d—j)

74 = Local re-ranker selection;

end

nd
for d, j = pointwise, pairwise, listwised do

forn=1,2,...,8do
for m = NDCG@5, 10, 15,20, 30 do

/* Combine the contributions from different fields */
ré] —nem) _ Global re-ranking;

/* Select the best-performing model to build the final
re-ranking list */

Mid-evaluation;

Evaluate the LTR ranker for each field d;

end

end

end

/* Choose the top-performing model and re-rank the results x/

for d, j = pointwise, pairwise, listwised do

7

j—n—Dbest (j—n—Dbest)
ré = Best of (75]) ’
H = ranking results using model r{nibm ;

end

Output: final ranking results H

Information 2025, 16, 308 7 of 22

Legend 5
. 1-11 12 118 1-11) (112
1,(1), gt ™ r:(s /'.(;)

f features

((1

1 Ty 3

(2) (2-11) (2-12) (2-18) (2-11) (2-12)
1 Ty ! 3 5 T3

(2
r rankers 1o 2, P21, ,

.......

— flow between stages

" layer name L o fe R SN R
fio fo fs O g 0 (-11) (i-12) (i-18) L) 1) (i8)
|| itemsproducedineachlayer L2 1) STy ry 3 .73 e’y
+ explanation for each layer Input layer o
""" (d) - p(d) (d) a-1 d-2 d-Is i-11) (d-2 d-18
! f2 1 I.(_,I n, r(_, ".A...r-.(_, 18) r&(, r;(‘ D r’;(,)
Feature clustering layer | Initial ranking layer: Local re-ranking layer Normalization layer
ccategorize input features rank the documents f_rrné)ltoyshsuperw‘sed 2 islan:jtard\vzg th§
into i e e u ech Itr:ques 0 re-ran i;esu so_ngln? |ng
distinctgroups retrieval models. e resul 1 ffrom various fields
(1—bestpointwise) (1—bestpairwise) (1—bestlistwise)
(1-g1-@5) (1-g2-@5) (1-g8-@3) 4 i T4
ry , Ty STy (2-bestpointwise) | (2=bestpairwise) | (2—bestlistwise)
5 5 8 o o
r‘” g1—-@10) 7_(/ g2—@10)]_AI g8—@10)
(l—gl—best) (I—g2—best) (1—g8—best) 5] v TS .
Tg , T s Tg
li=bestpointwise) | (i—bestpairwise) | (i—bestlistwise)
1 ! Ty
Final re-ranking ,_U g1-@30) I_y g2—@30) I_L}I g8—@30)
layer and output 5 > '5 v s
e ,,(1(1—11(stpointwise) r(;l—!u s!pmr*u"m(,)‘I‘(‘:lflnmflmru’m()
and re-rank the results Global re-ranking / Mid-evalutation layer
and reture to the user - -
‘combine the contributions from different Local re-ranker selection layer

fields/an intermediate evaluaton

choose the optimal local rankers

Figure 2. Data flow in the MultiLTR approach. Key stages: Input — Feature Clustering — Initial
Ranking — Local Re-ranking — Normalization — Global Re-ranking — Mid-Evaluation — Final
Re-ranking — Output.

Table 1. Key notations for the MultiLTR approach.

Notation Meaning

T data collection

t a document in D

q a query in D

f original and unclustered features provided or extracted from a data collection T
s the total number of features extracted from a data collection T
d the number of fields where features are extracted from

k the number of features included in a field

fj(i) the feature j from the field i

Tm the ranker of the mth layer

H final result

3.2. Layers in the Proposed MultiLTR Approach

This section provides a detailed explanation of the components illustrated in Figure 2,
including the input layer, feature clustering layer, initial ranking layer, local re-ranking
layer, normalization layer, global re-ranking layer, mid-evaluation layer, final re-ranking
layer, and output layer.

3.2.1. Input Layer

The dataset undergoes pre-processing through feature engineering techniques to
ensure compatibility with the MultiLTR approach. The dataset can also be transformed
using pre-trained language models like BERT to generate embeddings. These refined
features are then used as input for the ranking architecture.

Formally, we extract a feature f and represent it as follows:

f=E(tq) 1

where E represents a feature extractor, g denotes the given queries, and f corresponds to the
associated documents. As a result, the input layer receives an array of features {f, fa,...,fs}.
These features serve as the foundation for subsequent ranking processes.

Information 2025, 16, 308

8 of 22

3.2.2. Feature Clustering Layer

When training ranking models, highly correlated features can negatively impact
performance. Empirical studies [1] show that features originating from different domains
or fields often exhibit significant correlations. Traditionally, ranking models are trained
using a combined set of extracted features without considering their relationships. However,
the model may inadvertently rely on redundant information if highly correlated features
are not handled properly. And this can lead to suboptimal performance [50].

In machine learning, blindly aggregating strongly correlated attributes can degrade
model effectiveness. Incorporating diverse and discriminative features with minimal inter-
correlation can help to improve performance. Previous research demonstrates that using
field-based features outperforms naive feature aggregation [1]. Following this principle,
the proposed MultiLTR approach clusters feature into distinct groups. This ensures that
each ranker is trained using field-specific data. The feature clustering layer organizes input
features into groups based on their respective fields, such as the title, abstract, URL, or body.

As illustrated in Figure 2, the approach assumes we have s features extracted from
d fields. The feature clustering layer classifies these features into d distinct groups. To
maintain balanced contributions from each field, we retain an equal number of features for
every field. Thus, each group consists of k field-specific features. They are represented as

1(i), 2(1‘)’ R (i), and i indicates the field from which the features are extracted.

3.2.3. Initial Ranking Layer

The initial ranking layer is responsible for ranking documents using traditional models.
Its primary function is to generate preliminary ranking results from the dataset, which are
then passed to subsequent stages for further refinement.
(i)

Each initial ranker, denoted as r;”, is trained exclusively using features { fl(i), fz(i), s,

k(i)} extracted from a specific field i. As a result, this process produces a collection of initial

rankers, represented as {r%l), rgz), el rgd) }, each based on field-specific characteristics.

3.2.4. Local Re-Ranking Layer

After the initial ranking layer, the local re-ranking layer applies supervised LTR
techniques to refine the ranking results. We term this layer as the “local” re-ranking layer
because each ranker focuses exclusively on information from a single field in this phase.
This ensures a more field-specific ranking process.

As outlined in [51], LTR techniques rely on training data that consists of the following:
a set of queries {71, 92, ..., gm}; a corresponding collection of documents {x1(1)/ X2(1)s -+
xy(1)}; and their associated relevance judgments {y (1), ¥(2), ---, Y(m)}- These relevance
judgments can be formulated in the following ways: (1) binary or graded relevance, indi-
cating whether a document is relevant to a query or the degree of relevance; (2) pairwise
preference, specifying the relative relevance between two documents for a given query;
and (3) listwise ranking, determining the optimal order of documents for a query. Conse-
quently, LTR algorithms are categorized into three types: pointwise, pairwise, and listwise
approaches. When we input a test query g into the trained LTR re-ranker, the relevant
documents {x1, x2, ..., x,} are re-ranked, producing a refined ranking list h(x) [51].

In the proposed MultiLTR framework, a group of LTR rankers is constructed. The
training dataset for these rankers is derived from the results of the initial ranking layer.
This ensures that only candidates are retrieved for further ranking refinements.

We apply eight local LTR algorithms for each field and generate eight distinct local
re-rankers per field. As illustrated in Figure 2, this process results in a collection of lo-
cal re-rankers {rgfll), rgl;lz), ., réiils)} for each field i. This ensures a structured and
comprehensive ranking refinement process.

