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Abstract

Background: The CAMS Regional System provides crucial, reliable pollen forecasts for
allergenic pollen types. These robust predictions support the scientific and medical com-
munities, aiding in the diagnosis, evaluation, and protection of allergic populations. So,
the main goal of this study was to evaluate which model, or models best represent and
simulate the olive and grass pollen data of the Évora region in the years 2021 to 2024.
Results: The results showed that there are statistically significant differences between the
data of the models and between the years for each of the pollen types considered. These
differences were not just in pollen concentrations; they also appeared in characteristics of
the pollen season, like its duration, maximum peak concentration, start date and exposure
level. According to Taylor diagrams, applying moving average for normalized data, it
was shown that MOCAGE best represents and simulates olive concentration data. For
grass pollen SILAM, EURAD-IM and MOCAGE were the best performers. Conclusions:
CAMS data can enhance the quality of life of the allergic population, as well as support the
scientific and medical community to improve, assist and create mitigation measures that
reduce exposure and consequently significantly reduce the occurrence of allergic disease.

Keywords: olive pollen; grass pollen; forecast models; observational data

1. Introduction
During the reproduction period, seed plants produce and release biological particles,

pollen, into the atmosphere. Pollen is the male gametophyte that contains allergens in its
constitution [1]. Anemophilous plants, which rely on wind for pollen dispersal, release
large amounts of pollen into the atmosphere, an adaptation to ensure that reproduction is
successful. As a result, humans are accidentally exposed to large amounts of pollen, which
can cause respiratory problems in susceptible individuals. Upon exposure, susceptible
individuals’ immune systems recognize pollen allergens as foreign, initiating Type I hy-
persensitivity reactions, or allergic sensitization [2,3]. Repeated exposure to the allergen
may subsequently elicit an allergic response [2,3]. Spring is the peak pollination period
for most species, and it is also when most allergic individuals experience symptoms like
allergic rhinitis (commonly known as “hay fever” or pollinosis) or, in more severe cases,
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allergic asthma [3,4]. The increasing trends of pollen allergies are becoming worrying,
and the scientific community has made many efforts to predict pollen concentrations in
the air, especially in industrialized countries, this is because the synergy between pollen
and air pollution can exacerbate asthma and other allergic manifestations [5,6]. Different
studies report that the combined exposure of pollen together with air pollutants, mainly
from anthropogenic actions, can amplify allergic disease, increasing the inflammatory
response [7,8]. The olive tree is a long-lived tree that humans have cultivated for over
5000 years to obtain products such as olive oil, fruit and wood [9]. It is widely cultivated
in the Iberian Peninsula, and there are more than 1500 varieties distributed throughout
the world [10]. Despite its considerable socio-economic interest, the olive tree produces
pollen that is a leading cause of respiratory allergy, particularly in areas with extensive
olive cultivation. The higher incidence of allergy to olive tree pollen occurs during the
period of its pollination, May to June [11]. The prevalence of these allergies is influenced
by both the concentration of pollen in the air and the length of time individuals are ex-
posed [12,13]. To mitigate pollen-related respiratory allergies, one of the main strategies is
to prevent exposure to the allergen. This critically depends on having accurate information
or forecasts of daily pollen concentrations [14]. Grass pollen belongs to the Poaceae family,
which includes 12,000 species classified in 771 genera, belonging to 12 subfamilies [15].
Most of the species that belong to this family are annual or semi-annual [16], and many
of them are important crops such as wheat, rice, corn, oats, rye, barley, etc. In addition
to those considered cultivated, wild grasses cover 20% of the earth’s surface [16]. The
pollination period occurs between April and June, with May being the one with high con-
centrations, with the wind being the disseminating agent of pollen in the atmosphere. As
with olive pollen, the allergic sensitization associated with grass pollen is quite significant
and varies from country to country. It is estimated that 20% of the population in Europe
has allergic sensitization to this pollen type [17]. Currently, the Copernicus Atmosphere
Monitoring Service (CAMS) European air quality forecast service provides observations
on the composition of the atmosphere, with the main objective of monitoring air quality,
greenhouse gas emissions, aerosol concentrations, and air pollutants [18]. This service
provides a multi-model hourly forecast, updated daily and freely available, making CAMS
pollen data especially useful for allergy monitoring and alerts. Furthermore, these datasets
also provide information about other pollutants that can worsen respiratory symptoms
when combined with high pollen concentrations. Recent studies highlight the strong need
for accurate predictions and reliable data. This information is crucial, not only as a diag-
nostic aid for doctors but also for guiding mitigation and protection measures for both the
allergic and general populations [19]. The aim of this study is to evaluate existing CAMS
service prediction models for daily olive and grass pollen concentrations by comparing
them with observational data from the pollen station in the Évora region. To achieve this,
data from prediction models between 2021 and 2024 were obtained. The analysis focused
on the differences between these models and a comparison of each model with Évora’s
observational data.

