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Abstract: In the area of consumer health search (CHS), there is an increasing concern about returning
topically relevant and understandable health information to the user. Besides being used to rank topi-
cally relevant documents, Learning to Rank (LTR) has also been used to promote understandability
ranking. Traditionally, features coming from different document fields are joined together, limiting
the performance of standard LTR, since field information plays an important role in promoting
understandability ranking. In this paper, a novel field-level Learning-to-Rank (f-LTR) approach is
proposed, and its application in CHS is investigated by developing thorough experiments on CLEF’
2016-2018 eHealth IR data collections. An in-depth analysis of the effects of using f-LTR is provided,
with experimental results suggesting that in LTR, title features are more effective than other field
features in promoting understandability ranking. Moreover, the fused f-LTR model is compared to
existing work, confirming the effectiveness of the methodology.

Keywords: health informatics; consumer health search; information retrieval; learning to rank;
understandability

1. Introduction

Consumer health search (CHS) [1–3], also known as consumer health information
retrieval (CHIR), is one research area in information retrieval (IR) that aims to search health
information specifically for non-expert users. For example, in the context of consumer
health search, a layperson experiencing symptoms such as a cough and fever might enter a
query like “What causes cough and fever?”. In contrast, an expert health search would involve
more technical terminology, with a query articulated as “Differential diagnosis for suspected
respiratory infections”.

One notable challenge in the CHS area is that non-expert consumers have difficulty
understanding the retrieved answers. A topically relevant document may not help a
consumer if the document is beyond his/her understandability level [2,4]. In health-related
areas, the readability of written texts regarding appointments, medication, and medication
doses is essential for a reader; poor understandability of these texts is associated with poor
health outcomes and may include increased mortality [4]. If the user finds the retrieved
document difficult to understand, even if it is highly relevant, they are likely to give up and
move on to another one [2]. This important need constitutes the motivation of this work:
retrieving not only topically relevant but also understandable results for consumers in the
CHS task.

In this work, Learning-to-Rank (LTR) techniques [5] are studied to improve under-
standability beyond topicality relevance in the area of CHS. The main contributions of our
work can be featured as follows: (i) We propose the field-level Learning-to-Rank (f-LTR)
model; different from the standard LTR approach where one single model is trained, in
f-LTR, a set of Learning-to-Rank models are learned, with each one emphasizing informa-
tion taken from one specific field; (ii) We evaluate and prove its effectiveness in surpassing
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the state-of-the-art techniques; thorough experimental tests of f-LTR models are conducted
leading to improve understandability ranking in the area of CHS.

The rest of the paper is organized as follows: Section 2 reviews the related work in
Learning to Rank and understandability in CHS; Section 3 details the proposed method;
Section 4 describes the conducted experiments and Section 5 analyzes the results; finally,
Section 6 concludes and presents suggestions for future work.

2. Literature Review

The f-LTR approach proposed in this paper builds upon previous work developed
regarding understandability research in CHIR and feature-based LTR research.

2.1. Understandability in Consumer Health Search

The research community has shown significant interest in understanding online health
information [6]. Health information retrieval concerns different areas, from biomedical
literature retrieval for clinical cases to health-related retrieval by general non-expert users.
Many existing IR systems merely consider the topical relevance of the retrieved documents
without taking into account the dimension of understandability. A topically relevant but
not understandable document is of no value to a consumer. In the health domain search,
this is even more important, since non-understandable information may cause other issues.
To increase the access and utility of health-related information to the public, organizations
recommend a specific readability level for health information.

The American Medical Association (AMA) recommends a sixth-grade reading level,
and the United States National Institute of Health (NIH) recommends that print materials
for the public should use plain language with a target readability equivalent to the sixth-
grade level and no greater than eighth-grade [7,8]. A study analyzing the results from
70 websites on a popular search engine for the health query “congestive heart failure” found
that only 7.1% of the documents met the recommended sixth-grade reading level based on
one assessment tool. Moreover, none of the websites achieved a sixth-grade reading level
when evaluated using all five assessment tools [9]. Another work found that no article
abstract met the NIH readability target of sixth grade or below, and only one was below
the recommended ceiling of eighth-grade equivalent [10].