Information 2025, 16, 308

9 of 22

3.2.5. Normalization Layer

Each model is trained exclusively on field-specific features in previous layers. The
characteristics of each field heavily influence the re-ranking outcomes. And this often
leads to significant variations in scale. Features with larger value ranges tend to dominate
the results. Standardizing the data through normalization ensures each field contributes
equally to the final ranking.

Normalization mitigates the influence of varying feature magnitudes. Normalization
plays a crucial role in standardizing results before passing to the global re-ranking layer.
Specifically, we apply two normalization methods, namely, min—-max normalization and
Z-score normalization [52].

Min-max normalization. Min—-max normalization typically adjusts numerical data to
fit within a predefined range between 0 and 1. It is computed using the following formula:

X — Xmin
Xnorm - Xmax . Xmm (2)
where X is the original value, Xnorm is the normalized value, and Xy and Xmax are the
minimum and maximum values in the dataset or feature.

Z-score normalization. Z-score normalization is a technique used to scale numer-
ical data and has a mean of 0 and a standard deviation of 1. It is computed using the
following formula:

X—p
o

Z = 3)

where X is the original data value, Z is the standardized value, and y and o represent the
mean and the standard deviation of the dataset or feature, respectively.

Min-max normalization ensures uniform scaling across all features but may struggle
to handle outliers effectively. In contrast, Z-score normalization is well-suited for managing
outliers but does not produce data with a consistent scale. To address these limitations, the
MultiLTR method integrates the two normalization techniques to balance uniform scaling

and robustness to outliers. As illustrated in Figure 2, a set of normalized results {réi_ll),

rgifIZ) (ifIS)}

PR is generated for each field i,

3.2.6. Local Re-Ranker Selection Layer

This layer aims to select the most effective local rankers. We use normalized discounted
cumulative gain (NDCG) [53] to evaluate the normalized outputs. NDCG, a widely recog-
nized ranking metric, was applied with cut-off values set at 5, 10, 15, 20, and 30.

Each field contains eight local LTR algorithms, resulting in eight corresponding local
re-rankers. We chose the top-performing rankers to advance to the global re-ranking layer
and discarded the remaining ones. The selection process ensures coverage across all three
categories of LTR algorithms. For each category, the best-performing LTR algorithm is
identified. And each field ultimately retains three top-performing local re-rankers. As

(i—bestpointwise) _ (i—bestpairwise)

illustrated in Figure 2, this layer selects a set of rankers {r, A P

| —Dbestlistwi . .
rff eotits wlse)} for each field i.

3.2.7. Global Re-Ranking Layer

The preceding layers process the information independently for each field without
considering their combined impact. Combining all features from different fields at the
beginning of model training could introduce correlation issues and affect ranking per-
formance. This layer is a delayed fusion mechanism and integrates contributions from
different fields. By deferring the combination, this approach mitigates such risks and allows
a more effective integration of field-specific insights.

Information 2025, 16, 308

10 of 22

Traditional fusion techniques are often used to merge ranking results from multiple
sources. The MultiLTR approach introduces an additional re-ranking process to enhance
ranking quality further. At this stage, the same LTR techniques applied in the local re-
ranking layer are utilized to construct global rankers. The results from the previous layer
are treated as features within the LTR algorithms. This enables the model to learn and
refine the final ranking.

As illustrated in Figure 2, a set of global re-rankers {rélfgl), rélfgz), s, rélfgs)} is
generated. Each ranker is trained using evaluation metrics at multiple cut-off points (5, 10,

15, 20, and 30).

3.2.8. Mid-Evaluation Layer

In the preceding layer, each model is trained using a specific evaluation metric at
different cut-off values. This layer acts as an intermediate evaluation stage. We assess
the trained rankers using widely accepted ranking metrics. The best-performing model is
identified and then used to construct the final re-ranking list. We employ the normalized
discounted cumulative gain (NDCG) metric with various cut-off values (5, 10, 15, 20,
and 30).

To maintain consistency, we apply the same evaluation metric for both training and
assessment. For instance, if a model is trained using NDCG@5, its evaluation is also
conducted using NDCG@5. We select the model that achieves the highest improvement
over the baseline as the best-performing model, denoted as ry,5;. We then use this model to
re-rank the documents and generate the final ranked list.

3.2.9. Final Re-Ranking Layer and Output

The top-performing models {rélfglfbm), rélfg%b%t), ey rélfgsfbm)} are selected and

utilized for re-ranking the final results. The output layer then delivers the optimized ranked
list to the system users. This ensures that the most relevant documents are presented at
the top.

4. Experiments and Results

This section first presents the datasets used in the experiments. Then, we discuss the
evaluation metrics. Next, we provide a detailed description of the constructed rankers and
conclude the analysis of the results.

4.1. Datasets

The MultiLTR technique implements and evaluates using benchmark datasets from
Microsoft LETOR 4.0 [54]. Specifically, the MQ2007 and MQ2008 datasets are derived from
the TREC 2007-2008 Million Query Track, which utilizes the Gov2 web page collection,
containing approximately 25 million pages. MQ2007 consists of around 1700 queries with
labeled documents, and M(Q2008 includes approximately 800 queries. Relevance scores
range from 0 to 2, where 2 signifies high relevance and 0 indicates low relevance.

Table 2 presents a summary of the key statistics for both datasets.

Table 2. Statistics for the MQ2007 and MQ2008 datasets.

Dataset Selected Features Queries Labeled Query-Document Pairs
MQ2007 40 1700 69,623
MQ2008 40 800 15,211

Each dataset includes a predefined set of 46 standard features [54]. We exclude certain
features to better align with the objectives of our research experiments. We group the

Information 2025, 16, 308

11 of 22

features into six categories based on the field from which they originate: anchor, url, title,
body, whole document, and other place. The other place category is omitted since it lacks
field-specific information. Consequently, features such as number of child pages, number of
inlinks, number of outlinks, and PageRank are removed. To maintain an equal and consistent
number of features across all fields, we also exclude the following features: length of URL
and number of slashes in URL.

The final dataset consists of five fields, each containing eight different types of features.
The experimental features, totaling 40, are summarized in Table 3.

Table 3. Selected and discarded fields and features. o: selected feature, ®: rejected features, —: not
provided in the dataset.

Field
Feature
Body Anchor Title URL Wholedoc Other Place
TF o o o o o ®
IDF o o o o o ®
TF x IDF o o o o o ®
DL o o o o o ®
BM25 o o o o o ®
LMIR.ABS o o o o o ®
LMIR.DIR o o o o o ®
LMIR.JM o o o o o ®
Length of URL - — — ® - -
Number of slash in URL - - - ® - -
Number of child page - - - - ®
Number of inlinks — — - - — ®
Number of outlinks - — — - — ®
PageRank - - — - - ®

The datasets are pre-split into five folds. Each fold consists of three subsets, namely,
training, validation, and test sets. The data distribution typically follows a ratio of 60% for
training, 20% for validation, and 20% for testing. This ensures a balanced and effective
evaluation of the models.

4.2. Evaluation Measures

We evaluate the effectiveness of the proposed method using two widely adopted
assessment metrics, namely, mean average precision (MAP) [55] and NDCG [53]. These
metrics provide a comprehensive measure of ranking quality and relevance.

