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Évora 2025
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Modelação e Predição de Eventos Raros: um estudo comparativo 

 

Resumo  
A modelação de eventos raros constitui um desafio central na ciência de dados aplicada 

à segurança rodoviária. Este estudo, centrado no distrito de Setúbal (2016–2023), 

analisou sinistros registados pela GNR, complementados com variáveis meteorológicas 

e infraestruturais. Testaram-se modelos estatísticos e de machine learning (Regressão 

Logística, Firth, Random Forest, XGBoost, C5.0 e Naive Bayes), avaliados por PR-AUC, 

ROC-AUC, 𝐹1 e Brier score. Para mitigar o desequilíbrio extremo (≈2% casos graves), 

aplicaram-se técnicas de oversampling (ROSE e SMOTENC) apenas no treino, evitando 

data leakage, e definiu-se o ponto de corte pela maximização do 𝐹2-score. O XGBoost e 

a Logística de Firth mostraram melhor compromisso entre sensibilidade e calibração, 

com AUC≈0,88. Conclui-se que a combinação de reamostragem adequada e calibração 

criteriosa melhora a previsão de sinistros graves, oferecendo suporte à definição de 

políticas de prevenção baseadas em evidência. 
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Modelling and Prediction of Rare Events – a comparative study 

 

Abstract (English) 

Modelling rare events remains a central challenge in data science applied to road safety. 

This study focuses on severe road accidents in the district of Setúbal (2019–2023), using 

data from the National Republican Guard (GNR), complemented with meteorological 

and infrastructural information. Several statistical and machine learning models (Logistic 

Regression, Firth, Random Forest, XGBoost, C5.0 and Naive Bayes) were evaluated 

through PR-AUC, ROC-AUC, F₁ and Brier score metrics. To address the strong class 

imbalance (≈2% severe accidents), oversampling techniques (ROSE and SMOTENC) were 

applied only to the training set, avoiding data leakage, and thresholds were defined by 

maximising the F₂-score. The XGBoost and Firth logistic models achieved the best 

balance between sensitivity and calibration (AUC≈0,88). Results demonstrate that 

combining appropriate resampling with careful calibration enhances the prediction of 

severe road accidents, supporting evidence-based decision-making in road safety 

policies. 
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Glossário 
ANSR - Autoridade Nacional de Segurança Rodoviária 

AUC - Área sob a curva, medida global da capacidade discriminativa de um modelo 

Brier score - Erro quadrático médio entre as probabilidades previstas e os resultados 

observados 

IC95% - Intervalo de Confiança a 95% 

COVID-19 - Doença causada pelo coronavírus SARS-CoV-2 

df - Graus de liberdade 

FN - Falsos Negativos 

FP - Falsos Positivos 

F₁-score - Média harmónica entre precisão e sensibilidade, atribuindo igual peso a ambas 

FG - Feridos graves 

FL - Feridos ligeiros 

GAM – Modelos Aditivos Generalizados (Generalized Additive Models) 

GEE - Equações de Estimação Generalizadas (Generalized Estimating Equations) 

GIVF - Fator de inflação da variância generalizado (Generalized Variance Inflation Factor) 

GLM - Modelos Lineares Generalizados (Generalized Linear Models) 

GLMM - Modelos Lineares Generalizados Mistos (Generalized Linear Mixed Models) 

G-mean - Média geométrica entre sensibilidade e especificidade 

GNR - Guarda Nacional Republicana 

IGR - Índice de gravidade (número de mortos por 100 acidentes com vítimas) 

KDE - Estimativa por núcleo (Kernel Density Estimation) 

M/FG - Mortes e/ou feridos graves 

ML - Machine Learning 

MPL - Modelo de Probabilidade Linear 

MV - Máxima Verosimilhança 

NB - Naive Bayes 

OOF - Out-of-Fold (fora da amostra de treino em validação cruzada) 

PR - Precisão (Precision) 

PR-AUC - Área sob a curva Precisão–Sensibilidade 

RF - Random Forest 
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ROC - Receiver Operating Characteristic 

ROC-AUC - Área sob a curva ROC 

ROSE – Random Over-Sampling Examples 

ScFG - Sinistro com feridos graves 

ScV - Sinistro com vítimas 

ScVM - Sinistro com vítimas mortais 

SMOTENC - Synthetic Minority Over-sampling Technique – Nominal Continuous 

TN - Verdadeiros Negativos 

TP - Verdadeiros Positivos 

VIF - Fator de inflação da variância (Variance Inflation Factor) 

XGBoost - Extreme Gradient Boosting 
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1. Introdução 
A segurança rodoviária continua a ser uma preocupação central para os governos, 

autoridades de trânsito e sociedade em geral. Entre os vários tipos de sinistros que 

ocorrem nas estradas, os sinistros graves - que envolvem mortes e/ou feridos graves 

(M/FG) – são eventos raros, mas com consequências devastadoras para as vítimas, 

famílias e a comunidade em geral. Além do impacto emocional, esses eventos acarretam 

custos sociais, económicos e de saúde pública substanciais. Assim, a modelação e 

predição de sinistros graves, classificados como eventos raros, são essenciais para o 

desenvolvimento de estratégias eficazes de mitigação e prevenção.  

A presente dissertação tem como principal objetivo comparar metodologias estatísticas 

e de machine learning na modelação e previsão de eventos raros, aplicando-as ao caso 

da sinistralidade rodoviária grave no distrito de Setúbal, de forma a identificar 

abordagens que maximizem o desempenho preditivo e a interpretabilidade dos modelos 

em contextos de forte desequilíbrio entre categorias. 

O horizonte temporal do estudo abrange os anos de 2016 a 2023. Foram excluídas da 

análise as observações correspondentes ao período compreendido entre 11 de abril de 

2020 e 30 de abril de 2021, correspondente à fase mais restritiva da pandemia de COVID-

19, devido às alterações significativas nos padrões de tráfego e mobilidade observadas 

nesse intervalo. 

Dado o caráter raro destes eventos, a escassez de dados e o desequilíbrio entre feridos 

leves (FL) e M/FG constituem desafios críticos para a modelação e predição. Para abordar 

estas limitações, este estudo irá aplicar uma combinação de técnicas de modelação 

clássicas e modernas, incluindo metodologias estatísticas e de machine learning. A 

eficácia dessas técnicas será avaliada com base na sua capacidade preditiva e no 

desempenho global na identificação de sinistros graves. 

Para alcançar este objetivo geral, definem-se os seguintes objetivos específicos: 

• Avaliar e comparar o desempenho de diferentes modelos preditivos, incluindo 

métodos estatísticos (Regressão Logística Clássica e de Firth) e algoritmos de 

machine learning (Random Forest, C5.0, XGBoost e Naive Bayes), na previsão de 

sinistros com mortos ou feridos graves. 
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• Analisar o impacto do desequilíbrio de categorias na qualidade da modelação, 

testando estratégias alternativas de mitigação — nomeadamente técnicas de 

reamostragem (ROSE, SMOTENC) e ponderação por pesos inversos — aplicadas 

de forma controlada à fase de treino. 

• Explorar e otimizar a calibração e os limites de decisão dos modelos através de 

métricas adequadas a eventos raros (Precisão – Sensibilidade, AUC, ROC-AUC, 

F₂-score, Brier score, e parâmetros de calibração), assegurando uma avaliação 

robusta em validação cruzada e conjunto de teste independente. 

• Identificar limitações metodológicas e potenciais vieses (como data leakage e 

sobreajuste) nas abordagens de modelação, discutindo estratégias para 

mitigação e propondo linhas futuras de investigação em modelação estatística 

aplicada a fenómenos raros de segurança rodoviária. 
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2. Enquadramento teórico  
O sistema rodoviário é uma parte integral da vida moderna, influenciando diretamente 

o quotidiano dos cidadãos. O mesmo abrange uma ampla variedade de formas de 

deslocamento, desde meios não motorizados, como a caminhada e o ciclismo, até 

veículos motorizados, como carros particulares e transportes públicos. A mobilidade 

rodoviária é vital para as atividades pessoais e profissionais, conectando e 

movimentando a sociedade. No entanto, com essa interconectividade surgem também 

riscos, nomeadamente a possibilidade de sinistros rodoviários, que podem ter 

consequências avassaladoras (Valente, 2025). 

A condução é uma atividade de elevada responsabilidade, que exige um conhecimento 

profundo das regras e dinâmicas do sistema rodoviário. O domínio destas competências 

é essencial para que os condutores possam desempenhar um papel ativo na segurança 

rodoviária, protegendo-se a si e aos outros cidadãos da via. A falta desse conhecimento 

ou a negligência na aplicação das normas podem resultar em sinistros com 

consequências graves. Neste sentido, a segurança rodoviária continua a ser uma 

preocupação e uma prioridade central para os governos, autoridades de trânsito e 

sociedade em geral. A elevada taxa de sinistros e as suas consequências ressaltam a 

necessidade urgente de implementar medidas eficazes para melhorar a segurança nas 

estradas (Tribunal de Contas Europeu, 2024). 

 

2.1 Terminologia Acidente vs. Sinistro  

A terminologia utilizada para descrever sinistros rodoviários tem sido amplamente 

debatida na literatura, especialmente quanto ao uso do termo “acidente”. Embora 

social e academicamente enraizado, esse termo é problemático por associar os eventos 

a imprevisibilidade e aleatoriedade (Perez, 2011), sugerindo ocorrências inevitáveis e 

desconsiderando fatores de prevenção. 

Diante dessa limitação terminológica, organismos como a National Highway Traffic 

Safety Administration (NHTSA) e a Organização Mundial de Saúde (OMS) têm vindo a 

substituir o termo “acidente” para afastar a ideia de casualidade, enfatizando a 

influência de fatores humanos, mecânicos e ambientais, e destacando que os sinistros 

podem ser analisados e prevenidos por meio de medidas corretivas. 
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Encontrar uma alternativa adequada é complexo, mas essencial para transmitir a 

verdadeira natureza desses eventos. Nesse contexto, termos como “sinistro 

rodoviário”, proposto por Pérez (2011) e Tabasso (2012), ganham relevância por 

destacarem a capacidade de investigação e correção, além de sensibilizarem a 

sociedade para políticas de segurança. A adoção dessa linguagem reflete a evolução 

tecnológica e científica, que permite compreender as causas e propor soluções, mesmo 

em casos parcialmente inevitáveis. 

 

2.2 Sinistros Rodoviários 

A sinistralidade rodoviária em Portugal mantém-se um desafio crítico, com flutuações 

significativas nos indicadores entre 2016 e 2023, conforme os dados do Relatório de 

Sinistralidade a 24 horas e Fiscalização Rodoviária de Maio de 2023 da Autoridade 

Nacional de Segurança Rodoviária (ANSR). Na Tabela 1 estão apresentados os dados 

comparativos dos sinistros rodoviários entre os diferentes anos. Os mesmos referem-se 

exclusivamente a Portugal continental, excluindo as regiões autónomas dos Açores e da 

Madeira. 

Tabela 1 - Evolução da sinistralidade rodoviária no Continente. 

Nota: ScV: Sinistros com vítimas, ScVM: Sinistros com vítimas mortais, ScFG: Sinistros com feridos graves, FL: Feridos 

ligeiros, FG – Feridos graves, M: Mortes, IGR: Índice de gravidade) 

Fonte - Relatório de Sinistralidade a 24 horas e Fiscalização Rodoviária de Maio de 2023 

 

Ano 
 

 ScV ScVM + 
ScFG ScVM FL FG M IGR 

2016  32299 2201 416 39121 2102 445 1,38 

2017  34416 2397 488 41787 2198 510 1,48 

2018  34235 2337 468 41356 2141 508 1,48 

2019  35704 2403 429 43202 2301 474 1,33 

2020  26501 1975 372 30706 1829 390 1,47 

2021  29217 2221 367 34217 2106 390 1,33 

2022  32788 2352 428 38456 2243 462 1,41 

2023  34974 2569 431 41058 2437 467 1,34 
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Entre 2016 e 2023, observa-se um aumento de 8,3% nos Sinistros com Vítimas (ScV), 

passando de 32299 para 35974 casos. Esse crescimento, no entanto, não foi linear: em 

2020, houve uma queda abrupta para 26501 sinistros, provavelmente devido às 

restrições da COVID-19. 

No que diz respeito às vítimas mortais (M), registou-se um crescimento de 4,9% no 

período analisado, passando de 445 mortes em 2016 para 467 em 2023. Os feridos 

graves (FG) também apresentaram uma tendência preocupante, com um aumento de 

15,9% entre 2016 (2102 casos) e 2023 (2437 casos), sendo 2020 o ano com o menor 

registo (1829), reflexo direto da redução da mobilidade durante a pandemia.  

Os feridos ligeiros, por sua vez, tiveram um crescimento moderado de 5%, subindo de 

39121 para 41058 no mesmo intervalo. Apesar do aumento nos números absolutos de 

mortes e feridos, o índice de gravidade (IGR) apresentou uma redução de 2,9%, 

passando de 1,38 em 2016 para 1,34 em 2023. Essa diminuição sugere uma menor 

letalidade por sinistro. O ano de 2020 destacou-se como atípico, com quedas expressivas 

em todos os indicadores. No período pós-pandemia (2021-2023), observou-se uma 

retoma gradual dos valores. Em 2023, os sinistros com vítimas atingiram 34974 casos, 

valor próximo ao pico de 35704 registado em 2019.  

 

2.3 Evento Raro 

Um evento raro é definido como um fenómeno que ocorre com muita baixa frequência, 

independentemente da natureza da variável associada (categórica ou numérica). 

Exemplos comuns incluem desastres naturais, doenças raras, crash na bolsa, entre 

outros. A natureza rara desses eventos significa que, muitas vezes, os conjuntos de dados 

disponíveis apresentam um desequilíbrio muito acentuado entre eventos e não eventos. 

Tal desequilíbrio pode comprometer a performance de modelos preditivos tradicionais, 

levando à necessidade de desenvolver abordagens específicas para lidar com essa 

escassez de dados (King e Zeng, 2001a). A identificação de padrões e a previsão de 

eventos raros é essencial, dado o impacto económico, social e humano que estes 

eventos podem ter nas áreas em que ocorrem, apesar da sua baixa frequência. 
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2.4 Modelação e Predição de Eventos Raros 

A literatura demonstra que modelos clássicos, nomeadamente a regressão logística 

estimada por máxima verosimilhança, tendem a apresentar viés na estimação das 

probabilidades quando aplicados a eventos raros, subestimando a probabilidade de 

ocorrência da categoria minoritária (King & Zeng, 2001). Este problema é 

frequentemente agravado pela utilização de métricas de avaliação globais, como a 

accuracy, que se revelam pouco informativas em contextos de forte desequilíbrio entre 

categorias. 

No âmbito da modelação estatística, diversas abordagens foram propostas para mitigar 

estes problemas, destacando-se a regressão logística penalizada, em particular a 

correção de Firth, que permite reduzir o viés das estimativas e lidar com situações de 

separação completa ou quase completa dos dados. 

Paralelamente, técnicas de machine learning têm vindo a ser aplicadas à predição de 

eventos raros, explorando a sua capacidade de capturar relações não lineares e 

interações complexas entre variáveis. Algoritmos baseados em árvores, como Random 

Forest e métodos de boosting, têm demonstrado bom desempenho discriminativo em 

contextos desequilibrados. No entanto, a literatura reconhece limitações associadas à 

interpretabilidade e à calibração das probabilidades previstas, aspetos críticos em 

aplicações de apoio à decisão. 

Outro aspeto central identificado é a necessidade de estratégias adequadas para lidar 

com o desequilíbrio de categorias, bem como a adoção de métricas de avaliação que 

reflitam corretamente o desempenho na identificação do evento raro. Adicionalmente, 

tem sido sublinhada a importância da calibração das probabilidades previstas, de forma 

a garantir a utilidade prática dos modelos em contextos reais. 

Em síntese, a literatura evidencia que a modelação de eventos raros requer uma 

abordagem integrada, que combine modelos estatísticos robustos, técnicas de machine 

learning, métricas de avaliação adequadas e procedimentos rigorosos de validação e 

calibração.   
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3. Metodologias 

3.1 Seleção de Métricas para Eventos Raros 

Diversos são os estudos que indicam que, em conjuntos de dados desequilibrados, 

métricas convencionais como accuracy pode induzir em erro. Modelos que tendem a 

favorecer a categoria maioritária, ou negativa, podem exibir uma elevada precisão global 

enquanto falham redondamente a deteção da categoria minoritária, ou positiva (He; 

Garcia, 2009). Por exemplo, num cenário em que o conjunto de dados é composto por 

95% de observações negativas e apenas 5% positivas, um modelo que prevê todas as 

observações como negativas alcançaria 95% de accuracy, mas falharia completamente 

em identificar os casos positivos (Japkowicz, 2000). 

Esta limitação exige a adoção de métricas que quantifiquem corretamente o 

desempenho da categoria minoritária. Métricas como sensibilidade, 𝐹1-score, G-mean e 

a AUC são mais adequadas para avaliar o desempenho nesses cenários, pois 

operacionalizam o equilíbrio entre sensibilidade (capacidade de identificar 

corretamente a categoria minoritária) e o controlo da taxa de falsos positivos (Saito; 

Rehmsmeier, 2015). 

Entre essas métricas, a sensibilidade mede a proporção de verdadeiros positivos 

identificados corretamente, calculada por: 

𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑁, 

sendo 𝑉𝑃 o número de casos positivos corretamente classificados e 𝐹𝑁 o número de 

casos positivos classificados incorretamente. 

A especificidade mede a proporção de verdadeiros negativos identificados 

corretamente, calculada por: 

𝐸𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑑𝑎𝑑𝑒 =  
𝑉𝑁

𝑉𝑁 + 𝐹𝑃, 

sendo 𝑉𝑁 o número de casos negativos corretamente classificados e 𝐹𝑃 o número de 

casos negativos classificados incorretamente. 

Uma vez que esta métrica apenas avalia o desemprenho da categoria maioritária, em 

conjuntos de dados desequilibrados, o modelo pode atingir uma especificidade muito 

alta simplesmente por classificar todos os casos como negativos. 
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A precisão mede a proporção de verdadeiros positivos entre todas as previsões positivas, 

calculada por: 

Precisão =  
𝑉𝑃

𝑉𝑃 + 𝐹𝑃. 

 

Quando a precisão e a sensibilidade são igualmente importantes, utiliza-se o F1-score, 

definido como a média harmónica entre ambas: 

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 ×  𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 +  𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 . 

 

Esta métrica atribui maior peso a valores baixos, penalizando desequilíbrios entre 

precisão e sensibilidade (Dobriban et al, 2014).  

No presente estudo, o 𝐹1-score é calculado para a categoria minoritária (sinistro grave), 

uma vez que é a de maior interesse analítico. Alternativamente, poderiam ser utilizadas 

versões agregadas, como o 𝐹1-score macro, micro ou ponderado, conforme o objetivo 

da análise. 

O 𝐹1-score é um caso particular da medida 𝐹𝛽, quando 𝛽 = 1, onde o parâmetro 𝛽 indica 

a importância da sensibilidade sobre a precisão. A expressão geral de 𝐹𝛽-score é: 

𝐹𝛽-𝑠𝑐𝑜𝑟𝑒 = (𝛽2 + 1) ×  
𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 ×  𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 +  𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒
. 

 

Ou seja, enquanto 𝐹1-score atribui igual peso à precisão e sensibilidade, quando 𝛽 = 2 

obtém-se a métrica 𝐹2-score que considera que sensibilidade é duas vezes mais 

importante que a precisão. Esta medida deve ser usada quando se pretende que o 

modelo detete mais os verdadeiros positivos, sendo por isso mais adequada em 

situações de eventos rados.  

 

Complementarmente, o G-mean avalia o equilíbrio entre a taxa de verdadeiros positivos 

e verdadeiros negativos: 

𝐺-𝑚𝑒𝑎𝑛 =  √(𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 ×  𝐸𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑑𝑎𝑑𝑒). 

 

Adicionalmente, em problemas com categorias desequilibradas, é comum recorrer à 

Área sob a Curva Precisão-Sensibilidade (PR-AUC), que mede o desempenho global no 
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modelo considerando a relação entre precisão e sensibilidade em diferentes limites de 

decisão, sendo mais adequada do que a AUC-ROC nestes cenários. 

A curva ROC oferece uma visão geral do desempenho do modelo em diferentes limites 

de classificação (Kubat; Matwin, 1997), e a AUC mede a capacidade de o modelo 

classificar corretamente as observações: 

𝐴𝑈𝐶 =  
𝑆𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒

2 +
𝑉𝑁

2(𝑉𝑁 + 𝐹𝑃), 

sendo 𝑉𝑁 o número de casos negativos classificados corretamente. 

 

3.2 Modelo Estatístico de Regressão Logística  

A análise da regressão teve início com Francis Galton (1822−1911), que investigou a 

hereditariedade da altura. Em 1886, Galton introduziu o conceito de “regressão à média” 

ao estudar a hereditariedade de caraterísticas como a altura nos seres humanos (Galton, 

1886). Nesse estudo, o autor observou que, embora pais excecionalmente altos 

tendessem a ter filhos também altos, estes não mantinham a extrema altura dos pais, 

mas direcionavam-se para valores mais próximos da média da população.  

Karl Pearson (1857 – 1936) formalizou essa observação na década de 1890 ao 

desenvolver a “linha de melhor ajuste” entre variáveis, utilizando o método dos mínimos 

quadrados (Pearson, 1900). No entanto, os modelos de regressão linear não são 

adequados para todos os tipos de dados. Embora sejam úteis para prever variáveis 

contínuas, esses modelos enfrentam limitações quando a variável dependente é binária, 

ou seja, assume apenas dois valores (0 ou 1). 

A inadequação da regressão linear clássica (originalmente desenvolvida para respostas 

contínuas) quando aplicada a variáveis dicotómicas pode ser ilustrada pelo “modelo de 

probabilidade linear” (MPL). Nesta abordagem, a variável resposta binária 𝑌 ∈  {0, 1} é 

reinterpretada como a probabilidade 𝑃 (𝑌 = 1 | 𝑋), modelada com uma função linear 

das covariáveis. Contudo, o MPL frequentemente viola os pressupostos estatísticos 

(como normalidade e homocedasticidade dos resíduos) e por não impor restrições ao 

intervalo de previsão produz previsões fora do intervalo [0, 1] (Aldrich & Nelson, 1984). 

Essa fragilidade reforça a necessidade de uma abordagem não linear, capaz de modelar 

relações complexas sem comprometer a interpretabilidade. 
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Para lidar com esse tipo de situações, Joseph Berkson contribuiu significativamente ao 

popularizar o termo “logit” e demonstrar a equivalência entre a função logística e a 

maximização da verosimilhança (Berkson, 1944). Paralelamente, David Cox (1924-2022) 

desenvolveu, na década de 1950, a regressão logística. O principal objetivo desta técnica 

é estimar a probabilidade de ocorrência de um evento binário com base nas variáveis 

explicativas, transformando a relação entre elas numa função logística (Cox, 1958). A 

principal vantagem da regressão logística é que ela transforma uma relação linear entre 

variáveis independentes e a probabilidade de um evento ocorrer numa função que 

mapeia a saída para um intervalo entre 0 e 1. A função logística, definida como 𝑓(𝑧) =

 𝑒𝑧

1+ 𝑒𝑧, garante que as probabilidades permanecem dentro do intervalo ]0, 1[, resolvendo 

assim um dos entraves dos modelos lineares. 

A regressão logística múltipla é uma extensão do modelo de regressão logística simples, 

em que duas ou mais variáveis explicativas, contínuas ou categóricas, são utilizadas para 

prever a probabilidade de ocorrência de um evento binário (Hosmer et al., 2013). A 

principal vantagem deste modelo é que ele permite a análise simultânea do impacto de 

diversas variáveis sobre o resultado binário. Isso é particularmente útil em situações em 

que múltiplos fatores podem influenciar a probabilidade de um evento. 

A flexibilidade da regressão logística múltipla permite que se usem os métodos 

tradicionais de seleção de variáveis forward, backward e setpwise, bem como técnicas 

avançadas, como por exemplo o LASSO (Least Absolute Shrinkage and Selection 

Operator), que utiliza a regularização 𝐿1para identificar preditores relevantes ao reduzir 

os coeficientes menos significativos para zero, evitando o overfitting e superando 

limitações de técnicas tradicionais como Regressão Logística Penalizada (LASSO/Elastic 

Net) (Tibshirani, 1996; Hastie et al., 2015).  

Outra abordagem importante é a Regressão Logística de Firth, uma abordagem 

penalizada introduzida por Firth (1993) que corrige o viés das estimativas de máxima 

verosimilhança. Esta técnica é particularmente adequada em situações com eventos 

raros ou separação completa – condição e, que uma ou mais variáveis explicativas 

permitem distinguir perfeitamente as observações entre as duas categorias (por 

exemplo, quando todas as observações com uma determinada caraterística pertencem 

apenas a uma das categorias). Nesses casos, o modelo logístico tradicional pode não 
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convergir ou produzir coeficientes infinitos. A Regressão Logística de Firth aplica uma 

penalização baseada na Jeffreys prior, o que permite obter estimativas mais estáveis e 

sem viés, mesmo em amostras pequenas ou desequilibradas.  

O modelo de Regressão Logística é amplamente aplicado em diversas áreas do 

conhecimento, como saúde, economia, ciências sociais, entre outras. No contexto da 

sinistralidade rodoviária, por exemplo, a regressão logística é frequentemente utilizada 

para identificar fatores de risco associados a sinistros graves, como sinistros com vítimas 

mortais ou feridos graves. Pode-se prever a probabilidade de um sinistro ter 

consequências graves com base em variáveis como velocidade, condições 

meteorológicas adversas, caraterísticas da via, entre outras. 

Além disso, a interpretação dos coeficientes no contexto múltiplo pode fornecer 

indicações detalhadas sobre as relações entre as variáveis independentes e a variável 

dependente, além de permitir a estimação de probabilidades ajustadas, essenciais para 

uma análise mais precisa e eficaz. 

 

Representação matemática 

A probabilidade de um evento ocorrer (denotado como 𝑌) é dada por: 

𝜋(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝐸(𝑌|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … 𝑋𝑘 = 𝑥𝑘) =
𝑒𝛽0+𝛽1𝑥1+ 𝛽2𝑥2+⋯+ 𝛽𝑘𝑥𝑘

1 + 𝑒𝛽0+𝛽1𝑥1+ 𝛽2𝑥2+⋯+ 𝛽𝑘𝑥𝑘
, 

 

onde: 

• 𝑋1, 𝑋2, … , 𝑋𝑘  são as variáveis explicativas que influenciam a probabilidade de 

ocorrência do evento; 

• 𝜋(𝑥1, 𝑥2, … , 𝑥𝑘) representa a probabilidade condicional da variável resposta 𝑌 

ser igual a 1 (i.e., o evento ocorrer), dado o conjunto de variáveis explicativas 

𝑋1, 𝑋2, … , 𝑋𝑘; 

• 𝛽0 é o intercepto do modelo, ou seja, o valor da log-odds quando todas as 

variáveis explicativas são iguais a zero; 

• 𝛽1, 𝛽2, ..., 𝛽𝑘  são os coeficientes associados às variáveis 𝑋1, 𝑋2, … , 𝑋𝑘  , e medem 

o impacto de cada variável na log-odds do evento ocorrer. 
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A curva logística apresenta uma forma de “S” (sigmoide), onde mudanças nas variáveis 

explicativas têm um maior impacto nas probabilidades próximas a 0,5 e um impacto 

menos acentuado próximo aos extremos 0 e 1.  

A notar que, no caso das variáveis categóricas ordinais e nominais, com 𝑐 categorias, 

estas variáveis são transformadas em 𝑐 − 1 variáveis dummy. Por exemplo, 

considerando a variável “período do sinistro” com três categorias: 

1.  “manhã” (06h00–12h00) – categoria de referência, 

2. “tarde” (12h00–18h00), 

3. “noite” (18h00–06h00), 

será transformada em: 

• 𝑋1 que representa a categoria “tarde”, assumindo o valor de 1 se o sinistro 

ocorreu nesse período e 0 caso contrário, 

• 𝑋2 que representa a categoria “noite”, assumindo o valor de 1 se o sinistro 

ocorreu nesse período e 0 caso contrário. 

Assim, no caso de um sinistro ocorrer no período da: 

• manhã temos 𝑋1 = 0 e 𝑋2 = 0, 

• tarde temos 𝑋1 = 1 e 𝑋2 = 0, 

• noite temos 𝑋1 = 0 e 𝑋2 = 1. 

O coeficiente 𝑋1 mede o log-odds do sinistro ser à tarde vs. manhã e o coeficiente 𝑋2 

mede o log-odds do sinistro ser à noite vs. manhã. 

Essa abordagem permite quantificar o efeito relativo de cada categoria na probabilidade 

do evento (Hardy, 1993). 

 

Suposições do modelo 

Para garantir a validade do modelo, devem ser atendidas algumas suposições: 

• Independência das observações: as observações devem ser independentes umas 

das outras, o que significa que o resultado de uma observação não deve 

influenciar o resultado de outra. Esta suposição é avaliada principalmente pelo 

delineamento do estudo (por exemplo, amostragem aleatória, ausência de 

medições repetidas no mesmo indivíduo, etc). Quando o delineamento não 

assegura a independência (por exemplo, com dados longitudinais agrupados), a 

sua avaliação e modelação podem ser feitas através de modelos de efeitos 
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mistos (GLMM) ou de equações de estimação generalizadas (GEE), que são 

projetados para lidar com a estrutura de dependência dos dados. 

• Ausência de multicolinearidade entre as variáveis explicativas: refere-se à 

inexistência de correlação elevada entre as variáveis independentes do modelo. 

Essa suposição é avaliada pelo fator de inflação de variância (VIF), que mede o 

quanto a correlação entre uma variável e as outras variáveis do modelo 

compromete a precisão da estimativa do seu coeficiente. Um VIF entre 5 e 10 

indica multicolinearidade moderada, porém se for superior a 10 a 

multicolinearidade passa a ser grave (Singh, 2024); 

• Linearidade na escala do logit: pressupõe-se que a relação entre as variáveis 

independentes e o logit (transformação logarítmica das odds) seja linear. Para 

verificar essa suposição, realiza-se a análise de resíduos. Se os pontos se 

distribuírem aleatoriamente em torno de zero, sem padrões curvos ou 

sistemáticos, a linearidade é válida. No caso de os padrões não serem aleatórios, 

como por exemplo, no formato de U, existe a violação do pressuposto.  

 

Transformação Logit 

O “logit” é uma transformação matemática que ajuda a linearizar a relação entre as 

variáveis explicativas e a probabilidade de o evento ocorrer. Por outras palavras, ele 

converte a equação da probabilidade 𝜋 para uma forma mais simples, chamada log-

odds.  

A equação do logit é dado por: 

𝑙𝑜𝑔𝑖𝑡(𝜋(𝑥1, 𝑥2, … , 𝑥𝑛)) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑙𝑛 ( 𝜋(𝑥1,𝑥2,…,𝑥𝑛)
1−𝜋(𝑥1,𝑥2,…,𝑥𝑛)

) = 𝛽0 + 𝛽1𝑥1 +

𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘. 

 

O processo de transformação é: 

1. 𝜋(𝑥1,𝑥2,…,𝑥𝑛)
1−𝜋(𝑥1,𝑥2,…,𝑥𝑛)

: esta fração é designada de odds (chances) e calcula a razão entre 

a probabilidade de um evento ocorrer e a probabilidade de ele não ocorrer. A 

log-odds aplica o logaritmo natural a essa razão. 

2. 𝑙𝑛 ( 𝜋(𝑥1,𝑥2,…,𝑥𝑛)
1−𝜋(𝑥1,𝑥2,…,𝑥𝑛)

): aplica o logaritmo natural às odds, obtendo-se as log-odds; 
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3. A equação resultante 𝛽0 + 𝛽1𝑥1 +  𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 mostra como a 

combinação das variáveis explicativas 𝑋1, 𝑋2, … 𝑋𝑘  afeta a log-odds do evento 

ocorrer. Ou seja, ela transforma a relação não linear entre as variáveis 

explicativas e a probabilidade numa forma linear.  

Portanto, em vez de se modelar diretamente a probabilidade de (𝑥), modela-se a log-

odds que pode assumir valores entre - e +, garantindo uma relação linear com as 

variáveis explicativas. 

 

Interpretação dos coeficientes 

Os coeficientes estimados 𝛽𝑗  (para 𝑗 = 1, 2, … , 𝑘) possuem interpretações específicas: 

• Para variáveis 𝑋𝑗 numéricas: 

o 𝛽𝑗 > 0, indica que um aumento em 𝑋𝑗 está associado a um aumento na 

probabilidade de o evento ocorrer (𝑌 = 1); 

o 𝛽𝑗 < 0, indica que um aumento em 𝑋𝑗 está associado a uma redução na 

probabilidade de o evento ocorrer; 

• Para as variáveis 𝑋𝑗 categóricas:  

o 𝛽𝑗  indica o impacto de pertencer a uma categoria específica em relação à 

categoria de referência. 

 

A regressão logística distingue-se pela interpretabilidade da exponencial dos 

coeficientes como odds ratio.  Para variáveis Xj: 

• Numéricas: 𝑒𝛽𝑗  indica que por cada aumento unitário em 𝑋𝑗, as odd ratio do 

evento ocorrer multiplicam por 𝑒𝛽𝑗. Por exemplo, se 𝛽𝑗 = 0,7, então 𝑒0,7 ≈ 2,01, 

o que indica que cada unidade adicional em 𝑋𝑗 duplicam as odds do evento 

ocorrer, mantendo as outras variáveis constantes. 

• Categóricas: 𝑒𝛽𝑗  indica as chances de o evento ocorrer se pertencer à categoria 𝑗 

relativamente à categoria de referência da variável Xj. Por exemplo, seja 𝑋𝑗 = 1 

se pertencer à categoria 𝑗 e 𝛽𝑗 = 0,7, então 𝑒0,7 ≈ 2,01, o que indica que as odds 

de o evento ocorrer quando 𝑋𝑗 = 1 são o dobro de quando 𝑋𝑗 = 0, mantendo as 

outras variáveis constantes. 