Computational readability assessments have been developed to automatically evaluate
the reading level of a given text; for example, Simple Measure of Gobbledygook (SMOG)
was the preferred measure of readability when evaluating consumer-oriented health care
material [11,12]. Other popular computational readability assessments for web health
documents include the Flesch reading ease, Flesch–Kincaid grade level, Gunning Fog index,
and Coleman–Liau index [9]. These measures are based on the surface characteristics of a
document, such as sentence length and word length of syllables.

2.2. Learning-to-Rank Techniques

In the IR area, Machine Learning techniques can be applied to build ranking models for
the information retrieval systems, and this is known as Learning to Rank [13–15]. Training
queries, related documents, and the matching relevance judgments for the query and
document pairs typically comprise the training data. The learning algorithms are then
used to generate an LTR model. Similarly, the creation of testing data for evaluation, which
includes test queries and associated documentation, follows a methodology analogous
to that used in the generation of training data. IR and LTR models collaborate to sort
documents based on their relevance as answers to questions, thereby generating a ranked
list of documents that respond to the query.

LTR approaches have been studied in many health search contexts such as expert
medical search by physicians, Electronic Health Records search by patients, and consumer
health search by laypeople [16–18]. One focal research in Learning to Rank is exploring
valuable features; depending on the application, different features can be extracted and
used in training a Learning-to-Rank model [19,20].
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Traditionally, potentially effective features are extracted and naively combined to-
gether to create a feature list, with most studies exploring new features but joining all into
a single list [21–23]. Little attention is given to how these features should be grouped, such
as constructing multiple feature lists instead of relying on a single, consolidated list.

3. Methodology

In this section, the hypothesis of different fields contributing differently is introduced,
followed by a detailed explanation of the proposed f-LTR approach. Finally, the rationale
behind the chosen methodology is discussed.

3.1. Hypothesis

Document fields are assumed to contribute differently to improving the effectiveness
of information retrieval. As an example, Table 1 presents fields that represent standard
sections (such as the heading, title, and body) of an HTML web document.

Table 1. Typical fields of an HTML document.

Field Description

H1–H6 Section headings at different levels; H1 is the highest-level heading
and H6 is the lowest level.

Title A document title.
Header Defines a header for a document or section.
Meta Metadata of a document such as author, publication date, keywords, etc.
Anchor Anchors a URL to some text on a web page.
Body Body content of a document.
Else Not defined in any field.
Whole The contents of the full document.

The hypotheses are as follows: (i) In training LTR models, the naive combination of
features, which joins features extracted from different fields into a single feature list, may
decrease the contribution of the field information. Training LTR models using grouped,
field-level features is expected to be more efficient. (ii) The fusion of results from a set
of pre-trained field-specific LTR models is anticipated to be more effective than a model
trained with features that are naively combined from multiple fields. The f-LTR approach
is proposed to validate these assumptions.

3.2. F-LTR Approach

The architecture of the proposed f-LTR applied in the CHS task is presented in Figure 1.
Standard Learning to Rank works at the document level, combining all extracted

features from various fields into a single list to train one LTR model. In contrast, the
proposed f-LTR model operates at the field level, enabling a more refined approach that
distinctively highlights and prioritizes features specific to individual fields. Once the f-LTR
model is trained, it can be employed to rank results for new queries.

However, a notable limitation of the LTR model is its reliance on a single field during
the training process, which may result in biased outcomes.

To address this issue, the f-LTR approach is proposed and illustrated in Figure 1. The
f-LTR approach, aligned with the methodologies of state-of-the-art information retrieval
(IR) techniques, mainly includes two stages. In the first stage, the features are grouped
by specific fields, and a set of f-LTR models is created, with each model trained using the
features of a specific field. In the second stage, the scores generated by the pre-trained
f-LTR models are fused using a designated fusion method.
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Figure 1. The architecture of the proposed f-LTR approach in CHS.

3.2.1. Stage One: Building f-LTR Models

In the first stage, features are grouped by specific fields, resulting in the creation of a
set of f-LTR models. Each model is trained using a distinct group of features extracted from
a single field. The framework for this first stage is illustrated in Figure 2.

Figure 2. The f-LTR framework.
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As shown in Figure 2, the training data consist of r queries qj(j = 1, . . . , r). A number
of documents (dj

1 fi
, dj

2 fi
, . . . , dj

m fi
) are associated to each query qj; f i indicates that the

features are extracted from the ith field of a document. The training data also include the
corresponding relevance judgments sj for each query and document pair. Employing the
learning algorithm, an f-LTR model hi is learned from the training data. In the testing
phase, given a new query ql , the trained model hi joined with the ranking system is used to
rank the documents. A ranking list of relevant documents sl

fi
is produced for the query ql .