Mean average precision. In a text retrieval system, the average precision (AP) for
a single query is computed as the mean precision obtained after retrieving each relevant
document from a ranked list of top documents [56]. The mean average precision (MAP) is
derived as the arithmetic mean of the AP values across all query topics. MAP has strong
discriminative power and stability [57].

Formally, MAP is defined as follows:

Q
MAP =)
q=1

Average Precision

Q

where each query, g, is part of Q, the total number of queries [58].

Normalized discounted cumulative gain. Another widely used metric for evaluating
ranking performance is NDCG [57]. It penalizes highly relevant documents that appear
lower in the ranking. Conceptually, NDCG is defined as follows:

_ DCG,
NDCG@n = IDCG,

(5)

Information 2025, 16, 308 12 of 22

where discounted cumulative gain (DCG) represents the accumulated gain from ranking
results, with higher-ranked documents receiving greater weight, and ideal discounted
cumulative gain (IDCG) refers to the document ordering based on their actual relevance
(the most relevant documents appear first). The NDCG value at a specific rank position n
is denoted as NDCG@n.

4.3. Built Rankers

The ranking models are constructed using the RankLib tool (https://sourceforge.
net/p/lemur/wiki/RankLib/, accessed on 12 January 2024). A diverse set of LTR algo-
rithms is employed. They include two pointwise algorithms (MART and random forest),
three pairwise algorithms (RankBoost, RankNet, and LambdaMART), and three listwise
algorithms (ListNet, coordinate ascent, and AdaRank). For ease of reference, we abbreviate
the algorithms as follows: MART (MR), random forest (RF), RankBoost (RB), RankNet
(RN), LambdaMART (LM), ListNet (LN), coordinate ascent (CA), and AdaRank (AR).

The experiments adhered to the LETOR benchmark dataset configuration [54], utilizing
five-fold cross-validation. Hyperparameter tuning was conducted using the validation
dataset. The final performance was evaluated based on average scores from the test dataset
at cut-offs (5, 10, 15, 20, and 30) for the NDCG and MAP metrics.

Following the framework illustrated in Figures 1 and 2, the experimental process
begins with the construction of primary rankers in the initial ranking layer. Each ranker is
trained exclusively on features from a specific field. The local re-ranking layer then applies
LTR algorithms to refine the rankings of the retrieved candidates. Next, the normalization
layer standardizes the ranking scores across different fields to ensure fair comparison
and combination. The intermediate evaluation results, obtained after normalization, are
reported in Tables 4 and 5.

Table 4. Normalization NDCG@k performance on MQ2007 after normalization. Models are assessed
using NDCG@k at cutoffs of 5, 10, 15, 20, and 30.

Alg. Features @5 @10 @15 @20 @30 Alg. Features @5 @10 @15 @20 @30
MR baseline 0.4150 04429 04721 05030 0.5604 RN baseline 03951 04243 04560 04870 0.5457
body 0.3958 0.4243 0.4551 04856 0.5436 body 0.3416 0.3734 0.4053 0.4382 0.5030
anchor 0.3477 0.3764 04109 0.4415 0.5064 anchor 0.3457 0.3777 0.4122 0.4433 0.5094
title 04073 04345 04625 04935 0.5533 title 0.4054 04344 04664 04968 0.5545
url 0.4055 04329 04639 04931 0.5500 url 0.3988 0.4298 0.4630 0.4934 0.5504
wholedoc 0.3977 04286 04576 0.4890 0.5495 wholedoc 0.3618 03977 04321 0.4639 0.5254
RB baseline 0.4046 04333 04665 04968 05527 AR baseline 0.4013 04300 0.4601 0.4909 0.5480
body 03682 0.3991 04299 04608 0.5215 body 0.3439 0.3717 0.4052 04386 0.5044
anchor 0.3454 0.3823 04145 04476 0.5111 anchor 0.3308 0.3640 0.3958 0.4268 0.4958
title 0.4048 04353 04680 0.4980 0.5539 title 03023 0.3353 0.3672 0.4004 0.4657
url 0.4018 04327 04667 0.4963 0.5519 url 0.3079 0.3475 03865 0.4213 0.4893
wholedoc 0.3405 03796 04153 0.4485 0.5122 wholedoc 0.3094 03451 0.3806 0.4157 0.4837
CA baseline 0.4087 04386 04704 04997 05560 LM baseline 0.4197 04478 04781 05084 0.5642
body 0.3656 0.3922 0.4222 04571 0.5194 body 0.3919 04210 04546 04863 0.5440
anchor 0.3444 0.3798 04145 04462 0.5105 anchor 0.3468 0.3783 0.4131 0.4465 0.5095
title 0.4071 04345 04669 0.4957 0.5531 title 0.4062 04364 04655 04951 0.5530
url 0.4059 04371 04688 04985 0.5545 url 0.4046 04352 04667 04954 0.5523
wholedoc 0.3534 0.3895 04258 0.4596 0.5223 wholedoc 0.4030 0.4353 04661 0.4968 0.5537
LN baseline 0.3890 04185 0.4482 04795 0.5390 RF baseline 04129 04389 04694 04995 0.5569
body 0.3412 0.3650 0.3964 0.4304 0.4965 body 0.3941 04212 04511 04818 0.5423
anchor 0.3382 0.3733 0.4036 04349 0.5022 anchor 0.3444 0.3725 04076 04385 0.5048
title 0.3957 04252 0.4542 04849 0.5432 title 0.4065 04342 04613 04901 0.5496
url 03876 04202 04533 0.4854 0.5428 url 0.4036 04327 04629 04921 0.5485

wholedoc 0.3939 04209 04525 04846 0.5453 wholedoc 0.3352 0.3687 0.4026 0.4360 0.5033

https://sourceforge.net/p/lemur/wiki/RankLib/
https://sourceforge.net/p/lemur/wiki/RankLib/

Information 2025, 16, 308

13 of 22

Table 5. Normalization NDCG@k performance on MQ2008 after normalization. Models are assessed
using NDCG@k at cutoffs of 5, 10, 15, 20, and 30.

Alg. Features @5 @10 @15 @20 @30 Alg. Features @5 @10 @15 @20 @30
MR baseline 04586 05036 05179 0.5257 0.5328 RN baseline 04345 04843 05010 05072 0.5157
body 04469 04943 05077 05165 0.5257 body 04055 04575 04771 04858 0.4948
anchor 04299 04812 04989 0.5061 0.5153 anchor 04122 04688 0.4859 04940 0.5036
title 04496 04977 05096 0.5167 0.5258 title 04446 04931 05084 0.5161 0.5254
url 04616 05086 0.5229 0.5308 0.5383 url 04604 05076 05214 0.5299 0.5375
wholedoc 04517 0.5005 0.5155 0.5230 0.5308 wholedoc 04224 04726 0.4910 04988 0.5085
RB baseline 04550 0.5003 05157 0.5230 0.5301 AR baseline 04364 04850 05004 0.5075 0.5161
body 04055 04575 04771 04858 0.4948 body 04085 0.4667 04839 04912 0.5011
anchor 04251 04763 04933 05011 0.5118 anchor 04099 0.4664 04842 04934 0.5032
title 04521 05020 05153 0.5225 0.5307 title 0.3618 04118 0.4291 04356 0.4470
url 04681 05107 05239 0.5322 0.5403 url 0.3550 0.4164 0.4409 04506 0.4636
wholedoc 0.4481 04922 05089 0.5162 0.5255 wholedoc 04343 04813 0.4957 0.5049 0.5140
CA baseline 04553 05016 0.5150 0.5224 0.5304 LM baseline 04619 05050 0.5180 0.5267 0.5338
body 04289 04792 04960 05029 0.5127 body 04457 04944 05108 0.5184 0.5279
anchor 04351 04851 05019 0.5101 0.5196 anchor 0.4267 04779 04963 05044 0.5127
title 04686 0.5142 05284 0.5350 0.5432 title 04587 0.5014 0.5163 0.5240 0.5331
url 04692 05134 05267 05348 0.5435 url 04612 05063 05212 0.5308 0.5386
wholedoc 04509 04970 0.5110 0.5182 0.5277 wholedoc 04532 0.5002 0.5164 0.5248 0.5318
LN baseline 04341 04851 05011 05080 05156 RF baseline 04513 04985 05127 05200 0.5282
body 04080 04585 04778 04869 0.4957 body 04459 04985 05123 0.5201 0.5298
anchor 04128 0.4678 0.4855 04934 0.5030 anchor 04277 04778 04966 05040 0.5137
title 04346 04864 05029 0.5103 0.5189 title 04556 0.5040 05170 0.5248 0.5340
url 04545 0.5038 05182 0.5262 0.5348 url 04630 0.5089 0.5241 0.5329 0.5401
wholedoc 0.4177 0.4728 04898 0.4965 0.5067 wholedoc 04587 0.5054 05212 0.5280 0.5365