 



 28 

Estimação dos parâmetros 

Os coeficientes 𝛽0, 𝛽1, … , 𝛽𝑘  precisam de ser estimados para que o modelo consiga fazer 

previsões com base nos dados. O método utilizado para obter essas estimativas é o da 

máxima verosimilhança, que maximiza a probabilidade de observar os dados amostrais. 

A função de verosimilhança, que mede essa probabilidade, é expressa por: 

𝐿(𝛽) = ∏ 𝜋𝑖
𝑦𝑖 ( 1 − 𝜋𝑖 )1 − 𝑦𝑖

𝑛

𝑖=1

, 

sendo 𝜋𝑖 = 𝑃(𝑌𝑖 = 1). 

A função de verosimilhança envolve um produto de várias probabilidades. Trabalhar 

diretamente com produtos pode ser matematicamente complicado, especialmente 

quando se está a otimizar a função para encontrar os coeficientes 𝛽0, 𝛽1, … , 𝛽𝑘. Por isso, 

de forma a facilitar os cálculos, é usual aplicar-se o logaritmo natural (𝑙𝑛) à função de 

verosimilhança, obtendo-se a log-verosimilhança: 

𝐿(𝛽) = ∑[𝑦𝑖 ln(𝜋𝑖) + ( 1 − 𝑦𝑖) ln( 1 − 𝜋𝑖)],
𝑛

𝑖=1

 

que transformou a multiplicação das probabilidades numa soma, o que torna o processo 

matemático mais simples. 

O estimador de máxima verosimilhança é o veotr de parâmetros que maximiza esta 

função, sendo definido como: 

𝛽̂ = 𝑎𝑟𝑔
𝑚𝑎𝑥

𝛽̂  ∑ [𝑦𝑖 ln(𝜋𝑖) + ( 1 − 𝑦𝑖) ln( 1 −  𝜋𝑖)]𝑛
𝑖=1 . 

Este estimador apresenta importantes propriedades assintóticas, nomeadamente: 

• Consistência: o estimador 𝛽̂ é consistente, isto é, converge em probabilidade 

para o verdadeiro vetor de parâmetros 𝛽 quando o tamanho da amostra tende 

para infinito; 

• Normalidade assintótica: à medida que o tamanho da amostra aumenta, a 

distribuição do estimador de máxima verosimilhança aproxima-se de uma 

distribuição normal multivariada; 

• Eficiência assintótica: o estimador de máxima verosimilhança é assintoticamente 

eficiente, ou seja, atinge o limite inferior de variância de Cramér-Rao, 

apresentando a menor variância possível entre todos os estimadores 

consistentes assintoticamente normais. 
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Estas propriedades permitem realizar inferência estatística sobre os parâmetros do 

modelo, nomeadamente a construção de intervalos de confiança e a realização de testes 

de hipóteses, mesmo em amostras de grande dimensão. 

 

Avaliação do Modelo 

A qualidade do ajuste é avaliada por métricas como: 

• Curva ROC/AUC 

A Curva ROC é uma ferramenta gráfica útil para visualizar o equilíbrio entre a taxa de 𝑉𝑃 

e a taxa de 𝐹𝑃 para diferentes pontos de corte. A 𝐴𝑈𝐶 é um valor escalar único que varia 

entre 0 e 1. Este quantifica a capacidade discriminativa do modelo, indicando a 

probabilidade de o modelo classificar corretamente um caso positivo face a um negativo 

escolhido aleatoriamente. Um AUC superior a 0,7 reflete um bom desempenho do 

modelo. 

• Teste de Hosmer-Lemeshow 

O teste de Hosmer-Lemeshow avalia a calibração de modelos probabilísticos, verificando 

a concordância entre as probabilidades previstas e as frequências observadas. Este teste 

segue uma distribuição qui-quadrado, onde os valores não significativos indicam a 

adequação do modelo (ou bondade do ajustamento) às observações empíricas.  

• 𝑅2 

As medidas de 𝑅2 avaliam a melhoria explicativa de modelos estatísticos em relação a 

um modelo nulo. Dois exemplos amplamente utilizados em modelos logísticos são: 

 - McFadden: quantifica o ganho relativo na função log-verosimilhança ao incluir 

preditores; 

- Nagelkerke: expande o McFadden ao reescalar o intervalo para [0, 1]. 

Ambos indicam a proporção da variância explicada encontrada em modelos lineares 

generalizados. 

 

Além disso, é também realizada uma análise de resíduos com o objetivo de identificar 

observações mal ajustadas, violações de pressuposto e problemas estruturais.  

 

Após a apresentação da fundamentação teórica, é necessário compreender como é que 

esses conceitos se traduzem em etapas práticas de construção e validação do modelo. 
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Assim, na sequência, descrevem-se os procedimentos adotados para a aplicação do 

modelo em contexto empírico, desde o ajustamento inicial até à seleção de variáveis e 

definição do modelo final. 

 

1) Ajustar o modelo nulo 

O ajuste do modelo nulo na regressão logística serve para estabelecer uma linha de base 

de comparação, avaliar a significância das variáveis independentes, calcular métricas de 

ajuste e interpretar a variabilidade explicada. Este modelo não inclui nenhuma variável 

preditora e a sua fórmula de calculo é dada por: 

log (
𝑝

1 − 𝑝) =  𝛽0, 

onde 𝑝 é a probabilidade de o evento de interesse acontecer. 

 

2) Seleção das variáveis independentes (análise univariada) 

O objetivo desta etapa é identificar as variáveis que têm uma relação estatisticamente 

significativa com a variável resposta, a um nível de significância previamente definido. 

Para cada variável independente realiza-se o teste da razão de verosimilhança de modo 

a comparar o modelo nulo com o modelo que inclui apenas essa variável. 

Antes de aplicar o teste, os valores ausentes na variável são removidos da amostra, o 

modelo é reajustado com os dados disponíveis, e verifica-se se a inclusão da variável 

resulta numa diferença estatisticamente significativa em relação ao modelo nulo. 

No que concerne a variáveis com elevada proporção de valores omissos, não existe um 

limite absoluto para a sua exclusão. Trata-se de um julgamento baseado no equilíbrio 

entre o valor informativo da variável e a quantidade de dados que se está disposto a 

perder. Em casos de missing values excessivos, as variáveis podem ser descartadas a 

priori, por inviabilizarem a manutenção de uma amostra robusta para a análise. 

 

3) Modelo múltiplo preliminar e exclusão de variáveis 

O processo de construção do modelo multivariado final segue uma abordagem de 

eliminação retroativa (stepwise backward), com base nos princípios de parcimónia e 

significância estatística.  
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O modelo inicial numa primeira fase inclui todas as variáveis identificadas como 

significativas na análise univariada e de seguida é realizada uma seleção iterativa de 

variáveis mediante a aplicação do teste da razão de verosimilhança. Adota-se um critério 

de significância mais ríspido, garantindo assim uma maior robustez.  

 

4) Agrupamento de categorias 

Para o agrupamento de categorias de uma variável categórica na regressão logística, o 

procedimento utilizado envolve duas etapas que são executadas de forma conjunta: a 

análise dos coeficientes estimados e a verificação da significância estatística. Essas 

etapas permitem identificar categorias com efeitos semelhantes sobre a variável 

dependente, facilitando o agrupamento. 

 

• Análise dos coeficientes estimados 

Após a execução do modelo de regressão logística, são analisados os 

coeficientes atribuídos a cada categoria da variável categórica, exceto à 

categoria de referência. Esses coeficientes refletem o impacto de cada categoria 

na variável dependente em relação à categoria de referência. Categorias com 

coeficientes similares indicam efeitos parecidos, sugerindo a possibilidade de 

agrupamento 

• Verificação da significância estatística 

Além de analisar a magnitude dos coeficientes obtidos na regressão logística, é 

fundamental avaliar a significância estatística de cada um deles. Esse 

procedimento é realizado através do teste de razão de verosimilhança, que 

permite verificar se a inclusão de uma variável ou categoria específica melhora 

de forma relevante ao ajustamento do modelo. Quando se observa que duas ou 

mais categorias apresentam coeficientes semelhantes e valor de p-value acima 

do nível de significância definido, isso indica que os seus efeitos sobre a variável 

dependente não têm uma diferença estatisticamente significativa. Ou seja, essas 

categorias têm comportamentos equivalentes no modelo. Nesses casos, é 

possível agrupar categorias semelhantes, seja com a categoria adjacente ou com 

outra cujo agrupamento seja justificável, o que simplifica o modelo sem perda de 

informação relevante.  
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5) Verificação da Linearidade 

Para garantir que o modelo de regressão logística captura de forma adequada a relação 

entre as variáveis preditivas e a probabilidade de ocorrência do evento, é essencial 

verificar o pressuposto da linearidade. Esta análise avalia se a relação entre cada variável 

e o logit é efetivamente linear. Para o efeito pode aplicar-se o método GAM que ajusta um 

modelo de regressão aditiva generalizada (GAM) com a função “logit”.  

 

6) Incorporação de interações 

No processo de modelação, a incorporação de interações entre variáveis presentes no 

modelo ajuda a compreender melhor como a combinação de diferentes fatores afeta a 

variável independente. O objetivo é determinar se a inclusão dessas interações melhora 

significativamente o ajuste do modelo. Para alcançar esse objetivo, ajusta-se uma série 

de modelos de regressão logística, cada um contendo diferentes interações, e através do 

teste de razão de verosimilhanças, avalia-se a significância da inclusão da interação 

relativamente ao modelo sem essa interação. 

Além disso, é fundamental que as interações testadas não apenas apresentem 

significância estatística, mas também sejam coerentes com o contexto do problema em 

análise. Dessa forma, garante-se que as adições ao modelo sejam interpretáveis e úteis 

para a compreensão do fenómeno em estudo. 

 

7) Verificação da qualidade do modelo 

Após a inclusão das interações significativas no modelo múltiplo, o modelo é refinado 

para assegurar que o modelo final se ajusta adequadamente aos dados, apresente uma 

capacidade discriminativa sólida e tenha capacidade de fornecer previsões úteis e 

informativas sobre a gravidade dos sinistros. Essa avaliação é essencial para garantir que 

o modelo não apenas representa de forma precisa a relação entre as variáveis preditoras 

e a gravidade do sinistro. As principais atividades realizadas nesta etapa incluem: 

a. Multicolinearidade 

b. Bondade do Ajustamento 

c. Capacidade discriminativa 

d. Análise de Resíduos 

e. Validação do modelo 
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Análise de multicolinearidade 

Para garantir a robustez do modelo final e a confiabilidade dos coeficientes estimados, é 

preciso avaliar a presença de multicolinearidade entre as variáveis independentes. A 

multicolinearidade pode inflacionar as variâncias dos coeficientes, dificultando a 

interpretação precisa do modelo. 

A avaliação da multicolinearidade é realizada pelo cálculo do VIF (Variance Inflation 

Factor). O VIF mede o quanto a variância de um coeficiente estimado é inflacionado 

devido à correlação com outras variáveis no modelo. 

Em modelos que incluem interações ou variáveis com múltiplos graus de liberdade (df), 

utiliza-se o GVIF (Generalized VIF), uma extensão do VIF para esses casos específicos (Fox 

& Monette, 1992). Para facilitar a interpretação, o GVIF pode ser ajustado utilizando a 

fórmula 𝐺𝑉𝐼F(1/(2𝑑𝑓)), que normaliza o valor de GVIF em casos de variáveis com mais de 

um grau de liberdade. De acordo com Gujarati (2004), valores de VIF superiores a 

10 sugerem uma forte colinearidade, o que pode afetar a precisão das estimativas dos 

coeficientes. No caso do GVIF, valores de 𝐺𝑉𝐼F(1/(2𝑑𝑓)) superiores a 2,5 podem indicar 

que as variáveis com múltiplos graus de liberdade estão a apresentar colinearidade 

significativa. 

 

Bondade do Ajustamento 

• 𝑅2 de Nagelkerke 

O 𝑅2 de Nagelkerke é uma adaptação do 𝑅2 tradicional para modelos de regressão 

logística. A sua função centra-se em quantificar a proporção da variância da variável 

dependente explicada pelo modelo. Esta medida calcula-se comparando a verosimilhança 

do modelo em estudo com a verosimilhança do modelo nulo. Os seus valores variam entre 

0 e 1, onde 0 indica que o modelo não explica qualquer variabilidade da reposta e 1 

corresponde a um modelo com poder explicativo máximo.  

• Teste de Hosmer e Lemeshow 

Para avaliar o ajuste do modelo, utiliza-se o teste de Hosmer-Lemeshow, que verifica a 

adequação das probabilidades previstas pelo modelo em relação às observações reais.  

Capacidade discriminativa 

• Curva ROC 
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A curva ROC (Receiver Operating Characteristic) oferece uma representação visual da 

relação entre a sensibilidade e a especificidade do modelo, à medida que se varia o limite 

de decisão. 

O eixo Y da curva representa a sensibilidade, enquanto o eixo X representa 1 – 

especificidade. A linha representada corresponde à curva ROC do modelo, que nos dá 

uma ideia de quão bem o modelo consegue discriminar entre categorias. 

As métricas dadas por este gráfico são: 

→ Sensibilidade 

→ Especificidade 

→ Área sob a Curva (AUC) 

 

Análise de Resíduos 

• Resíduos e influência 

Realiza-se uma análise detalhada dos resíduos para identificar outliers e pontos 

influentes que poderiam afetar as estimativas dos parâmetros. Usa-se métricas como a 

distância de Cook e os resíduos de deviance para detetar e analisar essas observações 

influentes. 

 

Validação do modelo 

Quando se constrói um modelo, especialmente com muitos dados, ele pode ajustar-se 

bem aos dados que já se tem, mas não funcionar tão bem com novos dados (dados 

desconhecidos). Isso é conhecido como overfitting. A validação é uma forma de verificar 

se o modelo funciona bem em novos conjuntos de dados e não apenas nos dados 

utilizados para o construir. 

 

• Bootstrap 

Neste sentido, para avaliar a robustez do modelo começa-se por realizar uma validação 

com a técnica bootstrap. O bootstrap é uma técnica onde se criam “observações” 

diferentes dos dados originais (com reposição) para simular como o modelo se 

comportaria com novos dados. Essa técnica permite calcular a estabilidade do modelo e 

verificar o seu desempenho.  
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O modelo é validado utilizando o procedimento de “Backwards Step-down”, que escolhe 

aleatoriamente um número de observações para ajustar os modelos e comparar os vários 

ajustamentos. 

 

• Calibração 

A calibração avalia a precisão das probabilidades previstas por um modelo, verificando 

se estas efetivamente se aproximam das frequências observadas na realidade.  

 

• Validação Cruzada 

A avaliação do modelo é conduzida por meio da matriz de confusão, que permite 

observar as previsões feitas pelo modelo em comparação com os casos reais. Além disso, 

métricas como accuracy, sensibilidade, especificidade e 𝐹1-score podem ser calculadas 

para fornecer uma visão abrangente do desempenho do modelo. Essas métricas ajudam 

a identificar a eficácia do modelo na deteção de casos da categoria que se quer prever, 

permitindo uma análise crítica das suas capacidades preditivas. 

 

8) Apresentação do modelo final 

Na etapa final da regressão logística  ocorre a sistematização e comunicação dos 

resultados obtidos após todas as fases de ajuste, seleção de variáveis e validação do 

modelos, sendo assim apresentado  o modelo final ajustado. Esta fase não se restringe 

à exposição dos coeficientes e medidas estatísticas, mas envolve a interpretação dos 

efeitos estimados e a avaliação da qualidade do ajustamento e do desempenho 

preditivo. O modelo final apresentado é, portanto, aquele que concilia a capacidade 

explicativa, a parcimónia e a robustez, assegurando que os resultados sejam consistentes 

e com potencial de generalização para novas observações.  

 

Para concluir, a regressão logística destaca-se como um método estatístico essencial para 

modelar variáveis binárias, superando as limitações da regressão linear ao garantir 

probabilidades entre 0 e 1. Desenvolvida a partir de fundamentos históricos de Galton e 

Cox, a sua estrutura baseia-se na função logit e permite interpretar coeficientes como 

impactos nas odds do evento. Este modelo oferece flexibilidade para incorporar 
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múltiplas variáveis e técnicas avançadas, como regularização, embora exija atenção aos 

pressupostos como é o caso da linearidade no logit e na independência das observações. 

 

3.2 Modelo Estatístico de Regressão Logística de Firth 

Na regressão logística binária, modela-se a probabilidade de ocorrência do evento (por 

exemplo, sinistro grave) em função de um vetor de covariáveis 𝑥𝑖 ∈ ℝ𝑝. Para 𝑖 =

1, … , 𝑛, considere-se 𝑌𝑖 ∈ {0,1} com 

𝑌𝑖 ∼ Bernoulli(𝜋𝑖), 𝜋𝑖 = ℙ(𝑌𝑖 = 1 ∣ 𝑥𝑖). 

 

O modelo logístico especifica 

logit(𝜋𝑖) = log (
𝜋𝑖

1 − 𝜋𝑖
) = 𝜂𝑖 = 𝛽0 + 𝑥𝑖

⊤𝛽, 

 

logo 

𝜋𝑖(𝛽) =
exp (𝜂𝑖)

1 + exp (𝜂𝑖)
. 

 

A estimação por máxima verosimilhança (MV) baseia-se na função de verosimilhança 

𝐿(𝛽) = ∏ 𝜋𝑖

𝑛

𝑖=1

(𝛽)𝑦𝑖[1 − 𝜋𝑖(𝛽)]1−𝑦𝑖, 

 

ou, equivalentemente, no logaritmo da verosimilhança 

ℓ(𝛽) = ∑{𝑦𝑖log (𝜋𝑖(𝛽)) + (1 − 𝑦𝑖)log (1 − 𝜋𝑖(𝛽))}
𝑛

𝑖=1

. 

 

Em problemas de eventos raros (classe positiva muito pouco frequente) e/ou com 

muitos preditores categóricos, podem ocorrer duas dificuldades clássicas: 

1. Viés de pequena amostra (small-sample bias): os estimadores de máxima 

verosimilhança em modelos logísticos podem apresentar viés não negligenciável 

quando o número de eventos é pequeno relativamente ao número de 

parâmetros. 
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2. Separação (completa ou quase completa): existe separação quando uma 

combinação linear das covariáveis discrimina perfeitamente as classes (por 

exemplo, sempre que 𝑥assume certo padrão, 𝑌 = 1). Nesse caso, a 

verosimilhança aumenta sem limite e os estimadores de máxima verosimilhança 

divergem (alguns 𝛽̂ → ±∞), levando a instabilidade numérica e probabilidades 

previstas extremas (≈ 0 ou ≈ 1). 

A regressão logística penalizada de Firth foi proposta precisamente para reduzir o viés 

de pequena amostra e fornecer estimações finitas mesmo sob separação. 

 

Ideia central: penalização de Jeffreys e correção de viés 

O método de Firth pode ser visto como uma maximização de uma verosimilhança 

penalizada. Em vez de maximizar ℓ(𝛽), maximiza-se: 

ℓ𝐹(𝛽) = ℓ(𝛽) +
1
2 log ∣ 𝐼(𝛽) ∣, 

 

onde 𝐼(𝛽)é a matriz de informação de Fisher (observada/esperada, dependendo da 

formulação; na prática usa-se a forma padrão em GLM). 

Esta penalização corresponde ao uso do prior de Jeffreys (em interpretação Bayesiana) 

e, do ponto de vista frequentista, produz uma redução do viés de primeira ordem do 

estimador de máxima verosimilhança. 

No caso do modelo logístico, definindo: 

• 𝑋como a matriz de desenho 𝑛 × 𝑝(incluindo intercepto), 

• 𝑊(𝛽) = diag(𝑤𝑖(𝛽))com 𝑤𝑖(𝛽) = 𝜋𝑖(𝛽)(1 − 𝜋𝑖(𝛽)), 

tem-se a informação de Fisher: 

𝐼(𝛽) = 𝑋⊤𝑊(𝛽)𝑋. 

 

Equações de estimação: scores modificados 

Na regressão logística padrão, o vetor score é: 

𝑈(𝛽) =
∂ℓ(𝛽)

∂𝛽 = 𝑋⊤(𝑦 − 𝜋), 

 

onde 𝑦 = (𝑦1, … , 𝑦𝑛)⊤e 𝜋 = (𝜋1, … , 𝜋𝑛)⊤. 
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Em Firth, o termo penalizador altera o score para: 

𝑈𝐹(𝛽) = 𝑈(𝛽) +
1
2

∂
∂𝛽 log ∣ 𝐼(𝛽) ∣. 

 

Uma forma prática e muito usada desta correção é escrever o score modificado como: 

𝑈𝐹(𝛽) = 𝑋⊤(𝑦 − 𝜋 + 𝑎), 

 

em que 𝑎 = (𝑎1, … , 𝑎𝑛)⊤é um vetor de ajuste dependente da alavancagem, com 

𝑎𝑖 = (1
2 −𝜋𝑖) ℎ𝑖, 

 

onde ℎ𝑖são os elementos diagonais da matriz “hat” do GLM: 

𝐻 = 𝑊1/2𝑋 (𝑋⊤𝑊𝑋)−1𝑋⊤𝑊1/2, ℎ𝑖 = 𝐻𝑖𝑖. 

 

Assim, o método de Firth equivale a resolver: 

𝑋⊤(𝑦 − 𝜋 + 𝑎) = 0, 

 

o que pode ser interpretado como uma substituição do vetor-resposta efetivo (ou 

“pseudo-resposta”) que corrige o viés. 

 

Consequências práticas: o que distingue Firth da logística clássica 

A regressão logística penalizada de Firth distingue-se da regressão logística clássica em 

aspetos críticos para eventos raros: 

• Estimativas finitas sob separação: enquanto a máxima verosimilhança pode 

divergir, Firth produz 𝛽̂𝐹finitos, estabilizando o ajuste. 

• Redução do viés em amostras pequenas: especialmente relevante quando o 

número de eventos é reduzido (por exemplo, poucos sinistros graves) e existem 

muitos níveis/categorias. 

• Probabilidades previstas menos extremas: ao contrariar a separação e a 

instabilidade, evita previsões degeneradas (0/1), o que tende a beneficiar a 

calibração. 

• Inferência mais robusta em eventos raros: a estimação finita permite obter 

intervalos e testes mais interpretáveis quando a máxima verosimilhança falha. 
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Importa notar que Firth é uma penalização diferente de Ridge/Lasso: não visa seleção 

de variáveis, mas sim correção de viés e robustez sob separação. Em termos 

conceptuais, enquanto RidgeLlasso impõem uma penalização direta em ∥ 𝛽 ∥, Firth 

penaliza pela geometria da informação (via log ∣ 𝐼(𝛽) ∣). 

 

Testes e intervalos: razão de verosimilhança penalizada (preferível) 

Em modelos com Firth, é comum reportar inferência baseada em razão de 

verosimilhança penalizada: 

Λ = 2[ℓ𝐹(𝛽̂𝐹) − ℓ𝐹(𝛽̂𝐹,0)], 

 

onde 𝛽̂𝐹,0é o estimador sob a hipótese nula (por exemplo, removendo uma covariável). 

Esta abordagem tende a ser mais estável do que testes Wald em cenários com eventos 

raros e/ou separação. 

 

Enquadramento no presente trabalho 

Dado o forte desequilíbrio entre categorias (sinistros graves como categoria 

minoritária), a logística penalizada de Firth foi incluída como alternativa ao GLM logístico 

clássico por duas razões:  

(i) aumentar a estabilidade do ajuste e reduzir viés em presença de poucos 

eventos; 

(ii) (ii) garantir estimações finitas e previsões probabilísticas úteis mesmo em 

cenários onde combinações de covariáveis possam induzir separação.  

 

Assim, Firth constitui uma opção metodológica particularmente adequada quando se 

pretende manter um modelo interpretável, com coeficientes e odds ratios bem 

definidos, num contexto de eventos raros. 

 

Em síntese, a logística de Firth é uma versão “regularizada” da regressão logística 

clássica, desenhada para funcionar melhor quando há poucos eventos, reduzindo viés e 

evitando coeficientes infinitos em situações de separação — um risco real em dados 

muito desequilibrados. 
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3.3 Machine Learning 

Os modelos de machine learning usados neste trabalho enquadram-se nos modelos de 

aprendizagem supervisionada.  

A maioria dos modelos considerados (Random Forest, C5.0 e XGBoost) baseiam-se em 

árvores de decisão, ou seja, estruturas em árvore que representam conjuntos de 

decisões. 

Para garantir a validade estatística dos modelos e evitar o overfitting, os dados originais 

são divididos em dois subconjuntos distintos: 

• Treino: estes dados são usados para a construção e ajuste do modelo. 

• Teste: estes dados que não foram usados na fase de construção e ajuste do 

modelo são usados para avaliar a capacidade de generalização do modelo.  

 

3.3.1 Naive Bayes 

O Naive Bayes é um algoritmo de machine learning baseado no Teorema de Bayes, que 

permite calcular probabilidades condicionais “invertidas”. Desenvolvido a partir do 

trabalho do matemático Thomas Bayes (século XVIII), o teorema revolucionou a 

inferência estatística ao propor como atualizar as probabilidades iniciais (probabilidade 

a priori) com base em evidências observadas, resultando numa probabilidade a 

posteriori. A fórmula central é dada por: 

𝑃(𝑌 | 𝑋) =  
𝑃(𝑋|𝑌) × 𝑃(𝑌)

𝑃(𝑋) , 

onde: 

• 𝑃(𝑌): probabilidade a priori – estimativa inicial da probabilidade da categoria 𝑌 

• 𝑃(𝑋|𝑌): verosimilhança – probabilidade de observar as caraterísticas 𝑋 dado 

que a categoria é 𝑌 

• 𝑃(𝑋): evidência – probabilidade marginal das caraterísticas 𝑋, atuando como 

fator de normalização 

• 𝑃(𝑌|𝑋): probabilidade a posteriori – probabilidade atualizada da categoria 𝑌 

após considerar as evidências 𝑋 
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Para evitar que probabilidades condicionais sejam zero quando uma caraterística não 

aparece numa determinada categoria, Pierre-Simon Laplace introduziu conceito de 

“suavização” (Laplace smoothing). A técnica adiciona um valor 𝛼 (geralmente 𝛼 = 1) às 

contagens de frequência: 

 

𝑃(𝑋𝑖|𝑌) =  
𝐶𝑜𝑛𝑡𝑎𝑔𝑒𝑚 (𝑋𝑖 𝑒𝑚 𝑌) +  𝛼 

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒 𝑐𝑜𝑛𝑡𝑎𝑔𝑒𝑛𝑠 𝑒𝑚 𝑌 +  𝛼 ×  𝑐 , 𝑖 = 1, . . . , 𝑐, 

 

onde 𝑐 é o número de valores únicos, ou categorias, que 𝑋𝑖 pode assumir. Assim, mesmo 

que uma caraterística esteja ausente no treino, a sua probabilidade não será zero. O 

modelo passa a considerar uma probabilidade mínima, permitindo que outras 

caraterísticas influenciem a classificação.  

 

Na prática, estamos a classificar sinistros rodoviários como “M/FG” ou “FL” com base 

em variáveis específicas. Supondo que as variáveis analisadas são “tipo de acidente”, 

“Veículos Pesados” e “Hora” (𝑐 = 3), e que no treino temos: 

 

• “M/FG” 

- “Atropelamento”: 20 observações 

- “Veículo pesado”: 25 observações   total de observações = 60 

- “20h-6h”: 15 observações  

• “FL” 

- “Atropelamento”: 2 observações  

- “Veículo pesado”: 1 observação.                  total de observações = 3 

- “20h-6h”: 0 observações 

 

A probabilidade de “Veículo Pesado = Sim” em sinistros com “FL” sem a suavização de 

Laplace seria: 

𝑃(Veículo Pesado | FL) =  
0
3 = 0. 
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Com a suavização de Laplace (𝛼 = 1) ajusta-se as contagens adicionando 𝛼 = 1 a cada 

palavra e atualiza-se o denominador: 

𝑃(Veículo Pesado | FL) =  
0 + 1

3 + 1 ×  3 =
1
6   0,1667. 

 

Mesmo que “Veículo Pesado = Sim” nunca tenha sido registado em sinistros de “FL” 

durante o treino, a sua probabilidade agora não é nula. Isso permite que outros fatores 

(como “Atropelamento” ou “Hora”) contribuam para a decisão final, evitando que o 

modelo falhe ou fique bloqueado por causa de uma variável ausente. 

 

Este algoritmo adapta-se a diferentes tipos de dados através das seguintes variantes, 

cada uma projetada para lidar com caraterísticas específicas: 

 

• Multinomial Naive Bayes 

Foi projeto para trabalhar com dados discretos, como contagem de palavras em textos. 

O seu funcionamento baseia-se no cálculo de probabilidades a partir das frequências do 

evento.  

 

• Gaussian Naive Bayes 

Variante do algoritmo projetada para lidar com dados contínuos, como temperatura, 

valores biométricos (altura, peso...). O seu funcionamento assume que os dados seguem 

uma distribuição normal (Gaussiana), o que permite estimar probabilidades 

condicionais a partir da média () e da variância (𝜎2) de cada caraterística por categoria. 

Um aspeto crítico é a sua sensibilidade a outliers, já que a distribuição Gaussiana 

pressupõe simetria nos dados. Se um valor extremo estiver presente, a estimativa de 

probabilidade pode ser distorcida, afetando a precisão do modelo. Para mitigar isso, é 

recomendado aplicar técnicas de pré-processamento, como normalização ou remoção 

de outliers, antes do treino. 

 

• Bernoulli Naive Bayes 

É especializado em caraterísticas binárias, como presença ou ausência de palavras num 

documento. O seu funcionamento baseia-se na estimativa de probabilidades 
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condicionais para cada estado binário (𝑋𝑖 = 1 ou 𝑋𝑖 = 0) dentro de uma categoria. Uma 

diferença crucial em relação com Multinomial Naive Bayes é que o Bernoulli ignora a 

frequência de ocorrência, focando apenas na existência ou não de uma caraterística. 

 

A tabela que se segue, Tabela 2, apresenta uma comparação entre os três principais 

tipos de Naive Bayes – Multinomial, Gaussiana e Bernoulli. Esta comparação permite 

compreender qual a versão do Naive Bayes é mais adequada dependendo da natureza 

dos dados (discretos, contínuos ou binários) e do contexto da aplicação. 

 
Tabela 2 – Comparação de algoritmos de Naive Bayes. 

 

Sendo 𝑌 a variável resposta do tipo nominal (categorias a serem previstas) e 𝑋 =

(𝑋1, … , 𝑋𝑘) o vetor das variáveis explicativas (caraterísticas), o algoritmo funciona da 

seguinte forma:  

 

 

 
 
 

Multinomial 
Naive Bayes 

Gaussian 
Naive Bayes 

Bernoulli 
Naive Bayes 

Tipos de Dados 
Dados discretos 

(contagens/ 
frequências) 

Dados contínuos (valores 
numéricos) 

Dados binários 
(0 ou 1) 

Suposição Distribuição multinominal 
(contagens) 

Distribuição Gaussiana 
(normal) 

Distribuição de 
Bernoulli 

(presença/ausência) 

Aplicação 

Classificação de texto, 
análise de sentimentos, 

categorização de 
documentos 

Diagnóstico médico, 
reconhecimento de 

padrões em sensores, 
previsão de falhas 

Deteção de fraudes, 
classificação binária de 
documentos, filtros de 

spam simplificados 

Cálculo de  
𝑷(𝑿𝒊|𝒀) 

 

Frequências relativas com 
suavização de Laplace 

Média () e variância (𝜎2) 
por categoria 

Probabilidade de 
presença  

𝑃(𝑋𝑖 = 1|𝑌) 
ou ausência  
𝑃(𝑋𝑖 = 0|𝑌) 

Tratamentos de 
Zeros 

Suavização de Laplace 
para evitar  

𝑃(𝑋𝑖|𝑌) = 0 

Não aplicável (usa 
distribuição contínua) 

Suavização de Laplace 
opcional 

Limitações Ignora ordem de palavras 
em texto 

Sensível a outliers e 
distribuições não 

Gaussianas 
Ignora frequência 
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• Probabilidades a priori (𝑃(𝑌)) 

O objetivo é calcular a probabilidade inicial 𝑃(𝑌) de cada categoria de 𝑌 com 

base nos dados de treino, geralmente estimada pela frequência relativa. O 

cálculo é: 

𝑃(𝑌 = 𝑦) =
𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎çõ𝑒𝑠 𝑑𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑎 𝑦 𝑛𝑜 𝑡𝑟𝑒𝑖𝑛𝑜

𝑇𝑜𝑡𝑎𝑙 𝑑𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎çõ𝑒𝑠 𝑛𝑜 𝑡𝑟𝑒𝑖𝑛𝑜 . 

Este procedimento reflete a distribuição das categorias no treino. Se uma 

categoria é rara, a sua probabilidade a priori será baixa. 

 

• Probabilidades condicionais 

Nesta etapa o objetivo é calcular a probabilidade de observar as caraterísticas 𝑋  

dado que a categoria é 𝑌 = 𝑦.  

Para variáveis contínuas, assume-se uma distribuição normal (Gaussiana) e 

estimam-se a média e a variância por categoria;  

Para variáveis discretas, utiliza-se as contagens de frequência, muitas vezes com 

a suavização de Laplace para evitar probabilidades iguais a zero. 

 

• Classificação (Cálculo da Probabilidade a posteriori - (𝑃(𝑌|𝑋)) 

Na última fase o objetivo é determinar a categoria mais provável para uma nova 

observação com caraterísticas 𝑋, utilizando a fórmula do Teorema de Bayes: 

𝑃(𝑌 = 𝑦 | 𝑋) =  
𝑃(𝑋 | 𝑌 = 𝑦) ×  𝑃(𝑌 = 𝑦 ) 

𝑃(𝑋) , 

onde a categoria com maior probabilidade é atribuída à observação. 