Building on the aforementioned concepts, let us consider that features are extracted
from n fields: f1, f2, . . . , fn. For each field, a corresponding Learning-to-Rank model h is
constructed. This results in the creation of n models (h1, h2, . . . , hn). Because these models
are developed using features from a specific field, they are referred to as f-LTR models.

3.2.2. Stage Two: Fusion of f-LTR Models

Following the approach outlined in the first stage, a group of n f-LTR models is trained,
with each model learning from a single field. Consequently, n corresponding ranking lists
are generated, denoted as s f1 , s f2 , . . . , s fn . In the subsequent fusion stage, these ranking lists
are combined using a designated fusion method, resulting in a final re-ranked list presented
to the user. The second stage, also referred to as the fusion stage, is illustrated in Figure 3.

Figure 3. Fusion of f-LTR models.

3.3. Rationale for the Methodology

The objective is to rank documents within the corpus D for a given query q. Assuming
a document d, (where d ∈ D) consists of n fields, each field is denoted as fi (i = 1, 2, . . . , n).
The f-LTR model trained using information from the field fi is represented as hi. The score
of the document d in relation to the query q as assessed by the f-LTR model hi is denoted as:

s fi (d, q, hi)(i = 1, 2, . . . , n) (1)

Since the result s fi
is derived from a single field, a total of n f-LTR models are trained,

with each model utilizing features extracted from one specific field. The fusion algorithms
are then applied to the results obtained from this set of f-LTR models. The fusion algorithm
is defined as the function G[x], and the fused score S is expressed as:

S = G[ s f1(d, q, h1), . . . , s fi (d, q, hi), . . . , s fn(d, q, hn)] (2)

Let the weight assigned to each field be denoted as wi. The fused score S of the
document d can be expressed as:

S = G[ w1s f1
(d, q, h1), . . . , wis fi

(d, q, hi), . . . , wns fn(d, q, hn)] (3)

With G[x] as a linear function, the fused score is denoted as:

S =
n

∑
i=1

wis fi
(d, q, hi) (4)
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If all field weights are equal, the fused score S of the document d can be expressed as:

S =
n

∑
i=1

s fi (d, q, hi) (5)

This formula represents the average of the scores obtained from each field’s f-LTR
model and is known as the CombSUM calculation (combined sum). It is a simple and
widely used score fusion technique. In the context of IR, CombSUM works by aggregating
the individual scores from different sources to produce a final combined score and assumes
that all sources contribute equally to the final score.

In addition to CombSUM, other effective fusion methods include CombMax, Comb-
Min, CombANZ, CombMNX, and CombMed [24,25]. Fusion through a linear combination
of scores has been shown to be efficient and is widely used in various score-based fusion
tasks within IR [26–28]. Given its effectiveness, we adopted them as the fusion techniques
in this work. The formulas are illustrated in Equations (6)–(10):

CombMax = max(s f1(d, q, h1), s f2(d, q, h2), . . . , s fn(d, q, hn)) (6)

CombMin = min(s f1(d, q, h1), s f2(d, q, h2), . . . , s fn(d, q, hn)) (7)

CombANZ =
∑n

i=1 s fi (d, q, hi)

k
(8)

CombMNX = min(s fi (d, q, hi) | s fi (d, q, hi) > 0) (9)

CombMed = median(s f1(d, q, h1), s f2(d, q, h2), . . . , s fn(d, q, hn)) (10)

4. Experiments

In this section, the dataset collections used in the study are introduced first. Then, the
features and the ranker for the experiments are described. Lastly, the evaluation metrics
and tools employed for performance assessment are presented.

4.1. Datasets

The ideal data collection for carrying out experimental work should include queries
generated by non-expert consumers, retrieved documents focused on health or medical top-
ics (excluding scientific biomedical literature), high-quality assessments of query–document
pairs conducted by medical experts, and large datasets well suited for IR tasks. Nonetheless,
acquiring high-quality data that meet these standards is not a straightforward task, mainly
because of the following: (i) Not too many open dataset collections are available since it
is a specific topic in the health search area where data privacy needs to be assured; (ii)
The assessment of the query–document pairs is costly since they require evaluators to
have strong medical knowledge backgrounds (which usually only experts or majors in the
medical area have).