The optimal algorithm selection is based on the total number of rankers that outper-
form the baseline. This is referred to as the winning number [55], as shown in Table 6.
We identify the top three performers for each dataset. In Table 6, RF emerges as the top
performer on the MQ2007 dataset with 17 wins, followed by LN with 15. Additionally, RN,
RB, and CA each achieve a count of 10. We observe a similar pattern in MQ2008, where RF
again leads with 17 wins, LN follows with 15, and RN and CA each attain 10.

Table 6. Normalization NDCG@k performance on MQ2008 after normalization. Models are assessed
using NDCG@k at cutoffs of 5, 10, 15, 20, and 30.

MR RF RN RB LM AR CA LN
MQ2007 5 17 10 10 4 0 10 15
MQ2008 5 17 10 7 4 0 10 15

During the selection process, RF performs as the best-performing algorithm, represent-
ing the pointwise category. LN, as the second-highest performer, represents the listwise
category. And RN represents the pairwise category.

In the global re-ranking layer, we only utilize these selected optimal LTR algorithms
(RF, RN, and LN) to integrate results from the local re-ranking layers. For each selected
algorithm, multiple rankers are trained on the training data. We select and retain the model
performing best on the validation data. The training metric is NDCG at cutoff values. We
chose the top-performing ranker as the final ranking model. It is then saved and used to
generate the final ranking results.

4.4. Results

The MultiLTR retrieval effectiveness is evaluated using the NDCG@n and MAP@n
metrics, as shown in Figures 3 and 4.

As outlined in Section 4.3, we select three optimal LTR algorithms. LN represents the
pointwise approach, RN represents the pairwise approach, and RF represents the listwise

Information 2025, 16, 308 14 of 22

approach. These algorithms are used to construct the local re-ranking rankers. In the global
re-ranking layer, all eight LTR algorithms are incorporated. The reported results reflect
performance after the completion of all layers.

~ w mm'm ~ D awm
w5 Pulion Swl Srmw ooRas w ! Govs ~
g385n BESRE NERRY 257&E oRTeL gRepy CCRBa N v 2ue Bl au
278 e 23 i3 ©o © RR hwd o 8hwn PRBrw gobw WM ehstw
— e N T N 3 I 85 Ggdrre Ban
SE-E a3 o
RN_Global RB_Global AR_Global CA_Global LM, MR_Global LN_Global RF_Global - -
o Veem Im mm
., RN_Global RB_Global AR_Global CA_Global LM, MR_Global LN_Global RF_Global
LEEBR Lubb
B uNe
ale £5g8°
NDCG@5 NDCG@10 mNDCG@15 mNDCG@20 mNDCG@30 NDCG@5 NDCG@10 mNDCG@15 mNDCG@20 mNDCG@30
(a) LN_Local on MQ2007 (b) RN_Local on MQ2007
o &
B P
w N w N BN E0Nss w p 2ostw
PN ° e S of pe BRHNY
BREnE rogoo BYRLE WY SOLR gigcn “fEhe " 5
S 9% $£ =oen vo = we » w
o - o L | — m Bed O omn
©3s: 2
RN_Global RB_Global AR_Global CA_Global LM, MR_Global LN_Global RF_Global s - SN ECEY Lo~ ©828
ORonN NGB o BB T
Neg®ae oRRLE cofoe “FUeb LI N
22 ge3
e | -
' RN_Global RB_Global AR_Global CA_Global LM_S al MR_Global LN_Global RF_Global
] LesD
% LabE
s R
BT =
z8"
NDCG@5 NDCG@10 ®mNDCG@15 mNDCG@20 mNDCG@30 NDCG@5 NDCG@10 mNDCG@15 mNDCG@20 mNDCG@30
(c) RF_Local on MQ2007 (d) LN_Local on MQ2008
5 5
£ o N
" " w ENRoo ~ BN~
o o be wobon Mooy BeRww SE¥hL wubun - SREB
N BLomo BLoww NR®Dn LENEN RN®iN Su aR{NE
- aw® LN o88% - RSpn RE LG 83VER 28 RS 5T ER -
Nehop hRoww 358 Sepy ©O MNNe Shla e —— - m
SeSha 2375 [Nt aeRok r
8 g8 88
RN_Global 'RB_Global AR_Global CA_Global LM, MR_Global LN_Global RF_Global
— - — T — A
_— SUABL
RN_Global RB_Global AR_Global CA_Global LM MR_Global LN_Global RF_Global zmmsg N
LGEE o LEBE
LEes AL
LEa®S 28
g8 8
8
NDCG@5 NDCG@10 ®mNDCG@15 m=NDCG@20 mNDCG@30 NDCG@5 NDCG@10 ®mNDCG@15 ®mNDCG@20 mNDCG@30
(e) RN_Local on MQ2008 (f) RF_Local on MQ2008

Figure 3. NDCG performance of MultiLTR vs. baselines. The local stage employs three optimal LTR
algorithms (LN: pointwise, RN: pairwise, RF: listwise). The global stage integrates eight diverse LTR
algorithms. Models are assessed using NDCG@k at cutoffs of 5, 10, 15, 20, and 30.

Analyzing the results in Figure 3, the MultiLTR approach consistently outperforms the
baselines across all NDCG@n evaluations for the MQ2007 dataset, except for cases where
LM_Global is used as the re-ranking algorithm. Among all three selected local re-ranker
algorithms, the top-performing global re-rankers are RF_Global and MR_Global. They are
both pointwise-based methods and consistently yield the best results:

¢ When employing LN_Local as the local re-ranker, the most effective model utilizes
RF_Global as the global re-ranker. This achieves a notable improvement of 8.62%.
Following closely, MR_Global as the global re-ranker yields an improvement of 6.95%;

e For RN_Local as the local re-ranker, the optimal model applies MR_Global as the
global re-ranker. This leads to a significant improvement of 7.39%, with RF_Global
following at 6.58%;

* Inthe case of RF_Local, the best-performing model integrates MR_Global as the global
re-ranker. This produces a substantial improvement of 8.84%, while RF_Global ranks
second with a 6.69% improvement.