 

Este algoritmo é simples e eficiente, ideal para problemas como a classificação da 

sinistralidade rodoviária com múltiplas variáveis preditivas. Ele é escalável e possui 

complexidade computacional linear, sendo adequado para grandes volumes de dados, 

requerendo poucos dados de treino, o que o torna útil em cenários com dados limitados. 

Além disso, é robusto a ruídos e outliers devido à suposição de independência. 

Porém, a sua principal limitação é a suposição de independência entre as características, 

conhecida como “independência condicional”, o que pode prejudicar a precisão quando 

as variáveis estão correlacionadas. Além disso, o Naive Bayes pode ter dificuldades para 



 45 

fornecer boas estimativas de probabilidade quando há desequilíbrio de categorias ou 

quando uma categoria não aparece no treino (problema conhecido como “zero-

frequency”, mitigado pela suavização de Laplace). Outra limitação é a sensibilidade a 

preditores irrelevantes: se muitas variáveis não informativas foram incluídas, o 

desempenho pode degradar-se. 

 

3.3.2 Random Forest  

O Random Forest, é um algoritmo de machine learning, mais especificamente de 

ensemble learning (aprendizagem por conjunto), proposto por Leo Breiman e Adele 

Cutler em 2001 (Breiman, 2001). Para compreender este algoritmo primeiro é 

necessário entender o seu comportamento básico: árvores de decisão. 

De acordo com o IBM (2024) uma árvore de decisão é um modelo não paramétrico de 

aprendizagem supervisionada, utilizado para classificação e regressão. A sua estrutura 

assemelha-se a uma estrutura em forma de árvore, que inicia com um nó raiz, seguindo-

se os nós internos (ou nós de decisão) em que cada um dos nós representa um teste 

aplicado a uma variável explicativa, cada ramo representa o resultado desse teste e cada 

nó folha (ou nó terminal) contém o resultado, i.e., uma etiqueta de classe (para 

classificação) ou um valor contínuo para regressão. No entanto, apenas uma árvore de 

decisão é altamente sensível a pequenas variações nos dados de treino e é precisamente 

para superar essa limitação que o Random Forest foi criado.  

O algoritmo Random Forest combina múltiplas árvores de decisão para produzir 

previsões mais precisas e robustas do que uma árvore isolada. A essência do Random 

Forest reside na diversificação: ao construir várias árvores com subconjuntos aleatórios 

dos dados e variáveis, o modelo reduz a variância e evita o overfitting. 

O Random Forest opera em três etapas principais: bootstrap aggregating (bagging), 

construção de árvores com seleção aleatória de features e agregação de resultados. 

Cada etapa é projetada para introduzir aleatoriedade e diversidade, garantindo que as 

árvores sejam independentes e complementares. 

 

1) Booststrap Aggregating (Bagging) 

• Amostragem com reposição: cada árvore é treinada com um subconjunto dos 

dados de treino, gerado pela amostragem com reposição (técnica de bootstrap). 
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Isso significa que, para uma base de dados com 𝑛 observações, cada subconjunto 

terá 𝑛 amostras. No entanto, devido à reposição, algumas observações originais 

podem ser selecionadas várias vezes, enquanto outras não são selecionadas. 

Quando 𝑛 → ∞, a probabilidade de uma observação nunca ser escolhida é de 

aproximadamente 0,37. Deste modo, em média, para treinar cada árvore são 

usadas aproximadamente 63% das observações originais e as  37% restantes não 

são usadas nesse treino. A este conjunto de observações excluídas dá-se o nome 

de out-of-bag (Hastie et al., 2009). 

 

• Versatilidade: a amostragem aleatória garante que cada árvore “veja” dados 

ligeiramente diferentes, reduzindo a correlação entre as árvores e melhorando a 

generalização do modelo. 

 

2) Seleção Aleatória de Variáveis (Feature Randomness) 

Em cada divisão de um nó da árvore, apenas um subconjunto de 𝑚 variáveis (geralmente 

𝑚 =  √𝑘,  sendo 𝑘 o número total de variáveis para classificação) é considerado. Essa 

seleção aleatória evita que uma única variável dominante influencie todas as árvores, 

promovendo diversidade (Breiman, 2001). 

• Critério de divisão: para cada subconjunto de variáveis, a árvore escolhe a melhor 

divisão usando critérios como Gini impurity (classificação) ou redução da 

variância (regressão). 

 

3) Construção de Árvores e Agregação 

Cada árvore é construída independentemente até à sua profundidade máxima, o que a 

torna propensa a overfitting. No entanto, a agregação de múltiplas árvores compensa 

esse viés e tenta fazer previsões usando os dados amostrados. Isso reduz o risco de 

overfitting, um problema em árvores de decisão únicas.  

 

4) Previsão final: 

A etapa final de previsão requer a agregação das árvores que é determinado pela 

natureza da variável resposta. Quando se está perante uma classificação, a variável 

resposta é categórica e por isso cada árvore do ensemble produz uma previsão de 
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categoria. A previsão final neste caso é obtida pela moda das previsões individuais, ou 

seja, é a categoria mais frequente entre todas as árvores.  

Quando se está perante uma Regressão, a variável é contínua e cada árvore produz uma 

previsão numérica. A previsão final nestas situações é dada pela média aritmética das 

previsões.  

  

Os hiperparâmetros do Random Forest são configurações que controlam o treino do 

modelo, influenciando a sua precisão, velocidade e capacidade de generalização. Entre 

os mais relevantes estão: 

• Número de árvores (𝒏𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓𝒔): mais árvores aumentam a estabilidade, mas 

têm custos computacionais. 

• Número de Variáveis por Divisão (𝒎): controla a diversidade. Valores menores 

reduzem a correlação entre árvores. 

• Profundidade Máxima das Árvores: limitar a profundidade previne overfitting 

individual, porém árvores muito rasas podem estar sujeitas a underfitting. 

 

A escolha adequada destes parâmetros é essencial para equilibrar o desempenho e a 

complexidade, evitando overfitting ou underfitting. 

Esta abordagem permite avaliar a relevância de cada variável para as previsões do 

modelo. A importância de cada variável é calculada de duas formas: 

• Gini Importance: mede quantas vezes uma variável reduz a impureza (Gini) nas 

divisões, ponderada pelo número de amostras afetadas. 

• Permutation Importance: avalia a queda na precisão do modelo quando os 

valores da variável são aleatoriamente permutados (Lundberg; Lee, 2017) 

 

Relativamente às vantagens e limitações, destaca-se positivamente a robustez a dados 

ruidosos e outliers, pela capacidade de lidar com relações não lineares entre variáveis e 

pela avaliação interna de desempenho via amostras out-of-bag. Contudo, a sua principal 

limitação reside no custo computacional elevado para grandes bases de dados e na 

interpretabilidade reduzida, já que a “floresta” de árvores dificulta a explicação de 

previsões individuais.  
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Devido à sua versatilidade, o Random Forest é amplamente utilizado em áreas como 

medicina (diagnóstico de doenças), finanças (avaliação de risco de crédito), ecologia 

(modelação de habitats) e marketing (segmentação de clientes). Na sinistralidade 

rodoviária, esta técnica é aplicada para: 

• Identificar combinações de fatores de risco (ex: geometria da via, condições 

ambientais, comportamento do condutor, etc). 

• Priorizar intervenções preventivas (ex: classificação do troço por nível de perigo). 

• Prever sinistros graves com base em padrões complexos (ex: deteção de relações 

não lineares). 

A sua eficácia em grandes conjuntos de dados, aliada á capacidade de quantificar a 

relevância de variáveis, consolida-o como uma ferramenta analítica valiosa. Contudo, a 

complexidade computacional inerente à construção de diversas árvores e a menor 

interpretabilidade comparativamente a modelos individuais representam compromissos 

a considerar. 

Em síntese, o algoritmo equilibra precisão preditiva e generalização, tornando-se 

indispensável para problemas de classificação e regressão, onde a estabilidade e 

adaptabilidade a cenários heterogéneos são prioritárias.  

 

3.3.3 Algoritmo C5.0 

O algoritmo C5.0, desenvolvido por Ross Quinlan na década de 1990, representa a 

evolução mais avançada dos algoritmos de árvore de decisão criados pelo autor. Quinlan, 

reconhecido como pioneiro da área do machine learning, estruturou uma linha 

cronológica de modelos, iniciada com o ID3 (Iterative Dichotomiser 3) em 1986, seguido 

pelo C4.5 em 1993 e culminando no C5.0 (Quinlan, 1993; Kuhn & Johnson, 2013). 

No que concerne aos antecedentes, os primeiros algoritmos de Quinlan surgiram para 

resolver desafios centrais de aprendizagem supervisionada: criar modelos interpretáveis 

capazes de prever uma variável dependente com base em atributos descritivos. O ID3 

introduziu conceitos inovadores, como o uso de entropia e o ganho de informação para 

selecionar divisões ótimas na árvore.  

A entropia é uma medida de impureza ou desordem num conjunto de dados 𝑆. 

Matematicamente, calcula-se através da equação que se segue: 
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Entropia (𝑌) =   − ∑ 𝑝𝑖log2(𝑝𝑖)
𝑐

i=1

, 0 ≤ 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎(𝑌) ≤ 𝑙𝑜𝑔2(𝑐), 

onde 𝑝𝑖 é a proporção de observações da categoria 𝑖 da variável 𝑌, e 𝑐 o número de 

categorias distintas de 𝑌. 

Por exemplo, supondo que 85% dos condutores não estiveram envolvidos em sinistros 

no último ano (categoria “Não”) e 15% estiveram envolvidos (categoria “Sim”), ou seja: 

- Categoria “Não”: 𝑝𝑛ã𝑜 = 0,85, 

- Categoria “Sim”: 𝑝𝑠𝑖𝑚 = 0,15, 

o valor da entropia é: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝑌) =  −(0,85   𝑙𝑜𝑔2(0,85) + 0,15   𝑙𝑜𝑔2(0,15))  0,609. 

 

Neste caso (𝑆  0,609), a entropia está mais próxima do mínimo (0) do que do máximo 

(1), indicando que há uma alta homogeneidade nos dados. A maioria dos condutores 

partilha um comportamento semelhante (não se envolvem em sinistros), o que reduz a 

desordem na previsão de comportamentos futuros. 

Se as categorias estiverem igualmente distribuídas (ex.: 50% “Sim”, 50% “Não”), a 

entropia é máxima (1). O valor mínimo de entropia (0) é obtido quando todas as 

observações pertencem a uma única categoria. 

O ganho de informação, por sua vez, quantifica quanto um atributo 𝑋 reduz a entropia 

de 𝑌 após dividir os dados 𝑆 com base na variável 𝑋 (Quinlan, 1993). Por exemplo, ao 

utilizar o atributo “Idade do condutor” (condutores até 25 anos vs. condutores com mais 

de 25 anos) para dividir os registos de sinistros, calcula-se: 

1) A entropia original do conjunto completo; 

2) A entropia de cada subconjunto (condutores até 25 anos vs. condutores com 

mais de 25 anos); 

3) A diferença entre a entropia original e a média ponderada das entropias dos 

subconjuntos. 

𝐺𝑎𝑛ℎ𝑜 (𝑌, 𝑋) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝑌) − ∑
|𝑌𝑣|
|𝑌|

𝑣 ∈ 𝑉𝑎𝑙𝑜𝑟𝑒𝑠(𝑋)

 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑎 (𝑌𝑣) 

 

O atributo com maior valor é selecionado para a divisão, pois maximiza a 

homogeneidade dos subconjuntos. 
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Apesar da inovação, a abordagem do ID3 apresentava falhas críticas ligadas justamente 

a esses conceitos: 

• Viés do ganho de informação: atributos com muitos valores únicos geravam 

ganhos artificialmente altos, mesmo sem relevância preditiva; 

• Atributos contínuos: exigia discretização manual prévia, o que limitava a sua 

aplicação em dados numéricos; 

• Ausência de poda (pruning): resultava em árvores excessivamente complexas, 

sem mecanismos de simplificação, reduzia a generalização. Aqui eram 

capturados ruídos em vez de padrões; 

• Missings: ignorava missings e não suportava tarefas de regressão (Quinlan, 

1996). 

 

O C4.5 (1993) superou essas limitações com avanços significativos, nomeadamente: 

• Discretização automática de atributos contínuos: o algoritmo identifica, de forma 

dinâmica, o ponto de corte ideal para variáveis numéricas, transformando-as em 

condições binárias durante a construção da árvore. Esse processo é realizado 

mediante a ordenação dos valores e avaliação de possíveis pontos de corte entre 

as diversas categorias distintas, selecionando aquele que maximiza o ganho de 

informação. 

Ganho da razão (Gain Ratio), ajusta o viés de atributos multivariados, 

penalizando aqueles com alta cardinalidade (grande quantidade de dados com 

mínima repetição). 

𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑋) =
𝐺𝑎𝑛ℎ𝑜(𝑌, 𝑋)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑋), 

com 

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑋) = − ∑  
|𝑆𝑖|
|𝑆| × 𝑙𝑜𝑔2

|𝑆𝑖|
|𝑆|

𝑘

𝑖=1

, 

em que: 

𝑘: número de subconjuntos (ramos) gerados pela divisão do atributo 𝑋; 

|𝑆𝑖|: número de instâncias no i-ésimo subconjunto (ramo); 

|𝑆|: número total de instâncias no nó. 
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• Poda pós construção (post-pruning) para simplificação; 

• Tratamento probabilístico valores omissos (missings), distribuindo as 

observações conforme a frequência observada; 

• Geração de regras para maior interpretabilidade (Quinlan, 1993). 

 

Apesar dos avanços, o C4.5 mostrou-se inadequado para determinadas caraterísticas: 

• Ineficiência computacional: consumo excessivo de memória em grandes 

conjuntos de dados; 

• Poda não otimizada: a poda post-hoc gerava desperdício de recursos ao 

simplificar a árvores apenas após a sua construção completa; 

• Desequilíbrio de categorias: o desempenho era insatisfatório em categorias 

minoritárias; 

• Falta de suporte nativo a técnicas de ensemble (combinação de múltiplos 

modelos para melhorar a performance): impossibilitava a implementação de 

abordagens como boosting (técnica que combina modelos sequencialmente, 

onde cada novo modelo corrige os erros do anterior) ou bagging (método que 

combina modelos independentes treinados em subconjuntos aleatórios dos 

dados), limitando a sua capacidade de reduzir a variância e melhorar a 

generalização (Kuhn & Johnson, 2013). 

 

Foi nesse contexto que surgiu o C5.0, como uma tentativa de endereçar as limitações 

práticas do C4.5 e tornar o algoritmo mais eficiente, escalável e competitivo frente a 

novas abordagens emergentes em machine learning. 

Neste sentido, o C5.0 é um algoritmo de classificação baseado em árvores de decisão. O 

seu principal objetivo é prever variáveis dependentes categóricas a partir de atributos 

preditivos, construindo uma estrutura hierárquica que divide os dados conforme a 

capacidade discriminativa das variáveis. A sua eficiência em lidar com dados 

heterogéneos (numéricos e categóricos) e a sua robustez contra o overfitting fazem com 

que o mesmo seja utilizado em diversas áreas como marketing, medicina, entre outras 

(Quinlan, 2014). 

A construção deste modelo segue uma abordagem recursiva, com etapas que incluem 

seleção de atributos, divisão de dados e otimização pós-construção. 
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Na preparação dos dados, os mesmos devem ser estruturados em formato tabular, onde: 

• Linhas representam observações; 

• Colunas correspondem a atributos preditivos e à variável dependente; 

• Os dados podem incluir tanto variáveis contínuas como categóricas bem como 

missings. 

 

Para a construção da árvore, o processo é composto por três fases: 

1) Seleção de atributos: 

A seleção de atributos é baseada no ganho de informação, ajustado pelo Gain Ratio para 

mitigar o viés em atributos multivariados (Quinlan, 1993). 

O atributo com maior Gain Ratio é escolhido, priorizando divisões que gerem subgrupos 

homogéneos. 

O processo de seleção de divisões envolve a avaliação de todas as possíveis divisões dos 

dados para cada atributo, escolhendo a que proporciona o maior ganho de informação. 

Essa escolha sequencial dos melhores atributos resulta em uma árvore de decisão que 

hierarquiza as caraterísticas mais informativas, refletindo os padrões subjacentes no 

conjunto de dados. 

 

2) Divisão do conjunto de dados: 

O processo de divisão do conjunto de dados é fundamental para a construção da árvore 

e difere consoante o tipo de variável: 

- Variáveis categóricas: A divisão é efetuada pelos valores únicos da variável. Cada ramo 

da árvore corresponde a um valor possível (ex: para a variável “Tipo de veículo”, seriam 

criados ramos para “Veículo particular” ou “Veículo comercial”); 

- Variáveis numéricas: o processo de divisão baseia-se na identificação de um ponto de 

corte ótimo. O algoritmo avalia sequencialmente possíveis pontos de corte ao longo da 

distribuição dos valores, selecionando aquele que maximiza a homogeneidade (ou 

minimiza a impureza) dos subconjuntos. Esta divisão binária separa o conjunto de dados 

em dois subconjuntos, cada um direcionado para um ramo distinto da árvore, consoante 

a veracidade da condição de desigualdade estabelecida. 
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3) Critérios de finalização: 

O processo repete-se recursivamente até que pelo menos um dos seguintes critérios seja 

satisfeito: 

• Todos os exemplos num nó pertençam à mesma categoria; 

• Não haja atributos para divisão; 

• Limites predefinidos sejam atingidos. 

 

Após a construção inicial da árvore, o C5.0 aplica técnicas de otimização para garantir 

equilíbrio entre precisão e generalização: 

• Poda (Pruning): remove ramos redundantes para evitar overfitting. O critério 

baseia-se numa avaliação estatística de custo-complexidade. Um ramo é 

considerado redundante se a sua remoção não provocar um aumento 

significativo da taxa de erro de classificação, ou seja, se a sua contribuição para a 

redução da impureza (ex: entropia) for inferior a um determinado limite de ganho 

mínimo predefinido. 

• Peneiramento (Winnowing): descarta atributos que contribuem pouco para a 

redução de entropia, aumentando a simplicidade e eficiência da árvore final. 

 

O C5.0 é a culminação de uma trilha evolutiva iniciada por Ross Quinlan com o ID3 e o 

C4.5 que resolve limitações históricas e estabelece novos padrões em modelos de 

classificação. Ao integrar avanços como o Gain Ratio (corrige o viés de atributos 

multivariados), a discretização automática de variáveis contínuas e técnicas de poda 

otimizada, o C5.0 destaca-se pela eficiência computacional, interpretabilidade e 

robustez contra overfitting. A sua capacidade de hierarquizar atributos informativos, 

aliada a métodos como o peneiramento, produz árvores adaptáveis a dados 

heterogéneos, mantendo o equilíbrio entre precisão e generalização. 

 

3.3.4 XGBoost 

O XGBoost (Extreme Gradient Boosting) emergiu como um dos algoritmos mais 

influentes na história do machine learning, revolucionando a forma como problemas de 

classificação e regressão são abordados. Desenvolvido em 2014 por Tianqi Chen e Carlos 
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Guestrin, este algoritmo combina a robustez teórica do Gradient Boosting com 

otimizações computacionais inovadoras, tornando-o uma ferramenta indispensável em 

cenários que exigem precisão, eficiência e escalabilidade. 

A criação do XGBoost foi motivada por lacunas no Gradient Boosting tradicional, 

proposto por Jerome H. Friedman em 2001. Embora o método de Friedman permitisse 

a construção iterativa de modelos preditivos precisos, três desafios persistiam: 

• Ineficiência computacional: o treino sequencial de árvores (cada nova árvore 

corrige os erros da anterior) tornava o processo lento, especialmente em grandes 

volumes de dados. 

• Fragilidade a overfitting: a falta de mecanismos de controle de complexidade 

levava os modelos a memorizar os dados de treino, prejudicando a generalização. 

• Dificuldade de implementação: a ausência de otimizações restringe a 

escalabilidade (Friedman, 2001). 

 

Para superar tais limitações, Chen e Guestrin (2016) introduziram três avanços 

fundamentais: 

 

• Paralelização e otimização computacional 

No Gradient Boosting tradicional, cada árvore é treinada sequencialmente, ou seja, uma 

árvore só começa a ser construída após a conclusão da anterior. O XGBoost substitui o 

treino sequencial por estratégias paralelas em múltiplos níveis: 

- Paralelização de nível de árvore: enquanto as árvores são construídas sequencialmente, 

o cálculo das melhores divisões (splits) em cada nó é paralelizado. O algoritmo divide o 

conjunto de dados em partes menores (blocos – estruturas de dados compactas) e avalia 

divisões para diferentes caraterísticas simultaneamente utilizando diferentes núcleos do 

processador CPU (Chen & Guestrin, 2016). Isso permite que os cálculos das divisões 

sejam feitos mais rapidamente, acelerando o processo. 

 

- Algoritmo aproximado para encontrar divisões: utiliza histogramas para agrupar os 

dados em categorias de intervalo. Isso simplifica os cálculos, reduzindo a complexidade 

de 𝑂(𝑛) para 𝑂(𝑙𝑜𝑔𝑛), onde 𝑛 é o número de amostras (Chen & Guestrin, 2016). Isso 

significa que, em vez de se analisar cada amostra individualmente – o que levaria um 
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tempo proporcional ao tamanho do conjunto de dados (𝑂(𝑛)), o algoritmo consegue 

encontrar divisões de forma mais rápida, examinando apenas uma pequena parte dos 

dados a cada passo (𝑂(𝑙𝑜𝑔𝑛)).  

 

- Suporte a ambientes distribuídos: o treino do modelo por ser dividido entre várias 

máquinas, em vez de ser executado em apenas um computador. Isso é feito através de 

um cluster (grupo de máquinas que trabalham juntas), permitindo que grandes 

quantidades de dados sejam processadas de forma mais rápida e eficiente, pois cada 

máquina executa uma parte do trabalho.  

 

• Técnicas avançadas de regularização (L1/L2)  

A regularização é uma técnica para evitar que o modelo se torne demasiado complexo e 

perca a capacidade de generalização.  

O XGBoost incorpora termos de penalização na função de perda (loss function) para 

evitar overfitting: 

- Regularização L1 (Lasso) adiciona uma penalização proporcional ao valor absoluto dos 

coeficientes do modelo. Isso força o algoritmo a eliminar variáveis irrelevantes. 

- Regularização de L2 (Ridge) penaliza o quadrado dos coeficientes, suavizando o impacto 

de variáveis extremas, evitando que outliers dominem o modelo. 

 

A equação da perda é dada por: 

𝐿𝑜𝑠𝑠 =  ∑ 𝐿(𝑦𝑖, 𝑦̂𝑖)
𝑛

𝑖 = 1

 +  ∑ |𝑏𝑗|
𝑘

𝑗 = 1

 +  ∑ 𝑏𝑗
2

𝑘

𝑗 = 1

,   

onde: 

• 𝐿: é a função de perda ou custo, 

• 𝐿(𝑦𝑖, 𝑦̂𝑖): erro de predição, 

• : penalidade L1(Lasso) para eliminar variáveis irrelevantes, 

• : penalidade L2 (Ridge) para suavizar coeficientes, 

• 𝑘: número de variáveis do modelo, 

• 𝑏𝑗: peso associado à 𝑗-ésima variável. 
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• Sistema de gestão de memória e eficiência 

O sistema de armazenamento foi otimizado através de: 

- Estrutura de dados em blocos: armazena os dados em blocos compactos, permitindo 

acesso rápido e reduzindo a sobrecarga de memória. 

- Formato de coluna comprimido: comprime colunas de dados poupando espaço, 

reduzindo o espaço do disco. 

- Cache-Awareness: algoritmos antecipam quais os dados que serão necessários, 

armazenando-os para acesso rápido. 

Um exemplo prático é a organização de registos de sinistralidade rodoviária. Em vez de 

registos desorganizados, eles são agrupados por género (blocos) e colocados em 

ficheiros identificados, facilitando a procura. 

 

O artigo de 2016 “XGBoost: A Scalable Tree Boosting System”, detalha estas inovações, 

posicionando o XGBoost como uma ferramenta dominante. De forma resumida, a tabela 

abaixo, Tabela 3, compara o XGBoost com o Gradient Boosting tradicional, evidenciando 

as melhorias introduzidas pelo XGBoost em termos de desempenho, regularização e 

eficiência computacional. 

 

Tabela 3 – Comparação dos algoritmos de Gradient Boosting. 

 

Em suma, o XGBoost surge não apenas como uma evolução técnica do Gradient Boosting 

tradicional, mas como uma resposta sistémica para desafios históricos: ineficiência 

computacional, overfitting e falta de escalabilidade. Ao integrar paralelização de nível de 

Caraterística Gradient Boosting Tradicional XGBoost 

Paralelização Sequencial por árvore Paraleliza o cálculo das divisões dos nós e 
distribui o treino por clusters  

Regularização Não suportada Adiciona termos L1/L2 diretamente na 
função perda para controlar o overfitting 

Memória Armazenamento não otimizado Estruturas de dados compactas 

Algoritmo de Splits Busca exata de divisões 𝑂(𝑛) 
Usa histogramas para aproximar as 

divisões, reduzindo tempo de 𝑂(𝑛) para 
𝑂(𝑙𝑜𝑔𝑛) 

Tratamento de 
valores omissos Requer pré-processamento Deteta automaticamente padrões para 

lidar com valores omissos 
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árvore, algoritmos otimizados para cálculo de divisões e suporte a ambientes 

distribuídos, o modelo acelera o treino e permite a modelação de grandes volumes de 

dados. A regularização L1 e L2, por sua vez, introduz equilíbrio entre precisão e 

generalização, mitigando riscos de overfitting. 

 

3.4 Técnicas de Reamostragem 

No campo da análise de dados, um elevado desequilíbrio de categorias impacta 

significativamente a construção de modelos preditivos, pois os modelos tendem a ser 

mais sensíveis à categoria maioritária, subestimando as caraterísticas da categoria 

minoritária. Por outras palavras, o modelo é exposto a muitos mais exemplos da 

categoria maioritária do que da categoria minoritária, criando um viés nos algoritmos, 

que aprendem mais facilmente os padrões mais frequentes nos dados.  

Diante desse desafio, diversas técnicas foram desenvolvidas para equilibrar a 

distribuição das categorias e melhorar o desempenho dos modelos preditivos. Entre as 

abordagens mais comuns, destacam-se:  

• Oversampling 

O oversampling é uma técnica que aumenta a quantidade de observações da categoria 

minoritária, frequentemente replicando as observações existentes ou criando 

observações sintéticas. 

• Undersampling 

O undersampling é uma técnica que envolve a redução do número de observações da 

categoria maioritária, eliminando algumas observações para equilibrar as categorias. 

Embora essa técnica possa ser eficaz para simplificar o problema, ela também pode 

resultar na perda de informação. 

 

Ambas as técnicas visam criar um conjunto de dados equilibrado, permitindo que os 

algoritmos de machine learning identifiquem padrões presentes em todas as categorias 

de forma mais precisa. No entanto, a aplicação indiscriminada dessas técnicas pode levar 

a problemas como o overfitting e underfitting. O overfitting ocorre quando o modelo se 

ajusta em demasia aos dados de treino. Como resultado, o modelo apresenta um bom 

desempenho nos dados de treino, mas um desempenho fraco nos novos dados. Isso faz 
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com que o modelo não consiga gerar boas previsões. Já o underfitting acontece quando 

o modelo é muito simples para capturar as complexidades dos dados e quando não está 

bem ajustado aos dados, resultando num modelo com baixo desempenho tanto nos 

dados de treino quanto em novos dados. 

Para superar essas limitações, têm sido propostas técnicas mais sofisticadas e eficientes, 

como o ROSE (Random Over-Sampling Examples) e o SMOTE (Synthetic Minority Over-

sampling Technique). Essas técnicas geram novas observações sintéticas para a categoria 

minoritária, preservando ao mesmo tempo as caraterísticas intrínsecas dos dados 

originais.  

 

3.4.1 ROSE (Random Over-Sampling Examples) 

A técnica ROSE (Random Over-Sampling Examples), apresentada em 2014 pelos autores 

Nicola Lunardon, Giovanna Menardi e Nicola Torelli (Lunardon et al., 2014), foi proposta 

para mitigar o problema de categorias desequilibradas em conjuntos de dados de 

classificação, nas diversas aplicações de métodos de machine learning. Ao contrário dos 

métodos tradicionais que se limitam em replicar o número de observações da categoria 

minoritária ou a reduzir dados da categoria maioritária, o ROSE combina elementos de 

bootstrap com a estimativa de densidade kernel (KDE) para gerar novas observações 

sintéticas mais realistas. Esta abordagem considera tanto os dados contínuos quanto 

categóricos, reduz o risco de overfitting e melhora a capacidade de generalização dos 

modelos de machine learning, através: 

 

1) Criação de dados sintéticos mais diversificados: 

O processo tem início com a divisão da base de dados em conjuntos de treino e teste, 

podendo essa divisão ser estratificada ou temporal, conforme a natureza dos dados. O 

oversampling é então aplicado exclusivamente ao conjunto de treino, garantindo que o 

conjunto de teste permanece inalterado e representativo da distribuição original . o que 

evita problemas de data leakage. 

No treino, procede-se à seleção aleatória de observações da categoria minoritária 

através de bootstrap - técnica de amostragem aleatória com reposição onde as 

observações podem ser selecionadas diversas vezes. De seguida, é calculada a KDE em 

cada ponto selecionado de forma a obter uma distribuição de probabilidade suavizada 
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à volta de cada observação original, permitindo que os novos pontos sejam gerados nas 

proximidades de forma que sejam diversificados e realistas. Por exemplo, existe um 

registo de um sinistro rodoviário ocorrido às 3h da manhã, o ROSE neste caso cria casos 

sintéticos com horários próximos, tal como 2h ou 4h da manhã (valores ligeiramente 

diferentes), seguindo a distribuição natural dos dados originais. O modelo que resulta 

deste procedimento aprende a reconhecer padrões mais amplos em vez de memorizar 

casos específicos, melhorando significativamente a capacidade de generalização. 

 

2) Balanceamento da distribuição das categorias:  

O número de novos casos sintéticos gerados depende do grau de equilíbrio pretendido 

nos dados, i.e., o quão próximo se pretende que esteja o número de observações nas 

duas categorias (minoritária e maioritária). Por exemplo, considerando um cenário onde 

existem 100 observações de vias sem sinistros graves e apenas 10 observações de vias 

com sinistros graves, o ROSE pode gerar 90 observações sintéticas de vias com sinistros 

graves, cada uma com pequenas variações em relação aos dados originais. Este valor não 

é fixo, depende do método de balanceamento escolhido assim como do objetivo do 

modelo. Este balanceamento faz com que a categoria minoritária tenha peso suficiente 

no processo de treino. O resultado é um conjunto de dados onde ambas as categorias 

contribuem de forma equilibrada para o modelo. 

 

3) Suavização da fronteira de decisão:  

Um dos aspetos inovadores do ROSE é a capacidade de lidar com a presença de zonas 

ambíguas – regiões do espaço de caraterísticas (feature space) onde as observações de 

diferentes categorias se sobrepõem, tornando a classificação incerta. Esta abordagem é 

particularmente relevante em várias situações do quotidiano, como a avaliação da 

sinistralidade rodoviária, uma vez que a distinção entre as categorias raramente é bem 

definida, o que pode fazer com que as fronteiras de decisão criadas sejam artificiais e 

rígidas. 

 

Em resumo, o ROSE destaca-se como uma abordagem sofisticada e eficaz para lidar com 

conjuntos de dados desequilibrados, superando as limitações dos métodos tradicionais 

de oversampling. Ao integrar bootstrap com a KDE, esta técnica não só equilibra a 
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distribuição entre as categorias, como também gera observações sintéticas que 

refletem a complexidade dos dados. A grande diferença está na capacidade de modelar 

zonas ambíguas, onde as fronteiras entre as categorias são naturalmente difusas. O 

resultado é um modelo com maior capacidade preditiva, que aprende transições 

graduais em vez de divisões abruptas.  

 

3.4.2 SMOTENC (Synthetic Minority Over-sampling Technique-Nominal 

Continuous) 

A técnica SMOTE-NC foi desenvolvida em 2002 por Chawla, Bowyer, Hall e Kegelmeyer 

para superar uma limitação do SMOTE tradicional: a incapacidade de processar variáveis 

categóricas em conjuntos de dados (como tipo de veículo, ou estado da via). Enquanto 

o SMOTE tradicional é eficaz na geração de observações sintéticas para variáveis 

contínuas por meio de interpolação linear, ele falha ao lidar com variáveis discretas, 

podendo gerar novos valores de forma inapropriada, que resulta em dados inválidos 

(exemplo: “0,5” entre “chuva” e “nevoeiro”). O SMOTE-NC resolve essa lacuna com três 

adaptações metodológicas propostas.  

Considerando que existem 𝑘1 variáveis contínuas e 𝑘2 variáveis nominais, com 𝑘1 +

𝑘2 = 𝑘, o algoritmo SMOTE-NC envolve os seguintes passos: 

 

1) Cálculo da mediana dos desvios padrões 

Para cada variável contínua 𝑋𝑗 (𝑗 = 1, … , 𝑘1) na categoria minoritária, calcula-se o 

desvio padrão (𝑠𝑗). De seguida, calcula-se a mediana de todos esses desvios, 𝑥𝑠 =

𝑚𝑒𝑑𝑖𝑎𝑛𝑎(𝑠1, … , 𝑠𝑘1), que será posteriormente usada como referência para penalizar a 

diferença nas variáveis nominais. A mediana é escolhida pela sua robustez a outliers. 

Diferentemente da média, a mediana não é distorcida por valores extremos. 

 

2) Cálculo da distância euclidiana modificada e do vizinho mais próximo 

Esta etapa visa quantificar a desigualdade entre as amostras da categoria minoritária, 

integrando variáveis contínuas e categóricas numa única métrica de distância adaptada. 