2. Materials and Methods
2.1. Study Area

The Évora region, located in the South of Portugal (38◦34′21.5′′ N, 7◦54′26.45′′ W), is
characterized as an urban zone. In terms of mainly vegetation, Évora landscape features
scrublands, shrubs, pastures and forests dominated by holm oak (Quercus rotundifólia L.)
and cork oak (Quercus suber L.). Olive cultivation is predominant in the Alentejo region, and
it recent years, there has been notable increase in planting of olive and almond groves near
the city and extending over kilometers. The southernmost area of Évora, approximately
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58 km away, has the largest number of olive grove hectares, reaching 74,059 ha (Alqueva
Agricultural Yearbook 2024) (www.edia.pt, 25 September 2025). Surrounding the pollen
monitoring station, which is part of the Pólen Alert network (https://lince.di.uevora.pt/
polen/, 25 September 2025), lies the public garden, where there is higher floral diversity.
Species of the Cupressaceae, Sapindaceae, and Taxacecae families, along with several
species of the Poaceae family and exotic species, for example, can be found.

2.2. Aerobiological Data

Airborne olive and grass pollen were collected with Hirst-type volumetric spore
traps [20] from 2021 to 2024 with a regional representation of >25 km [21]. The sampler
was placed at the Évora Atmospheric Sciences Observatory (EVASO), located on the roof-
top of the Science and Technology School of the University of Évora (38◦34′ N, 7◦54′ W)
about 10 m above the ground. Slides were analyzed daily under a light microscope
(400× magnification), and the results were expressed as pollen per cubic meter of air
(Pollen/m3) according to the European norm EN16868:2019 and [22]. For succinctness, this
observational data will be referred to as Data_Station_Evora.

2.3. Model Overview

CAMS is a component of the European Earth observation program, created to design
and meet political and scientific needs of interest on environmental issues such as climate
change, air pollution, as well as the occurrence of volcanic eruptions. It is a service that
provides daily, near-real-time analysis and forecasting of atmospheric composition on a
global scale. CAMS also produces a global reanalysis dataset for greenhouse gases and
aerosol concentration [23]. CAMS provides several air quality and atmospheric chemistry
models. To obtain data on olive and grass pollen concentrations, the CAMS European
air quality forecasts were accessed through the Climate Data Store (CDS) API using the
libraries. Specifically, we retrieved forecast data from a suite of 12 chemical transport
models: CHIMERE, DEHM, EMEP, EURAD-IM, GEM-AQ, LOTOS-EUROS, MATCH
(grass pollen not available), MINNI, MOCAGE, MONARCH and SILAM. The data request
was restricted to the 00:00 UTC forecast run with a lead time of 0 h, representing the
immediate forecast conditions (nowcast), covering the period from 1 January 2021 to
31 December 2024. The data was downloaded in NetCDF format for subsequent processing.
A short description of each model is provided below.

2.3.1. CHIMERE

CHIMERE is a multi-scale chemical transport model (CTM) developed by CNRS [22]
and further developed by INERIS. It has been in use since the early 2000s [24,25] and is
widely used for air quality forecasting in France. CHIMERE operates at spatial resolutions
ranging from 100 km to 1 km, from hemispheric to urban scales.