Similarly, for the MQ2008 dataset, models using LM_Global as the global re-ranker
fail to surpass the baselines across all three selected local LTR algorithms:

Information 2025, 16, 308

15 of 22

e With LN_Local as the local re-ranker, RF_Global emerges as the most effective global
re-ranker. It delivers a substantial 13.39% improvement in NDCG@5, closely followed
by MR_Global with a 12.11% increase;

¢ For RN_Local, RE_Global remains the optimal choice. It achieves a remarkable 14.69%
improvement, with MR_Global trailing slightly at 13.89%;

* When applying RF_Local, RF_Global again leads with a 12.29% improvement, while
MR_Global secures the second-best performance at 10.40%.

Figure 4 presents the MAP@n evaluation results. It exhibits a trend similar to that
observed with the NDCG@n metric. This reinforces the consistency of the proposed
MultiLTR approach in enhancing retrieval performance.

°
s 5Y o
g RETRR 9B

B R

T3 FASE
RN_Global RB_Global ~AR_Global ~CA_Global lM' MR_Global LN_Global
5
3
H

MAP@5 WMAP@10 WMAP@15 WMAP@20 MMAP@30 MAP@5 ®MAP@10 ®MAP@15 ®MAP@20 WMAP@30

RN_Global ~ RB_Global AR_Global CA_Global

(a) LN_Local on MQ2007 (b) RN_Local on MQ2007

95T
L8'TT

mmmmm

UnvSon Be¥al

L0

RF_Global g g¥2g e =~ . Sghon
- | e
RN_Global RB_Global AR_Global CA_Global LM_- MR_Global LN_Global RF_Global
-] & N .
& Ggazs A
MAP@5 MAP@10 mMAP@15 WMAP@20 mMAP@30 MAP@S MAP@10 = MAP@15 ®WMAP@20 mMAP@30
(c) RF_Local on MQ2007 (d) LN_Local on MQ2008

Feyvw E
°
® 88 romoo

ﬂﬂﬂﬂﬂ

l MR_Global LN_Global ~ RF_Global

RN_Global RB_Global Akm CA_Global LM, MR_Global ~ LN_Global RF_Global K
& & ;
2 @ <
y888

Bo=86h

©
2
MAP@5 WMAP@10 WMAP@15 ®MAP@20 MMAP@30 MAP@5 ®MAP@10 ®MAP@15S ®MAP@20 WMAP@30

(e) RN_Local on MQ2008 (f) RF_Local on MQ2008

Figure 4. MAP Performance of MultiLTR vs. baselines. The local stage employs three optimal LTR
algorithms (LN: pointwise, RN: pairwise, RF: listwise). The global stage integrates eight diverse LTR
algorithms. Models are assessed using MAP@k at cutoffs of 5, 10, 15, 20, and 30.

5. Discussion

To better understand the results, we first conduct a comparative analysis of the MQ2007
dataset using NDCG and MAP metrics. Next, we assess the impact of three key compo-
nents in MultiLTR through extensive ablation experiments. Additionally, we evaluate the
computational efficiency of the proposed method.

5.1. Comparative Analysis

Tables 7 and 8 present a comparative analysis of the MQ2007 dataset, using the NDCG
and MAP metrics, respectively. We highlight and evaluate the top-performing models for
each approach.

To thoroughly assess the effectiveness of our models against existing ones, we include
the performance of these models: the classic BM25 and three neural-based ranking models
(KNRM, HiNT, and DeepTileBars). KNRM [59] is a neural retrieval model that captures
term-level interactions via embedded representations. It utilizes kernel-based pooling to

Information 2025, 16, 308

16 of 22

extract multi-level soft-matching features, and computes a final relevance score to align
documents with queries. HiNT [60] is a hierarchical neural retrieval model and processes
segment-level interaction matrices as input. It leverages a local matching layer and a global
decision layer to determine document relevance. DeepTileBars [61] segments documents
into topic-based sections and applies Convolutional Neural Networks of varying sizes to
analyze these sections.

Table 7. Comparison between MultiLTR and fLTR on MQ2007 with NDCG@k, with cutoffs at 5, 10,
15, 20, and 30.

LTR Alg. Method @5 @10 @15 @20 @30
Neural Model KNRM 0.3790 0.4120 0.4256 0.4309 0.4324
HiNT 0.4630 0.4900 0.5102 0.5253 0.5358
DeepTileBars 0.3980 0.4340 0.4507 0.4605 0.4651
LN BM25 0.3890 0.4185 0.4482 0.4795 0.5390
fLTR 0.3957 0.4193 0.4482 0.4796 0.5413
MultiLTR 0.4225 0.4460 0.4756 0.5063 0.5645
RN BM25 0.3951 0.4243 0.4560 0.4870 0.5457
fLTR 0.4051 0.4298 0.4603 0.4893 0.5504
MultiLTR 0.4243 0.4477 0.4779 0.5072 0.5649
RF BM25 0.4129 0.4389 0.4694 0.4995 0.5569
fLTR 0.4286 0.4489 0.4775 0.5063 0.5657
MultiLTR 0.4494 0.4647 0.4920 0.5207 0.5804

Table 8. Comparison between MultiLTR fLTR on MQ2007 using MAP@k, with cutoffs at 5, 10, 15, 20,
and 30.

LTR Alg. Method @5 @10 @15 @20 @30
Neural Model KNRM 0.1567 0.2254 0.2683 0.2941 0.3193
HiNT 0.1916 0.2683 0.3218 0.3583 0.3953
DeepTileBars 0.1647 0.2377 0.2840 0.3140 0.3430
LN BM25 0.1610 0.2292 0.2824 0.3273 0.3981
fLTR 0.1566 0.2232 0.2748 0.3187 0.3897
MultiLTR 0.1698 0.2432 0.2996 0.3465 0.4168
RN BM25 0.1461 0.2137 0.2670 0.3099 0.3822
fLTR 0.1650 0.2344 0.2887 0.3323 0.4039
MultiLTR 0.1754 0.2476 0.3037 0.3501 0.4210
RF BM25 0.1672 0.2432 0.3006 0.3481 0.4202
fLTR 0.1710 0.2455 0.3020 0.3489 0.4212
MultiLTR 0.1829 0.2569 0.3148 0.3631 0.4340

As shown in Tables 7 and 8, the MultiLTR rankers consistently outperform KNRM and
DeepTileBars across all evaluation metrics and surpass HiNT at the @30 metric. Further-
more, the results demonstrate that the MultiLTR approach provides additional improve-
ments over the fLTR method introduced in our previous study [1]. Specifically, as Table 7
presents, even the modest improvement achieved by MultiLTR under the LN algorithm
shows the superiority of MultiLTR compared to other approaches: MultiLTR outperforms
both BM25 and fLTR across all cutoff points (@5-@30). For instance, with a cutoff @30, Mul-
tiLTR (0.5645) surpasses BM25 (0.5390) and fLTR (0.5413) by 2.55% and 2.32%, respectively;
when compared with the neural baselines, MultiLTR (0.5645) substantially exceeds all
neural models with cutoff @30, including HiNT (0.5358), KNRM (0.4324), and DeepTileBars
(0.4651), achieving 2.87-13.21% improvements; MultiLTR still outperforms other neural
baselines (KNRM, DeepTileBars) for early cutoffs (@5-@20) while slightly trailing HiNT.
Similar results with the MAP evaluation can be observed in Table 8.

Information 2025, 16, 308

17 of 22

The fLTR method [1] is a two-stage re-ranking technique that employs aggrega-
tion algorithms like comSUM [62] to merge results from different fields. In contrast,
the MultiLTR approach utilizes a multi-stage re-ranking strategy for enhanced flexibility
and performance.