Deste modo, a distância euclidiana modificada entre a amostra 𝑋 (referência) e amostra 

𝑍𝑚 (vizinha) é dada por: 
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𝑑(𝑋, 𝑍𝑚) = √ ∑ (𝑋𝑗 − 𝑍𝑚𝑗)2

𝑘1

𝑗 = 1

 + ∑ 𝐼𝑋𝑗≠𝑍𝑚𝑗
𝑥𝑠

𝑘2

𝑗=1

, 

onde: 
• 𝑋𝑗 e 𝑍𝑚𝑗  são os valores da 𝑗-ésima variável contínua nas amostras 𝑋 e 𝑍𝑚. 

• 𝐼𝑋𝑗≠𝑍𝑚𝑗
 é uma função binária que assume o valor: 

- 1 se a categoria da 𝑗-ésima variável nominal difere entre as amostras 𝑋 e 𝑍𝑚; 

- 0 se as categorias são idênticas nas duas amostras 𝑋 e 𝑍𝑚.  

• 𝑥𝑠 é a mediana dos desvios padrão das variáveis contínuas, calculada 

previamente, garantindo que a penalização por diferenças categóricas seja 

proporcional à variabilidade natural dos dados numéricos. De notar que a 

penalização 𝑥𝑠 é incorporada no cálculo da distância euclidiana modificada 

tantas vezes quantas as variáveis nominais cujas categorias diferem entre 𝑋 e 𝑍𝑚. 

Além disso, a incorporação de 𝑥𝑠 garante que diferenças categóricas sejam 

ponderadas de forma equivalente a uma diferença de 𝑥𝑠 unidades nas variáveis 

contínuas. 

• O termo ∑ (𝑋𝑗 − 𝑍𝑚𝑗)2𝑘1
𝑗 = 1  corresponde à distância euclidiana clássica entre as 

variáveis contínuas, ponderando diferenças maiores quadraticamente. 

• O termo ∑ 𝐼𝑋𝑗≠𝑍𝑚𝑗𝑥𝑠
𝑘2
𝑗=1  adiciona uma penalização fixa (𝑥𝑠) para cada variável 

categórica em que 𝑋 e 𝑍𝑚 divergem. Essa penalização reflete a variabilidade 

médias das variáveis contínuas. 

A função indicadora (𝐼) transforma diferenças categóricas em valores numéricos 

binários (0 ou 1), permitindo que sejam integradas à métrica de distância. Cada 

diferença categórica adiciona 𝑥𝑠 à distância total. 

 

Após calcular as distâncias para todas as observações 𝑍𝑚 da categoria minoritária, os 𝐾 

vizinhos mais próximos são selecionados com base nas menores distâncias euclidianas 

modificadas, conforme proposto por Chawla  et al. (2002).  Esses vizinhos são utilizados 

na etapa seguinte para gerar observações sintéticas, preservando a coerência semântica 

das categorias. 
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A escolha do número de vizinhos (𝐾) tem um impacto direto na qualidade das 

observações sintéticas geradas. Este parâmetro, definido a priori pelo utilizador, deve 

equilibrar dois riscos: 

 

• Valores baixos de 𝐾 (ex.: 𝐾 = 1)  

As observações sintéticas tornam-se quase réplicas da observação original, o que pode 

ser problemático se essa observação contiver ruídos ou outliers. Por exemplo, se 𝑍𝑚 for 

um erro de medição (como um registo incorreto de velocidade), a observação sintética 

reproduzirá esse erro, que resultará em dados artificias pouco diversificados e 

potencialmente enviesados. 

 

• Valores altos de 𝐾 (ex.: 𝐾 > 15)  

As observações geradas são mais genéricas, pois combinam informações de múltiplos 

vizinhos. O risco aqui é perder detalhes importantes da categoria minoritária. Por 

exemplo, num conjunto de sinistros graves, um 𝐾 muito elevado pode misturar padrões 

distintos. Apesar das amostras serem mais diversificas, as mesmas vão ser menos 

específicas. 

 

3) Geração da amostra sintética 

Esta etapa visa criar observações sintéticas para a categoria minoritária, combinando 

informações da amostra de referência 𝑋 e dos seus 𝐾 vizinhos mais próximos. O 

processo é dividido em duas partes, conforme o tipo de variável: 

• Geração de variáveis contínuas  

Para cada variável contínua 𝑋𝑗 (𝑗 = 1, … , 𝑘1), a nova observação sintética é feita 

por meio de uma interpolação linear estocástica entre o valor da amostra de 

referência 𝑋𝑗 e o valor do vizinho selecionado 𝑍𝑘𝑛𝑛,𝑗: 

𝑋𝑠𝑦𝑛,𝑗 = 𝑋𝑗 + 𝛾(𝑍𝑘𝑛𝑛,𝑗 − 𝑋𝑗), 

onde 𝛾 é um número aleatório uniformemente distribuído no intervalo [0, 1]. 

O objetivo é introduzir diversidade nas observações sintéticas, evitando 

sobreposição excessiva com as observações originais; e preservar a distribuição 

estatística das variáveis contínuas da categoria minoritária.  
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• Geração de variáveis nominais:  

Para cada variável nominal, 𝑋𝑗(𝑗 = 1, … , 𝑘2), o valor da nova amostra sintética é 

definido como a moda  entre os 𝐾 vizinhos mais próximos da amostra de 

referência 𝑋: 

𝑋𝑠𝑦𝑛,𝑗 = 𝑚𝑜𝑑𝑒(𝑍1𝑗, 𝑍2𝑗, … , 𝑍𝐾𝑗). 

 

Em resumo, conforme detalhado na Tabela 4, o SMOTE-NC surge como uma evolução 

crucial no campo da reamostragem para dados desequilibrados, superando as 

limitações do SMOTE tradicional ao integrar estratégias adaptativas para conjuntos de 

dados mistos (contínuos e categóricos). Ao incorporar uma distância euclidiana 

modificada – que pondera diferenças categóricas com base na variabilidade das 

variáveis contínuas – e ao definir valores nominais sintéticos via moda dos vizinhos, a 

técnica preserva a coerência semântica dos dados, evitando a geração de categorias 

inválidas ou irrealistas.   

A eficácia desta técnica é respaldada por aplicações recentes em domínios críticos, como 

saúde, finanças, onde a heterogeneidade de variáveis é comum. 

Na Tabela 4, apresentam-se as principais características das técnicas SMOTE, SMOTE-NC 

e ROSE.  
 

Tabela 4 – Comparação das técnicas de reamostragem para dados desequilibrados. 

Critério SMOTE SMOTENC ROSE 

Tipos de Variáveis 
Suportadas 

Apenas variáveis 
contínuas. 

Variáveis contínuas e 
categóricas. 

Variáveis contínuas e 
categóricas. 

Geração de 
Amostras 

Sintéticas para 
Variáveis 

Categóricas 

Ignora variáveis 
categóricas ou gera 
valores inválidos. 

Utiliza a moda (valor mais 
frequente) dos vizinhos, 
preservando categorias 

válidas. 

Observações sintéticas 
baseadas na 

distribuição original. 

Métrica de 
Distância 

Distância Euclidiana 
padrão (só variáveis 

contínuas). 

Distância Euclidiana 
modificada incorporando 

penalizações para 
diferenças categóricas. 

Aplica estimativas de 
densidade de kernel. 

Preservação 
Semântica 

Não preserva 
integridade de 

categorias. 

Mantém a coerência 
semântica, evitando 

categorias intermediárias 
ou inválidas. 

Preserva relações 
contextuais e 
combinações 

plausíveis. 
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Critério SMOTE SMOTENC ROSE 

Tratamento de 
Dados Mistos 

Ineficaz em datasets 
com variáveis mistas. 

Integra variáveis contínuas e 
categóricas de forma 

equilibrada. 

Lida naturalmente com 
dados mistos, 

mantendo coerência 

Robustez a 
Outliers 

Sensível a Outliers 
em variáveis 
contínuas. 

Usa a mediana dos desvios 
padrão, mais robusta a 

outliers. 

Robusto através da 
estimativas de 

densidade. 

Aplicações Típicas Dados puramente 
numéricos. Dados heterogéneos. Dados heterogéneos. 
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4. Metodologia de Modelação Preditiva 

4.1 Preparação dos Dados e Desequilíbrio 

Na fase inicial desta dissertação, as análises exploratórias focaram-se no 

comportamento dos algoritmos de classificação quando confrontados com um 

acentuado desequilíbrio entre categorias. O objetivo primordial passava por 

compreender de que forma diferentes abordagens de reamostragem poderiam mitigar 

essa desproporção e, consequentemente, melhorar a capacidade dos modelos em 

identificar casos raros.  

A variável resposta de interesse é a ocorrência de um sinistro com vítimas graves ou 

mortos, sendo a categoria negativa ocorrer um sinistro com feridos leves. Trata-se um 

problema de eventos raros, situação que tende a enviesar os classificadores para a 

categoria maioritária (FL) reduzindo a sensibilidade dos modelos (Chawla et al., 2002). 

A fim de mitigar este desequilíbrio, aplicaram-se duas técnicas de reamostragem: 

• ROSE: que gera observações sintéticas via bootstrap com suavização de kernel; 

• SMOTENC: uma extensão SMOTE clássico, que lida com conjuntos de dados de 

natureza mista, criando observações sintéticas por interpolação e combinação 

das variáveis categóricas. 

Ambas as técnicas foram testadas sob três estratégias representativas: 

• Oversampling total, em que as categorias ficam aproximadamente equilibradas; 

• Oversampling parcial, em que o desequilíbrio entre as categorias é atenuado, 

mas não eliminado; 

• Combinação de undersampling da categoria maioritária com oversampling da 

categoria minoritária, resultando em categorias equilibradas.  

Numa fase inicial do trabalho, a reamostragem foi aplicada antes da divisão dos dados 

em conjuntos de treino e teste. Esta prática, comum em estudos exploratórios, permitia 

trabalhar com um conjunto de dados equilibrado, proporcionando maior estabilidade 

durante o treino. Contudo, verificou-se posteriormente que esta estratégia poderia ser 

problemática à luz de desenvolvimentos metodológicos mais recentes (Demircioglu, 

2024). Estes estudos demonstraram que aplicar a reamostragem antes da separação 

treino/teste pode introduzir enviesamentos significativos nos resultados devido ao 

fenómeno de data leakage, ou fuga de informação. Este problema ocorre quando o 
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modelo tem acesso, direta ou indiretamente, a informações do conjunto de teste 

durante o processo de treino, comprometendo a validade da avaliação final. 

No caso específico do oversampling, o leakage surge porque as observações sintéticas 

são criadas tendo em conta todas as observações da base de dados antes da divisão 

treino/teste. Parte da estrutura estatística do conjunto de teste - incluindo distribuições, 

relações entre variáveis e fronteiras de decisão - acaba por ser parcialmente incorporada 

no treino. Mesmo que o modelo nunca “veja” explicitamente as observações de teste, 

ele é treinado sobre padrões artificiais que derivam desses mesmos dados. Como 

consequência, o desempenho medido pode parecer  artificialmente superior ao 

verdadeiro, uma vez que o modelo é avaliado sobre informações cuja estrutura já 

conhece. 

 

4.2 Divisão Temporal e Validação Cruzada 

Reconhecendo este risco metodológico, e face aos novos desenvolvimentos 

metodológicos descobertos após uma fase avançada da dissertação, a estratégia de 

modelação foi integralmente revista, garantindo uma separação rigorosa entre treino e 

teste e eliminando qualquer potencial partilha de informação.  

Para evitar enviesamentos temporais e simular um cenário de aplicação real, a divisão 

dos dados respeitou a cronologia: treino = 2016-2022 e teste = 2023. Assim, o modelo 

aprende no passado e é avaliado no futuro, evitando look-ahead bias (Hyndman & 

Athanasopoulos, 2021). Todos os pré-processamentos (transformação em variáveis 

dummy, normalizações) foram ajustados apenas no treino e posteriormente aplicados 

ao teste, prevenindo data leakage (Kuhn & Johnson, 2013). Dessa forma, a nova 

abordagem segue princípios consolidados de machine learning e predição temporal, 

assegurando validade estatística, consistência temporal e comparabilidade entre 

modelos. Para além de corrigir o data leakage, esta revisão metodológica procurou 

aproximar o processo de treino e validação às verdadeiras condições de previsão. Em 

contextos temporais como o da sinistralidade rodoviária, onde os padrões mudam com 

o tempo e novas condições surgem anualmente, é essencial que o modelo aprenda 

apenas com o passado e seja testado sobre o futuro. 

Dessa forma, a nova sequência metodológica passou a incluir um conjunto estruturado 
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de etapas, concebidas para maximizar a imparcialidade e a robustez do processo de 

modelação:   

• Divisão temporal: os dados de 2016-2022 foram usados para treino, e o ano 

2023 foi reservado para teste independente, garantindo que o modelo é 

avaliado sobre um período totalmente não visto; 

• Reamostragem apenas no treino: o desequilíbrio (≈ 2-3 % de sinistros com 

feridos graves ou mortos) foi corrigido dentro do treino, preservando a 

distribuição natural do teste; 

• Validação cruzada estratificada (5×2): dentro do treino, cada fold manteve a 

proporção da categoria rara, assegurando estabilidade estatística na 

comparação entre modelos (Kuhn, 2008). A estratificação é particularmente 

recomendada em cenários de elevada desproporção entre categorias, 

garantindo que cada fold contém uma representação mínima da categoria 

positiva; 

• Reamostragem dentro dos folds: o método ROSE foi aplicado em cada sub-

treino da validação cruzada, permitindo que o conjunto de validação 

permanecesse intacto – uma prática essencial para evitar qualquer fuga de 

informação interna; 

• Threshold de decisão: após a validação cruzada, o ponto de corte ótimo (máx. 

𝐹2-score) foi determinado a partir das predições out-of-fold (OOF), 

proporcionando uma calibração baseada em evidência empírica e não apenas 

heurística; 

• Avaliação final: todas as métricas foram calculadas sobre o teste 2023, com 

intervalos de confiança (IC 95 %) obtidos por bootstrap estratificado e análise 

de calibração (interceto e declive), permitindo quantificar a incerteza associada 

às estimativas e avaliar o grau de sobreajuste. 

 

A seguir, foram consideradas três estratégias distintas de tratamento do desequilíbrio, 

avaliadas de forma comparável. 
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4.2.1 Estratégia A - ROSE (fora da validação) 

Nesta abordagem, o ROSE foi aplicado uma única vez ao conjunto de treino completo, 

antes da validação cruzada. Este procedimento permite criar um conjunto de treino 

equilibrado, combinando oversampling da categoria minoritária e undersampling da 

categoria maioritária. Serve como configuração de referência original, permitindo 

avaliar o risco de data leakage, já que as observações sintéticas podem incorporar 

padrões presentes em toda a base de treino.  

 

4.2.2 Estratégia B - SMOTENC (fora da validação) 

O SMOTE-NC foi utilizado como alternativa ao ROSE, também fora da validação cruzada, 

para bases de dados mistas (numéricas + categóricas). O algoritmo cria observações 

sintéticas da categoria minoritária interpolando variáveis contínuas e combinando 

variáveis categóricas por vizinhança. Esta implementação foi utilizada através do pacote 

UBL, permitindo comparar diretamente com o ROSE e avaliar o efeito de diferentes 

técnicas de reamostragem aplicadas de forma global ao conjunto de treino.  

 

4.2.3 Estratégia C - ROSE (dentro de cada fold) 

Para eliminar qualquer risco de data leakage, o ROSE foi aplicado apenas dentro de cada 

fold da validação cruzada, ou seja, sobre o subconjunto de treino interno de cada 

interação. Dada a raridade da categoria positiva, utilizou-se o método ROSE, que gera 

observações sintéticas por smoothed bootstrap, suavizando fronteiras de decisão e 

melhorando o ajuste em contextos desequilibrados (Lunardon, Menardi, & Torelli, 

2014). A geração de amostras foi aplicada apenas dentro de cada fold da validação 

cruzada, evitando contaminação entre treino e validação. Este cuidado assegura que as 

métricas out-of-fold (OOF) são imparciais. 

Esta abordagem assegura que o conjunto de validação permaneça intacto, permitindo 

uma avaliação mais confiável da generalização do modelo. Comparar este método com 

o ROSE global permite quantificar o impacto de uma segmentação temporal correta 

sobre métricas como AUC, 𝐹1-score e sensibilidade.   
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4.2.4 Estratégia D - SMOTENC (dentro de cada fold) 

Nesta abordagem, o SMOTENC foi aplicado apenas dentro de cada fold da validação 

cruzada, sobre o subconjunto de treino interno de cada interação. Este procedimento 

elimina o risco de data leakage, garantindo que as observações sintéticas sejam geradas 

exclusivamente a partir dos dados de treino de cada fold. O algoritmo interpolou 

variáveis numéricas e combinou variáveis categóricas por vizinhança, permitindo um 

equilíbrio local e realista.  

 

Esta comparação permitiu não apenas configurar os efeitos do leakage sobre o 

desempenho, mas também quantificar o ganho obtido com a aplicação consistente da 

reamostragem dentro da validação cruzada, reforçando a credibilidade dos resultados. 

Por fim, esta secção preserva parte dos resultados obtidos na fase inicial, não como 

evidência de desempenho, mas como testemunho da evolução metodológica do 

trabalho. Esses resultados servem para ilustrar de que forma a reamostragem incorreta 

e a ausência de calibração do threshold podem afetar significativamente as estimativas 

de métricas como AUC, 𝐹1-score e precisão, conduzindo a interpretações 

excessivamente otimistas do desempenho do modelo.  

 

4.3 Modelos e Avaliação 

Para avaliar o desempenho preditivo da deteção de sinistros graves, foram ajustados seis 

modelos de classificação supervisionada, representando métodos lineares, baseados em 

árvores de decisão e probabilísticos: 

• Regressão Logística (GLM): modelo linear clássico que oferece elevada 

interpretabilidade e coeficientes que permitem compreender o efeito de cada 

variável nas previsões (Hosmer, Lemeshow, & Sturdivant, 2013); 

• Regressão Logística Penalizada de Firth: abordagem desenvolvida para corrigir 

o viés que pode surgir em amostras pequenas ou com eventos raros, mostrando-

se particularmente adequada à deteção da categoria minoritária (Firth, 1993; 

Heinze & Schemper, 2002); 
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• Random Forest: método baseado na combinação (ensemble) de múltiplas 

árvores de decisão, robusto a variáveis correlacionadas, sendo capaz de capturar 

relação não lineares complexas (Breiman, 2001); 

• Extreme Gradient Boosting (XGBoost): algoritmo de boosting altamente 

eficiente, otimizado para grandes volumes de dados e com capacidade para 

modelos padrões complexos  (Chen & Guestrin, 2016); 

• Naïve Bayes: modelo probabilístico simples, frequentemente utilizado como 

baseline pela sua rapidez e facilidade de interpretação, servindo de referência 

para comparar o desempenho com métodos mais sofisticados (John & Langley, 

1995); 

• C5.0 Decision Tree: versão avançadas das árvores de decisão tradicionais, 

oferecendo interpretabialdade e métricas de importância de variáveis úteis para 

compreender o processo de decisão do modelo (Quinlan, 1993). 

 

Todos os modelos foram avaliados considerando diferentes dimensões do desempenho, 

com foco especial na categoria minoritária: 

• AUC-ROC: discriminação global entre as categorias; 

• AUC-PR: avalia o desempenho em categorias raras, sensível a desequilíbrio, 

sendo mais adequada que a AUC-ROC em situações de eventos raros por medir 

diretamente o compromisso entre sensibilidade e precisão (Saito & 

Rehmsmeier, 2015); 

• 𝑭𝟏 e 𝑭𝟐-score: compromisso entre precisão e sensibilidade, com 𝐹2-score 

priorizando a sensibilidade para detetar sinistros graves mesmo que à custa de 

alguma perda de precisão (Davis & Goadrich, 2006); 

• Brier score: calibração probabilística, medindo a proximidade entre 

probabilidades previstas e observadas (Brier, 1950); 

• Matriz de confusão: interpretação operacional, permitindo analisar falsos 

positivos e negativos. 

 

A evolução na estratégia de definição do threshold reflete um alinhamento 

metodológico mais rigoroso com os objetivos da investigação. Inicialmente, o threshold 

foi escolhido de forma empírica, procurando equilibrar a sensibilidade e especificidade. 
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Embora intuitiva, essa abordagem genérica não otimizava o modelo para a principal 

prioridade: detetar os sinistros graves.  

Na versão final, o threshold passou a ser determinado automaticamente pela 

maximização do 𝐹2-score, métrica que atribui maior peso à sensibilidade, valorizando a 

capacidade de o modelo identificar corretamente os casos positivos. Hand e Christen 

(2018), destacam que essa otimização foi realizada exclusivamente com os dados de 

treino, através da validação cruzada, e o valor obtido foi posteriormente mantido fixo 

para avaliar o desempenho no conjunto de teste (ano de 2023). Dessa forma, assegurou-

se uma medição imparcial e realista do desempenho do modelo em dados 

completamente novos.  

A escolha desta métrica reflete também uma decisão consciente sobre o custo relativo 

dos erros: num contexto de segurança rodoviária, um falso negativo (não identificar um 

sinistro grave) tem consequências potencialmente mais sérias do que um falso positivo 

(assinalar incorretamente um caso como grave). Assim, esta calibração permitiu 

privilegiar a deteção de sinistros graves, mesmo que isso implique aceitar um aumento 

controlado do número de falsos negativos.  

 

Para garantir a robustez das métricas com contexto de categorias desequilibradas, foram 

calculados intervalos de confiança de 95% por bootstrap estratificado com 1000 

repetições (Efron & Tibshirani, 1993), o que permite avaliar a estabilidade dos resultados 

e a sua variabilidade estatística. Além disso, foi analisada a calibração probabilística do 

modelo através do intercept e do declive da regressão de calibração, indicadores que 

permitem verificar se as probabilidades previstas estão bem ajustadas à realidade 

observada (Van Calster et al., 2019). Esta análise ajuda também a quantificar a incerteza 

das previsões e a detetar eventuais sinais de sobreajustamento, garantindo uma 

avaliação mais fiável do comportamento dos modelos em diferentes cenários. 

 

4.4 Pesos das categorias (e diferenças face a SMOTENC/ROSE) 

A presente abordagem visa eliminar totalmente a geração de observações sintéticas, 

compensando o desequilíbrio entre categorias através da ponderação das observações 

na função de perda. Em vez de “criar” novas observações artificiais, altera-se o custo 
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atribuído aos erros de classificação, penalizando de forma mais intensa os erros 

cometidos na categoria minoritária — neste caso, M/FG.  Este princípio segue a lógica 

das abordagens de cost-sensitive learning, amplamente reconhecidas na literatura como 

alternativas robustas ao oversampling ou undersampling (He & Garcia, 2009; Fernández 

et al., 2018). 

 

Definição dos Pesos 

Os pesos são definidos de modo que cada categoria contribua igualmente para o risco 

esperado do modelo, garantindo equilíbrio sem inflacionar o tamanho efetivo da 

amostra. 

Seja 𝑛+o número de observações positivas (M/FG) e 𝑛− o número de observações 

negativas (FL) no conjunto de treino. O peso atribuído a cada observação 𝑖 é: 

𝑤𝑖 = {0.5/𝑛+, se 𝑦𝑖 = 1 (Mortes/Feridos Graves)
0.5/𝑛−, se 𝑦𝑖 = 0 (Feridos Leves)  

 

Desta forma, a soma total dos pesos por categoria é igual a 0,5, forçando ambas as 

categorias a contribuírem de forma simétrica para o risco empírico. Tal estrutura 

estabiliza o processo de estimação e evita a variância inflacionada típica do 

oversampling “hard” (King & Zeng, 2001; Branco, Torgo, & Ribeiro, 2016). 

 

Onde aplicar os pesos (e “só dentro”) ?  

Os pesos são calculados exclusivamente com base no conjunto de treino de cada fold 

durante a validação cruzada (v = 5, r = 2), assegurando ausência total de data leakage. 

Durante a fase de treino, o modelo é ajustado com ponderação das observações. 

No conjunto de validação de cada fold e no teste final (2023), os pesos não são utilizados 

- os modelos são apenas aplicados (scored) sem qualquer reponderação. 

No ajuste final, baseado em todos os dados de treino (2016-2022), os pesos são 

novamente calculados sobre esse período e aplicados apenas ao ajuste; o conjunto de 

teste (2023) é avaliado de forma neutra, preservando a independência temporal. 

 

Modelos e incorporação dos pesos 

A integração dos pesos depende da estrutura de cada algoritmo: 



 73 

• Regressão Logística (GLM) - weights = w_tr altera a verosimilhança ponderada, 

equivalendo a replicar frações de casos da categoria minoritária sem aumentar 

o tamanho aparente da amostra (King & Zeng, 2001). 

• Regressão Logística de Firth - weights = w_tr combina a correção de viés para 

eventos raros com ponderação por categoria, mostrando robustez em cenários 

de separação quase-completa (Heinze & Schemper, 2002). 

• Random Forest (ranger) - case.weights = w_tr altera o critério de divisão e o 

processo de bagging, permitindo que cada árvore reflita a importância relativa 

das categorias sem ajustar manualmente probabilidades (Wright & Ziegler, 

2017). 

• XGBoost - weights = w_tr é transmitido diretamente ao booster, permitindo uma 

forma mais granular do parâmetro global scale_pos_weight, adaptada à 

distribuição efetiva do treino (Chen & Guestrin, 2016). 

• C5.0 - aceita weights = w_tr de forma nativa, ajustando as estimativas de 

entropia em função das ponderações. 

• Naive Bayes - não suporta pesos diretos na implementação do caret; neste caso, 

foram fixadas probabilidades a priori iguais (prior = c(0.5, 0.5)), garantindo 

neutralidade no desequilíbrio inicial. 

 

Seleção do threshold 

Para manter a comparabilidade entre cenários e assegurar uma avaliação imparcial, 

seguiu-se o mesmo protocolo de decisão já estabelecido: 

• Validação OOF (com pesos): 

O threshold foi escolhido para maximizar o 𝐹2-score, que privilegia a 

sensibilidade. Para evitar thresholds extremos, aplicaram-se restrições leves, 

como uma taxa mínima de precisão e um número mínimo de positivos 

previstos no conjunto OOF. 

• Teste (2023): 

No conjunto de teste, o threshold foi definido usando o percentile matching, 

ou seja, pelo quantil da distribuição de scores que produz uma taxa prevista 

positiva próxima de 3% (análise principal) e 5% (análise de sensibilidade). 
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Caso a distribuição de scores seja quase uniforme, aplicam-se fallbacks hierárquicos: 

(i) usar o quantil direto 1 − rate no teste; 

(ii) se necessário, adotar o threshold  𝐹2-score obtido na validação OOF. 

 

Métricas e intervalos de confiança 

Para lidar com o desequilíbrio entre as categorias, foram consideradas duas abordagens 

complementares:  

• a ponderação de categorias (Pesos), que ajusta a função de perda sem alterar 

a estrutura original dos dados originais; 

•  as técnicas de reamostragem sintética (ROSE e SMOTENC), que geram novas 

observações artificiais para reforçar a categoria minoritária. 

 

As principais métricas utilizadas para avaliação foram: 

• PR-AUC (mais informativa em contextos de categorias raras, Saito & 

Rehmsmeier, 2015); 

• ROC-AUC, precisão, sensibilidade, 𝐹1-score, G-mean, accuracy e Brier score. 

 

Os intervalos de confiança a 95% são obtidos por bootstrap estratificado no teste  

(B = 1000), com correção automática da direção das probabilidades sempre que o ROC-

AUC < 0,5, substituindo 𝑝 por 1 − 𝑝. 

 

A Tabela 5 sintetiza as principais diferenças entre as duas abordagens utilizadas para 

lidar com o desequilíbrio das categorias. Esta comparação permite avaliar as vantagens 

e limitações de cada abordagem, auxiliando na escolha da estratégia mais apropriada 

para diferentes cenários e objetivos de análise. 

 

Tabela 5 - Ponderação de categorias versus técnicas de reamostregm 

Dimensão PESOS SMOTENC/ ROSE 

Dados utilizados 
Apenas dados reais; modifica a 

função de perda. 

Cria observações artificiais 
(interpolações no SMOTE-NC; 
amostragem kernel em ROSE). 
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Em síntese, a ponderação de categorias constitui uma abordagem mais conservadora e 

estatisticamente coerente para lidar com desequilíbrios severos, mantendo a 

integridade amostral e a interpretabilidade dos coeficientes (He & Garcia, 2009; Branco 

et al., 2016). Embora técnicas sintéticas como SMOTENC e ROSE possam aumentar a 

sensibilidade, fazem-no frequentemente à custa da calibração e da precisão, sendo 

menos adequadas quando se pretende comunicação transparente de probabilidades ou 

quando a integridade temporal da amostra é crítica. 

 

4.5 Calibração isotónica das probabilidades 

O balanceamento por pesos 0,5/0,5 altera a função de perda e, com isso, o baseline das 

probabilidades previstas. Em modelos de árvores/ensembles - e mesmo em GLM sob 

forte desequilíbrio - é comum obter scores mal calibrados (sub- ou sobre-confiança). Por 

isso, após treinar cada modelo com pesos, calibrámos as probabilidades por regressão 

isotónica, um método não paramétrico que aprende uma transformação monótona das 

scores para aproximá-las a probabilidades bem calibradas (Zadrozny & Elkan, 2002; 

Niculescu-Mizil & Caruana, 2005). Ao contrário do Platt scaling (logit), a isotónica não 

impõe forma funcional, acomodando relações não lineares entre score e probabilidade 

(Platt, 1999; Kull, Silva Filho, & Flach, 2017). 

 

Protocolo sem data leakage 

Para evitar leakage, o calibrador é aprendido apenas com previsões OOF (out-of-fold) 

do período de treino: 

Dimensão PESOS SMOTENC/ ROSE 

Risco de leakage 
Nulo se calculado dentro de 

cada fold; não gera novas 
linhas. 

Elevado se aplicado fora dos folds ou 
antes da separação temporal 
(corrigido nesta investigação). 

Variância e 
calibração 

Menor variância e melhor 
calibração, sobretudo em 

GLM/Firth. 

Maior variância; pode distorcer a 
fronteira de decisão e exigir 

calibração adicional. 

Modelos mais 
adequados 

GLM, Firth, RF, XGB e C5.0 
integram pesos nativamente. 

Útil em modelos sensíveis ao 
balanço, mas suscetível a overfitting 

local. 
Natureza da 

correção 
Ajuste de custo 
(reponderação). 

Reamostragem (alteração da 
distribuição empírica). 
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• Geração OOF (v = 5, r = 2, com pesos): 

Em cada fold, ajusta-se o modelo no treino do fold com pesos e prevê-se a 

probabilidade no validation do mesmo fold. Agregando todos os folds, obtêm-se 

pares (𝑝𝑖, 𝑦𝑖) sem contaminação (Zadrozny & Elkan, 2002). 

• Correção de direção (robustificação): 

Se ROC-AUC < 0,5 nas OOF, inverte-se a direção dos scores (𝑝 ← 1 − 𝑝), 

garantindo monotonia entre score e probabilidade. 

• Ajuste isotónico (PAV): 

Ajusta-se 𝑔: [0,1] → [0,1]que minimiza ∑ (𝑦𝑖 − 𝑔(𝑝𝑖))2
𝑖 , sob a restrição de 

monotonia não decrescente. O algoritmo Pool-Adjacent-Violators (PAV) produz 

uma função em degraus 𝑔̂ (Zadrozny & Elkan, 2002). 

Se os scores OOF tiverem variância quase nula (modelo degenerado), define-se 

𝑔̂(𝑝) ≡ 𝜋̂(prevalência OOF); todas as saídas são truncadas a [10−6, 1 − 10−6]. 

• Aplicação no teste (2023): 

As probabilidades no teste, 𝑝test, são corrigidas na mesma direção e 

transformadas por 𝑝̂cal = 𝑔̂(𝑝test). A calibragem é independente da escolha de 

threshold e anterior à análise de trade-off (PR/ROC, F₂, etc.). 

 

Avaliação da calibração 

• Brier score (Brier, 1950) é uma métrica que combina resolução e calibração 

(valores menores são melhores): 

Brier   =   
1
𝑛 ∑(𝑦𝑖 − 𝑝̂cal,𝑖)2

𝑛

𝑖=1

. 

• Interceto (calibration-in-the-large) e declive (calibration slope): 

Ajusta-se, no teste, a regressão onde 𝛼 ≈ 0 e 𝛽 ≈ 1 indicam calibração ideal. 

logit(𝑦)   =   𝛼 + 𝛽 logit(𝑝̂cal), 

Onde: 

- 𝛽 < 1: overconfidence (probabilidades demasiado extremas); 
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- 𝛽 > 1: underconfidence (probabilidades “encolhidas”). 

O intercetp também pode ser interpretado como correção de base-rate: 𝛼 ≈ logit(𝑦̄) −

logit(𝑝̂cal). 

• Gráficos de confiabilidade (opcional): curvas observada vs. prevista por bins de 

𝑝̂cal auxiliam inspeção visual da calibragem; foram utilizados essencialmente para 

verificação qualitativa, não para decisão. 

• Incerteza: métricas no teste (incluindo Brier) têm IC95% por bootstrap 

estratificado, refletindo a variabilidade amostral sem supor normalidade 

assintótica. 

Porquê isotónica (e não apenas Platt sclaing)? 

A calibração isotónica não assume forma funcional entre score e probabilidade, sendo 

preferível quando o mapeamento é não-linear (situação comum com árvores/boosting 

e com reponderação por pesos). 

O risco de sobreajuste da isotónica é mitigado por: 

(i) treino OOF (não usa o teste); 

(ii) restrição de monotonia; 

(iii) truncagem em [10−6, 1 − 10−6]. 

 

Platt (logistic scaling) é mais parcimoniosa e por vezes suficiente para modelos quase 

lineares (e.g., GLM); contudo, pode subajustar padrões sistemáticos de má calibragem 

quando a relação verdadeira não é logito-linear (Niculescu-Mizil & Caruana, 2005; Kull 

et al., 2017). 