2.3.2. DEHM

DEHM (Danish Eulerian Hemispheric Model) is a large-scale, three-dimensional
Eulerian CTM developed in Denmark for studying atmospheric chemical transport in
the Northern Hemisphere. Originally developed in the 1990s to study the transport of
sulfur compounds in the Arctic [26,27], DEHM continues to be used for long-range pollu-
tion studies.

2.3.3. EMEP

EMEP MSC-W is a chemical transport model developed by the Norwegian Meteoro-
logical Institute as part of the European Monitoring and Evaluation Programme (EMEP).

www.edia.pt
https://lince.di.uevora.pt/polen/
https://lince.di.uevora.pt/polen/
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Operational since 2006, the model supports studies of chemical mechanisms and aerosol
dynamics across Europe.

2.3.4. EURAD-IM

EURAD-IM (European Air Pollution Dispersion—Integrated Model) is a mesoscale
Eulerian CTM that processes meteorological data and anthropogenic emissions through
CEP and PREP preprocessing systems. It simulates key processes such as advection,
diffusion, chemical transformation, deposition, and sedimentation of tropospheric gases
and aerosols.

2.3.5. GEM-AQ

GEM-AQ (Global Environmental Multiscale model with Air Quality) is an online
coupled meteorology–chemistry model developed at Environment and Climate Change
Canada [28]. GEM-AQ integrates air quality components directly into the GEM weather
model and is used operationally for air quality forecasting in countries like Poland.

2.3.6. LOTOS-EUROS

(LOng Term Ozone Simulation—EURopean Operational Smog) is a three-dimensional
CTM designed to simulate atmospheric pollution in the lower troposphere. It is widely
applied in studies of pollutant emissions, particularly nitrogen dioxide (NO2), ozone (O3),
and particulate matter [29].

2.3.7. MATCH

MATCH (Multi-scale Atmospheric Transport and Chemistry model) is a flexible CTM
developed to accommodate various meteorological inputs with different spatial resolutions
and projections [30].

2.3.8. MINNI

MINNI (National Integrated Modelling system for air quality in Italy) is an integrated
evaluation system used to support air quality policies at national and regional levels. It
includes the three-dimensional Eulerian CTM FARM (Flexible Air quality Regional Model),
which handles the transport and removal of air pollutants.

2.3.9. MOCAGE

MOCAGE (Modèle de Chimie Atmosphérique à Grande Échelle) is a multiscale 3D
CTM developed since the 2000s for both research and operational applications. It supports
a wide range of uses including chemical weather forecasting, tracking accidental releases,
evaluating transboundary pollution, and assimilating satellite observations.

2.3.10. MONARCH

MONARCH (Multiscale Online Non-hydrostatic AtmospheRe Chemistry model) is
an online coupled system for regional and global chemical weather and climate predic-
tion [31,32]. Developed at the Barcelona Supercomputing Center, it integrates meteorologi-
cal dynamics with gas and aerosol chemistry for high-resolution applications.

2.3.11. SILAM

SILAM (System for Integrated modeLling of Atmospheric composition) is an Eulerian
chemical transport model with a transport module based on the [33] advection scheme,
modified by [34], and an adaptive vertical diffusion algorithm [35]. SILAM includes a
suite of complementary tools such as weather preprocessing, input/output converters,
projection, and interpolation routines.
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2.4. Main Pollen Seasons

The model data were compared with the observational data from the Évora station
(obs). For both datasets, the main pollen season was calculated, determined by the logistic
model developed by [36] and modified by [37]. This method is based on fitting a non-
linear logistic regression model to the daily accumulated curve for each pollen type [36].
Parameters such as start_date, end_date, SPIn values, Duration Pollen Season (PSD) and
sm.ps were determined based on asymptotes when pollen amounts are stabilized on the
beginning and end of the accumulated curve. The days of low, moderate, high, and very
high-risk levels were calculated from the limits imposed by [38] for olive pollen. For grass
pollen, the days of low, moderate and high-risk levels were calculated according to the
Spanish Aerobiology Network [39].