Aggregation methods such as comSUM effectively address field-based retrieval tasks.
However, they are constrained by fixed formulas and ranking score calculations. And
they often rely on pre-defined or equal-weighted scores that lack adaptability. Essentially,
aggregation functions as a simple regression-based approach, and the scoring function
depends on the specific aggregation technique used. For instance, comSUM calculates the
final score by summing individual field-based scores.

Re-ranking with LTR can be seen as an extension of aggregation methods, as LTR algo-
rithms refine results from the previous local ranking layers. Unlike traditional aggregation,
LTR provides a broader selection of algorithms and greater flexibility. Its parameters are fine-
tuned during model training, enabling more adaptive and effective ranking performance.

5.2. Ablation Results

We conducted extensive ablation experiments to evaluate the impact of three key
components in MultiLTR. Specifically, MultiLTR w/o feature clustering removes the
feature clustering module and groups similar features to enhance data representation.
MultiLTR w/o local ranking eliminates the local ranking module and captures feature
relationships to improve ranking performance. MultiLTR w/o normalization excludes the
normalization module and standardizes feature scales to ensure equal contribution to the
model’s performance.

The results in Table 9 show that these components contribute to positive improvements
for MultiLTR. Feature clustering has a moderate impact on the performance of MultiLTR,
with the most significant improvements observed in the RF setting. The local ranking has
the most significant impact on the performance of MultiLTR, with noticeable improvements
across all LTR algorithms and evaluation metrics. Compared to the other two components,
normalization has a smaller impact on the performance of MultiLTR. However, it still
contributes to the overall performance.

Table 9. Ablation study on the impact of feature clustering, local ranking, and normalization. Models
are assessed using NDCG@k at cutoffs of 5, 10, 15, 20, and 30.

LTR Alg. Model @5 @10 @15 @20 @30
LN MultiLTR 0.4225 0.4460 04756 0.5063 0.5645
MultiLTR w/o feature clustering 0.4181 0.4451 0.4722 0.5310 0.5600
MultiLTR w/o local ranking 04112 04352 04650 0.4950 0.5550
MultiLTR w /o normalization 0.4202 0.4441 0.4730 0.5030 0.5620
RN MultiLTR 0.4243 0.4477 04779 05072 0.5649
MultiLTR w/o feature clustering 0.4201 0.4430 0.4730 0.5030 0.5620
MultiLTR w/o local ranking 0.4150 0.4401 0.4700 0.5012 0.5601
MultiLTR w /o0 normalization 0.4220 0.4460 0.4761 0.5060 0.5630
RF MultiLTR 0.4494 04647 04920 0.5207 0.5804
MultiLTR w/o feature clustering 0.4451 0.4600 0.4870 05170 0.5770
MultiLTR w/o local ranking 0.4350 0.4550 0.4801 0.5111 0.5703

MultiLTR w /o normalization 0.4471 0.4620 0.4890 0.5190 0.5780

5.3. Time Consumption

Having established the effectiveness of the proposed method, it is equally important
to evaluate its computational efficiency. We assess the time required to construct a ranking
model for each method and present it in Figure 5. Compared to the fLTR method, the

Information 2025, 16, 308

18 of 22

MultiLTR approach demands more computational time. We conducted all experiments and
evaluations on a machine equipped with an Intel i7-10700K CPU, 64GB of memory, and an
Nvidia A5000 GPU, DELL, USA .

Time comparison on the 2007 dataset Time comparison on the 2008 dataset

700 634

234
622 250 230 229

629.9

600
200

500
400 150

300

time(seconds)
time(seconds)

200
90 88 91 50 339 335 33.2
100

, 1 - H , - =

LN RN RF LN RN RF

ufLTR multiLTR = fLTR multiLTR

Figure 5. Comparison of time consumption between the fLTR and MultiLTR methods.

6. Conclusions and Future Work

This research introduces a MultiLTR approach and evaluates its effectiveness in text
ranking tasks. We performed experiments on the MQ2007 and MQ2008 benchmark datasets
and utilized a diverse set of learning-to-rank algorithms. The results demonstrate that Mul-
tiLTR consistently outperforms state-of-the-art baselines. ListNet, RankNet, and random
forest are selected to construct the local re-ranking rankers. For all three local re-ranker
algorithms, the top-performing global re-rankers are random forest and MART. They are
both pointwise-based methods and consistently yield the best results. The results highlight
that incorporating multi-stage ranking significantly enhances overall ranking performance.

MultiLTR proves superior to single-stage field-based LTR methods, underscoring the
benefits of multiple re-ranking stages. However, its increased computational cost presents
an opportunity for further optimization. This work lays the foundation for integration
with neural ranking architectures through a structured three-tier approach [63]. First, we
will augment MultiLTR’s feature representation by hybridizing BERT-derived contextual
embeddings with traditional features via attention-gated fusion modules, preserving back-
ward compatibility while enhancing semantic expressiveness. Second, a reranking system
will deploy efficiency-optimized BERT variants (e.g., distilled cross-encoders) on top-K
candidates, coupled with asynchronous batch processing to balance latency and relevance.
Finally, knowledge distillation will bridge BERT’s document interaction insights into Mul-
tiLTR’s core ranking model through attention pattern transfer and hybrid loss alignment.
Additionally, to bridge the gap between LTR frameworks and neural ranking paradigms,
we will adapt MultiLTR’s multi-granularity optimization framework to transformer-based
models. A potential approach involves employing MultiLTR to dynamically aggregate
BERT-derived relevance signals at varying semantic levels. This integration could leverage
attention-based gating mechanisms to weigh the contributions of features at different gran-
ularities. Moreover, we will rigorously validate this hybrid paradigm on both standardized
large-scale benchmarks (MS MARCO, TREC DL) and industrial search systems. This en-
sures generalizability across diverse real-world scenarios. This systematic validation will
quantify robustness against dataset shifts and operational constraints, bridging theoretical
advances with practical deployment requirements.

Author Contributions: Conceptualization, methodology, software, data curation, validation, writing—
original draft, funding acquisition, project administration, H.Y.; conceptualization, formal analysis,
resources, supervision, writing—review and editing, T.G. All authors have read and agreed to the

published version of the manuscript.

Information 2025, 16, 308 19 of 22

Funding: This research work was funded by the Key Scientific Research Project of Higher Education
Institutions in Henan Province, (grant No. 24A520060).

Institutional Review Board Statement: Not applicable
Data Availability Statement: The data that support the findings of this study are available upon request.

Acknowledgments: We are thankful to Shilong Li for his work in parts of the experiments in
this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

LTR learning-to-rank

MultiLTR multi-stage learning-to-rank
fLTR field learning-to-rank

DCG discounted cumulative gain
IDCG Idea discounted cumulative gain
NDCG normalized discounted cumulative gain
AP average precision

MAP mean average precision

MR MART

RF random forest

RB RankBoost as RB

RN RankNet

LM LambdaMART

LN ListNet

CA coordinate ascent

AR AdaRank

References

1. Yang, H.; Gongalves, T. Field features: The impact in learning to rank approaches. Appl. Soft Comput. 2023, 138, 110183. [CrossRef]

2. Clarke, C.L.; Culpepper,].S.; Moffat, A. Assessing efficiency—effectiveness tradeoffs in multi-stage retrieval systems without
using relevance judgments. Inf. Retr.]. 2016, 19, 351-377. [CrossRef]

3. Zhang, L; Zhang, Y;; Long, D.; Xie, P.; Zhang, M.; Zhang, M. A two-stage adaptation of large language models for text ranking.
In Proceedings of the Findings of the Association for Computational Linguistics ACL 2024, Bangkok, Thailand, 11-16 August
2024; pp. 11880-11891.