 

Modelos sem calibração isotónica (logísticos e Firth) 

Nesta secção do estudo, optou-se deliberadamente por não aplicar calibração isotónica 

aos modelos logísticos ou de Firth, tanto na versão base como na versão com interações 

e pesos de categoria. Esta decisão fundamenta-se em razões metodológicas e 

conceptuais claras: 
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• Modelos probabilísticos por construção. 

Tanto a regressão logística como o modelo de Firth são modelos paramétricos 

probabilísticos, em que a ligação logit garante que a saída 𝑝̂ = logit−1(𝑋𝛽)já 

corresponde a uma estimativa da probabilidade condicional 𝑃(𝑌 = 1 ∣ 𝑋). 

Diferentemente de algoritmos não paramétricos (e.g., Random Forest, XGBoost), 

estes modelos produzem previsões naturalmente calibradas, salvo situações 

extremas de separação quase completa (King & Zeng, 2001). 

• Ausência de amostras sintéticas. 

Ao contrário dos cenários com SMOTENC ou ROSE, em que a geração de 

observações artificiais altera a distribuição empírica das categorias e pode 

distorcer as probabilidades previstas, o presente pipeline com pesos de 

categorias mantém integralmente os dados reais. Os pesos ajustam apenas a 

função de perda (penalizando mais fortemente os erros na categoria 

minoritária), sem inflacionar o número efetivo de observações nem modificar a 

base de cálculo probabilística. 

• Correção de viés em eventos raros (modelo de Firth). 

O estimador de Firth (penalização de Jeffreys) reduz o viés de máxima 

verosimilhança em amostras pequenas ou altamente desequilibradas, 

melhorando simultaneamente a estabilidade dos coeficientes e a calibração 

intrínseca das probabilidades (Heinze & Schemper, 2002; Puhr et al., 2017). 

• Invariância das métricas ao escalonamento monotónico. 

As métricas utilizadas (PR-AUC, ROC-AUC, 𝐹1-score, G-mean) dependem apenas 

da ordenação das probabilidades, sendo invariantes a transformações 

monotónicas, ou seja, uma calibração isotónica não alteraria os resultados 

substantivos, apenas a escala das probabilidades. 

Assim, a exclusão da calibração isotónica garante maior comparabilidade entre os 

modelos logísticos e de Firth, concentrando a análise na contribuição das interações e 

dos pesos de categorias para o poder discriminativo e equilíbrio entre sensibilidade e 

precisão. 
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Interação com pesos de categoria 

• A ponderação 0,5/0,5 altera a verosimilhança durante o treino (custo por 

categoria), o que pode deslocar as probabilidades previstas da base rate 

observada no teste. 

• A calibragem isotónica reancora as probabilidades num mapeamento orientado 

por dados sem violar a ordenação (monotonia). Isso é crucial quando as decisões 

operacionais dependem de thresholds por taxa prevista positiva (≈3%/≈5%): a 

calibragem melhora o Brier e a coerência probabilística, mantendo o PR-AUC 

(baseado na ordenação) essencialmente inalterado. 

 

Salvaguardas e edge cases 

• Scores quase constantes: usar calibrador constante 𝑔̂(𝑝) ≡ 𝜋̂ evita instabilidade; 

documenta-se o caso e considera-se retirar o modelo do ensemble operacional. 

• Inversão de direção: verificação sistemática (AUC OOF) evita calibrar scores “ao 

contrário”. 

• Extrapolação: como 𝑔̂ é função em degraus definida em [0,1], não há 

extrapolação; usa-se clipping para extremos numéricos. 

 

4.6 Interações em modelos lineares e de Firth 

A introdução de termos de interação pretende capturar efeitos de moderação (isto é, 

quando o efeito de uma variável depende do nível de outra). Em teoria, isso pode 

melhorar a discriminação quando a relação 𝑋 → 𝑌 é verdadeiramente não aditiva 

(Harrell, 2015; Hastie, Tibshirani, & Friedman, 2009). Contudo, em dados observacionais, 

raros e desequilibrados, existem várias razões pelas quais as interações podem não se 

traduzir em ganhos de predição em teste temporal: 

 

Viés–variância e complexidade excessiva 

Cada interação aumenta a dimensão do espaço de parâmetros (via produtos, sobretudo 

com dummies para categorias), elevando a variância do estimador e o risco de 

sobreajustamento a padrões locais de 2016-2022 que não se replicam em 2023 (Babyak, 

2004; Kuhn & Johnson, 2013; Hastie et al., 2009). Mesmo com Firth (que reduz o viés em 
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separação/quase separação), a variância preditiva pode crescer e anular ganhos 

aparentes de treino/OOF. 

 

Sinais práticos:  

• ganhos de métrica em OOF que desaparecem ou invertem no teste temporal; 

• grande sensibilidade do resultado a pequenas alterações de definição das 

interações. 

 

Esparsidade e separação local 

Combinações raras (p. ex., certos níveis de tipovia2 × concelho2 × HaVeicMoto) geram 

células com baixas contagens. Em logística clássica, isso favorece quase-separação, 

coeficientes instáveis e previsões degeneradas. O estimador de Firth ajuda, mas pode  

“congelar” efeitos extremos em regiões pouco suportadas, penalizando a generalização 

(Heinze & Schemper, 2002; King & Zeng, 2001). 

 

Sinais práticos: 

• avisos de separação, coeficientes muito grandes, scores muito “achatadas” ou 

quase binárias em subgrupos. 

 

Deriva temporal (dataset shift) 

Interações capturam padrões contextuais (infraestrutura × composição do tráfego × 

condições), vulneráveis a mudanças entre anos: obras, enforcement, clima atípico, mix 

de frota, etc. O que é “verdade” em 2016.2022 pode mudar em 2023 - logo, as interações 

perdem valor preditivo fora de amostra (Quiñonero-Candela, Sugiyama, Schwaighofer, 

& Lawrence, 2009). 

 

Sinais práticos:  

• melhorias em CV aleatória que não se mantêm no holdout temporal. 

 

Multicolinearidade e pseudo-replica de não linearidades 

Interações entre contínuas/categóricas podem imitar não linearidades que seriam 

melhor modeladas por splines (restricted cubic splines, tensor-product smooths) em vez 
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de simples produtos. O resultado são coeficientes instáveis e ganhos ilusórios em treino, 

sem benefício em teste (Harrell, 2015; Wood, 2017). 

 

Boa prática:  

• preferir funções de suavização para contínuas (e, quando necessário, interações 

via tensor-product splines) antes de proliferar produtos de dummies. 

 

Interação + desequilíbrio + thresholding 

Em categorias raras, o desenho de interações pode alterar a distribuição das scores da 

minoria, tornando o threshold operacional mais sensível. Se o limite não for 

harmonizado (via rate-matching em teste), falsas perdas (precisão/sensibilidade=0) 

podem surgir por threshold demasiado conservador, não por falta de sinal (Kuhn & 

Johnson, 2013). 

 

Boa prática:  

• corrigir a direção das probabilidades no teste e usar percentil por rate (3% e 5%), 

como adotado. 

 

Diagnósticos recomendados (e que justificam decisões) 

• Suporte mínimo por célula de interação. Quantificar contagens por combinação; 

lump de níveis raros quando necessário; 

• Estabilidade temporal. Comparar efeitos e métricas por subperíodos ou com CV 

“rolling-origin” (quando viável); 

• Robustez a threshold. Fixar rate no teste (3%/5%) e verificar se alterações 

pequenas do quantil mudam drasticamente precisão/sensibilidade; 

• Alternativas suavizadas. Testar splines para contínuas e, se necessário, interações 

suaves (te()) em GAMs (Wood, 2017), ou ridge (glmnet) para estabilizar 

coeficientes (Friedman, Hastie, & Tibshirani, 2010); 

• Hierarquia de modelação. Cumprir o princípio hierárquico (não incluir interação 

sem os termos principais) e pré-especificar um conjunto pequeno e plausível de 

interações (Harrell, 2015). 
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Considerações sobre a aplicação das interações  

No contexto deste estudo, resultados inferiores em modelos com interações não 

implicam que “interações não existam”; significam que, dado o split temporal e a 

amostra disponível, os custos associados à complexidade/variância podem superar os 

ganhos de redução de viés. 

Após a aplicação de correção da direção das scores e rate-matching no conjunto de teste, 

as interações com métricas nulas foram eliminadas, e os modelos com interações 

demonstraram tendência à recuperação, particularmente no cenário com rate  5%. 

Apesar disso, os ganhos permanecem modestos com o facto de que a base aditiva mais 

os pesos já capta grande parte do sinal preditivo. 

Para fins operacionais, recomenda-se priorizar modelos estáveis, como Firth ponderado, 

e incorporar apenas interações que: 

• Possuam suporte estatístico suficiente; 

• Persistam no tempo; 

• Melhorem PR-AUC/sensibilidade sem degradar Brier de forma relevante. 

 

4.7 Discussão crítica das escolhas metodológicas 

As opções metodológicas adotadas refletem o esforço em equilibrar rigor estatístico, 

relevância prática e limitações inerentes ao problema dos eventos raros. 

A escolha da PR-AUC como métrica principal justifica-se pelo forte desequilíbrio entre 

categorias. Em problemas de eventos raros, a ROC-AUC tende a subestimar o 

desempenho, pois atribui igual peso às categorias positiva e negativa, sendo pouco 

sensível ao número desproporcionadamente elevado de negativos. Já a PR-AUC 

concentra-se na relação entre sensibilidade e precisão, oferecendo uma avaliação mais 

informativa da capacidade do modelo em identificar corretamente os casos positivos 

(Saito & Rehmsmeier, 2015). Em contextos como a deteção de sinistros graves, a PR-

AUC fornece uma métrica mais realista e discriminativa do que a ROC-AUC. 

Adicionalmente, a utilização do F₂-score para a seleção do ponto de corte reforça essa 

prioridade metodológica. Enquanto métricas simétricas como o F₁-score tratam 

igualmente precisão e sensibilidade, o F₂-score dá maior peso à sensibilidade, refletindo 

a preocupação em minimizar falsos negativos mesmo à custa de um aumento nos falsos 
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positivos (Davis & Goadrich, 2006). Esta decisão traduz a prioridade prática em não 

falhar a deteção de sinistros graves, alinhando-se ao princípio da precaução em saúde 

pública e segurança rodoviária. 

Do ponto de vista do pré-processamento e modelação, seguiu-se uma sequência 

estruturada que combina rigor estatístico e técnicas de machine learning. Os dados 

foram divididos temporalmente, com 2016-2022 para treino e 2023 para teste, 

garantindo uma avaliação adequada correta. Para lidar com o desequilíbrio extremo, 

aplicou-se reamostragem intra-fold via ROSE e SMOTENC, preservando a integridade 

dos folds de validação cruzada e evitando estimativas excessivamente otimistas 

(Lunardon, Menardi, & Torelli, 2014). 

Em termos de modelos treinados, optou-se por uma abordagem híbrida, incorporando: 

• métodos estatísticos tradicionais, como regressão logística clássica (GLM) e 

regressão penalizada de Firth; 

• algoritmos de machine learning, incluindo Naive Bayes, Random Forest, C5.0 e 

XGBoost. 

Esta diversidade permitiu comparar o desempenho de abordagens paramétricas e não 

paramétricas, fornecendo insights sobre robustez e interpretabilidade. O processo 

metodológico adotado encontra-se no Apêndice 3.  

A avaliação de desempenho foi cuidadosamente delineada para eventos raros, 

utilizando métricas de sensibilidade, precisão, F₁/F₂-scores, PR-AUC, ROC-AUC e Brier 

Score. A definição do threshold de decisão priorizou a maximização do F₂-score, 

complementada por análise de sensibilidade considerando diferentes taxas previstas 

positivas (≈3% e 5%). Posteriormente, a calibração das probabilidades foi realizada via 

regressão isotónica, curvas de calibração e validação por bootstrap, reforçando a 

confiança na interpretação das predições. 

Essa abordagem metodológica estruturada evidencia que cada etapa - divisão temporal, 

pré-processamento, reamostragem, treino, avaliação e calibração - foi cuidadosamente 

projetada para maximizar a robustez, reduzir vieses e produzir modelos confiáveis para 

a identificação de eventos raros. 
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4. Análise dos Dados 
A base de dados analisada neste estudo reflete os registos de sinistros rodoviários 

ocorridos no distrito de Setúbal entre os anos de 2016 e 2023, fornecidos pela GNR de 

Setúbal. Estes dados foram complementados com informações adicionais provenientes 

de outras fontes relevantes como: 

• Instituto Português do Mar e da Atmosfera (IPMA), que disponibilizou dados 

meteorológicos, tais como as condições climáticas no momento dos sinistros 

(chuva, nevoeiro, etc.). 

• Infraestruturas de Portugal (IP), que contribuiu com informações sobre as 

caraterísticas físicas e operacionais das vias, incluindo o tipo de pavimento, 

sinalização, condições de manutenção, entre outros aspetos que podem afetar a 

segurança rodoviária. 

Inicialmente, a base de dados continha 53649 observações, que englobam tanto 

“Feridos Leves” como “Mortes/Feridos Graves” e 1198 variáveis. Posteriormente, foi 

decidido excluir o período da pandemia, compreendido entre 11 de abril de 2020 até 20 

de abril de 2021. Esse período foi marcado por medidas governamentais rigorosas de 

prevenção à COVID-19, como confinamentos obrigatórios, limitações de deslocações, 

restrições de horários, entre outras. Essas medidas tiveram um impacto significativo no 

volume de tráfego nas estradas, resultando numa redução substancial no número de 

veículos em circulação. Esta redução, por sua vez, influenciou diretamente a frequência 

e a natureza dos acidentes registados durante esse intervalo de tempo. 

Também foram excluídos os concelhos que não pertenciam ao distrito de Setúbal, 

nomeadamente, Amadora, Lisboa, Loures, Sintra e Vila Franca de Xira. 

Ao final da exclusão do período da pandemia e dos concelhos que não pertencem ao 

distrito de Setúbal, a base de dados foi consolidada em 47731 observações. Para este 

estudo, o objetivo principal é modelar e prever a gravidade de um sinistro, que foi 

tratada como a variável resposta. Esta é uma variável de natureza qualitativa nominal, 

com duas categorias: “Feridos Leves” e “Mortes/Feridos Graves”. Neste sentido, as 

variáveis independentes analisadas, selecionadas com base na sua relevância para a 

previsão da gravidade do sinistro, encontram-se sintetizadas e descritas no Anexo 1. Esta 

decisão visa evitar distorções nos dados devido às alterações significativas no 
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comportamento do tráfego e nas condições rodoviárias. Isso assegura a que os 

resultados obtidos reflitam de maneira precisa e equitativa as verdadeiras tendências 

e os fatores associados à sinistralidade rodoviária no distrito de Setúbal. 

 

5.1 Modelo Estatístico de Regressão Logística Binomial 

A análise de dados por meio de um modelo de regressão logística foi a abordagem 

utilizada para compreender a relação entre a variável dependente binária e as variáveis 

independentes. 

Seguiu-se a metodologia descrita por Hosmer-Lemeshow (Hosmer et al., 2013), para 

ajustar o modelo regressão logística. 

 

5.1.1 Seleção das Variáveis Independentes (Análise Univariada) 

Devido ao grande número de variáveis disponíveis (1198 no total), foi necessário 

priorizar e selecionar apenas aquelas consideradas mais relevantes para a análise da 

regressão. Numa primeira fase, variáveis com uma taxa de valores omissos muito 

elevada foram automaticamente excluídas, por representarem um risco para a robustez 

dos modelos, podendo introduzir enviesamento e reduzir o poder estatístico da análise. 

Após esta triagem, aplicou-se o teste da razão de verosimilhanças com um nível de 

significância de 5%, de modo a identificar as variáveis que têm uma relação 

estatisticamente significativa com a variável resposta. A identificação completa das 

variáveis significativas resultantes desta análise univariada encontram-se no Anexo 2.  

 

5.1.2 Modelo Múltiplo Preliminar e Exclusão de Variáveis 

Inicialmente, foi criado um modelo onde foram incluídas apenas as variáveis que se 

revelaram significativas na análise univariada. Este modelo inicial, serviu como ponto de 

partida para a seleção de variáveis que seriam mantidas no modelo final. 

Utilizando um nível de significância de 1%, procedeu-se à exclusão progressiva das 

variáveis que se tornaram não significativas, com base no teste de razão de 

verosimilhanças. Priorizou-se a exclusão de variáveis com um elevado número de 

categorias, independentemente do valor de p-value associado, por uma questão de 
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parcimónia. A lista final das variáveis selecionadas, assim como a sua classificação, 

encontram-se apresentadas no Anexo 3.  

 

5.1.3 Agrupamento de Categorias 

Com o objetivo de reduzir a complexidade do modelo e assegurar a sua estabilidade 

estatística, procedeu-se ao agrupamento de categorias em algumas variáveis 

explicativas. Esta etapa tem como objetivo evitar problemas de sobreajuste associados 

a categorias com baixa frequência, aumentar a parcimónia do modelo e, 

simultaneamente, preservar a capacidade explicativa. 

O processo de agrupamento baseou-se na significância estatística das categorias 

individuais, garantindo que as categorias com comportamentos semelhantes fossem 

consideradas em conjunto. A seguir, apresentam-se as variáveis sujeitas a este processo, 

bem como os respetivos agrupamentos definidos. 

a. Variável Concelho (“concelho”): a categoria de referência foi definida como 

“ALCACER DO SAL”. Foram realizados os seguintes agrupamentos: 

i. As categorias “ALCOCHETE”, “GRANDOLA”, “SEIXAL”, “SINES” e “PALMELA” 

foram agrupadas sob a nova categoria “AGSSP”. 

As categorias “SANTIAGO DO CACEM” e “SETUBAL” foram agrupadas sob a nova 

categoria “SS”. 

b. Variável Tipo de Via (“tipovia”): a categoria de referência foi “A-Auto Estrada”. 

Os agrupamentos foram: 

i.As categorias não significativas (“Arruamento”, “EF – Estrada Florestal”, “IP – 

Itinerário Principal”, “Outra Via”, “PNT – Ponte” e “VAR – Variante”) foram 

agrupadas com a categoria de referência sob a nova categoria 

“AE/A/EF/IP/O/P/V”. 

ii.As categorias significativas “EM – Estrada Nacional”, “IC – Itinerário 

Complementar” e “ER – Estrada Regional” foram agrupadas sob a nova 

categoria “EN/IC/ER”. 

c. Variável Percentagem de condutores masculinos envolvidas no acidente 

(categorizada) (“PercCondMCat”): A categoria de referência foi “[0,25)”. As 

categorias “[25,50)” e “[50,75)” foram consideradas não significativas e, 
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portanto, agrupadas com a categoria de referência sob a nova categoria 

“Perc25- 75”. 

d. Variável Hora do Acidente (“horaacid”): A categoria de referência foi “0”. O 

agrupamento foi o seguinte: 

i. A categoria “6” foi agrupada sob a nova categoria “6h”. 

ii. As categorias “8”, “9”, “10”, “11”, “12” e “13” foram agrupadas sob a nova 

categoria “8h-13h”. 

iii. A categoria “7” foi agrupada às categorias “14”, “15”, “16”, “17”, “18”, “19”, 

“20”, “21”, “22”, “23”, ”0”, “1”, “2”, “3”, “4” e “5”, formando a nova categoria 

“14h-5h”, dado que os coeficientes estimados revelaram-se próximos e o teste 

da razão de verosimilhança não evidenciou diferenças estatisticamente 

significativas entre estas categorias. 

 

5.1.4 Verificação da Linearidade 

Após a aplicação do método GAM (Modelo de Regressão Aditiva Generalizada), a análise 

da linearidade entre a variável índice de gravidade e o logit, revelou que o 

comportamento não era linear, conforme ilustrado na Figura 1. 

 

 
Figura 1 – Representação da função spline (s) resultante da aplicação de um GAM para verificação do pressuposto 

de linearidade para a variável índice de gravidade (ig_ponderado).  

A comparação do AIC (Critério de Informação Akaike) entre os dois modelos indica que 

o GAM apresenta um AIC menor (7197,020) em comparação com o modelo final 
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(7539,934). Como o AIC penaliza modelos mais complexos, valores menores indicam um 

melhor equilíbrio entre ajustamento e parcimónia. Ambos os modelos possuem o 

mesmo número de graus de liberdade (19), o que sugere que a diferença no AIC não se 

deve à complexidade, mas sim à capacidade de o modelo explicar a variabilidade dos 

dados. Neste sentido, o GAM é preferível para inferência e previsão, de acordo com o 

princípio da parcimónia, uma vez que oferece um melhor ajustamento sem necessidade 

de aumentar a complexidade.  

 

5.1.5 Incorporação de Interações 

No processo de modelação, a incorporação de interações entre variáveis presentes no 

modelo ajuda a compreender melhor como a combinação de diferentes fatores afeta a 

variável independente. O objetivo é determinar se a inclusão dessas interações melhora 

significativamente o ajuste do modelo. Para alcançar esse objetivo, ajusta-se uma série 

de modelos de regressão logística, cada um contendo diferentes interações, e através do 

teste de razão de verosimilhanças, avalia-se a significância da inclusão da interação 

relativamente ao modelo sem essa interação. 

Neste caso, adotou-se um nível de significância de 1% para avaliar a relevância estatística 

das interações, assegurando um maior rigor na seleção das interações e reduzindo o 

risco de incluir aquelas que não apresentem um impacto substancial sobre a variável 

dependente. Além disso, é fundamental que as interações testadas não apenas 

apresentem significância estatística, mas também sejam coerentes com o contexto do 

problema em análise. Dessa forma, garante-se que as adições ao modelo sejam 

interpretáveis e úteis para a compreensão do fenómeno em estudo. 

 

5.1.6 Verificação da Qualidade do Modelo 

Nesta etapa, procedeu-se à análise da qualidade do modelo, conforme se descreve 

abaixo.  

 

Análise de multicolinearidade 

De modo a garantir a robustez e fiabilidade das estimativas do modelo, avaliou-se a 

existência de multicolinearidade entre as variáveis preditivas. Os resultados para o 
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modelo final encontram-se apresentados na Tabela 6, onde se identificam as variáveis 

e as interações que apresentam uma colinearidade elevada. 

Tabela 6 - Medidas de multicolinearidade e identificação de colinearidade elevada nas variáveis explicativas. 

Variável GVIF df 𝑮𝑽𝑰𝐅(𝟏/(𝟐𝒅𝒇)) Colinearidade 
Elevada 

concelho2 2551,67 3 3,70 X 

tipoacid 373,17 2 4,40 X 

tipolocal2 12,26 1 3,50 X 

tipovia2 8,83 2 1,72  

horaacid1new 1,11 2 1,03  

fuga 1,01 1 1,00  

PercCondMCat2 1,08 1 1,04  

HaVeicPesado 1,32 1 1,15  

HaVeicLig 1,98 1 1,41  

HaVeicMoto 3,06 1 1,75  

HoraLaboral 1,15 1 1,07  

MedianaIdadeVeic 1,06 1 1,03  

ig_ponderado 54,60 1 7,39 X 

concelho2*tipoacid 48261,74 6 2,46  

tipoacid*tipolocal2 31,73 2 2,37  

tipovia2*HaVeicMoto 5,11 2 1,50  

ig_ponderado*concelho2 237,36 3 2,49  

ig_podenrado*tipoacid 23,68 2 2,21  

ig_podenrado*tipovia2 8,28 2 1,70  

 

Embora os valores observados não atinjam os níveis críticos que indicam uma 

colinearidade severa (valores superiores a 10), a existência de valores elevados ainda 

aponta para uma possível correlação significativa entre algumas variáveis. 
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Bondade do Ajustamento 

• 𝑅2 de Nagelkerke 

O modelo de regressão logística apresentou um Pseudo 𝑅2 de Nagelkerke de 0,2607 o 

que indica que 26,07% da variabilidade da variável dependente foi explicada pelas 

variáveis independentes. Embora esse valor possa parecer baixo em comparação com os 

𝑅2 da regressão linear, na regressão logística é comum que o Pseudo 𝑅2 tenha valores 

mais moderados, uma vez que o modelo lida com probabilidades e não com variáveis 

contínuas. 

O valor de 0,2607 sugere que o modelo consegue capturar uma porção significativa da 

relação entre as variáveis, sendo capaz de distinguir as categorias da variável 

dependente de forma razoável. Em modelos logísticos, valores acima de 0,2 podem ser 

considerados aceitáveis, especialmente em contextos onde a variabilidade não explicada 

pode ser atribuída a fatores não incluídos no modelo. 

 

• Teste de Hosmer e Lemeshow 

O teste de Hosmer-Lemeshow forneceu um valor de p-value de 0,501, logo não há 

evidências estatísticas para rejeitar a hipótese nula de que o modelo se ajusta bem 

aos dados. Portanto, os resultados sugerem que o modelo de regressão logística 

apresenta um ajuste adequado aos dados. 

 

Capacidade discriminativa 

• Curva ROC 

A avaliação da capacidade discriminativa do modelo foi realizada através da curva ROC, 

apresentada na Figura 2. Esta curva constitui uma das ferramentas mais utilizadas para 

aferir o desempenho de modelos de classificação, uma vez que sintetiza a relação entre 

verdadeiros positivos e falsos positivos. Ao representar graficamente este equilíbrio, a 

curva ROC permite avaliar em que medida o modelo consegue distinguir corretamente 

as categorias de interesse. Quanto mais a curva se afastar da diagonal aleatória, maior 

será a sua capacidade discriminativa.  
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Figura 2 -  Curva ROC do modelo de regressão logística final para 43312 observações. 

 

Interpretando as métricas sabemos que: 

→ Sensibilidade: 

Um valor de sensibilidade de 80,8% indica que o modelo conseguiu identificar 

corretamente 80,8% dos eventos que ocorreram. 

 

→ Especificidade: 

Um valor de 77,7% indica que o modelo foi capaz de reconhecer corretamente 77,7% 

das situações onde o evento não ocorreu. 

 

→ Área sob a Curva (AUC): 

Com um AUC de 0,871, o modelo mostra uma boa capacidade discriminativa, uma vez 

que valores próximos a 1 refletem um desempenho muito bom. Isso significa que há 

uma grande probabilidade de o modelo classificar corretamente um caso positivo como 

positivo e um caso negativo como negativo. 

 

→ Intervalo de confiança para AUC: 

O IC de 95% para AUC varia de 0,8599 a 0,8813, indicando que há 95% de confiança de 

que o valor “real” do AUC está dentro desse intervalo. 
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Validação do modelo 

• Bootstrap 

Para avaliar a estabilidade e precisão das estimativas do modelo, foram geradas 5000 e, 

posteriormente, 10000 observações bootstrap. 

Após a validação do modelo através do procedimento de “Backwards Step-down”, as 

variáveis que mantiveram significância estatística e relevância prática foram:  

- tipo de sinistro 

- horário do sinistro 

- presença de veículos pesados 

- presença de motociclos 

- mediana da idade dos veículos 

 

• Calibração 

Partindo para a análise da calibração, as Figuras 3 e 4 apresentam uma curva de 

calibração que compara a probabilidade prevista pelo modelo com a probabilidade 

observada no conjunto de dados. O eixo horizontal representa as probabilidades 

previstas pelo modelo, enquanto o eixo vertical mostra as probabilidades observadas, 

ou seja, a proporção real de ocorrências de “Mortes/Feridos Graves”. 

 

 

 

 

Figura 3 - Calibração para 5000 repetições de bootstrap 
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Para ambos os casos, os gráficos indicam que, para valores de probabilidade previstos 

abaixo de 0,3, o modelo tem um desempenho relativamente bom, com a linha aparente 

e a linha corrigida pelo otimismo bastante próximas da linha ideal. Isso sugere, para 

esses casos, o modelo está bem calibrado e as suas previsões refletem de forma 

adequada a realidade observada. 

Entretanto, para valores de probabilidade mais altos (acima de 0,3), tanto a linha 

aparente quanto a corrigida ficam abaixo da linha ideal, indicando uma subestimação 

das probabilidades reais. Ou seja, o modelo tende a prever probabilidades menores do 

que as efetivamente observadas. 

Neste caso, o modelo apresenta uma boa calibração para previsões de probabilidade 

baixa, mas demonstra uma leve tendência de subestimação para probabilidades mais 

elevadas, mesmo após a correção pelo otimismo. O erro absoluto médio de 0,001 e a 

utilização de 5000 ou 10000 repetições de bootstrap indicam que o ajuste é estável e 

bem fundamentado, considerando-se também o tamanho da amostra (n=43312). 

 

• Validação Cruzada 

Os dados foram divididos em conjunto de treino e teste, onde 70% das observações 

pertencem ao treino e 30% das observações pertencem ao teste. Na Tabela 7, encontram-

se os valores referentes a cada subconjunto, particularmente a cada categoria. 

 

 

Figura 4 - Calibração para 10000 repetições de bootstrap 
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Tabela 7 -  Divisão dos dados do modelo de regressão logística (43312 observações) em dois subconjuntos: treino e 

teste e respetivo número de observações por categoria em cada subconjunto. 

 
Regressão Logística – 42000 Observações 

Treino Teste 

Feridos Leves 29613 12704 

Mortes/Feridos Graves 706 289 

 

 

 

5.1.7 Apresentação do modelo final 

Na Tabela 8, apresentam-se as variáveis que integram o modelo final, as suas respetivas 

categorias e a classificação atribuída a cada uma delas. 

 

Tabela 8 - Designação e classificação das variáveis independentes do modelo final de regressão logística para 43312 

observações. 

Variável Categorias Cl Classificação  

Concelho 

 

 
 

Tipo de acidente                              

 
 

 

Localização do acidente 

 
Tipo de via 

 

 
 

 

  

 

Hora com minutos a zero do acidente       

 
 

 

Acidente com fuga 
 
 

Alcácer do Sal 
Alcochete, Grândola, Seixal, Sines e Palmela 
Almada, Barreiro, Moita, Montijo e Sesimbra 
Santiago do Cacém e Setúbal  
 

Atropelamento 
Colisão 
Despiste 
 

Dentro das localidades  
Fora das localidades 
 

Autoestrada, Arruamento, Estrada Florestal, 
Itinerário Principal, Outra Via, Ponte e Variante 
Estrada Municipal 
Estrada Nacional, Itinerário Complementar e 
Estrada Regional 
 

14 – 17h 
6h 
8h – 13h 
 

 

Não 
Sim 

Qualitativa Nominal 

 

 
 

Qualitativa Nominal 

 
 

 

Qualitativa Nominal 
 
 

Qualitativa Nominal 

 

 

 

 

Qualitativa Nominal 

 
 
 

Qualitativa Nominal 
 

30319 12993 
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Nota: o modelo representado na Tabela 8  foi o modelo aplicado em todas as abordagens 

desenvolvidas no estudo. 

 

Na Tabela 9 é apresentado o modelo final ajustado, no qual se encontram as variáveis 

incluídas com as categorias correspondentes e os respetivos coeficientes estimados. 

 

Tabela 9 - Modelo logístico múltiplo para a existência de Mortes/Feridos graves nos sinistros com vítimas (p-value do 

teste de Wald). 

Variável Categorias Cl Classificação  

 

% de condutores masculinos 
envolvidos no acidente  
  

Existência de veículos pesados 

 
 

Existência de veículos ligeiros 
 

 
 
 

Existência de veículos ciclomotores e 
motociclos 
 
 

Acidente ocorreu no horário  
Laboral 
 
 

Mediana da idade da matrícula 
dos veículos 
 
 

Índice de gravidade 

Perc [25 – 75]  
[75 – 100] 
  
 

Não 
Sim 
 
 

Não 
Sim 
 
 

Não 
Sim 
 
 

Não 
Sim 
 
Não 
Sim 
 
Não 
Sim 

 

Qualitativa Nominal 
 

 

Qualitativa Nominal 
 

 

Qualitativa Nominal 
 

  

Qualitativa Nominal 
 

 

Qualitativa Nominal 
 

 

 

Quantitativa Numérica 
 

 

Quantitativa Numérica 
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Variável  Categorias Coeficiente Std. Error  P-value 

Concelho 

 

 

 

Tipo de Acidente 

 

 
 

Localização do 
Acidente 

 

Tipo de Via 

 

 
 
Hora com minutos a 
zero do acidente 
 
 

Acidente com fuga 

 
 
 

% de condutores 
masculinos 
envolvidos no 
acidente 
  

Existência de veículos 
pesados 

 

Existência de veículos 
ligeiros 
 
 
Existência de veículos 
ciclomotores e 
motociclos 
 
 
Acidente ocorreu no 
horário  
laboral 

 
Mediana da idade da 
matrícula 
dos veículos 
 
 
Índice de gravidade 
 
 
 
 

ALCÁCER DO SAL 

AGSSP 
ABMMSS 
SS 
 

Atropelamento 

Colisão 
Despiste 

 

Dentro das localidades 

Fora das localidades 

 
AE/A/EF/IP/O/P/V 
 

Estrada Municipal 
EN/IC/ER 

 
14h – 5h 
6h 
8h – 13h 
 
 

Não 
Sim 
 
 

Perc 25 – 75 
[75, 100] 
 
 
 
 

Não 
Sim 
 
 
Não 
Sim 
 
 
Não 
Sim 
 
 
 
Não 
Sim 
 

 

 

 

 
 

 

Concelho2AGSSP* 
tipoacidColisão 

 

  0,1353 
  0,5420 
 -0,7007   

 
 

-1,4680 
-0,4714 

 

 

 0,1940 

 
 

 0,1892 
 0,9815 

 
 

 0,6952 
-0,3099 

 
 

-1,4477 
 
 

0,3048 

 

 
 

1,0485 

 
 

0,6088 
 

 

2,6520 

 

 

 

-0,4670 

 
 

 0,0359 

 

 

 0,0824 

 

-0,0503 

 

0,5723 
0,5509 
0,5556 

 
 

0,6070 
0,5754 

 

 

0,2406 

 

 

0,2489 
0,1220 
 
 

0,1889 
0,0818 

 
 

0,2673 
 

 

0,0804 

 

 
 

0,1314 

 
 

0,1304 

 
 

0,1228 

 
    
 

 

0,0738 

 

 

0,0049 

 

 

0,0075 

 

0,5745 

 

 <0,001 
 0,8060 
-0,3292 

 
 

0,2224 
<0,001 

 
 
 

0,4086 

 

 

0,4201 
0,4455 

 
<0,001  
<0,001 

 
 

<0,001 
 

 

<0,001 

 

 
 

<0,001 

 
 

<0,001 

 
 

<0,001 

 
    

    

 

<0,001 

 

 

<0,001 

 

 

<0,001 

 

0,9302 
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Variável  Categorias Coeficiente Std. Error  P-value 
 
 

 

 

Concelho2ABMMS* 
tipoacidColisão 

 

Concelho2SS* 
tipoacidColisão 

 

Concelho2AGSSP* 
tipoacidDespiste 

 

Concelho2ABMMS* 
tipoacidDespiste 

 

Concelho2SS* 
tipoacidDespiste 

 

tipoacidColisão* 
tipolocal2 Fora das 
Localidades 

 

tipoacidDespiste*tipoloc
al2 Fora das Localidades 

 

 

-0,9020 

 
      

 0,3938 

 
 

-0,3217 

 
 

-1,0773 

 
 

 0,0280 

 
 

 0,5704 
 

 

 0,3353 

 

 

 

0,5814 

 
 

0,6317 

 
 

0,5691 

 
 

0,5792 

 

 

0,6282 

 
 

0,2564 

 
 

0,2705 

 

 

0,1208 

 
       

0,5330 

 
 

0,5719 

 
 

0,0629 

 

 

0,9644 

 
 

<0,001 

 
 

 0,2151 

 

As principais métricas de avaliação calculadas da matriz de confusão, encontram-se na 

Tabela 10 com a respetiva interpretação. Estes resultados correspondem ao modelo final. 