To meet the needs of our research goal, datasets that included both topical relevance
and understandability assessment results were chosen. In total, two dataset collections
were used: CLEF’ 2016–2017 and CLEF’2018 eHealth IR datasets. CLEF eHealth is an
evaluation lab that has organized evaluation campaigns in the medical and biomedical
domain since 2013. The CLEF eHealth task follows the TREC-style evaluation process and
provides a shared and standard IR data collection that contains a dataset, a query set, and
assessment files. Complete data collections and evaluation frameworks were available, so
the proposed approach was successfully tested on these data collections.

The details of the two data collections are summarized in Table 2 and include the
dataset used for retrieving documents, the set of queries, and the associated Qrels. A Qrel
file, short for query relevance file, specifies the relevance of documents to particular queries.
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It is commonly used in the evaluation of IR systems to assess how effectively the system
retrieves relevant documents in response to a given set of queries.

Table 2. Statistics of the data collections for our experiments.

CLEF’ 2016–2017 Collection CLEF’ 2018 Collection

Dataset ClueWeb12-B13 5,535,120 Web pages
Query set 300 50
Qrels files 269,232 18,763

CLEF’ 2016 and CLEF’ 2017 collections included the same dataset and query set, but
CLEF’ 2017 has an increased assessment pool with more query–documents pairs. The
two assessment files were combined into one for this work and named CLEF’ 2016–2017
Collection. The query set was issued by the public (https://www.reddit.com/r/AskDocs,
accessed on 28 October 2024) and expressed their real health information needs. A total of
300 medical questions resembling lay people’s health queries were produced after preferred
posts were chosen to serve as basic queries. CLEF’ 2016 and CLEF’ 2017 collections
used ClueWeb12-B13 (https://huggingface.co/datasets/irds/clueweb12_b13_clef-ehealth,
accessed on 28 October 2024) as the dataset, which contained about 52 million web pages.
The query–document pairs were assessed by senior medical students. Relevance between
a query and a document was graded as highly relevant, somewhat relevant, and not relevant.
The collected understandability assessments ranged from 0 to 100, with 0 being the hardest
to understand and 100 the easiest.

The CLEF’ 2018 collection was generated following the same procedure as the CLEF’
2016 and CLEF’ 2017 collections. It contains 5,535,120 web pages obtained from the Com-
monCrawl (http://commoncrawl.org, accessed on 28 October 2024) as the dataset, 50
medical queries issued by the public and gathered from the Health on the Net search
engine, and 18,763 query–documents pairs for the assessment.

4.2. Features Extracted

Inspired by the work of Ru et al. [29] and Bhagawati and Subramanian [30], four fields
were considered, namely, Title, H1, Else (the latter represents the texts that do not belong
to Title or H1) and the full text of the document (dhe full text is regarded as one field
information as well). Nine features that performed well in previous consumer health search
studies [31,32] were taken into account; these nine extracted features were mostly based on
classic IR models: TFIDF along with TF and IDF, the probabilistic model BM25, the language
models HiemstraLM and DirichletLM, BB2, PL2, and Dl. A total of 36 features were then
extracted (four fields with nine features each). An overview of the extracted features is
presented in Table 3.

Table 3. Labels of the features extracted and grouped for f-LTR processing.

Feature
Field Group

Title (T) H1 (H) Else (E) Full Doc (F)

TFIDF T-TFIDF H-TFIDF E-TFIDF F-TFIDF
TF T-TF H-TF E-TF F-TF
IDF T-IDF H-IDF E-IDF F-IDF
BM25 T-BM25 H-BM25 E-BM25 F-BM25
HiemstraLM T-HiemstraLM H-HiemstraLM E-HiemstraLM F-HiemstraLM
DirichletLM T-DirichletLM H-DirichletLM E-DirichletLM F-DirichletLM
BB2 T-BB2 H-BB2 E-BB2 F-BB2
PL2 T-PL2 H-PL2 E-PL2 F-PL2
Dl T-D1 H-D1 E-D1 f-D1f

https://www.reddit.com/r/AskDocs
https://huggingface.co/datasets/irds/clueweb12_b13_clef-ehealth
http://commoncrawl.org
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4.3. Developed Rankers

A group of experiments was designed and carried out on the two data collections.
During the first stage, four f-LTR rankers were trained using the CLEF’ 2016–2017 collection:
RT, RH, RE, and RF, each trained using features from a specific field as presented in
Section 4.2; RA was built following the standard LTR approach and using all 36 features.
During the second stage, these f-LTR rankers were used to perform retrieval on the CLEF’
2018 collection, and the scores were aggregated following six different strategies, namely,
CombMAX, CombMIN, CombSUM, CombANZ, CombMNZ, and CombMED [33]. Three
groups of aggregated rankers were generated, namely, RTH, RTHE, and RTHEF, each using
the six strategies, totaling 18 aggregated rankers, as described in Table 4.