2.5. Statistical Analysis

Statistical analyses were used to study the relationship between the prediction models’
data and pollen data of Évora Station. The data does not follow a normal distribution
by Shapiro–Wilk test at a significance level of 5%. Descriptive statistics were used to
characterize the data of each model and the data from the pollen station in Évora for the
years 2021–2024. Parameters such as mean, median, standard deviation, maximum, and
minimum were computed. Due to the high daily variability of pollen data, a 7-day moving
average filter was applied to both the observational and modelled datasets, enabling a
more accurate comparison of the temporal evolution of pollen levels. Taylor diagrams and
scores were plotted to compare the filtered time-series [39]. The Taylor diagram offers a
concise way to visualize how well a model agrees with a reference dataset by combining
three key statistical measures into a single plot. The correlation coefficient is represented
by the angle from the radial distance, indicating how closely the model’s pattern follows
that of the observations. The vertical axis from the origin corresponds to the model’s
standard deviation, allowing a direct comparison of variability against the reference. And
the horizontal axis is the mean values.

3. Results
3.1. Characterization of Olive and Grass Pollen Season of Évora Station

Marked differences can be observed in pollen levels and pollen season characteristics
(start date, duration, peak maximum and exposure level) for both olive and grass pollen
across the analyzed years (Figure 1).

 

Figure 1. Curve of olive (a) and grass (b) Main Pollen Season during the years 2021–2024.
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Comparing the years, we observed that the main pollen season of the olive pollen
season in the region of Évora begins at the end of April, with its end in different pe-
riods, as shown in Table 1. However, pollen concentrations, from year to year, were
different. The year 2021 recorded the highest pollen concentrations, registering a SPIn
value of 10,304 pollen/m3 compared to 2022, in which a lower SPIn value was obtained
(876 pollen/m3). Regarding the duration of pollen season, for both years, 2021 and 2022, the
same duration of the pollen season was observed; however, during the years 2023 and 2024,
the duration of the season was significantly lower, with only 15 days. The peak maximum
of concentration day was highest in 2021, with 1212 pollen/m3 compared to the other years.
However, in 2024 the peak was recorded earlier, on 18 April (Figure 1 and Table 1).

Table 1. Main pollen season of olive and grass pollen, with parameters such as start date, end date,
PSD, SPIn, peak value and peak date determined and represented.

2021 2022 2023 2024

Olive
pollen

Start date 26 April 26 April 23 April 12 April

End date 01 June 31 May 07 May 26 April

PSD, number of days 37 36 15 15

SPIn, pollen/m3 10,304 876 4198 2055

Peak value 1212 174 856 900

Peak date 08 May 11 May 03 May 18 April

Low (<20 pollen/m3), number of days 13 18 0 4

Moderate (20–50 pollen/m3), number of days 2 6 5 2

High (51–100 pollen/m3), number of days 5 3 2 6

Very high (>101 pollen/m3), number of days 17 2 8 3

Grass
pollen

Start date 28 April 11 April 11 April 12 April

End date 13 June 15 June 29 May 25 June

PSD, number of days 47 66 49 75

SPIn, pollen/m3 12,282 1890 1242 1787

Peak value 984 144 171 245

Peak date 20 May 11 May 29 April 26 May

Low (1–25 pollen/m3), number of days 4 32 14 20

Moderate (26–50 pollen/m3), number of days 1 9 11 7

High (>50 pollen/m3), number of days 42 13 8 11

For grass pollen, the start date was consistent in 2022 and 2023. In 2024 we observed a
delay of only one day. We observed that 2021 had higher pollen concentrations compared
to the other years, and the peak value followed the same trend, being highest in 2021.
However, when looking at the length of the pollen season, 2021 was the year with the
lowest number of days, in contrast with 2024, which recorded 75 days (Table 1). Regarding
the risk levels, and in the case of olive pollen, the year 2021 presented 17 days of very high
risk (>100 pollen/m3) compared to the other years. Otherwise, the year 2022 was the one
with 18 days of low risk (<20 pollen/m3). The same is observed for grass pollen; the year
2021 had the highest number of high-risk days (42 days) and the year 2022 had the highest
number of days with low risk of exposure (32 days) (Table 1).
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3.2. Characterization of Olive and Grass Pollen Season of Prediction Models