4. Zheng, K.; Zhao, H.; Huang, R.; Zhang, B.; Mou, N.; Niu, Y.; Song, Y.; Wang, H.; Gai, K. Full stage learning to rank: A unified
framework for multi-stage systems. In Proceedings of the ACM Web Conference 2024, Singapore, 13-17 May 2024; pp. 3621-3631.

5. Liu, Z;Li, C; Xiao, S.; Li, C.; Lian, D.; Shao, Y. Matryoshka Re-Ranker: A Flexible Re-Ranking Architecture with Configurable
Depth and Width. arXiv 2025, arXiv:2501.16302.

6. Nogueira, R.; Yang, W.; Cho, K,; Lin, J. Multi-stage document ranking with BERT. arXiv 2019, arXiv:1910.14424.

7. Fan, Y,; Xie, X,; Cai, Y.; Chen, J.; Ma, X,; Li, X,; Zhang, R.; Guo,]J. Pre-training methods in information retrieval. Found. Trends® Inf.
Retr. 2022, 16, 178-317. [CrossRef]

8. Lu, J.; Hall, K.;; Ma, J.; Ni, J. HYRR: Hybrid Infused Reranking for Passage Retrieval. arXiv 2022, arXiv:2212.10528.

9. Wang, B,; Li, M,; Zeng, Z.; Zhuo, J.; Wang, S.; Xu, S.; Long, B.; Yan, W. Learning Multi-Stage Multi-Grained Semantic Embeddings
for E-Commerce Search. arXiv 2023, arXiv:2303.11009.

10. Huang, PS.; He, X,; Gao, J.; Deng, L.; Acero, A.; Heck, L. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM International Conference on Information & Knowledge Management,
San Francisco, CA, USA, 27 October—1 November 2013; pp. 2333-2338.

11. Zhang, H.; Wang, S.; Zhang, K.; Tang, Z.; Jiang, Y.; Xiao, Y.; Yan, W.; Yang, W.Y. Towards personalized and semantic retrieval:

An end-to-end solution for e-commerce search via embedding learning. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, Virtual, 25-30 July 2020; pp. 2407-2416.

http://doi.org/10.1016/j.asoc.2023.110183
http://dx.doi.org/10.1007/s10791-016-9279-1
http://dx.doi.org/10.1561/1500000100

Information 2025, 16, 308 20 of 22

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

Qiu, Y,; Zhao, C.; Zhang, H.; Zhuo, J.; Li, T.; Zhang, X.; Wang, S.; Xu, S.; Long, B.; Yang, W.Y. Pre-training Tasks for User
Intent Detection and Embedding Retrieval in E-commerce Search. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, Atlanta, GA, USA, 17-21 October 2022; pp. 4424—4428.

Hai Le, N.; Gerald, T.; Formal, T.; Nie, J.Y.; Piwowarski, B.; Soulier, L. CoOSPLADE: Contextualizing SPLADE for Conversational
Information Retrieval. In Proceedings of the European Conference on Information Retrieval, Dublin, Ireland, 2-6 April 2023;
Springer: Cham, Switzerland , 2023; pp. 537-552.

Yang, D.; Zhang, Y.; Fang, H. An exploration study of mixed-initiative query reformulation in conversational passage retrieval.
arXiv 2023, arXiv:2307.08803.

Gao, L.; Dai, Z.; Callan, J. Rethink training of BERT rerankers in multi-stage retrieval pipeline. In Advances in Information Retrieval:
Proceedings of the 43rd European Conference on IR Research, ECIR 2021, Virtual Event, 28 March—1 April 2021, Proceedings, Part II 43;
Springer: Cham, Switzerland, 2021; pp. 280-286.

Nogueira, R.; Cho, K. Passage Re-ranking with BERT. arXiv 2019, arXiv:1901.04085.

Yilmaz, Z.A.; Wang, S.; Yang, W.; Zhang, H.; Lin, J]. Applying BERT to document retrieval with birch. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP): System Demonstrations, Hong Kong, China, 3-7 November 2019; pp. 19-24.

Lin, S.C.; Yang,].H.; Nogueira, R.; Tsai, M.E,; Wang, C.J.; Lin,]. Multi-stage conversational passage retrieval: An approach to
fusing term importance estimation and neural query rewriting. ACM Trans. Inf. Syst. (TOIS) 2021, 39, 48. [CrossRef]

Guo, J.; Fan, Y;; Pang, L.; Yang, L.; Ai, Q.; Zamani, H.; Wu, C.; Croft, W.B.; Cheng, X. A deep look into neural ranking models for
information retrieval. Inf. Process. Manag. 2020, 57, 102067. [CrossRef]

Craswell, N.; Mitra, B.; Yilmaz, E.; Campos, D.; Lin,]. Ms marco: Benchmarking ranking models in the large-data regime. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual,
11-15 July 2021; pp. 1566-1576.

Yates, A.; Nogueira, R.; Lin, J. Pretrained transformers for text ranking: BERT and beyond. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, Virtual, 8-12 March 2021; pp. 1154-1156.

Devlin, J.; Chang, M.W,; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv 2018, arXiv:1810.04805.

Leonhardt,].; Beringer, F; Anand, A. Exploiting Sentence-Level Representations for Passage Ranking. arXiv 2021, arXiv:2106.07316.
Mitra, B.; Diaz, F.; Craswell, N. Learning to match using local and distributed representations of text for web search. In
Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3-7 April 2017; pp. 1291-1299.

Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013, arXiv:1301.3781.
Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25-29 October 2014; pp. 1532-1543.

Ahmadi, K.; Gathwala, A.; Osajima, J.; Hsiao, D.; Das, P. SLLIM-Rank: A Multi-Stage Item-to-Item Recommendation Model
using Learning-to-Rank. In Proceedings of the 2024 IEEE International Conference on Big Data (BigData), Washington, DC, USA,
15-18 December 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 2264-2268.

Lee, J.; Bernier-Colborne, G.; Maharaj, T.; Vajjala, S. Methods, Applications, and Directions of Learning-to-Rank in NLP Research.
In Proceedings of the Findings of the Association for Computational Linguistics: NAACL 2024, Mexico City, Mexico, 16-21 June
2024; pp. 1900-1917.

Dato, D.; MacAvaney, S.; Nardini, EM.; Perego, R.; Tonellotto, N. The Istella22 Dataset: Bridging Traditional and Neural
Learning to Rank Evaluation. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Madrid, Spain, 11-15 July 2022; pp. 3099-3107.

Qin, Z.; Yan, L.; Zhuang, H.; Tay, Y.; Pasumarthi, R K.; Wang, X.; Bendersky, M.; Najork, M. Are neural rankers still outperformed
by gradient boosted decision trees? In Proceedings of the ICLR"2021, Virtual, 3-7 May 2021.

Friedman,].H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189-1232. [CrossRef]
Burges, C.; Shaked, T.; Renshaw, E.; Lazier, A.; Deeds, M.; Hamilton, N.; Hullender, G. Learning to rank using gradient descent.
In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7-11 August 2005; pp. 89-96.

Xu, J.; Li, H. Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th annual international ACM
SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, The Netherlands, 23-27 July 2007; ACM:
New York, NY, USA, 2007; pp. 391-398.