Table 4. Description of developed rankers.

Ranker Method Description

RT f-LTR model with FTitle features
RH f-LTR model with FH1 features
RE f-LTR model with FElse features
RF f-LTR model with Ffull features
RA f-LTR model with 36 features
RTH Fusion of RT and RH
RTHE Fusion of RT, RH, and RE
RTHEF Fusion of RT, RH, RE, and RF

The PyTerrier retrieval platform [34] served as the primary environment for con-
ducting the experiments, utilizing its LTR framework. All queries were pre-processed by
converting characters to lowercase, removing stop words, and applying stemming with the
Porter Stemmer.

The Okapi BM25 retrieval model was used to build the ranking models and all the
parameters were set to default values (b = 0.75, k1 = 1.2, and k3 = 8), as recommended
by Aloteibi [35]. When training an f-LTR model, up to 1000 documents per query were
retrieved during the retrieval process. All models were trained and tuned with separate
training and validation sets from the CLEF’ 2016–2017 data collection and tested on CLEF’
2018 data.

4.4. Evaluation Metrics

The developed rankers were evaluated in terms of topical relevance as well as un-
derstandability. In terms of topical relevance, the three most important and frequently
used assessment measures in information retrieval were included, namely, P@10 (Precision
at 10), NDCG@10 (Normalized Discounted Cumulative Gain at 10), and MAP (Mean Av-
erage Precision). The rankers were evaluated at position 10 since users of online search
engines are more likely to pay attention to the first 10 of the retrieved results. In assess-
ing understandability relevance, two measures were included: uRBP and uRBPgr; uRBP
uses binary understandability assessments, and uRBPgr uses graded understandability
assessments [36].

Common assessment tools were utilized to calculate the aforementioned measures. The
standard TREC competitions tool trec_eval (https://trec.nist.gov/trec_eval, accessed on 28
October 2024), was used for evaluating topical relevance; the Ubire tool (https://github.com/
ielab/ubire, accessed on 28 October 2024), an understandability-biased IR evaluation tool, was
employed for the understandability assessment.

5. Results

In this section, results on how field-based LTR models were able to equal or surpass
the standard LTR model with much fewer features (detailed in Section 5.1) are analyzed,

https://trec.nist.gov/trec_eval
https://github.com/ielab/ubire
https://github.com/ielab/ubire
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and then the performance of the fused f-LTR rankers using different combinations and
fusion methods is presented.

5.1. Comparing f-LTR Model to the Standard LTR Model

The four f-LTR rankers RT , RH , RE, RF, and the standard LTR ranker RA were evalu-
ated and the results are shown in Table 5. All generated ranking lists were evaluated using
the assessment files with the introduced evaluation metrics.

Table 5. Comparison between f-LTR and standard LTR rankers.

Algorithm Ranker
Understandability Topicality

uRBP uRBPgr P@10 NDCG@10 MAP

f-LTR RT 0.7131 0.3020 0.6820 0.6131 0.2428
RH 0.6493 0.2630 0.6340 0.5683 0.2279
RE 0.5849 0.2380 0.5700 0.4753 0.2115
RF 0.6539 0.2750 0.6620 0.5395 0.2404

Standard LTR RA 0.5821 0.2550 0.6420 0.5687 0.2177

As can be observed, the best performance was achieved by the f-LTR ranker RT. RT
surpassed the standard ranker RA with improvements of 22.5% in uRBP and 18.4% in
uRBPgr. Similar results were observed with the topical relevance evaluation metrics: RT
surpassed RA with improvements of 6.2% in P@10, 7.8% in NDCG@10, and 11.5% in MAP.

Turning our attention to the other f-LTR rankers, RH and RF were also able to surpass
RA in most assessment metrics; only RE was not able to exceed it.

The result suggests that using features selected from one field can achieve similar and
even better performance than using features from the full document. In the experiments,
the f-LTR model employed one-quarter of the features when compared to the standard
LTR model.