The different models show high inter-model and inter-year variability (Figures 2–4).
Regarding the CHIMERE model, the forecasts of daily pollen concentrations were higher
in the year 2024, with a total pollen of 521 pollen/m3. The main pollen period varied
significantly between years, highlighting the 2021 season as exceptionally late, with the
peak of maximum concentration on 9 June. In the DEHM model, there is a large discrepancy
between the year 2022 and the other years, reaching in this year a peak concentration of
5103 pollen/m3 on 17 May. For the EMEP model, concentrations reached a maximum value
of approximately 8 pollen/m3 in all years, with 2024 recording the highest concentrations.
For the MOCAGE model, 2024 demonstrated the highest pollen concentrations, reaching
2147 pollen/m3. In contrary, in the years 2022 and 2023, a concentration of less than
200 pollen/m3 was recorded. In the GEM-AQ model, in 2021 the pollen concentration
forecasts only reached 100 pollen/m3. The years 2022 and 2023 had a very short season
duration with concentrations of approximately 800 pollen/m3. For the MATCH model,
only olive pollen data for the years 2021 and 2022 was available. For these years, the highest
pollen concentrations were obtained in 2022. For the LOTOS and SILAM models, the year
2023 showed the lowest concentrations. For the MINNI and MONARCH models, data
was only available for 2023 and 2024, with the year 2024 consistently showing higher daily
pollen forecasts (Figures 2–4 and Table S1).

Regarding grass pollen, between the years 2022 and 2024, it was observed that their
minimum variability was at the beginning of the season when comparing the models, except
for the MINNI and SILAM models, for which it was not possible to calculate the seasons
in the years 2022 and 2023, and the MONARCH model, which showed an early start date
of the pollen season (19 February). For the year 2022, the predicted pollen concentrations
indicated that the EURAD-IM model had the highest SPIn value (1285 pollen/m3), while
the MONARCH model recorded the lowest SPIn value (5 pollen/m3) (Table S2). The EMEP
model pollen season had the longest duration, with a total of 138 days, followed by the
LOTOS-EUROS and CHIMERE models, with 115 and 110 days, respectively, while the
shortest season was detected in the MONARCH model, with 36 days. The maximum peak
concentration was highest in the EURAD-IM model (146 pollen/m3), while the EMEP
model recorded maximum concentrations of only 1 pollen/m3 (Figure 4). For 2023, most
models indicated the start of the pollination season at the beginning of April. Exceptions
were the GEM-AQ and MOCAGE models, for which the start of the season was recorded
on 20 May and 27 April, respectively. Regarding SPIn, the EURAD-IM model showed the
highest concentration value, with 783 pollen/m3, followed by the GEM-AQ and MOCAGE
models, with 237 and 212 pollen/m3, respectively. The EMEP model consistently recorded
the lowest pollen concentration and the lowest maximum peak concentration (Figures 2–4).
For 2024, only the EMEP model showed results; in this model, the pollination season began
on 30 April and ended on 30 May, with total concentrations of 40 pollen/m3. The maximum
peak concentration was only 7 pollen/m3 (Figures 2–4). In general, when we compare the
outputs of the models for both pollen types, we observe that pollen concentrations are
lower for grass pollen (Figures 2–4 and Table S2).
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Figure 2. Pollen daily raw timeseries of the CHIMERE, DEHM, EMEP, MOCAGE models.

Regarding olive pollen exposure levels, the MATCH and EMEP models presented
only low-risk days in 2021, 45 and 53 days, respectively. For the year 2022, only the EMEP
and CHIMERE models had low-risk days, with 68 days and 32 days, respectively. For
the year 2023, in addition to those mentioned above, the MINNI model also showed only
low-risk days (94 days), and for the year 2024, the EMEP and DEHM models showed
31 and 48 days, respectively (Tables S3–S6). The remaining models, considering all the
years under analysis, presented concentrations between low, moderate, high and very high,
reaching concentrations above 100 pollen/m3 (Tables S3–S6).