Metzler, D.; Croft, W.B. Linear feature-based models for information retrieval. Inf. Retr. 2007, 10, 257-274. [CrossRef]

Wu, Q.; Burges, C.J.; Svore, KM.; Gao,]. Adapting boosting for information retrieval measures. Inf. Retr. 2010, 13, 254-270.
[CrossRef]

Cao, Z.; Qin, T,; Liu, T.Y,; Tsai, M.F,; Li, H. Learning to rank: From pairwise approach to listwise approach. In Proceedings of
the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20-24 June 2007; ACM: New York, NY, USA, 2007;
pp. 129-136.

http://dx.doi.org/10.1145/3446426
http://dx.doi.org/10.1016/j.ipm.2019.102067
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1007/s10791-006-9019-z
http://dx.doi.org/10.1007/s10791-009-9112-1

Information 2025, 16, 308 21 of 22

37.
38.

39.
40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.
52.

53.

54.
55.

56.

57.

58.

59.

60.

61.

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Koppel, M.; Segner, A.; Wagener, M.; Pensel, L.; Karwath, A.; Kramer, S. Pairwise learning to rank by neural networks revisited:
Reconstruction, theoretical analysis and practical performance. In Proceedings of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Wiirzburg, Germany, 16-20 September 2019; Springer: Cham, Switzerland,
2019; pp. 237-252.

Jia, Y.; Wang, H.; Guo, S.; Wang, H. Pairrank: Online pairwise learning to rank by divide-and-conquer. In Proceedings of the Web
Conference 2021, Ljubljana, Slovenia, 19-23 April 2021; pp. 146-157.

Yuan, K.; Kuang, D. Deep Pairwise Learning To Rank For Search Autocomplete. arXiv 2021, arXiv:2108.04976.

Ai, Q.; Bi, K.; Guo, J.; Croft, W.B. Learning a deep listwise context model for ranking refinement. In Proceedings of the 41st
International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, MI, USA, 8-12 July
2018; pp. 135-144.

Sharma, A. Listwise Learning to Rank with Deep Q-Networks. arXiv 2020, arXiv:2002.07651.

Pang, L.; Xu, J.; Ai, Q.; Lan, Y.,; Cheng, X.; Wen,]J. Setrank: Learning a permutation-invariant ranking model for information
retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,
Virtual, 25-30 July 2020; pp. 499-508.

Swezey, R.; Grover, A.; Charron, B.; Ermon, S. PiRank: Scalable Learning To Rank via Differentiable Sorting. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA , 2021; Volume 34.

Chen, Z.; Eickhoff, C. PoolRank: Max/Min Pooling-based Ranking Loss for Listwise Learning & Ranking Balance. arXiv 2021,
arXiv:2108.03586.

Keshvari, S.; Ensan, F.; Yazdi, H.S. ListMAP: Listwise learning to rank as maximum a posteriori estimation. Inf. Process. Manag.
2022, 59, 102962. [CrossRef]

Chen, F; Fang, H. An Exploration of Learning-to-re-rank Using a Two-step Framework for Fair Ranking. In Proceedings of the
TREC, Online, 15-19 November 2022.

Han, S.; Wang, X.; Bendersky, M.; Najork, M. Learning-to-Rank with BERT in TF-Ranking. arXiv 2020, arXiv:2004.08476.

Awan, Z.; Kahlke, T; Ralph, P.; Kennedy, P. Bi-Encoders based Species Normalization-Pairwise Sentence Learning to Rank. arXiv
2023, arXiv:2310.14366.

Richards, J.A. Feature reduction. In Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 2022;
pp- 403-446.

Liu, T.Y. Learning to rank for information retrieval. Found. Trends® Inf. Retr. 2009, 3, 225-331. [CrossRef]

Cabello-Solorzano, K.; Ortigosa de Araujo, I.; Pe na, M.; Correia, L.; Tallén-Ballesteros, A.J. The impact of data normalization
on the accuracy of machine learning algorithms: A comparative analysis. In Proceedings of the International Conference on
Soft Computing Models in Industrial and Environmental Applications, Salamanca, Spain, 5-7 September 2023; Springer: Cham,
Switzerland, 2023; pp. 344-353.

Jarvelin, K.; Kekaldinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 2002, 20, 422-446.
[CrossRef]

Qin, T,; Liu, T.Y. Introducing LETOR 4.0 datasets. arXiv 2013, arXiv:1306.2597.

Qin, T; Liu, T.Y.; Xu, J.; Li, H. LETOR: A benchmark collection for research on learning to rank for information retrieval. Inf. Retr.
2010, 13, 346-374. [CrossRef]

Zhang, E.; Zhang, Y. Average Precision. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 192-193.
[CrossRef]

Sanderson, M. Christopher D. Manning, Prabhakar Raghavan, Hinrich Schiitze, Introduction to Information Retrieval, Cambridge
University Press. 2008. ISBN-13 978-0-521-86571-5, xxi+ 482 pages. Nat. Lang. Eng. 2010, 16, 100-103. [CrossRef]

Beitzel, S.M.; Jensen, E.C.; Frieder, O. MAP. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 1691-1692.
[CrossRef]

Xiong, C.; Dai, Z.; Callan, J.; Liu, Z.; Power, R. End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7-11 August 2017;
pp. 55-64.

Fan, Y,; Guo, J.; Lan, Y.; Xu, J.; Zhai, C.; Cheng, X. Modeling diverse relevance patterns in ad-hoc retrieval. In Proceedings of
the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, MI, USA,
8-12 July 2018; pp. 375-384.

Tang, Z.; Yang, G.H. Deeptilebars: Visualizing term distribution for neural information retrieval. In Proceedings of the AAAI
Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January-1 February 2019; Volume 33, pp. 289-296.

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.ipm.2022.102962
http://dx.doi.org/10.1561/1500000016
http://dx.doi.org/10.1145/582415.582418
http://dx.doi.org/10.1007/s10791-009-9123-y
http://dx.doi.org/10.1007/978-0-387-39940-9_482
http://dx.doi.org/10.1017/S1351324909005129
http://dx.doi.org/10.1007/978-0-387-39940-9_492

Information 2025, 16, 308 22 of 22

62. Fox, E.A.; Shaw, J.A. Combination of multiple searches. In NIST Special Publications SP; National Institute of Standards and
Technology: Gaithersburg, MD, USA, 1994; Volume 243 . Available online: https://trec.nist.gov/pubs/trec2/t2_proceedings.html
(accessed on 12 February 2025).

63. Askari, A.; Abolghasemi, A.; Pasi, G.; Kraaij, W.; Verberne, S. Injecting the score of the first-stage retriever as text improves
BERT-based re-rankers. Discov. Comput. 2024, 27, 15. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://trec.nist.gov/pubs/trec2/t2_proceedings.html
http://dx.doi.org/10.1007/s10791-024-09435-8

	Introduction
	Literature Review
	Multi-Stage Ranking Architectures
	Neural Ranking Models
	Learning-to-Rank Techniques

	Methodology
	Architecture of the Proposed MultiLTR Approach
	Layers in the Proposed MultiLTR Approach
	Input Layer
	Feature Clustering Layer
	Initial Ranking Layer
	Local Re-Ranking Layer
	Normalization Layer
	Local Re-Ranker Selection Layer
	Global Re-Ranking Layer
	Mid-Evaluation Layer
	Final Re-Ranking Layer and Output

	Experiments and Results
	Datasets
	Evaluation Measures
	Built Rankers
	Results

	Discussion
	Comparative Analysis
	Ablation Results
	Time Consumption

	Conclusions and Future Work
	References