Comparing the performance among the four f-LTR rankers (RT , RH , RE, and RF), the
title-based ranker, RT, was the most effective one. This suggests that not all fields contribute
the same when building an LTR model. Features extracted from the Title field proved to
be the most effective ones, followed by H1 and full field information, with the Else field
being the worst. This suggests that selecting specific features can lead to the development
of more effective LTR models.

5.2. Fused f-LTR Rankers

The experiments conducted with the f-LTR model offered valuable insights into the
effectiveness of features derived from field information, allowing for the identification of
the most impactful field for training the f-LTR model.

However, these findings were not adequate to fully assess the performance of the
comprehensive retrieval model. A single f-LTR ranker does not incorporate information
from other fields, which is essential for the effective design of a retrieval model. To quantify
this difference, the title-based ranker RT was employed as the primary ranker and was
gradually combined with other f-LTR rankers. RT was selected because it demonstrated
the best performance among the four f-LTR rankers.

Meanwhile, six different fusion methods (see Section 4.3) were tested for each ranker
combination, generating a total of 18 combined models. These combined rankers were
assessed, and the best-performing ones are presented in Table 6. CombMED and CombSUM
performed the same and achieved the best scores when compared to the other four fusion
methods. CombMED was used as the representative and is denoted as med.

An increase in retrieval performance was observed when gradually fusing results of RT
with other f-LTR rankers. To further investigate this phenomenon, an empirical evaluation
was conducted. In this paper, the uRBP metric was used as an example; however, similar
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behaviors were noted with the other four evaluation metrics. The results are illustrated
in Figure 4.

Table 6. Fused f-LTR rankers.

Algorithm Ranker
Understandability Topicality

uRBP uRBPgr P@10 NDCG@10 MAP

Fused f-LTR RTH_med 0.7055 0.3000 0.6740 0.6101 0.2492
RTHE_med 0.7220 0.3100 0.7040 0.6246 0.2500
RTHEF_med 0.7658 0.3280 0.7440 0.6630 0.2660

Figure 4. Fusing results from other f-LTR rankers into the title f-LTR ranker using different fusion
methods evaluated with the uRBP metric.

As observed, fused f-LTR rankers RTHEF were able to surpass the title-based f-LTR
ranker RT with all fusion methods except CombMIN.

CombMIN uses the minimum of the individual similarity values as the combined
similarity value. The rationale behind it is to minimize the probability that a non-relevant
document would be highly ranked. CombMIN showed worse performance compared to
other combination methods, and this is in accordance with previous findings [37].

RTHEF_med and RTHEF_sum achieved the same and the highest score (0.7658), with
an improvement of 7.4% over RT (0.7131). The results suggest that joining the results
obtained from the other f-LTR rankers to the title f-LTR ranker is effective in improving
ranking performance.

On the other hand, it can also be observed that when fusing RH to RT, the result of
RTH was worse in all fusion methods; on the other hand, fusing RE to RTH, showed im-
provements over RT with CombMED and CombSUM fusion methods. Finally, when fusing
RF to RTHE, much better scores were achieved when compared to RT. This demonstrates
that not all field information contributes equally, and the way features are explored does
affect the ranking performance.

Analyzing the performance of the different fusion methods, all presented similar
performance values in all three fusion methods (RTH, RTHE, and RTHEF), with CombMED
and CombSUM achieving the best scores.

5.3. Comparing to the State-of-the-Art Techniques

The results obtained above showed that the proposed f-LTR approach was efficient
when compared to the standard LTR and presented much better performance when fused.
In this section, the effectiveness of the proposed approach was further examined by com-
paring it to state-of-the-art techniques.

A group of baselines was built using different IR models and techniques. The best one
was chosen for comparison. Eight understandability baselines were built employing state-
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of-the-art IR techniques on the PyTerrier platform. Among the eight baselines, six of them
were built using TFIDF, BM25, and DirichletLM retrieval models, with or without using
pseudo-relevance feedback techniques [38]. The other two baselines were built by using
the scores from the reading measures GFI (Gunning Fox Index) and CLI (Coleman–Liau
Index).

Six topical relevance baselines were built following the same reasoning used for the
understandability baselines: FIDF with and without PRF, BM25 with and without PRF, and
DirichletLM with and without PRF. Among them, the TFIDF without PRF baseline was
found to be the best one among all baselines and used for comparison.