Considering grass pollen, most models presented only low risk levels, with concentra-
tions between 1 and 25 pollen/m3. Exceptions were detected in the EURADIM, GEMAQ
and MOCAGE models, in which concentrations reached low, moderate and high, with
concentrations above 50 pollen/m3 (Tables S4–S6).
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Figure 3. Olive (black line) and grass (red line) pollen daily raw timeseries of the EURAD-IM,
GEM-AQ, MATCH, LOTUS models.

Figure 4. Olive (black line) and grass (red line) pollen daily raw timeseries of the SILAM, MINNI,
MONARCH models.
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3.3. Comparison Between Pollen Observations and Model Data

In the comparative analysis between the observational data (Data_Evora_Station) and
the prediction models selected for this study, it was observed that, depending on the year
and pollen type, some models show significant differences not only in the daily pollen
concentrations but also in the PSD, peak maximum concentration, start date and end date
for both pollen types.

Regarding the comparison of the 7-day moving average filtered timeseries of olive
pollen (Figure 5a), model performance is generally weak. Most models exhibit low cor-
relations with observations and underestimate the normalized standard deviation. The
best-performing model is MOCAGE, with a score of 0.22, suggesting a modest ability to
capture observed variability. Other models, such as CHIMERE, EURAD-IM, and LOTOS-
EUROS, follow closely but still show limited skill. At the lower end of the performance
spectrum are MINNI and DEHM, which yield near-zero scores and low correlations, indi-
cating poor agreement with observations.

Figure 5. Taylor diagrams depicting model scores compared to the Évora station (Obs) for olive (a) and
grass (b).

In contrast, the performance improves noticeably for grass pollen (Figure 5b). Several
models achieve higher correlations and more realistic representations of standard devia-
tion. SILAM and EURAD-IM show the strongest performance, both scoring 0.33, followed
closely by MOCAGE and DEHM. These models demonstrate a moderate capacity to repli-
cate the observed seasonal pattern and variability. Conversely, MINNI and MONARCH
yield negative scores, reflecting a poor fit to observed data and suggesting potential phase
mismatches or over-smoothing. Hence, pollen simulations of grass are more consistent
with observations than those of olives. Further, the application of a 7-day moving aver-
age highlights the broader temporal trends and facilitates a more robust assessment of
model performance.

Regarding PSD (Figure 6) and peak maximum concentration (Figures 7 and 8) between
model data and observational data, it was observed that for olive pollen in the year
2021, the duration of the season varied in the models and Data_Station_Evora, between
approximately 20 days and 80 days. In Data_Station_Evora the duration of the main pollen
season was approximately 40 days, a value that was also observed for MATCH and LOTOS-
EUROS. The models that diverged the most were CHIMERE and SILAM. As far as the year
2022 is concerned, the length of the season in Data_Station_Evora was like most models
(between 35 and 45 days), with the models that moved the furthest away being EMEP and
MATCH (Figure 6a).
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Figure 6. Start-date, end-date and PSD, number of days of models and Data_Station_Evora pollen
season. (a) Olive pollen season and (b) grass pollen season.