 

Tabela 10 - Resultados das métricas da matriz de confusão do modelo final de regressão logística aplicado a 43312 

observações para identificação de Mortes/Feridos Graves 

Métrica Resultado Observação 

Ponte de Corte 0,021 Valor que separa as observações e duas categorias. 

Accuracy 0,7657 
O modelo classifica corretamente 76,57% das 

observações. 

IC (95%) 
(0,7583; 
0,773) Intervalo de Confiança de 95% para a accuracy. 

Kappa 0,0907 O modelo sugere um desempenho muito baixo. 

Mcnemar’s Test P-
Value <0,001 

Reflete uma diferença não significativa entre as taxas 
de erro de classificação nas duas categorias. 
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Métrica Resultado Observação 

Sensibilidade 0,7716 
O modelo identificou                                      

corretamente, aproximadamente, 77,16% dos 
casos Mortes/Feridos Graves. 

Especificidade 0,7656 
O modelo identificou corretamente, 

aproximadamente, 76,56% dos casos de Feridos 
Leves. 

Valor Preditivo 
Positivo 0,0697 

Das observações classificadas como positivas pelo 
modelo, 6,97% são verdadeiras positivas. 

Valor Preditivo 
Negativo 0,9933 

Das observações classificadas como negativas pelo 
modelo, 99,33% são verdadeiras negativas. 

F1-score 0,8647 Bom desempenho do modelo. 

AUC 0,8538 
O modelo tem uma boa capacidade de 

discriminação. 

Precisão 0,0697 
      Aproximadamente 6,97% observações classificadas 

como positivas são mesmo           
                                    positivas. 

 

Em suma, o modelo apresenta um bom desempenho geral, mas mostra limitações na 

precisão das previsões positivas, conforme evidenciado pelos valores preditivos e pelo 

Kappa. O elevado valor da AUC e do F1-score sugere que o modelo possui uma 

capacidade relevante de discriminação entre as categorias. 

 

5.2 Resultados com correção temporal e reamostragem intra-fold 

5.2.1 Resultados Preliminares e Impacto do Oversampling Pré-divisão 

Durante a fase inicial do trabalho foram realizadas experiências exploratórias com o 

objetivo de testar diferentes técnicas de reamostragem para lidar com o forte 

desequilíbrio entre casos de sinistros fatais e não fatais. Testou-se a influência de 

diferentes graus de desequilíbrio e de técnicas de reamostragem (ROSE e SMOTENC) 

sobre o desempenho preditivo dos modelos. 

Nessas versões preliminares, o oversampling foi aplicado antes da divisão dos dados em 

treino (70%) e teste (30%), procedimento que, apesar de comum em estudos iniciais, 

induz data leakage, contaminando a amostra de teste com observações sintéticas 

geradas a partir de todo o conjunto de dados.  
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Apesar de esta prática ser comum em abordagens exploratórias, resulta numa 

sobrestimação das métricas preditivas, dado que os modelos acabam por “ver” padrões 

parciais da amostra de teste durante o treino. 

Além disso, nessa versão inicial o threshold para a classificação binária foi definido sem 

otimização explícita do 𝐹2-score, métrica que, na versão final, foi usada para calibrar o 

compromisso entre precisão e sensibilidade. 

Esta secção preserva parte desses resultados, não como evidência de performance, mas 

como testemunho da evolução metodológica do trabalho e como demonstração do 

impacto que a reamostragem incorreta pode ter nas estimativas de AUC,  𝐹1-score e 

precisão. 

 

5.2.2 Resultados Preliminares com ROSE (Pré-Divisão) 

As Tabelas A12–A16 da versão anterior da dissertação (disponíveis no Apêndice A) 

apresentavam os resultados obtidos após a aplicação de undersampling e oversampling 

combinados, antes da divisão aleatória 70/30. 

A Tabela 11 compara os resultados obtidos com a abordagem inicial — em que o 

oversampling (no caso, o método ROSE) era aplicado a todo o conjunto de dados antes 

da divisão treino/teste — com os resultados corrigidos, obtidos após aplicar a 

reamostragem apenas no conjunto de treino e ajustar o ponto de corte pelo 𝐹2-score. 

 

Tabela 11 - Impacto do oversampling pré-divisão (exemplo com ROSE) 

Modelo PR-AUC 
(antes) 

PR-AUC 
(depois)  

ROC-
AUC 

(antes) 

ROC-
AUC 

(depois) 
 

F1 
(antes) 

F1 
(depois)  

GLM 0,41 0,16 -0,25 0,93 0,87 -0,06 0,49 0,08 -0,41 

RF 0,44 0,15 -0,29 0,94 0,86 -0,08 0,45 0,13 -0,32 

XGB 0,46 0,22 -0,24 0,95 0,88 -0,07 0,49 0,11 -0,38 

NB 0,39 0,17 -0,22 0,91 0,87 -0,04 0,45 0,08 -0,37 

C5.0 0,40 0,16 -0,24 0,92 0,85 -0,07 0,48 0,14 -0,34 
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Ambos os conjuntos foram extraídos da mesma base de dados original de sinistros 

rodoviários do distrito de Setúbal (2016-2023), contendo o mesmo número de 

observações e variáveis preditoras. A diferença entre “antes” e “depois” não reflete, 

portanto, qualquer alteração nas fontes de dados, mas exclusivamente a correção 

metodológica associada à eliminação do data leakage e à adoção de um critério de 

decisão mais apropriado para eventos raros. 

Os resultados “antes” exibiam métricas substancialmente mais elevadas, em particular 

no PR-AUC e no 𝐹2-score sugerindo um desempenho artificialmente otimista. Após a 

correção, observou-se uma redução generalizada das métricas (-0,25 a -0,30 pontos no 

PR-AUC; -0,30 a -0,40 no 𝐹1-score), refletindo uma avaliação mais realista da capacidade 

de generalização dos modelos. 

Apesar desta diminuição, a hierarquia relativa entre modelos manteve-se, com o 

XGBoost e o Random Forest a exibirem desempenho consistentemente superior ao GLM 

e ao Naive Bayes, o que confirma a estabilidade estrutural das relações modeladas — 

apenas as magnitudes das métricas estavam inflacionadas no cenário anterior. 

 

5.2.3 Resultados Preliminares com SMOTENC (Pré-Divisão) 

De forma análoga, a aplicação do SMOTENC antes da separação treino/teste gerou 

métricas igualmente elevadas. As Tabelas B8–B17 (ver Apêndice B) mostravam, em 

geral, ganhos aparentes de desempenho, com ROC-AUC entre 0,92 a 0,96 e 𝐹1-score 

médios próximos de 0,45 a 0,50. 

A Tabela 12 contém o resumo dos resultados representativos obtidos nesta etapa. 

 

Tabela 12 - Resumo dos resultados representativos 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy 

GLM 0,40 0,93 0,34 0,96 0,48 0,91 

RF 0,43 0,94 0,36 0,96 0,46 0,92 

XGB 0,45 0,95 0,38 0,97 0,48 0,93 

NB 0,37 0,90 0,31 0,96 0,46 0,90 

C5.0 0,38 0,91 0,33 0,94 0,47 0,91 
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Fonte: resultados exploratórios, fase inicial (Apêncide B) 

Tal como no caso anterior, o desempenho mais elevado resulta do contacto indevido 

entre observações artificiais (geradas por SMOTENC) e observações reais no conjunto 

de teste. 

5.2.4 Discussão Crítica 

O conjunto das análises exploratórias oferece valor científico ao demonstrar 

empiricamente como erros de desenho experimental podem alterar profundamente a 

perceção de desempenho. 

A passagem de AUCs próximas de 0,95 para valores realistas em torno de 0,87-0,88 

confirma que a separação temporal e a reamostragem restrita ao treino são condições 

indispensáveis para avaliação honesta em contextos de eventos raros. 

Do ponto de vista metodológico, esta análise comparativa é particularmente relevante: 

• evidencia o impacto negativo do data leakage na avaliação de modelos de 

classificação com desequilíbrio extremo; 

• demonstra a importância de otimizar o ponto de corte em função do objetivo 

analítico (neste caso, maximizar a sensibilidade sem degradar em excesso a precisão); 

• e reforça a necessidade de uma validação rigorosa e estratificada, garantindo que as 

métricas refletem o desempenho em dados verdadeiramente não observados. 

 

Em síntese: 

• Os resultados pré-divisão não devem ser interpretados como estimativas válidas, 

mas sim como caso de estudo sobre o impacto do data leakage. 

• A consistência da hierarquia de desempenho entre modelos reforça a robustez 

estrutural das conclusões qualitativas. 

• As tabelas completas foram preservadas no Apêndice A, garantindo 

transparência e reprodutibilidade, mas a discussão quantitativa principal deve 

basear-se exclusivamente nos resultados da secção seguinte. 
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5.2.5 ROSE fora da validação 

Os resultados obtidos com o ROSE aplicado fora da validação estão apresentados na 

Tabela 13 e na Tabela 14, mostrando métricas de desempenho, matrizes de confusão e 

indicadores de calibração. 

A coluna “Prioridade” indica o critério adotado na avaliação e seleção dos modelos. No 

contexto de eventos raros, as métricas clássicas de classificação, como accuracy ou 

mesmo o 𝐹1-score, tendem a ser pouco informativas, uma vez que o desequilíbrio 

extremo entre categorias pode mascarar o verdadeiro desempenho do modelo na 

deteção da categoria minoritária. Assim, a análise deu prioridade às métricas mais 

sensíveis a este tipo de problema: a área sob a curva Precisão-Sensibilidade (PR-AUC) e 

a área sob a curva ROC (ROC-AUC), que avaliam, respetivamente, a capacidade de 

distinguir corretamente os casos graves e de manter baixo o número de falsos positivos. 

Além disso, o limite de decisão em cada modelo foi ajustado com base no 𝐹2-score, uma 

métrica que atribui maior peso à sensibilidade relativamente à precisão. Esta escolha 

reflete o objetivo fundamental do estudo, maximizar a identificação de sinistros graves, 

ainda que à custa de um maior número de falsos alarmes, o que é coerente com uma 

perspetiva de prevenção e segurança rodoviária. 

Assim, a designação “PR-AUC, ROC-AUC; limiar por F₂” sintetiza a estratégia global de 

avaliação: os modelos foram comparados principalmente pela sua discriminação (PR-

AUC e ROC-AUC), sendo o ponto de corte ajustado de modo a otimizar o 𝐹2-score. 

As colunas “CAL-INTERCEPT” e “CAL-SLOPE” representam os parâmetros clássicos de 

calibração dos modelos preditivos, avaliando até que ponto as probabilidades estimadas 

correspondem à frequência real dos eventos observados. 

O calibration intercept (interceto de calibração) mede o desvio médio entre as 

probabilidades previstas e as observadas. Um valor próximo de 0 indica ausência de viés 

sistemático; valores negativos sugerem sobrestimação do risco (probabilidades previstas 

demasiado elevadas), enquanto valores positivos indicam subestimação. 

Já o calibration slope (declive de calibração) avalia a dispersão das probabilidades 

previstas. O valor ideal é 1, correspondendo a uma calibração perfeita: valores inferiores 

a 1 refletem excesso de confiança do modelo (probabilidades extremas demasiado 

amplificadas), enquanto valores superiores a 1 indicam um modelo demasiado 

conservador, com previsões comprimidas em torno da média. 
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A inclusão destas métricas é essencial em contextos de eventos raros, onde a calibração 

probabilística tem impacto direto na utilidade prática do modelo permitindo, por 

exemplo, distinguir se uma probabilidade prevista de 10% corresponde efetivamente a 

um risco real próximo desse valor, aspeto crucial para aplicações em segurança 

rodoviária e decisão operacional. 

 

Tabela 13 - Métricas no teste (ponto e IC95%) - ROSE fora da validação 

Modelo Prioridade PR-
AUC 

ROC-
AUC Precisão Sensibilidade F1-

score 
G-

mean Acurracy Brier CAL-
INTERCEPT 

CAL-
SLOPE 

GLM 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0.160 

[0.123, 

0.210] 

0.875 

[0.851, 

0.896] 

0.044 

[0.037, 

0.051] 

0.964 

[0.934, 

0.988] 

0.084 

[0.072, 

0.096] 

0.670 

[0.656, 

0.682] 

0.478 

[0.466, 

0.490] 

0.180 

[0.174, 

0.186] 

-4.069 

[-4.248, 

-3.912] 

0.887 

[0.801, 

0.997] 

RF 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0.149 

[0.113, 

0.196] 

0.859 

[0.834, 

0.881] 

0.069 

[0.059, 

0.079] 

0.885 

[0.831, 

0.927] 

0.128 

[0.111, 

0.146] 

0.784 

[0.759, 

0.803] 

0.700 

[0.689, 

0.710] 

0.122 

[0.116, 

0.128] 

-3.819 

[-4.023, 

-3.623] 

0.548 

[0.477, 

0.617] 

XGB 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0.221 

[0.168, 

0.293] 

0.880 

[0.854, 

0.907] 

0.059 

[0.050, 

0.069] 

0.927 

[0.889,  

0.967] 

0.110 

[0.094, 

0.128] 

0.759 

[0.742, 

0.777] 

0.629 

[0.617, 

0.641] 

0.137 

[0.132, 

0.143] 

-3.829 

[-4.022, 

-3.640] 

0.819 

[0.733, 

0.931] 

NB 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0.170 

[0.125, 

0.226] 

0.868 

[0.843, 

0.890] 

0.039 

[0.033, 

0.045] 

0.988 

[0.969,  

1.000] 

0.075 

[0.063, 

0.086] 

0.609 

[0.598, 

0.619] 

0.390 

[0.379, 

0.402] 

0.077 

[0.073, 

0.082] 

-3.106 

[-3.323, 

-2.884] 

0.643 

[0.582, 

0.708] 

C5.0 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0.158 

[0.118, 

0.207] 

0.849 

[0.820, 

0.878] 

0.075 

[0.063, 

0.089] 

0.770 

[0.706,  

0.836] 

0.137 

[0.116, 

0.159] 

0.764 

[0.732, 

0.796] 

0.759 

[0.749, 

0.769] 

0.107 

[0.102, 

0.113] 

-3.484 

[-3.712, 

-3.287] 

0.440 

[0.378, 

0.528] 

 

Tabela 14 - Matrizes de confusão e métricas derivadas (Teste 2023) - ROSE fora da validação 

Modelo Threshold TP FN FP TN Precisão Sensibilidade Especificidade Accuracy F1-
score 

GLM 0,231 159 6 3458 3016 0,044 0,964 0,466 0,478 0,084 

RF 0,252 146 19 1974 4500 0,069 0,885 0,695 0,700 0,128 

XGB 0,229 153 12 2453 4021 0,059 0,927 0,621 0,629 0,110 

NB 0,035 163 2 4046 2428 0,039 0,988 0,375 0,390 0,075 

C5.0 0,306 127 38 1563 4911 0,075 0,770 0,759 0,759 0,137 

 

O GLM apresenta uma sensibilidade muito elevada (0,964), porém uma precisão muito 

baixa (0,044) e accuracy limitada (0,478), resultando em muitos falsos positivos (3458). 

Este padrão decorre diretamente do 𝐹2-score, que privilegia a deteção de casos 

positivos, mas penaliza a seletividade. O Naive Bayes segue um comportamento 

semelhante: sensibilidade muito elevada (0,998), precisão baixa (0,039) e accuracy 
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reduzida (0,390), indicando que também funciona como um “screening sensível” mas 

com muitos falsos alarmes.  

 

Nos ensembles, observa-se melhor equilíbrio entre métricas. O XGBoost apresenta a 

maior PR-AUC (0,221) e uma ROC-AUC também elevada (0,880), evidenciando boa 

capacidade de discriminação e priorização correta dos casos positivos – algo essencial 

em contextos de forte desequilíbrio. O Random Forest, apesar de ligeiramente abaixo 

em PR-AUC, combina sensibilidade (0,885) e especificidade (0,695) de forma 

equilibrada, refletido no G-Mean mais elevado (0,784), o que reduz o número de falsos 

positivos por verdadeiros positivos. O C5.0 exibe um comportamento semelhante ao 

Random Forest, com boa accuracy (0,759) e melhor F1-score (0,137), o que indica um 

desempenho estável e mais eficiente na identificação de verdadeiros positivos sem 

sacrificar demasiado a precisão. 

Em termos de calibração, todos os modelos revelam intercepts negativos e slopes 

inferiores a 1, indicando que as probabilidades previstas tendem a estar deslocadas e 

excessivamente extremas. Entre eles, os modelos baseados em árvores (RF, XG e C5.0) 

exibem menores erros de calibração (Brier entre 0,107 e 0,137) em comparação com o 

GLM (0,180), sugerindo previsões mais fiáveis e probabilidades mais próximas das 

verdadeiras ocorrências. 

De forma geral, com ROSE fora, os modelos de árvores e ensembles combinam melhor 

discriminação e equilíbrio, enquanto o GLM e o Naive Bayes funcionam como 

“screeners” sensíveis, mas com muitos falsos alarmes. 

 

5.2.6 ROSE dentro da validação 

Os resultados obtidos com o ROSE aplicado dentro da validação encontram-se 

apresentados na Tabela 15 e na Tabela 16. A análise destas tabelas permite comparar 

diretamente o efeito da reamostragem intra-fold sobre precisão, sensibilidade, accuracy 

e calibração em relação ao ROSE fora. 
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Tabela 15 - Métricas no teste (ponto e IC95%) - ROSE dentro do fold 

Modelo Prioridade PR-
AUC 

ROC-
AUC Precisão Sensibilidade F1-

score 
G-

mean Acurracy Brier CAL-
INTERCEPT 

CAL-
SLOPE 

GLM 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0,161 

[0,124; 

0,212] 

0,873 

[0,849; 

0,896] 

0,115 

[0,096; 

0,135] 

0,721 

[0,646;  

0,789] 

0,198 

[0,168; 

0,227] 

0,787 

[0,745; 

0,824] 

0,855 

[0,846; 

0,863] 

0,192 

[0,188; 

0,197] 

-3,754 

[-3,921; 

-3,612] 

1,289 

[1,163; 

1,436] 

RF 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0,195 

[0,145; 

0,256] 

0,877 

[0,851; 

0,899] 

0,137 

[0,113; 

0,163] 

0,594 

[0,513;  

0,671] 

0,223 

[0,187; 

0,259] 

0,733 

[0,681; 

0,778] 

0,897 

[0,890; 

0,904] 

0,048 

[0,045; 

0,051] 

-2,096 

[-2,262; 

-1,941] 

0,981 

[0,852; 

1,117] 

XGB 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0,194 

[0,146; 

0,259] 

0,878 

[0,852; 

0,903] 

0,124 

[0,102; 

0,146] 

0,661 

[0,588; 

0,732] 

0,209 

[0,175; 

0,241] 

0,763 

[0,721; 

0,803] 

0,876 

[0,868; 

0,883] 

0,025 

[0,023; 

0,028] 

-1,077 

[-1,256; 

-0,927] 

1,038 

[0,921; 

1,168] 

NB 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0,145 

[0,109; 

0,192] 

0,854 

[0,828; 

0,878] 

0,100 

[0,084; 

0,118] 

0,667 

[0,595;  

0,738] 

0,174 

[0,147; 

0,201] 

0,751 

[0,710; 

0,792] 

0,843 

[0,834; 

0,851] 

0,027 

[0,024; 

0,031] 

-0,604 

[-0,847; 

-0,405] 

0,608 

[0,546; 

0,678] 

C5.0 

PR-AUC, 

ROC-AUC; 

limiar por 

F2 

0,161 

[0,121; 

0.,212] 

0,863 

[0,837; 

0,887] 

0,115 

[0,094; 

0,134] 

0,655 

[0,581;  

0,727] 

0,196 

[0,164; 

0,226] 

0,755 

[0,712; 

0,797] 

0,866 

[0,858; 

0,874] 

0,044 

[0,041; 

0,047] 

-1,922 

[-2,101; 

-1,768] 

0,654 

[0,502; 

0,849] 

 

Tabela 16 - Matrizes de confusão e métricas derivadas (Teste 2023) - ROSE dentro do fold 

Modelo Threshold TP FN FP TN Precisão Sensibilidade Especificidade Accuracy F1-
Score 

GLM 0,638 119 46 919 5555 0,115 0,721 0,858 0,855 0,198 

RF 0,374 98 67 617 5857 0,137 0,594 0,905 0,897 0,223 

XGB 0,131 109 56 769 5705 0,124 0,661 0,881 0,876 0,209 

NB 0,041 110 55 990 5484 0,100 0,667 0,847 0,843 0,174 

C5.0 0,273 108 57 830 5644 0,115 0,655 0,872 0,866 0,196 

 

 
Figura 5 - Curvas Precisão-Sensibilidade (Teste 2023) 
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Figura 6 - Curvas ROC (Teste 2023) 

Com o ROSE aplicado dentro da validação, os resultados tornam-se mais consistentes e 

realistas, refletindo melhor o comportamento esperado em dados verdadeiramente não 

vistos. Há um ganho generalizado em precisão e accuracy em praticamente todos os 

modelos, acompanhando por uma ligeira redução da sensibilidade - uma troca esperada, 

já que o oversampling é agora restrito ao treino e não interfere no teste. 

O GLM evidencia essa melhoria de forma clara: a precisão aumenta substancialmente 

(de 0,044 para 0,115) enquanto a sensibilidade se ajusta para 0,721, resultando num 𝐹1-

score de 0,198 e G-mean de 0,787. Este comportamento indica que o modelo se torna 

mais seletivo, reduzindo falsos positivos (919 vs. 3458 anteriormente) sem comprometer 

em demasia a capacidade de detetar positivos. A calibração também melhora (intercept 

= -3,75 ; slope = 1,29), com as probabilidades a refletirem mais fielmente o risco 

observado. 

Nos modelos de ensemble, observa-se um padrão idêntico, mas com um desempenho 

global superior. O Random Forest alcança a maior accuracy (0,897) e o melhor 𝐹1-score 

(0,223) entre todos, combinando uma boa discriminação (ROC-AUC = 0,877) com 

excelente calibração (Brier 0,048 e slope próximo de 1). O Random Forest mostra ainda 

a maior especificidade (0,905), o que se traduz em menor número de falsos positivos 

(617) sem perda excessiva de sensibilidade (0,594), sendo, portanto, um modelo mais 

equilibrado e robusto em termos operacionais. 

O XGBoost mantém uma ROC-AUC igualmente elevada (0,878) e uma PR-AUC (0,194) 

praticamente idêntica à do Random Forest, mas com ligeiramente mais falsos positivos 
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(769 vs. 617) e sensibilidade marginalmente superior (0,661). Este perfil indica uma 

excelente capacidade de ordenação das observações com um leve viés a favor da 

identificação de positivos, o que o torna adequado para contextos de priorização de 

risco. 

O C5.0 apresenta métricas muito próximas das do XGBoost, com 𝐹1-score de 0,196, G-

mean de 0,755 e accuracy de 0,866, mostrando novamente que o algoritmo produz 

classificações equilibradas e estáveis. Tal como o Random Forest, o C5.0 mantém uma 

boa calibração (Brier = 0,044) e slope próximo de 1 (0,654), o que indica probabilidades 

bem ajustadas à frequência observada. 

O Naive Bayes, embora inferior aos ensembles, mostra um comportamento mais 

controlado do que quando o oversampling foi aplicado fora dos fold: a precisão aumenta 

para 0,100 e a calibração melhora significativamente (intercep = -0,60 ; slope = 0,61). 

Ainda assim, continua a produzir mais falsos positivos (990) e um F1-score inferior 

(0,174), refletindo limitações estruturais do modelo na presença de variáveis 

correlacionadas.  

Em síntese, com o ROSE aplicado corretamente dentro da validação, os resultados 

tornam-se mais calibrados e operacionais, refletindo estimativas de desempenho mais 

confiáveis. Observa-se uma melhoria geral em precisão, accuracy e calibração, 

acompanhada por uma redução controlada de sensibilidade – um comportamento 

esperado, já que o oversampling é agora restrito ao treino, evitando sobreajustamento. 

As métricas de discriminação (ROC-AUC e PR-AUC) mantêm-se elevadas em todos os 

modelos, o que confirma a sua capacidade consistente de separar corretamente as 

categorias, mas com valores de Brier muito mais baixos e slopes de calibração próximos 

de 1, indicando previsões probabilísticas melhor ajustadas. 

 

5.2.7 ROSE dentro da validação vs. ROSE fora da validação 

A etapa que se segue consistiu em avaliar o impacto da estratégia de equilíbrio ROSE 

quando aplicada dentro dos ciclos de validação cruzada (intra-fold) em comparação com 

a sua aplicação antes da separação dos dados (extra-fold). 

O objetivo desta comparação é determinar se o equilíbrio realizado no interior de cada 

fold contribui para uma estimativa mais realista do desempenho e para uma redução do 

sobreajuste decorrente partilha de informação entre treino e teste. 
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Para tal, foram calculadas as diferenças percentuais entre as métricas obtidas nas duas 

abordagens, conforme sintetizado na Tabela 17. 

 

Tabela 17 - Diferenças de métricas (pontos): ROSE Dentro da validação - ROSE fora da validação 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-Score G-mean Accuracy Brier 

C5.0 +0,4% +1,4% +4,0% -11,5% +5,9% -0,9% +10,8% -6,4% 

GLM +0,1% -0,2% +7,1% -24,2% +11,4% +11,7% +37,6% +1,2% 

NB -2,5% -1,4% +6,1% -32,1% +9,9% +14,3% +45,2% -5,0% 

RF +4,7% +1,8% +6,8% -29,1% +9,5% -5,1% +19,7% -7,4% 

XGB -2,7% -0,2% +6,5% -26,7% +9,9% +0,4% +24,7% -11,2% 

 

A análise relativa confirma que a aplicação do ROSE dentro da validação melhora 

substancialmente o comportamento geral dos modelos, especialmente em termos de 

precisão e  accuracy, com aumentos relativos superiores a +100% em GLM e Naive 

Bayes, e +98% em Random Forest. Estes ganhos refletem uma maior seletividade e 

redução de falsos positivos, mostrando que o balanceamento intra-fold conduz a 

fronteiras de decisão mais robustas. 

Em contrapartida, observa-se uma redução da sensibilidade em todos os modelos (-15% 

a -33%), resultado esperado pela maior prudência na deteção de positivos após a 

correção do viés introduzido pelo oversampling fora dos folds. 

Os modelos de ensemble (Random Forest, C5.0, XGBoost) destacam-se ainda por 

melhorias significativas no Brier Score (-60% a -82%), evidenciando melhor calibração e 

confiabilidade probabilística. O GLM e o Naive Bayes, embora percam um pouco em 

sensibilidade, ontem os maiores ganhos relativos de accuracy e precisão, sugerindo que 

o balanceamento interno permitiu-lhes generalizar melhor.  

Em suma, os resultados mostram que o ROSE dentro da validação conduz a uma 

melhoria estrutural: os modelos tornam-se mais calibrados, precisos e estáveis, com 

melhor sobreajuste e previsões mais alinhadas com o desempenho esperado. 

 

5.2.8 Regressão Logística Penalizada de Firth 

A Regressão Logística Penalizada de Firth foi aplicada com o objetivo de mitigar 

problemas de separação e instabilidade dos estimadores de máxima verosimilhança, 

comuns em cenários de forte desequilíbrio da variável resposta (Heinze&Schemper, 
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2002). Esta abordagem ajusta a função de verosimilhança, produzindo coeficientes mais 

estáveis e probabilidades bem calibradas. 

 

O modelo foi avaliado em duas etapas: 

1. Validação cruzada: no conjunto de treino (2016-2022), utilizada para a seleção 

do limite ótimo de decisão segundo a métrica 𝐹2-score; 

2. Avaliação no conjunto de teste (2023), mantendo esse limite fixo para garantir 

validade externa. 

 

Resultados da Validação Cruzada (Treino, OOF) 

Os resultados da validação cruzada estão resumidos na Tabela 18, que apresenta a AUC 

média corrigida e o threshold ótimo definido para maximizar 𝐹2-score. 

 

Tabela 18 - Métrica de desempenho global e threshold ótimo 

 

Estes resultados indicam que o modelo é capaz de capturar padrões relevantes e 

equilibrar adequadamente a sensibilidade e a precisão, otimizando a deteção da 

categoria minoritária. 

 

Avaliação no teste (2023) 

Os resultados obtidos no conjunto de teste encontram-se na Tabela 19, que reúne 

métricas de desempenho, intervalos de confiança via bootstrap, matriz de confusão e 

observações interpretativas.  

 
Tabela 19 - Avaliação do desempenho do Modelo de Regressão Penalizada de Firth 

Métrica Valor Observação 

AUC media (corrigida) 0,855 Indica boa discriminação entre categoras 
(quanto mais alto, melhor) 

Threshold ótimo 0,052 Threshold que otimiza o  F₂-score 

Métrica Valor IC95% (Bootstrap) Observação 

ROC-AUC 0,870 [0,845; 0,895] Excelente discriminação entre 
categorias 
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O modelo penalizado de  Firth apresentou desempenho discriminativo comparável aos 

métodos de machine learning mais complexos, como Random Forest e XGBoost (ROC-

AUC  0,87), confirmando a eficácia da penalização em contextos de eventos raros. A 

sensibilidade elevada (0,673), significa que cerca de 2
3
 dos sinistros graves foram 

corretamente detetados, enquanto a  baixa precisão de 0,117 indica a presença de falsos 

positivos. O Brier (0,022) foi o melhor entre todos os modelos avaliados, sugerindo boa 

calibração probabilística: as probabilidades previstas refletem bem as frequências 

observadas. 

A Regressão Logística Penalizada de Firth revelou-se uma alternativa estatística sólida 

para este problema, alcançando resultados semelhantes ou superiores aos modelos de 

machine learning em termos de discriminação e calibração. 

 

5.2.9 SMOTENC Fora da Validação 

Os resultados obtidos com o SMOTENC aplicado fora da validação estão apresentados 

na Tabela 20 (métricas de desempenho) e na Tabela 21 (matriz de confusão e métricas 

derivadas). 

 

Tabela 20 - Métricas de desempenho dos modelos com SMOTENC aplicado fora da validação. 

Modelo PR-AUC 
ROC- 

AUC 
Precisão Sensibilidade F1-Score G-mean Accuracy Brier 

CAL-

INTERCEPT 

CAL-

SLOPE 

C5.0 

0,087 

[0,067; 

0,115] 

0,777 

[0,740; 

0,811] 

0,113 

[0,078; 

0,148] 

0,224 

[0,161; 

0,287] 

0,150 

[0,105; 

0,192] 

0,463 

[0,392; 

0,524] 

0,937 

[0,931; 

0,942] 

0,036 

[0,033; 

0,039] 

-1,407 

[-1,599; 

-1,212] 

0,325 

[0,258; 

0,404] 

Métrica Valor IC95% (Bootstrap) Observação 

PR-AUC 0,161 [0,845; 0,895] Desempenho competitivo em M/FG 

Accuracy 0,866 [0,845; 0,895] Elevada proporção de previsões 
corretas 

Precisão 0,117 - 11,7% dos alertas são casos verdadeiros 

Sensibilidade 0,673 - Captura  2
3
 dos casos graves 

F1-Score 0,199 - 
Compromisso equilibrado entre  

precisão e sensibilidade 

G-mean 0,765 - Bom equilíbrio entre categoria 
minoritária e maioritária 

Brier 0,022 - Calibração excelente (probabilidades 
realistas) 
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Modelo PR-AUC 
ROC- 

AUC 
Precisão Sensibilidade F1-Score G-mean Accuracy Brier 

CAL-

INTERCEPT 

CAL-

SLOPE 

GLM 

0,095 

[0,070; 

0,129] 

0,750 

[0,712; 

0,789] 

0,044 

[0,036; 

0,052] 

0,727 

[0,654; 

0,796] 

0,082 

[0,069; 

0,097] 

0,657 

[0,624; 

0,689] 

0,598 

[0,586; 

0,609] 

0,110 

[0,105; 

0,114] 

-3,110 

[-3,284; 

-2,933] 

0,487 

[0,393; 

0,595] 

NB 

0,157 

[0,110; 

0,212] 

0,784 

[0,746; 

0,817] 

0,045 

[0,037; 

0,052] 

0,812 

[0,750; 

0,873] 

0,085 

[0,071; 

0,098] 

0,672 

[0,647; 

0,698] 

0,563 

[0,552; 

0,575] 

0,348 

[0,339; 

0,356] 

-5,861 

[-6,045; 

-5,679] 

0,500 

[0,417; 

0,590] 

RF 

0,083 

[0,065; 

0,106] 

0,807 

[0,779; 

0,836] 

0,115 

[0,084; 

0,151] 

0,255 

[0,191; 

0,317] 

0,159 

[0,118; 

0,202] 

0,492 

[0,426; 

0,549] 

0,933 

[0,927; 

0,939] 

0,043 

[0,039; 

0,046] 

-1,692 

[-1,932; 

-1,462] 

0,380 

[0,332; 

0,439] 

XGB 

0,104 

[0,073; 

0,146] 

0,779 

[0,742; 

0,809] 

0,096 

[0,073; 

0,121] 

0,376 

[0,297; 

0,448] 

0,153 

[0,118; 

0,189] 

0,585 

[0,520; 

0,640] 

0,897 

[0,889; 

0,904] 

0,048 

[0,045; 

0,052] 

-1,938 

[-2,136; 

-1,754] 

0,478 

[0,402; 

0,547] 

 

Tabela 21 - Matrizes de confusão e métricas derivadas dos modelos com SMOTENC aplicado fora da validação. 