We also included the eleven runs submitted to the CLEF’ 2018 eHealth IR task because
they also represented state-of-the-art techniques [39]. Figure 5 presents the results (the
baseline, CLEF’ 2018’s eleven runs, and the f-LTR ranker RTHEF_med).

Figure 5. Comparison between the f-LTR approach and state-of-the-art techniques.

Although simple, the baseline was found hard to surpass by the CLEF’ 2018 runs,
both in understandability (uRBP, uRBPgr) and topical relevance (P@10, NDCG@10, MAP)
assessment. Only run3 was able to achieve similar scores in uRBP, uRBPgr, and P@10 and
presented minor improvements in NDCG@10 and MAP; all the other runs failed to exceed
the baseline.

By contrast, our ranker RTHEF_med exceeded the baseline in all measures with im-
provements of 2.71% in uRBP, 3.47% in uRBPgr, 1.09% in P@10, 5.37% in NDCG@10, and
2.86% in MAP. Although the improvements were around or under 5%, the built ranker was
able to improve the baseline, which, as seen by the CLEF’ 2018 runs, was very difficult to
surpass. These positive results further prove that the proposed approach is efficient when
compared to advanced techniques. Moreover, the obtained results demonstrate that, even
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if the existing baseline is strong and hard to exceed, it is possible to build a CHIR system
that surpasses it both in terms of understandability and topical relevance.

Further, we compared our method against contemporary competitors in more recent
eHealth-related tasks as outlined in CLEF 2024 [40]. The analysis focused exclusively on
Mean Average Precision (MAP) results, as this is the only metric reported for the 2024 task.
Across all evaluation batches, the median MAP among all participating teams was 0.1311,
while the top MAP score was 0.2710; comparatively, our method attained a MAP score
of 0.266, placing it close to the highest-performing method. This performance indicates
that our approach is competitive with state-of-the-art systems in the eHealth domain,
as it is only 0.005 points below the top score. Furthermore, our method significantly
exceeds the median performance by 0.135 points, highlighting its efficacy relative to the
participating teams [40,41]. These results suggest that our method not only demonstrates
robust performance but also contributes in a meaningful way to advancing the state of the
art in eHealth-related tasks.

6. Conclusions and Future Work

This paper explored an f-LTR approach to Learning to Rank and its application in the
area of consumer health retrieval. The proposed f-LTR approach demonstrated improved
results compared to the standard method while utilizing significantly fewer features.
Based on the observed results, it can be concluded that the f-LTR approach is an effective
solution for enhancing topical relevance and exhibits superior performance concerning
understandability assessment in the domain of consumer health services.

The research explored in this paper can be improved and extended in several ways in
the future. One valuable finding of this research is that the f-LTR approach is more effective
than using all joined features. It would be worthwhile to experiment with additional
document-dependent features, such as linguistic information, readability scores, and statis-
tics on medical terminology. Additionally, exploring query-dependent features, such as
consumers’ readability levels or assessments of their understanding of health information,
could yield valuable insights.

Another limitation that should be noted is that this study does not propose a frame-
work for simultaneously optimizing both the relevance and understandability aspects.
There is no fusion between the understandability and relevance results, and they are eval-
uated separately. There may be a conflict between relevance and understandability, and
developing a framework to balance these two objectives will be a key focus of future work.
We plan to explore multi-objective optimization techniques that can handle such trade-offs,
to address the balance between relevance and understandability.

Author Contributions: H.Y.: conceptualization, methodology, data curation, validation, funding
acquisition, supervision, writing—original draft. T.G.: methodology, formal analysis, validation,
software, resources, funding acquisition, writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research work was supported by Henan Province Key Scientific Research Project
Plan for Higher Education Institutions from Henan Provincial Department of Education, namely, the
research on the learning-to-rank algorithm by integrating field information and attention mechanism
(grant number 24A520060).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed for this study are publicly accessible.

Conflicts of Interest: The authors declare no conflicts of interest.



Information 2024, 15, 695 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

CHS Consumer health search
CHIR Consumer health information retrieval
LTR Learning to Rank
f-LTR Field-level Learning to Rank
AP Average Precision
IDCG Ideal Discounted Cumulative Gain
IR Information retrieval
MAP Mean Average Precision
NDCG Normalized Discounted Cumulative Gain
NIH National Institute of Health
AMA American Medical Association
SMOG Simple Measure of Gobbledygook
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