In 2023, the pollen season of Data_Station_Evora was particularly short, with a length
of 15 days, approaching the LOTOS-EUROS model; however, on the contrary, the EURAD-
IM, DEHM, MINNI, MOCAGE, CHIMERE and EMEP models departed significantly, as
they had a season duration of more than 60 days. The season length for Data_Station_Evora
in 2024 was like that of 2023; however, the season length for models did not exceed 60 days
(Figure 6a). Regarding start date and end date of the pollen season of the prediction models
compared to Data_Station_Evora, it was observed that in the year 2021, for olive pollen,
the start date of the pollen season occurred between days 100 and 160, with the EMEP and
CHIMERE models being the ones that strayed farthest from Data_Station_Evora. The pollen
season of the EMEP model started earlier, while it started later for CHIMERE. The MINNI
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model was the one that most closely resembled the Data_Station_Evora data. For the year
2022, the times of the models began at about the same period. The model season started later
(approximately on the 140th day of the year). As far as the end of the season is concerned,
most of the data resembles Data_Station_Evora, except for the EMEP model, which departs
significantly. The year 2023 is similar, as well as the start date of the 2022 season. The
same is not true for the end date of the season, when there is a great dispersion over a
certain period of the year. For the year 2024, the start date of the pollen season calculated
from the prediction models showed that the MOCAGE model is the one that moves farther
from the beginning of the season of Data_Station_Evora; on the contrary, the SILAM and
MINNI models are those that are closest to the period of the beginning of the observational
data. Considering the end date of the season, Data_Station_Evora is isolated, and the
models LOTOS, SILAM, MONARCH, MINNI, CHIMERE, DEHM, MOCAGE, EURAD-
IM, MATCH and EMEP showed results closer to each other (Figure 6a). Regarding the
maximum peak concentration, it was found that in most models and Data_Station_Evora
for all years, the maximum peak concentration did not exceed 1200 pollen/m3, except for
the DEHM model for the year 2022, in which the peak concentration was approximately
5000 pollen/m3. Like Data_Station_Evora in terms of peak maximum concentration, we
have the MOCAGE model in 2021 and the GEM-AQ model in 2023 and 2024 (Figure 7).

 

Figure 7. Olive pollen peak maximum of concentration (m3) at 2021 to 2024.

Regarding grass pollen, it was observed that, in the year 2022, the duration of the
season in Data_Station_Evora was 63 days, like the MONARCH model. The CHIMERE and
EMEP models were the ones that strayed the furthest from this value. The same pattern
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was observed for the year 2023, in which the CHIMERE model had a 140-day pollen season
duration and Data_Station_Evora had only 45 days. In both years mentioned above, there
is a disparity in the length of the season. For the year 2024, the length of the season is more
homogeneous, with the MOCAGE model being the one that comes closest to the calculated
season length for Data_Station_Evora and once again the EMEP model to differentiate itself
(Figure 6b). Considering start date and end date, the data showed that the start date of the
seasons was highly variable over the years. For the year 2021, the start date of the seasons
was similar between the models and Data_Station_Evora. The same is not observed at
the end of the pollen seasons, in which there was a high temporal dispersion along the
established models. For the year 2022, the DEHM model is the one that resembles both
the beginning of the season and the end of it. The same occurs for the LOTOS model at
the end of the pollen season. The pollen season of the MONARCH model was finished
earlier, and the GEM-AQ model showed a later end to the seasons. For the year 2024, the
pollen season had an earlier start when compared to the Data_Station_Evora data; however,
for the other models there are no significant differences, and, like the observational data,
Data_Station_Evora, the pollen season began in the period between days 80 and 110 and
ended between days 180 and 210 (Figure 6b).

 

Figure 8. Grass pollen peak maximum of concentration (m3) at 2022 to 2024.
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Regarding the peak maximum concentration, it was observed that, for the year 2022,
the peak maximum concentration was 150 pollen/m3 in the observational data. The
same was observed for the EURAD-IM model. Concentrations lower than 50 pollen/m3

were observed in the EMEP, DEHM, MOCAGE, MONARCH and GEM-AQ models. For
the year 2023, the maximum peak concentration for Data_Station_Evora was less than
50 pollen/m3, the same as observed in the GEM-AQ model. In the year 2024, the peak
maximum concentration was significantly different from the models, with a concentration
of 250 pollen/m3 for data of less than 150 pollen/m3 in the models (Figure 8).