Modelo Threshold TP FN FP TN Precisão Sensibilidade Especificidade Accuracy F1-Score 

GLM 0,163 120 45 2627 3847 0,044 0,727 0,594 0,598 0,082 

RF 0,396 42 123 322 6152 0,115 0,255 0,95 0,933 0,159 

XGB 0,329 62 103 583 5891 0,096 0,376 0,91 0,897 0,153 

NB 0,548 134 31 2869 3605 0,045 0,812 0,557 0,563 0,085 

C5.0 0,354 37 128 291 6183 0,113 0,224 0,955 0,937 0,15 

 

Com o SMOTENC aplicado fora dos ciclos de validação, observaram-se desempenhos 

modestos de forma geral, com pequenas variações entre os modelos. Nenhum algoritmo 

apresentou ganhos expressivos face às estratégias anteriores, indicando que o equilíbrio 

externo ao processo de validação tende a introduzir menor generalização e potencial 

sobreajuste ao conjunto de treino. 

O Ranfom Forest foi o modelo com maior capacidade discriminativa global (ROC-AUC = 

0,807 [0,779;0,836]), mostrando equilíbrio razoável entre a sensibilidade (0,255) e 

precisão (0,115), embora com tendência a subestimar a probabilidade de casos positivos 

(intercept = -1,692 ; declive = 0,380). 

O Naive Bayes apresentou o maior PR-AUC (0,157 [0,110 ; 0,212]) e uma sensibilidade 

elevada (0,812) capturando a maioria dos casos graves. Contudo, a precisão manteve-se 

muito baixa (0,045) e a calibração revelou-se fortemente enviesada (intercept = -5,861 ; 

declive = 0,500). 

O XGBoost exibiu um desempenho intermédio ROC-AUC (0,779 ; PR-AUC = 0,104), com 

sensibilidade moderada (0,376) e precisão igualmente reduzida (0,096). Apesar da boa 
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estabilidade na especificidade (0,91) e accuracy de 0,897, o modelo apresentou 

subestimação das probabilidades positivas (intercept = -1,938 ; declive = 0,478). 

O GLM manteve o padrão de alta sensibilidade  (0,727) e baixa precisão (0,044), 

resultando num elevado número de falsos positivos (FP = 2627). A calibração foi a mais 

distante do ideal (intercept = -3,11 ; declive = 0,49), sugerindo tendência acentuada à 

subestimação das probabilidades de ocorrência. 

Por fim, o C5.0 apresentou os piores resultados relativos, com ROC-AUC = 0,777 e PR-

AUC = 0,087, além de baixa sensibilidade  (0,224) e precisão modesta (0,113). A boa 

especificidade (0,955) e a elevada accuracy (0,937) decorrem sobretudo do predomínio 

de classificações negativas, refletindo baixa capacidade de deteção de M/FG. 

 

De forma geral, a aplicação do SMOTENC fora da validação resultou em redução da 

sensibilidade e melhoria marginal na precisão em comparação com as abordagens de 

oversampling dentro da validação. Esse comportamento é coerente com a espectativa 

teórica: ao não participar no processo de reamostragem nos ciclos de validação, o 

modelo é exposto a uma distribuição de treino diferente da validação, o que reduz a 

adaptação à verdadeira fronteira da decisão. Além disso, observou-se um agravamento 

na calibração em quase todos os algoritmos, reforçando a importância em realizar o 

oversampling dentro dos ciclos de validação para garantir estimativas probabilísticas 

mais fidedignas.  

 

5.2.10 SMOTENC Dentro da Validação 

Esta secção apresenta os resultados obtidos com aplicação da técnica de reamostragem 

SMOTENC, implementada internamente ao conjunto de dados de treino, e 

posteriormente avaliada sobre o conjunto de dados de teste, cuja distribuição das 

categoria reflete-se na realidade observada (≈ 3% de casos graves).  

 

A seguir, A Tabela 22 apresentam as principais métricas de desempenho obtidas para 

cada modelo, enquanto a Tabela 23 detalha as matrizes de confusão e os indicadores 

derivados a partir dos limites principais de decisão. 
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Tabela 22 – Métricas de desempenho com IC95% (Teste 2023, SMOTENC dentro). 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy G-mean Brier 

C5.0 

0,025 

[0,021, 

0,029] 

0,500 

[0,500, 

0,500] 

0,000 

[nan,  

nan] 

0,000  

[0,000,  

0,000] 

0,000 

[nan, 

nan] 

0,975 

[0,971, 

0,979] 

0,000 

[0,000, 

0,000] 

0,024 

[0,021, 

0,028] 

GLM 

0,166 

[0,129, 

0,219] 

0,872 

[0,844, 

0,896] 

0,220 

[0,168, 

0,281] 

0,267  

[0,200,  

0,340] 

0,241 

[0,186, 

0,301] 

0,958 

[0,954, 

0,963] 

0,510 

[0,443, 

0,576] 

0,022 

[0,019, 

0,026] 

NB 

0,097 

[0,076, 

0,122] 

0,830 

[0,800, 

0,858] 

0,115 

[0,072, 

0,160] 

0,139  

[0,089,  

0,196] 

0,126 

[0,081, 

0,175] 

0,952 

[0,947, 

0,957] 

0,368 

[0,294, 

0,436] 

0,084 

[0,078, 

0,089] 

RF 

0,209 

[0,155, 

0,277] 

0,858 

[0,826, 

0,888] 

0,290 

[0,227, 

0,356] 

0,352  

[0,279,  

0,425] 

0,318 

[0,256, 

0,378] 

0,962 

[0,958, 

0,967] 

0,586 

[0,523, 

0,644] 

0,022 

[0,018, 

0,025] 

XGB 

0,247 

[0,185, 

0,316] 

0,893 

[0,871, 

0,914] 

0,300 

[0,240, 

0,361] 

0,364  

[0,287,  

0,433] 

0,329 

[0,264, 

0,387] 

0,963 

[0,958, 

0,968] 

0,596 

[0,530, 

0,651] 

0,021 

[0,018, 

0,024] 

 

Tabela 23 – Matrizes de confusão e métricas derivadas (Teste 2023, SMOTENC dentro). 

Modelo Threshold TP FN FP TN Precisão Sensibilidade Especificidade Accuracy 
F1-

score 

GLM 0,167 44 121 156 6318 0,220 0,267 0,976 0,958 0,241 

XGB 0,201 60 105 140 6334 0,300 0,364 0,978 0,963 0,329 

RF 0,150 58 107 142 6332 0,290 0,352 0,978 0,962 0,318 

NB 1,000 23 142 177 6297 0,115 0,139 0,973 0,952 0,126 

C5.0 0,190 0 165 0 6474 nan 0,000 1,000 0,975 nan 

 

Conforme observado na Tabela 21, o desempenho geral dos modelos diminui 

substancialmente quando testados sobre o conjunto de 2023, caraterizado por um forte 

desequilíbrio entre categorias. O modelo C5.0 apresentou falha completa na 

identificação de casos positivos (precisão, 𝐹1-score e sensibilidade), ainda que mantenha 

accuracy de 0,975 – valor enganador, já que reflete apenas a predominância da categoria 

negativa. 

O Naive Bayes obteve resultados moderados (𝐹1-score = 0,126; ROC-AUC = 0,830), 

demonstrando limitação na capacidade de distinguir entre sinistros graves e leves. Os 

modelos GLM, Random Forest e XGBoost apresentaram desempenhos mias sólidos, com 

destaque para o XGBoost, que alcançou 𝐹1-score = 0,329 [0,264 ; 0,387], precisão = 0,300 

e sensibilidade = 0,364, associado a ROC-AUC = 0,893 [0,871 ; 0,914]. O Random Forest 

apresentou desempenho muito próximo (𝐹1-score = 0,318 ; ROC-AUC = 0,858), enquanto 



 114 

o GLM manteve valores ligeiramente inferiores de 𝐹1-score (0,241), mas a destacar-se 

pela boa calibração (Brier = 0,022). 

 

A Tabela 23 permite compreender com mais detalhe o comportamento operacional dos 

modelos. Nota-se que o XGBoost e o Random Forest conseguiram identificar 60 e 58 

casos positivos, respetivamente, de um total de 165, o que corresponde a uma 

sensibilidade de aproximadamente 36% e 35%. O GLM, por sua vez, apresentou 

sensibilidade = 0,267 e maior especificidade (0,976), demonstrando uma postura mais 

conservadora na predição da categoria minoritária. 

O Naive Bayes exibiu baixo poder discriminativo (sensibilidade = 0,139), enquanto o C5.0 

não identificou nenhum caso positivo, classificando todas as observações como 

negativas. Esse comportamento reforça a tendência de sobreajustamento do C5.0 ao 

cenário equilibrado gerado artificialmente pelo SMOTENC, com perda total de 

sensibilidade ao ser exposto aos verdadeiros casos desequilibrados.  

De modo geral, as métricas de área sob a curva (ROC-AUC entre 0,83 e 0,89) sugerem 

alguma capacidade de separação entre categorias, mas os limites de decisão não se 

traduziram em classificações suficientemente precisas da categoria positiva. Esse 

desfasamento indica que, embora os modelos aprendam padrões relevantes durante o 

treino reamostrado, as distribuições de probabilidade estimada não se mantêm válidas 

em contextos reais, o que reduz a generalização. 

Além disso, verifica-se que os modelos baseados em árvores (C5.0, Random Forest e 

XGBoost) – que haviam demonstrado melhor desempenho nos cenários equilibrados – 

sofrem degradação acentuada sob desequilíbrio real, enquanto o GLM mostra maior 

estabilidade, ainda que com menor sensibilidade. 

Assim, os resultados obtidos nas Tabelas 22 e 23, permitem concluir que em contextos 

reais de eventos raros, a eficácia das técnicas de reamostragem dependem fortemente 

da compatibilidade entre a distribuição dos dados de treino e de teste. Quando essa 

correspondência é baixa, a capacidade de generalização dos modelos é severamente 

comprometida. 

Portanto, a aplicação isolada do SMOTENC durante o treino não é suficiente para garantir 

desempenho satisfatório em ambientes reais.  
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5.2.11 SMOTENC Dentro vs. SMOTENC Fora 

A técnica de reamostragem SMOTENC foi aplicada exclusivamente no conjunto de treino 

de cada fold (v=5, r=2), nunca no conjunto de validação/teste. A seleção do threshold foi 

realizada pela maximização do 𝐹2-score nas predições OOF. No conjunto de teste (2023), 

o threshold foi ajustado via percentil das probabilidades previstas, de modo a impor uma 

taxa prevista positiva (TPR) aproximada de 3% (cenário principal) e, adicionalmente,  

uma sensibilidade de aproximadamente 5%. Os intervalos de confiança (IC95%) foram 

estimados por bootstrap estratificado (B=1000). 

 

Desempenho global dos modelos 

A Tabela 24 apresenta os resultados das principais métricas de desempenho obtidas no 

conjunto de teste, permitindo avaliar a capacidade discriminativa e a estabilidade dos 

diferentes modelos. São incluídos modelos de natureza paramétrica e não paramétrica, 

permitindo avaliar as diferenças de comportamento face à reamostragem intra-fold. 

 
Tabela 24 - Comparação do desempenho global dos modelos: SMOTENC aplicado  dentro e fora da validação. 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-Score Accuracy G-mean Brier 

C5.0 

0,025 

[0,021; 

0,029] 

0,500 

[0,500; 

0,500] 

0,000 

[nan; 

nan] 

0,000 

[0,000; 

0,000] 

0,000 

[nan; 

nan] 

0,975 

[0,971; 

0,979] 

0,000 

[0,000; 

0,000] 

0,024 

[0,021; 

0,028] 

GLM 

0,166 

[0,129; 

0,219] 

0,872 

[0,844; 

0,896] 

0,220 

[0,168; 

0,281] 

0,267 

[0,200; 

0,340] 

0,241 

[0,186; 

0,301] 

0,958 

[0,954; 

0,963] 

0,510 

[0,443; 

0,576] 

0,022 

[0,019; 

0,026] 

NB 

0,097 

[0,076; 

0,122] 

0,830 

[0,800; 

0,858] 

0,115 

[0,072; 

0,160] 

0,139 

[0,089; 

0,196] 

0,126 

[0,081; 

0,175] 

0,952 

[0,947; 

0,957] 

0,368 

[0,294; 

0,436] 

0,084 

[0,078; 

0,089] 

RF 

0,209 

[0,155; 

0,277] 

0,858 

[0,826; 

0,888] 

0,290 

[0,227; 

0,356] 

0,352 

[0,279; 

0,425] 

0,318 

[0,256; 

0,378] 

0,962 

[0,958; 

0,967] 

0,586 

[0,523; 

0,644] 

0,022 

[0,018; 

0,025] 

XGB 

0,247 

[0,185; 

0,316] 

0,893 

[0,871; 

0,914] 

0,300 

[0,240; 

0,361] 

0,364 

[0,287; 

0,433] 

0,329 

[0,264; 

0,387] 

0,963 

[0,958; 

0,968] 

0,596 

[0,530; 

0,651] 

0,021 

[0,018; 

0,024] 

 

Em termos gerais, os modelos não paramétricos, Random Forest e XGBoost, apresentam 

melhor capacidade discriminativa e maior estabilidade entre métricas, evidenciando 

ganhos consistentes de PR-AUC e 𝐹1-score.  
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O GLM demonstra um equilíbrio razoável e boa calibração, mantendo resultados 

competitivos, ainda que com sensibilidade moderada.  

Por outro lado, o Naive Bsyes e o C5.0 revelam limitações mais marcadas: o primeiro 

pela simplificação probabilística e o segundo pela incapacidade de generalizar sob forte 

desequilíbrio. 

Em termos gerais, a aplicação do SMOTENC intra-fold aumenta a precisão e a 

estabilidade sem inflacionar artificialmente o desempenho geral. 

 

Matrizes de confusão e métricas derivadas 

A Tabela 25 resume as matrizes de confusão correspondentes ao threshold ajustado para 

uma taxa prevista positiva próxima de 3%, bem como as respetivas métricas. 

 

Tabela 25 - Matrizes de confusão e métricas derivadas (threshold principal ≈3%). 

Modelo Threshold TP FN FP TN Precisão Sensibilidade Especificidade Accuracy F1-
score 

GLM 0,167 44 121 156 6318 0,220 0,267 0,976 0,958 0,241 

RF 0,150 58 107 142 6332 0,290 0,352 0,978 0,962 0,318 

XGB 0,201 60 105 140 6334 0,300 0,364 0,978 0,963 0,329 

NB 1,000 23 142 177 6297 0,115 0,139 0,973 0,952 0,126 

C5.0 0,190 0 165 0 6474 nan 0,000 1,000 0,975 nan 

 

Observa-se que o equilíbrio entre falsos positivos e falsos negativos varia consoante o 

modelo, refletindo diferentes comportamentos de calibração. 

Os modelos baseados em árvores (Random Forest e XGBoost) mantêm a melhor 

combinação entre precisão e sensibilidade, atingindo bons níveis de accuracy mesmo 

sob restrição da taxa de positivos. 

O GLM mostra-se mais conservador, priorizando a especificidade, enquanto o Naive 

Bayes evidencia fragilidade na separação probabilística, e o C5.0 praticamente não 

identifica casos positivos. 

No conjunto, o padrão confirma que a reamostragem intra-fold estabiliza o 

comportamento dos classificadores e reduz flutuações extremas entre precisão e 

sensibilidade. 
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Thresholds utilizados nos diferentes cenários 

A Tabela 26 documenta os thresholds utilizados em três cenários distintos: 

• TH_F2: o threshold é obtido por maximização do 𝐹2-score nas predições OOF; 

• TH_RATE3 e TH_RATE5: os thresholsd são ajustados no teste para impor taxas 

previstas positivas de cerca de 3% e 5%, respetivamente. 

 

Tabela 26 - Threshold selecionado (F₂ , OOF) e ajustado por taxa prevista positiva no teste (3% e 5%). 

Modelo TH_RATE3 TH_RATE5 TH_F2 

GLM 0,1670 0,1226 0,8014 

RF 0,1497 0,1000 0,3760 

XGB 0,2006 0,1342 0,4928 

NB 0,9996 0,9965 0,9998 

C5.0 0,1901 0,1901 0,1901 

 

A variação observada entre estes thresholds evidencia diferenças claras na calibração 

probabilística entre modelos. O GLM tende a exigir thresholds mais altos (predições mais 

conservadoras), enquanto o Random Forest e o XGBoost distribuem probabilidades de 

forma mais dispersa, permitidno ajustes finos. Já o Naive Bayes e o C5.0 mostram uma 

calibração podre, concentrando as probabilidades extremas e limitando a flexibilidade 

na definição do threshold. 

 

Comparação entre os dois cenários 

A Tabela 27 compara diretamente os dois cenários de amostragem: 

• SMOTENC Fora: reamostragem aplicada antes da divisão em folds; 

• SMOTENC Dentro: reamostragem aplicada separadamente em cada conjunto de 

treino. 

Tabela 27 - Diferenças de métricas (pontos): SMOTENC dentro da validação - SMOTENC fora da validação. 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy 

GLM +7,1% +12,2% +17,6% -46,0% +15,9% +36,0% 

NB -6,0% +4,6% +7,0% -67,3% +4,1% +38,9% 

RF +12,6% +5,1% +17,5% +9,7% +15,9% +2,9% 

XGB +14,3% +11,4% +20,4% -1,2% +17,6% +6,6% 
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Os valores positivos indicam melhorias associadas à abordagem intra-fold. De forma 

geral, verifica-se um aumento consistentes da precisão e uma ligeira redução da 

sensibilidade, especialmente em modelos para métricos como GLM e Naive Bayes. 

Nos modelos mais flexíveis, como Random Forest e XGBoost, os ganhos são simultâneos 

em precisão e sensibilidade, refletindo maior capacidade de adaptação à distribuição 

criada pelo SMOTENC. 

Além disso, as métricas de accruracy  e PR-AUC mostram tendência de melhoria, 

sugerindo que o treino intra-fold produz estimativas mais fiéis ao desempenho fora da 

amostra, evitando contaminação entre treino e validação. 

 

Conclusão 

A aplicação do SMOTENC dentro dos folds da validação cruzada constitui uma prática 

metodologicamente superior, pois preserva a independência entre treino e validação, 

evitando data leakage e o inflacionamento artificial das métricas. 

Em termos empíricos, observa-se um aumento da precisão, redução moderada da 

sensibilidade e melhor estabilidade global, sobretudo em algoritmos baseados em 

árvores. 

No conjunto, os resultados demonstram que a reamostragem intra-fold produz uma 

avaliação mais realista e robusta, sendo a opção recomendada para contextos de forte 

desequilíbrio entre categorias.  

 

5.2.12 SMOTENC Dentro vs. ROSE Dentro 

Nesta análise, compara-se o desempenho dos modelos sob duas estratégias de 

reamostragem aplicadas dentro dos folds da validação cruzada, garantindo total 

independência entre treino e validação e eliminando qualquer risco de data leakage: 

• SMOTENC Dentro: que gera novas observações sintéticas a partir das 

observações minoritárias combinando atributos contínuos e categóricos; 

• ROSE Dentro: que cria observações sintéticas via bootstrap e perturbação 

aleatória controlada. 
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A comparação direta foi realizada com base na variação da percentagem de cada 

métrica, conforme a expressão: 

 = 𝑆𝑀𝑂𝑇𝐸𝑁𝐶 𝑑𝑒𝑛𝑡𝑟𝑜 − 𝑅𝑂𝑆𝐸 𝑑𝑒𝑛𝑡𝑟𝑜 

Valores positivos indicam vantagem do SMOTENC, enquanto valores negativos indicam 

desempenho superior do ROSE. Esta fórmula de cálculo permite observar diretamente 

em que métricas o SMOTENC oferece ganhos ou perdas relativas, sem necessidade de 

apresentar duas tabelas separadas. 

 

Desempenho comparativo entre SMOTENC dentro e ROSE dentro 

Neste sentido a Tabela 28, apresenta as diferenças de desempenho entre ambos os 

métodos. 

 

Tabela 28 - Diferenças de métricas (pontos): SMOTENC dentro da validação - ROSE dentro da validação. 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy 

GLM +0,5% -0,1% +10,5% -45,4% +4,3% +10,3% 

NB -4,8% -2,4% +1,5% -52,8% -4,8% +10,9% 

RF +1,4% -1,9% +15,3% -24,2% +9,5% +6,5% 

XGB +5,3% +1,5% +17,6% -29,7% +12,0% +8,7% 

 

Os resultados indicam que o SMOTENC dentro e ROSE dentro apresentam desempenhos 

próximos em termos gerais, mas com diferenças consistentes no equilíbrio entre 

precisão e sensibilidade.  

O SMOTENC dentro tende a produzir ganhos mais consistentes em precisão e PR-AUC, 

particularmente em modelos de natureza não linear. O XGBoost tem um aumento de 

17,6% em precisão e 5,3% em PR-AUC, indicando uma capacidade superior de 

discriminação entre categorias. O Random Forest apresenta um comportamento 

semelhante, com um ganho de 15,3% em precisão e 1,4% em PR-AUC, o que sugere que 

as observações sintéticas geradas pelo SMOTENC são mais seletivas e menos 

redundantes, proporcionando uma fronteira de decisão mais conservadora e, portanto, 

menor taxa de falsos positivos entre os FL. O GLM apresenta uma melhoria de 10,5% em 

precisão, embora com uma perda acentuada de sensibilidade, o que é coerente com a 

rigidez da fronteira linear deste modelo.  
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Por outro lado, observa-se uma redução expressiva da sensibilidade em todos os 

modelos, sobretudo nos lineares e probabilísticos, como o GLM e o Naive Bayes. Essa 

diminuição explica-se pelo facto de o SMOTENC gerar observações sintéticas mais 

concentradas em torno da distribuição empírica da categoria minoritária, cobrindo 

menos as regiões periféricas do espaço de decisão. Já o ROSE, ao introduzir ruído 

aleatório nas observações de treino, tende a produzir uma cobertura mais ampla e 

heterogénea da fronteira, o que se traduz num número superior de M/FG (maior 

sensibilidade), mas com um custo de aumento de falsos positivos, reduzindo a precisão.  

 As diferenças observadas no ROC-AUC são pequenas, geralmente inferiores 0,02, o que 

indica que ambas as abordagens preservam uma capacidade discriminativa global 

semelhante. Ainda assim, o PR-AUC revela pequenas, mas consistentes, melhorias sob o 

SMOTENC, sobretudo nos modelos de ensemble, refletindo uma maior eficiência na 

priorização de M/FG em contextos de forte desequilíbrio. A accuracy acompanha esta 

tendência, sugerindo que o SMOTENC origina fronteiras de decisão mais estáveis e 

probabilidades melhor calibradas. 

 

Em síntese, embora ambos os métodos apresentem desempenhos próximos, o 

SMOTENC dentro destaca-se pela sua maior robustez, estabilidade e controlo de falsos 

positivos, sendo, portanto, mais indicado quando se privilegia precisão e fiabilidade na 

identificação de M/FG. Já o ROSE mostra-se mais vantajoso em cenários onde o objetivo 

é maximizar a sensibilidade, ainda que com o custo de um aumento no número de falsos 

FL.  

 

5.2.13 ROSE Fora vs. SMOTENC Fora 

A comparação direta entre as duas estratégias indica que o SMOTENC oferece um 

equilíbrio ligeiramente superior entre precisão e sensibilidade, sobretudo nos modelos 

de natureza não paramétrica (XGBoost e Random Forest). Em contrapartida, o ROSE 

tende a favorecer ligeiramente a sensibilidade — identificando mais ocorrências graves, 

mas à custa de um número superior de falsos positivos. Assim, a escolha entre ambos 

depende do objetivo operacional: se a prioridade é minimizar o risco de não detetar 

sinistros graves (sensibilidade máxima), o ROSE continua uma opção válida; se a ênfase 
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recai na fiabilidade das previsões positivas (maior precisão e melhor calibração), o 

SMOTENC revela-se preferível. 

Importa ainda salientar que, em ambos os casos, as métricas de calibração (interceção e 

declive próximos de 0 e 1, respetivamente) confirmam que a probabilidade prevista de 

ocorrência grave reflete adequadamente a frequência observada. Os valores do erro de 

Brier, na ordem de 0,02, reforçam essa boa adequação probabilística. 

 

Implicações e recomendações 

Em termos substantivos, ambos os métodos de reamostragem permitiram preservar a 

coerência das variáveis explicativas identificadas anteriormente — reforçando a 

importância de fatores como a idade média do veículo, o tipo de via e o período 

temporal. No entanto, o SMOTENC revelou-se mais parcimonioso e estável: a menor 

redundância de exemplos sintéticos evitou flutuações nas métricas entre repetições, 

oferecendo resultados mais robustos para generalização. 

Do ponto de vista aplicado à segurança rodoviária, tal estabilidade é relevante: políticas 

de prevenção e vigilância dependem de modelos que mantenham desempenho 

consistente sob diferentes amostras ou atualizações de dados. Assim, recomenda-se que 

versões futuras da modelação adotem o SMOTENC como procedimento padrão de 

reamostragem, mantendo o ROSE apenas como análise de sensibilidade ou cenário 

alternativo. 

Em síntese, o SMOTENC confirma a robustez da estrutura de variáveis desenvolvida na 

dissertação e demonstra que a melhoria da representatividade da categoria minoritária 

pode ser alcançada sem perda de calibração nem aumento substancial do erro, 

constituindo uma solução metodológica equilibrada para problemas de previsão de 

gravidade em sinistralidade rodoviária. 

 

5.2.14 Análise de Sensibilidade – threshold com taxa  5% 

Nesta fase, realiza-se uma análise de sensibilidade para avaliar o impacto da variação do 

threshold no desempenho do modelo. O objetivo é observar o comportamento das 

métricas quando se aumenta a taxa prevista positiva de aproximadamente 3% (cenário 

principal) para cerca de 5%. 
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O ajuste é feito diretamente sobre as probabilidades previstas no conjunto de teste 

(2023), selecionando o percentil correspondente a uma taxa de positividade 

aproximadamente de 5%. Esta abordagem permite avaliar a robustez dos modelos à 

mudança de threshold, e verificar se o ganho em sensibilidade compensa a possível 

redução em precisão e accuracy. 

 

A Tabela 29, apresenta as principais métricas de desempenho obtidas no conjunto de 

teste quando se força a taxa prevista positiva para aproximadamente 5%. 

 

Tabela 29 - Métricas no conjunto de teste quando se força taxa prevista positiva   5%. 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy G-mean Brier 

GLM 0,166 0,872 0,190 0,382 0,254 0,944 0,605 0,022 

XGB 0,247 0,893 0,226 0,455 0,302 0,948 0,661 0,021 

RF 0,209 0,858 0,213 0,436 0,286 0,946 0,647 0,022 

NB 0,097 0,830 0,127 0,255 0,169 0,938 0,493 0,084 

C5.0 0,025 0,500 0,000 0,000 0,000 0,975 0,000 0,024 

 

O aumento do threshold para alcançar uma taxa prevista positiva de 5% conduz ao 

aumento generalizado da sensibilidade em todos os modelos, acompanhado de uma 

ligeira redução da precisão. 

Os modelos baseados em ensembles, nomeadamente, o XGBoost e o Random Forest, 

continuam a apresentar o melhor desempenho global. O XGBoost alcança uma 

sensibilidade de 0,455 e precisão de 0,226, resultando num 𝐹1-score de 0,302 e o melhor 

G-means de 0,661, enquanto o Random Forest mantém a sensibilidade de 0,436, 

precisão de 0,231 𝐹1-score de 0,286, com ROC-AUC de 0,858. 

O GLM exibe um ROC-AUC elevado (0,872) com desempenho equilibrado (precisão de 

0,190 e sensibilidade de 0,382) evidenciando uma boa capacidade discriminativa mesmo 

com um threshold mais permissivo. Já o Naive Bayes apresenta resultados mais 

modestos, refletindo menor robustez, enquanto o C5.0 permanece inativo, com precisão 

e sensibilidade nulos, mostrando incapacidade de resposta mesmo após o ajuste do 

threshold.  

Em síntese, ao elevar o threshold, observa-se um ganho em sensibilidade de 

aproximadamente de 0,08 a 0,10 em relação ao cenário base, acompanhado por uma 
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redução moderada de precisão. Apesar desta troca, os modelos de ensemble preservam 

níveis elevados de AUC e 𝐹1-score, confirmando a robustez do desempenho.  

 

5.2.15 Thresholds escolhidos (Pesos) 

Esta secção apresenta os resultados com balanceamento por pesos (0,5/0,5), aplicada 

sem qualquer reamostragem sintética, preservando integralmente os dados originais e 

garantindo a independência entre treino e teste. São reportadas métricas no conjunto 

de teste (2023) para thresholds ajustados a rate ≈ 3% e rate ≈ 5%, incluindo intervalos 

de confiança (IC95%) obtidos via bootstrap estratificado (B=1000) em formato 

compacto, calibração após regressão isotónica e matrizes de confusão para rate ≈ 3%. 

Inclui ainda uma comparação interpretativa com abordagens de reamostragem 

sintéticas (SMOTENC/ROSE). 

A tabela que se segue, Tabela 30, apresenta os thresholds escolhidos para cada modelo 

sob a estratégia de ponderação de pesos iguais (0,5/0,5). São incluídos três critérios de 

seleção: 

• TH_RATE3: threshold ajustado para uma taxa prevista positiva ≈ 3% no conjunto 

de teste; 

• TH_RATE5: threshold ajustado para uma taxa prevista positiva ≈ 5% no conjunto 

de teste; 

• TH_F2: threshold que maximiza o  𝐹2-score nas predições OOF. 

 

A comparação destes thresholds permite observar como diferentes prioridades 

analíticas (precisão vs. sensibilidade) influenciam a definição do limite de decisão em 

cada modelo. 

 

Tabela 30 - Thresholds selecionados para cada modelo com equilíbrio por pesos (0,5/0,5). 

Modelo TH_RATE3 TH_RATE5 TH_F2 

GLM 0,738 0,919 0,883 

FIRTH 0,507 0,519 0,515 

RF 0,415 0,66 0,581 

XGB 0,67 0,768 0,738 

NB 0,176 0,327 0,246 

C5.0 0,813 1,0 1,0 
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A Tabela 31 apresenta métricas de desempenho no conjunto de teste, quando o 

threshold foi ajustado para taxa positiva ≈ 3% 

 

Tabela 31 - Métricas de classificação do teste (Taxa prevista   3%). 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy G-mean Brier 

GLM 0,161 0,875 0,22 0,267 0,241 0,51 0,958 0,184 

FIRTH 0,157 0,865 0,235 0,285 0,258 0,527 0,959 0,24 

RF 0,186 0,874 0,23 0,279 0,252 0,522 0,959 0,064 

XGB 0,254 0,901 0,285 0,345 0,312 0,581 0,962 0,179 

C5.0 0,171 0,851 0,23 0,279 0,252 0,522 0,959 0,026 

NB 0,103 0,83 0,115 0,139 0,126 0,368 0,952 0,214 

 

A Tabela 32 apresenta métricas de desempenho no conjunto de teste, quando o 

threshold foi ajustado para taxa positiva ≈ 5%. 

 

Tabela 32 - Métricas de classificação do teste (Taxa prevista   5%). 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score Accuracy G-mean Brier 

GLM 0,161 0,875 0,202 0,406 0,27 0,624 0,945 0,184 

FIRTH 0,157 0,865 0,196 0,394 0,262 0,615 0,945 0,24 

RF 0,186 0,874 0,19 0,382 0,254 0,605 0,944 0,064 

XGB 0,254 0,901 0,244 0,491 0,326 0,687 0,95 0,179 

C5.0 0,171 0,851 0,193 0,388 0,258 0,61 0,944 0,026 

NB 0,103 0,83 0,127 0,255 0,169 0,493 0,938 0,214 

 

A Tabela 33 apresenta as principais métricas de desempenho dos modelos no conjunto 

de teste, ajustadas ao equilíbrio por pesos iguais (0,5/0,5). Cada valor é acompanhado 

pelo IC95%, obtido via bootstrap estratificado (B=1000), permitindo avaliar a 

estabilidade e a variabilidades das métricas. 