4. Discussion
High concentrations of olive and grass pollen were detected in the atmosphere of

Évora during the years 2021–2024 [40]. Our results showed, for olive and grass pollen,
differences between the years under study, both in terms of pollen concentrations, duration
of pollen season, peak maximum concentration and even the beginning and end of the
season. In fact, it is known so far, and although it has not been the subject of this study, that
meteorological parameters, particularly temperature and precipitation, have a direct effect
on plant phenology with a potential impact on pollen concentrations [17,41–43]. Tempera-
ture positively influences daily pollen concentrations and precipitation negatively [41,44].
Regarding the length of the pollen season, it has been found that temperature and precipi-
tation are preponderant factors in determining the period in number of days of the pollen
season [43–46]. The same factors are important determinants that influence the beginning
of the season [43–46]. The prediction of pollen concentration occurs not only to improve
the living conditions of the population, particularly the allergic population, as it allows
the allergic population to minimize exposure, but also to alert possible decisions in the
field of public health, agriculture and climate change [47]. Prediction models developed
to predict airborne pollen concentrations have made significant advances in recent years.
Once they have become available to the entire scientific community, with easy access to
concentration data, it will be possible to validate them, which contributes to increasing
the quality of pollen predictions. To determine which model is most in line with the ob-
servational results from our station, a comparison was performed. It is known that the
pollen prediction offered by the CAMS service helps in pollen monitoring, and the models
that belong to this service present differences in their characteristics and approaches [22].
In fact, each model is different, not only in the input used, but also in the settings or in
the data processing method [23–35,48,49]. Daily forecasts are carried out with a spatial
resolution of 0.1◦, approximately 10–20 km, and each model uses its own data assimilation
system. Only the variables related to atmospheric pollutants, such as NO, NO2, SO2, O3

and particulate matter (PM2.5, PM10 and dust) are regularly validated through in situ
observations. Particularly for pollen data, it is possible that, for this reason, discrepancies
become pronounced and significant when comparing absolute concentrations between
model-generated data and observational data [22,49]. Furthermore, the observational data
were obtained using a standardized methodology, in accordance with the European stan-
dard [50]. In fact, the MOCAGE model is representative for olive and grass pollen, and
the SILAM and EURAD-IM models have been shown to be valid to represent grass pollen
concentrations. In addition to the daily pollen concentrations throughout the pollen season,
another important parameter is the beginning of the pollen season, not only because it
has effects on diagnosis, but also on treatment. In this way, this information is also very
useful for forecasting models, to contribute to alerting the population, particularly the
allergic population. The ability of each model to predict the beginning of the pollen season
can result in significant modeling errors [51], and in addition, the ability of the model to
reproduce the beginning of the season varies from year to year. In general, the models
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studied for olive and grass pollen show heterogeneity when we consider the beginning
and end of the pollen season, compared to the observational data, since there are models
starting the season earlier and others later. In fact, studies have been carried out to calibrate
prediction models, i.e., it has been shown that the specific pollen types evaluated by models,
and compared with observational data from several stations, showed a difference of days
compared with the observation data (taken as control). Location is also an important
factor [52]. The beginning of the season occurred earlier when considering the regions of
Western Europe compared with regions of Southern Europe and Northern Europe [49,52].
The prediction of pollen concentrations and the specific parameters of pollen seasons for
each pollen type are important information with direct implications in several sectors of
activity, not only around public health, but also in agriculture and climate change. The
relevance of pollen prediction, creation of prediction models or even the tuning of existing
models has been a concern in recent years, since the increase in the occurrence of respiratory
allergic diseases has been notorious, particularly in a context of climate change, which can
change the pattern of distribution and dissemination of pollen, significantly affecting the
allergic population [14].

5. Conclusions
CAMS data can improve the quality of life of the allergic population, as well as support

the scientific and medical community to improve, assist and create mitigation measures that
reduce exposure and consequently significantly reduce the occurrence of allergic disease.
The results presented in this study contribute significantly to an evaluation of the quality
of the predictions of the CAMS models for the region of Évora. However, when we analyze
and compare the predictions of the CAMS models with the observational data of the station,
we find that there are specific models that approximate the observational data of the station
for pollen concentrations: the MOCAGE model for olive pollen, and the EURAD-IM,
SILAM and MOCAGE models for grass pollen. For the other characteristics of the seasons,
such as the duration, beginning and end and even peak maximum concentration, there is a
lot of disparity. In any case, we can say that the MOCAGE model is the most suitable for
predicting pollen concentrations for the region of Évora and thus enables a better response
for the population.
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risk levels (in days) for olive and grass pollen.
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