 

Tabela 33 - Métricas de desempenho dos modelos no teste com IC95% (Bootstrap estratificado, pesos 0,5/0,5). 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-Score Accuracy G-mean BRIER 

C5.0 

0,171 

[0,127–

0,233] 

0,851 

[0,818– 

0,879] 

0,230 

[0,170–

0,294] 

0,279 

[0,212– 

0,352] 

0,252 

[0,191–

0,315] 

0,522 

[0,455–

0,586] 

0,959 

[0,954–

0,963] 

0,026 

[0,023– 

0,028] 

FIRTH 

0,157 

[0,120–

0.208] 

0,865 

[0,839– 

0,889] 

0,235 

[0,178–

0,298] 

0,285 

[0,211– 

0,350] 

0,258 

[0,196–

0,315] 

0,527 

[0,454–

0,584] 

0,959 

[0,955–

0,964] 

0,240 

[0,240– 

0,240] 
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Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-Score Accuracy G-mean BRIER 

GLM 

0,161 

[0,125–

0,213] 

0,875 

[0,850– 

0,898] 

0,220 

[0,161–

0,277] 

0,267 

[0,201– 

0,337] 

0,241 

[0,182–

0,298] 

0,510 

[0,444–

0,574] 

0,958 

[0,954–

0,963] 

0,184 

[0,179– 

0,190] 

NB 

0,103 

[0,079–

0,131] 

0,830 

[0,804– 

0,859] 

0,115 

[0,072–

0,159] 

0,139 

[0,090– 

0,194] 

0,126 

[0,082–

0,170] 

0,368 

[0,296–

0,434] 

0,952 

[0,947–

0,957] 

0,214 

[0,206– 

0,222] 

RF 

0,186 

[0,141–

0,243] 

0,874 

[0,850– 

0,894] 

0,230 

[0,175–

0,288] 

0,279 

[0,214– 

0,349] 

0,252 

[0,193–

0,311] 

0,522 

[0,457–

0,584] 

0,959 

[0,954–

0,964] 

0,064 

[0,061– 

0,067] 

XGB 

0,254 

[0,196–

0,334] 

0,901 

[0,879– 

0,921] 

0,285 

[0,224–

0,351] 

0,345 

[0,277– 

0,418] 

0,312 

[0,253–

0,372] 

0,581 

[0,521–

0,640] 

0,962 

[0,958–

0,967] 

0,179 

[0,175– 

0,183] 

 

A Tabela 34 apresenta a calibração dos modelos no conjunto de teste de 2023, utilizando 

a técnica de regressão isotónica aplicada após a ponderação de pesos iguais.  

 
Tabela 34 - Métricas de calibração dos modelos no conjunto de teste (Regressão Isotónica, pesos 0,5/0,5). 

Modelo BRIER INTERCEPT SLOPE 

GLM_PESOS_cal 0,022 -0,023 1,053 

FIRTH_PESOS_cal 0,022 0,001 1,066 

RF_PESOS_cal 0,022 -0,129 0,978 

XGB_PESOS_cal 0,021 -0,119 1,197 

C5.0_PESOS_cal 0,022 0,072 1,028 

NB_PRIOR05_cal 0,023 0,161 1,228 

 

A Tabela 35 apresenta as matrizes de confusão dos modelos no conjunto de teste de 

2023, considerando um threshold ajustado para uma taxa prevista positiva  3% e 

equilíbrio por pesos iguais. 

 

Tabela 35 - Métricas de confusão dos modelos no conjunto de teste (taxa prevista positiva  3%, pesos 0,5/0,5) 

Modelo Threshold TP FN FP TN Precisão Sensibilidade Especificidade Accuracy 
F1-

Score 

GLM 0,919 44,0 121,0 156,0 6318,0 0,22 0,267 0,976 0,241 0,958 

FIRTH 0,519 47,0 118,0 153,0 6321,0 0,235 0,285 0,976 0,258 0,959 

XGB 0,768 57,0 108,0 143,0 6331,0 0,285 0,345 0,978 0,312 0,962 

RF 0,66 46,0 119,0 154,0 6320,0 0,23 0,279 0,976 0,252 0,959 

NB 1,0 23,0 142,0 177,0 6297,0 0,115 0,139 0,973 0,126 0,952 

C5.0 0,327 46,0 119,0 154,0 6320,0 0,23 0,279 0,976 0,252 0,959 
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A estratégia de ponderação por pesos (PESOS) mostrou-se uma alternativa robusta para 

lidar com o desequilíbrio da amostra, preservando integralmente os dados originais e 

evitando o risco de leakage inerente a técnicas de reamostragem fora dos folds de 

validação. Essa abordagem garantiu comparabilidade entre os modelos e consistência 

estatística dos resultados obtidos no teste, tanto em termos de desempenho preditivo 

quanto de calibração. 

Em cenários de taxa prevista positiva aproximada de 3%, o desempenho global foi 

satisfatório. Observou-se que os modelos generalizados (GLM/Firth) e o Random Forest 

apresentaram valores de PR-AUC entre 0,157 e 0,186, com 𝐹1-score na faixa de 0,24 – 

0,26. Tais resultados demonstram equilíbrio entre precisão e sensibilidade, mantendo 

boa capacidade discriminativa (ROC-AUC acima de 0,86) e boa estabilidade (G-mean ≈ 

0,96). O XGBoost destacou-se PR-AUC de 0,254 e 𝐹1-score de 0,312, sugerindo maior 

poder de separação entre categorias, embora com tendência a maior variabilidade e 

sensibilidade a pequenas perturbações nos preditores.  

Quando o limite foi ajustado para uma taxa prevista positiva de ≈ 5%, houve incremento 

consistente na sensibilidade – sobretudo para o XGBoost, que atingiu 0,491 de 

sensibilidade e 𝐹1-score de 0,326 – em detrimento da precisão. Assim, a escolha do 

threshold depende diretamente da prioridade analítica: limites mais baixos (3%) 

privilegiam a precisão, enquanto taxas mais altas (5%) ampliam a capacidade de deteção 

de casos positivos, sendo, portanto, preferíveis quando o objetivo é maximizar a 

sensibilidade ou o 𝐹2-score. 

Os modelos ponderados apresentaram um bom desempenho em calibração após 

regressão isotónica, com Brier entre 0,021 e 0,023 e coeficientes de calibração próximos 

aos ideias (intercep ≈ 0 e slop ≈ 1), indicando que as probabilidades previstas foram bem 

ajustadas. Essa estabilidade contrasta com os efeitos observados em técnicas de 

reamostragem sintética. O SMOTENC, quando corretamente confiando dentro dos folds, 

também atinge boa sensibilidade, mas adiciona variância e pode induzir sobreajuste 

local em algumas combinações de preditores. Comparativamente, os pesos exibiram 

comportamentos mais estável e interpretável, sobretudo para modelos generalizados 

(GLM/Firth). De forma semelhante, o ROSE compartilha as vantagens no SMOTENC em 

termos de aumento da sensibilidade, porém o ruído gerado pode degradar a calibração 

e, se não for estritamente intra-fold, pode causa data leakage. 
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Em relação XGBoost, sob ponderação 0,5/0,5, ele pode apresentar instabilidade, com 

scores semi constantes dependendo de caraterísticas dos preditores, como valores de 

baixa variância ou escala.  

Em síntese, a estratégia PESOS apresentou equilíbrio entre desempenho preditivo, 

estabilidade e interpretabildiade, superando abordagens baseadas em reamostragem 

em termos de calibração e robustez estatística. GLM, Firth e Random Forest, destacaram-

se como modelos confiáveis e transparentes, enquanto o XGBoost apresentou 

desempenho absoluto superior, porém com maior sensibilidade a perturbações nos 

dados. Para maximizar a sensibilidade (ênfase em 𝐹2), recomenda-se utilizar taxa 

prevista positiva ≈ 5%, maior precisão ≈ 3%. Em ambos os casos, deve-se manter 

calibração isotónica e reportar intervalos de confiança de 95% obtidos via bootstrap. 

 

5.2.16 Modelos com interações vs. Baseline (GLM/Firth) e relação com 

PESOS/SMOTENC 

Nesta etapa do estudo, avalia-se o efeito da inclusão de interações nas regressões 

logística e de Firth, comparando-as com as respetivas versões base, tanto em 

configurações com e sem ponderação de categorias. O protocolo experimental seguiu 

um esquema temporal rigoroso - treino no período 2016-2022 e teste em 2023 - com 

validação cruzada estratificada (v=5 , r=2), assegurando estimativas robustas e livres de 

data leakage. 

Os limites de decisão foram determinados segundo o 𝐹2-score, sob restrições 

operacionais, e a avaliação final do conjunto de este baseou-se em pe2rcentis que 

reproduzem taxas de previsão positivas próximas de 3% e 5%, refletindo condições 

realistas de aplicação. 

Tal como discutido anteriormente, optou-se por não aplicar a calibração isotónica aos 

modelos logísticos e de Firth, uma vez que, estes já produzem estimativas probabilísticas 

intrinsecamente calibradas. Assim, a análise concentra-se exclusivamente na influência 

das interações e da ponderação de categorias sobre o desempenho discriminativa e o 

equilíbrio entre sensibilidade e precisão, sem interferência de transformações adicionais 

na escala das probabilidades. 
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As tabelas seguintes (Tabelas 36 a 41) sintetizam o desempenho global dos modelos 

baseline e com/sem interações, bem como o desempenho dos modelos calibrados com 

ponderação (pesos), através de métricas discriminativas, calibração e matrizes de 

confusão. 

 

Tabela 36 - Métricas no teste (rate ≈ 3%) -  Modelos com Interações 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-
Score 

G-
mean Accuracy Brier 

GLM_BASE_W_RATE3% 0.161 0.875 0.22 0.267 0.241 0.51 0.958 0.184 

GLM_BASE_NW_RATE3% 0.166 0.872 0.22 0.267 0.241 0.51 0.958 0.022 

GLM_INT_W_RATE3% 0.202 0.884 0.265 0.321 0.29 0.56 0.961 0.177 

GLM_INT_NW_RATE3% 0.215 0.881 0.26 0.315 0.285 0.555 0.961 0.022 

FIRTH_BASE_W_RATE3% 0.157 0.865 0.235 0.285 0.258 0.527 0.959 0.24 

FIRTH_BASE_NW_RATE3% 0.166 0.872 0.22 0.267 0.241 0.51 0.958 0.022 

FIRTH_INT_W_RATE3% 0.14 0.863 0.175 0.212 0.192 0.455 0.956 0.241 

FIRTH_INT_NW_RATE3% 0.215 0.881 0.26 0.315 0.285 0.555 0.961 0.022 

 

Tabela 37 - Métricas no teste (rate ≈ 5%) - Modelos com Interações 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-
score 

G-
mean Accuracy Brier 

GLM_BASE_W_RATE5% 0.161 0.875 0.202 0.406 0.27 0.624 0.945 0.184 

GLM_BASE_NW_RATE5% 0.166 0.872 0.19 0.382 0.254 0.605 0.944 0.022 

GLM_INT_W_RATE5% 0.202 0.884 0.214 0.43 0.286 0.643 0.947 0.177 

GLM_INT_NW_RATE5% 0.215 0.881 0.217 0.436 0.29 0.647 0.947 0.022 

FIRTH_BASE_W_RATE5% 0.157 0.865 0.196 0.394 0.262 0.615 0.945 0.24 

FIRTH_BASE_NW_RATE5% 0.166 0.872 0.19 0.382 0.254 0.605 0.944 0.022 

FIRTH_INT_W_RATE5% 0.14 0.863 0.181 0.364 0.241 0.59 0.943 0.241 

FIRTH_INT_NW_RATE5% 0.215 0.881 0.217 0.436 0.29 0.647 0.947 0.022 

 

Tabela 38 - Variações (Interações − Base) a rate ≈ 3% 

Contrast Δ PR_AUC Δ Sensibilidade Δ Precisão Δ F1-score Rate 

GLM_INT_W_rate3% - 

GLM_BASE_W_rate3% 
0.041 0.054 0.045 0.049 rate3% 

GLM_INT_NW_rate3% - 

GLM_BASE_NW_rate3% 
0.049 0.048 0.04 0.044 rate3% 

FIRTH_INT_W_rate3% - 

FIRTH_BASE_W_rate3% 
-0.017 -0.073 -0.06 -0.066 rate3% 

FIRTH_INT_NW_rate3% - 

FIRTH_BASE_NW_rate3% 
0.049 0.048 0.04 0.044 rate3% 
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Tabela 39 - Variações (Interações − Base) a rate ≈ 3% 

Contrast Δ PR_AUC Δ Sensibilidade Δ Precisão Δ F1-score Rate 

GLM_INT_W_rate5% - 

GLM_BASE_W_rate5% 
0.041 0.024 0.012 0.016 rate5% 

GLM_INT_NW_rate5% - 

GLM_BASE_NW_rate5% 
0.049 0.054 0.027 0.036 rate5% 

FIRTH_INT_W_rate5% - 

FIRTH_BASE_W_rate5% 
-0.017 -0.03 -0.015 -0.021 rate5% 

FIRTH_INT_NW_rate5% - 

FIRTH_BASE_NW_rate5% 
0.049 0.054 0.027 0.036 rate5% 

 

Tabela 40 - Métricas no teste (rate ≈ 3%) - PESOS (baseline, sem interações) 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-score G-mean Accuracy Brier 

GLM_PESOS 0.161 0.875 0.22 0.267 0.241 0.51 0.958 0.184 

FIRTH_PESOS 0.157 0.865 0.235 0.285 0.258 0.527 0.959 0.24 

RF_PESOS 0.186 0.874 0.23 0.279 0.252 0.522 0.959 0.064 

XGB_PESOS 0.254 0.901 0.285 0.345 0.312 0.581 0.962 0.179 

C5.0_PESOS 0.171 0.851 0.23 0.279 0.252 0.522 0.959 0.026 

NB_PRIOR05 0.103 0.83 0.115 0.139 0.126 0.368 0.952 0.214 

 

Tabela 41 - Métricas no teste (rate ≈ 5%) - PESOS (baseline, sem interações) 

Modelo PR_AUC ROC_AUC Precisão Sensibilidade F1-
score 

G-
mean 

Accuracy Brier 

GLM_PESOS_rate5% 0.161 0.875 0.202 0.406 0.27 0.624 0.945 0.184 

FIRTH_PESOS_rate5% 0.157 0.865 0.196 0.394 0.262 0.615 0.945 0.24 

RF_PESOS_rate5% 0.186 0.874 0.19 0.382 0.254 0.605 0.944 0.064 

XGB_PESOS_rate5% 0.254 0.901 0.244 0.491 0.326 0.687 0.95 0.179 

C5.0_PESOS_rate5% 0.171 0.851 0.193 0.388 0.258 0.61 0.944 0.026 

NB_PRIOR05_rate5% 0.103 0.83 0.127 0.255 0.169 0.493 0.938 0.214 

 

Os modelos com interações procuram capturar efeitos conjuntos entre caraterísticas da 

infraestrutura, tipologia do sinistro e composição do tráfego, aspetos frequentemente 

não lineares nas vias rodoviárias. Em linha com a literatura, espera-se que tais termos 

aumentem o poder discriminativo sem sacrificar a interpretabilidade nos GLM e 

reduzam o viés em eventos raros nos modelos de Firth, cuja penalização de Jeffreys 

mitiga a sobrestimação de probabilidades extremas (Heinze & Schemper, 2002; King & 

Zeng, 2001). 

Operacionalmente, a utilização de thresholds por percentil no teste (rate ≈ 3%/5%) 

garante comparabilidade entre modelos e evita colapsos de sensibilidade (i.e., zeros) 

associados a limites conservadores derivados apenas por 𝐹2 nas OOF. Após esta 
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correção, o aumento observado de sensibilidade e 𝐹1-score e nas variáveis com 

interações, especialmente quando combinadas com pesos de categorias, refletem a 

capacidade destes modelos em priorizar corretamente eventos raros sem distorcer a 

ordem global das probabilidades. A estabilidade da PR-AUC, dependentes apenas do 

ranking das previsões, indica que a discriminação global mantém-se estável ou 

ligeiramente superior, como esperado, dado depender apenas da ordenação. 

Comparativamente a estratégias baseadas em amostras sintéticas (SMOTENC/ROSE), os 

modelos ponderados com interações apresentam menor variância e maior robustez 

temporal. A ponderação ajusta a função de perda sem modificar a distribuição empírica, 

preservando a calibração natural dos modelos GLM e Firth, enquanto métodos sintéticos 

podem gerar previsões artificialmente extremas e risco de data leakage (Lunardon, 

Menardi, & Torelli, 2014; Chawla, Bowyer, Hall, & Kegelmeyer, 2002).  

Em termos práticos: 

• GLM com interações e pesos tende a maximizar a sensibilidade a rate ≈ 5% com 

perda moderada de precisão; 

• Firth com interações é o mais estável, oferecendo compromisso favorável entre 

sensibilidade e precisão a rate ≈ 3% e um Brier score competitivo, coerente com 

a sua natureza de correção de viés em categorias raras. 

Por fim, a inclusão de interações demonstrou capturar padrões estruturais, contribuindo 

para previsões robustas e consistentes ao longo do tempo, reforçando a aplicabilidade 

operacional dos modelos em contextos da vida real. 
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5. Conclusão 
O presente estudo abordou um dos problemas mais desafiantes da modelação preditiva 

em ciência de dados: a previsão de eventos raros, aqui representados pelos sinistros 

rodoviários graves e mortais no distrito de Setúbal. O trabalho integrou uma 

componente teórica e metodológica sólida com uma análise empírica rigorosa, 

permitindo avaliar comparativamente diferentes estratégias estatísticas e de machine 

learning aplicadas a um fenómeno com forte desequilíbrio entre categorias. 

A análise partiu de uma base de dados extensa (mais de 43 mil ocorrências), na qual 

apenas cerca de 2-3% dos registos correspondiam a sinistros graves ou mortais. Este 

desequilíbrio extremo compromete a capacidade preditiva dos modelos convencionais, 

tornando necessária a adoção de abordagens específicas de correção. Assim, foram 

testadas três famílias de soluções: 

(i) técnicas de reamostragem controladas (oversampling via ROSE e SMOTENC, 

aplicadas apenas nos dados de treino, evitando data leakage); 

(ii) modelos ponderados, com pesos inversamente proporcionais à frequência 

das categorias;  

(iii) modelos penalizados, através da Regressão Logística de Firth, que assegura 

estabilidade inferencial sob separação quase completa. 

Os modelos comparados, Regressão Logística (clássica e Firth), Random Forest, C5.0, 

XGBoost e Naive Bayes, foram avaliados com base em métricas adaptadas a eventos 

raros: a área sob a curva Precisão-Sensibilidade (PR-AUC), a área sob a curva ROC (ROC-

AUC), o 𝐹2-score (critério de otimização dos limites de decisão), o Brier score, e os 

parâmetros de calibração global (intercept e slope). 

A validação cruzada repetida, aliada a uma avaliação final em hold-out test set, 

assegurou robustez estatística e validade externa das conclusões. 

Os resultados empíricos revelaram três conclusões principais: 

1. A correção do desequilíbrio é indispensável, mas deve ser metodologicamente 

controlada. A aplicação de técnicas de oversampling exclusivamente no treino, em 

vez de no conjunto total, eliminou o enviesamento otimista observado em 

abordagens anteriores, reduzindo o risco de sobreajuste e melhorando a 

generalização para o teste. Entre as técnicas comparadas, ROSE e SMOTENC 
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produziram resultados semelhantes em termos de ROC-AUC (~0,86–0,89), com ligeira 

vantagem do SMOTENC em sensibilidade e equilíbrio global (F₂ ≈ 0,27). 

2. O desempenho varia consideravelmente com o tipo de algoritmo. 

O XGBoost emergiu como o modelo mais consistente, obtendo o melhor 

compromisso entre precisão e sensibilidade (PR-AUC ≈ 0.22; ROC-AUC ≈ 0,88; Brier ≈ 

0,021), seguido do Random Forest, que apresentou desempenho estável, mas menos 

calibrado. A Regressão Logística de Firth destacou-se pela excelente calibração 

probabilística (intercepto ≈ 0; Brier ≈ 0,022) e pela sua capacidade de deteção da 

categoria rara (sensibilidade ≈ 0,67), sendo uma alternativa robusta e interpretável 

aos modelos mais complexos. Por contraste, o Naive Bayes e o C5.0 revelaram maior 

variabilidade e menor discriminação em contextos de forte desequilíbrio. 

3. O 𝐹2-score demonstrou ser uma métrica de corte mais adequada para contextos 

críticos. A otimização dos limites de decisão pelo 𝐹2-score e, privilegiando a 

sensibilidade, aumentou substancialmente a capacidade de identificar casos graves, 

mesmo à custa de maior número de falsos positivos. Esta abordagem é 

metodologicamente coerente com o objetivo de prevenção e intervenção precoce em 

segurança rodoviária. 

Em síntese, o estudo evidencia que a combinação de modelos calibrados, técnicas de 

reamostragem controladas e métricas ajustadas a eventos raros pode melhorar de forma 

significativa o desempenho e a utilidade prática dos modelos preditivos. 

A Regressão Logística de Firth surge como uma referência metodológica sólida, 

enquanto XGBoost e Random Forest se afirmam como opções de elevado desempenho 

em cenários operacionais. 

Do ponto de vista aplicado, a modelação desenvolvida permite identificar fatores 

associados a maior gravidade dos acidentes, contribuindo para orientar políticas 

públicas baseadas em evidência, nomeadamente na definição de zonas críticas, gestão 

de recursos e planeamento de medidas preventivas. 

Como linhas futuras de investigação, propõe-se: 

(i) a incorporação de variáveis espaciais e temporais em modelos hierárquicos 

(spatio-temporal rare-event models); 

(ii) a análise de interpretação de modelos complexos através de métodos 

explicativos (e.g. SHAP, partial dependence); 
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(iii) e a integração de informação de tráfego em tempo real, potenciando modelos 

de previsão dinâmica do risco rodoviário. 

Assim, esta dissertação reforça a importância da modelação comparativa e 

estatisticamente rigorosa de eventos raros, tanto no plano metodológico como na sua 

aplicação concreta à segurança rodoviária, contribuindo para uma abordagem mais 

preventiva, transparente e orientada por dados. 
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Apêndice 

Os resultados seguintes correspondem a uma abordagem exploratória inicial, em que as 

técnicas de reamostragem foram aplicadas antes da divisão treino/teste. Estes valores 

não são diretamente comparáveis com os obtidos na abordagem final (reamostragem 

apenas no treino). 

 

Apêndice A  - ROSE 

O conjunto de dados do modelo final apresenta dados desequilibrados acentuado na 

variável resposta, com uma maioria muito expressiva de sinistros classificados como 

“Feridos Leves”. Esse tipo de desequilíbrio pode ser problemático para os modelos de 

machine learning. Neste sentido, ao examinar a base de dados a distribuição de 

observações era a seguinte: 

• Categoria 0 – “Feridos Leves”: 42317 observações (categoria maioritária) 

• Categoria 1 – “Mortes/Feridos Graves”: 995 observações (categoria minoritária)  

Esse desnível, onde aproximadamente 97,7% dos sinistros pertencem à categoria 

maioritária e apenas 2,3% à categoria minoritária, pode introduzir um viés no modelo, 

favorecendo previsões para a categoria dominante. 

Para mitigar esse impacto, serão aplicadas técnicas de ajuste, como o oversampling da 

categoria minoritária e o undersampling da categoria maioritária. Entre os métodos de 

oversampling considerados estão o ROSE e o SMOTENC. Além disso, métricas como a 

curva ROC, a área sob a curva (AUC) e o 𝐹1-score serão utilizadas para avaliar o 

desempenho dos modelos. 

No contexto do machine learning, tratar dados desequilibrados é fundamental para que 

os modelos generalizem bem e ofereçam previsões imparciais. 

Neste trabalho o ROSE foi usado para gerar diferentes cenários com dados sintéticos, 

nomeadamente, gerar observações sintéticas (oversampling) para a categoria 

minoritária de forma a ter um cenário com dados equilibrados e cenários com diferentes 

graus de desequilíbrio, a gerar observações sintéticas para a categoria minoritária e a 

remover observações da categoria maioritária (undersampling) de forma a equilibrar os 

dados. 
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Dados equilibrados 

Para alcançar um balanceamento adequado entre as categorias e uma distribuição mais 

equilibrada, o número total de observações foi ajustado para 85000. Inicialmente, o 

conjunto de dados possuía 43312 observações, das quais 42317 pertenciam à categoria 

“Feridos Leves” e apenas 995 à categoria “Mortes/Feridos Graves”. Para equilibrar as 

categorias, garantindo que “Mortes/Feridos Graves” atingisse o mesmo número de 

observações que “Feridos Leves”, novas observações foram geradas, resultando num 

conjunto de dados balanceado. A distribuição final pode ser visualizada na Tabela A1. 

 

Tabela A  1 - ROSE: Modelo de regressão logística com e sem oversampling. 

 Oversampling Regressão Logística – 85000 Observações 

Feridos Leves Mortes / Feridos Graves 

Modelo Simples 42317 995 

Modelo com 
Oversampling 42317 42683 

 

1) Divisão dos dados em treino e teste 

Após a aplicação do método de oversampling para balancear as categorias, a base de 

dados obtida foi preparada para a modelação. Começou-se por dividir o conjunto de 

dados em dois subconjuntos, um para treino (70%) e outro para teste (30%), onde: 

- Conjunto de treino: contém 59630 observações, 

- Conjunto de teste: contém 25370 observações. 

 

A Tabela A2, representa a divisão realizada juntamente com os valores obtidos. 

Tabela A  2 - ROSE: Divisão dos dados do modelo de regressão logística (85000 observações) em dois subconjuntos: 

treino e teste e respetivo número de observações por categoria em cada subconjunto. 

 Regressão Logística – 85000 Observações 

Treino Teste 

Feridos Leves 29821 12496 

Mortes/Feridos Graves 29809 12874 

  59630 25370 
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2) Ajustamento do modelo 

Após a divisão dos dados em treino e teste, procedeu-se para o ajustamento do modelo 

de Regressão Logística Estatístico. O ajustamento foi realizado com base no conjunto de 

teste, recorrendo ao método da máxima verosimilhança. Este processo possibilita 

identificar os fatores estatisticamente significativos associados à gravidade dos sinistros 

e quantificar a intensidade da sua influência através da interpretação dos coeficientes 

estiamos e dos odds ratio. A Tabela A3 apresenta os resultados do ajustamento. 

 

Tabela A  3 - ROSE: Modelo múltiplo de regressão logística ajustado para a existência de “Mortes/Feridos Graves” nos 

sinistros com vítimas. 

Variável Coeficiente Std. Error P-value 

Intercept -1,1623 0,1509 <0,001 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

-0,2258 0,0939 0,0162 

Concelho2ABMMS 
(ALMADA, BARREIRO, MOITA, 

MONTIJO e SESIMBRA) 
-0,4695 0,0956 <0,001 

Concelho2SS 
(SANTIAGO DO CACÉM e 

SETÚBAL) 
-0,6858 0,1068 <0,001 

tipoacidColisão -1,7315 0,0968 <0,001 

tipoacidDespiste -0,9993 0,1000 <0,001 

tipolocal2Fora das localidades 0,5379 0,0386 <0,001 

tipovia2EM – Estrada Municipal 0,2764 0,1107 0,0126 

tipovia2EN/IC/ER 
 (Estrada Nacional, Itinerário 

Complementar e Estrada 
Regional) 

1,0634 0,0553 <0,001 

horaacid1new6h 0,7641 0,1106 <0,001 

horaacid1new8h-13h -0,2932 0,0375 <0,001 
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A análise dos coeficientes resultantes do modelo de regressão logística fornece 

informação detalhada sobre os fatores que influenciam mais e menos a gravidade dos 

sinistros rodoviários. Os dados extraídos não apenas confirmam algumas suposições, 

mas também revelam nuances sobre como certas variáveis interagem para afetar os 

desfechos dos sinistros. 

As variáveis com níveis de significância mais elevados para o modelo são: 

Variável Coeficiente Std. Error P-value 

fugaSim -1,5915 0,0990 <0,001 

PercCondMCat2[75,100] 0,2060 0,0362 <0,001 

HaVeicPesadoSim 0,9979 0,0614 <0,001 

HaVeicLigSim 0,3957 0,0695 <0,001 

HaVeicMotoSim 2,8027 0,0590 <0,001 

HoraLaboralSim -0,3469 0,0352 <0,001 

MedianaIdadeVeic 0,0493 0,0026 <0,001 

ig_ponderado 0,0833 0,0058 <0,001 

tipovia2EM – Estrada 
Municipal:HaVeicMotoSim 

-0,3016 0,1705 0,0768 

tipovia2EN/IC/ER:HaVeicMotoS
im 

-0,6376 0,0809 <0,001 

Concelho2AGSSP:ig_ponderado -0,0325 0,0052 <0,001 

Concelho2ABMMS:ig_pondera
do 

-0,0528 0,0051 <0,001 

Concelho2SS:ig_ponderado -0,0061 0,0058 0,2969 

tipoacidColisão:  ig_ponderado -0,0226 0,0028 <0,001 

tipoacidDespiste:ig_ponderado -0,0118 0,0031 <0,001 

tipovia2EM – Estrada 
Municipal:ig_ponderado 

0,0301 0,0052 <0,001 

tipovia2EN/IC/ER: 
ig_ponderado 

-0,0023 0,0013 0,0833 
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• Presença de Veículos Motociclos (“HaVeicMoto”): esta é a variável que mais 

aumenta a probabilidade de um sinistro emergir em “Mortes/Feridos Graves”; 

• Presença de Veículos Pesados (“HaVeicMoto”): a presença de veículos pesados 

também eleva consideravelmente o risco de sinistros com “Mortes/Feridos 

Graves”; 

• Tipo de via (“tipovia2EN/IC/ER”): sinistros em estradas nacionais, itinerários 

complementares ou estradas regionais são mais propensos de resultar em 

“Mortes/Feridos Graves”; 

Porém, existem variáveis com coeficientes negativos o que reduz a probabilidade de 

“Mortes/Feridos Graves”. Essas variáveis são: 

• Tipo de Sinistro (Colisão e Despiste): ambos os tipos de sinistros têm uma 

probabilidade de resultar em “Mortes/Feridos Graves”; 

• Concelho (“Concelho2ABMMS”): sinistros que ocorrem nos concelhos de 

Almada, Barreiro, Moita, Montijo e Sesimbra tendem a apresentar uma menor 

probabilidade de “Mortes/Feridos Graves”; 

• Fuga do Condutor (fugaSim): em sinistros onde o condutor foge, a probabilidade 

de “Mortes/Feridos Graves” é menor. 

Tais resultados fornecem informações valiosas sobre quais os fatores são mais relevantes 

para prever a gravidade dos sinistros. 

 

3) Avaliação do Modelo 

Para avaliar o desempenho do modelo, voltamos a utilizar o conjunto de dados de teste. 

Uma análise mais detalhada é facilitada pela matriz de confusão, Tabela A4, que oferece 

uma visão abrangente das previsões realizadas pelo modelo em comparação com as 

categorias. 

 

Tabela A  4 - ROSE: Métricas de avaliação da Regressão Logística para 85000 observações 

Métrica Resultado Observação 

Ponto de Corte 0,505 Valor que separa as observações em duas 
categorias. 

Accuracy 0,7891 O modelo classifica corretamente 78,91% das 
observações. 
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Métrica Resultado Observação 

IC (95%) (0,7840; 
0,7941) Intervalo de Confiança de 95% para a accuracy. 

Kappa 0,5782 O modelo sugere um desempenho razoável. 

Mcnemar’s Test 
P-Value 0,2925 Reflete uma diferença significativa entre as taxas de 

erro de classificação nas duas categorias. 

Sensibilidade 0,7892 

O modelo identificou 
corretamente, aproximadamente, 

78,92% dos casos 
Mortes/Feridos Graves. 

Especificidade 0,7891 
O modelo identificou corretamente, 

aproximadamente, 78,91% dos casos de Feridos 
Leves. 

Valor Preditivo 
Positivo 0,7940 Das observações classificadas como positivas pelo 

modelo, 79,40% são verdadeiras positivas. 

Valor Preditivo 
Negativo 0,7842 Das observações classificadas como negativas pelo 

modelo,78,42% são verdadeiras negativas. 

F1-Score 0,7866 Bom desempenho do modelo. 

AUC 0,8709 O modelo tem uma boa capacidade de 
discriminação. 

Precisião 0,7940 Aproximadamente 79,40% das observações 
classificadas como positivas são mesmo positivas. 

 

4) Comparação do desempenho entre os modelos de classificação 

Por último, será realizada uma análise comparativa do desempenho dos diferentes 

modelos de classificação implementados no estudo com o modelo de regressão logística 

estatístico. Essa comparação tem como objetivo avaliar a eficácia de cada modelo com 

base em métricas relevantes, cujos valores encontram-se detalhados na Tabela A5. 

Novamente, os resultados incluem indicadores como accuracy, sensibilidade, 

especificidade, AUC, Kappa e valores preditivos, que são fundamentais para perceber a 

capacidade preditiva de cada abordagem. Além disso, o teste de McNemar foi utilizado 

para identificar diferenças estatísticas nos erros de classificação entre os modelos. Por 

fim, serão discutidos os principais pontos fortes e limitações de cada abordagem, 

permitindo uma visão clara sobre qual modelo apresenta o melhor desempenho e sob 

quais condições.  
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Tabela A  5 - ROSE: Métricas de classificação para 85000 observações. 

 

Os resultados evidenciam diferenças significativas no desempenho dos modelos 

avaliados. 

• Desempenho geral 

O C5.0 destaca-se como o algoritmo mais robusto na maioria das métricas analisadas, 

alcançando desempenho ideal em métricas como accuracy (99,99%), sensibilidade 

(100%), especificidade (99,98%) e AUC (0,9999). Esses valores refletem uma capacidade 

preditiva ideal, com equilíbrio absoluto entre a deteção de verdadeiros positivos e a 

exclusão de falsos positivos. 

Modelos baseados em árvores, como XGBoost e Random Forest, também apresentam 

desempenhos notáveis. O XGBoost, com accuracy de 95,53% e AUC de 0,9893, foi o 

Métrica 
Regressão 

Logística 
XGBoost 

Random 

Forest 
Bayes C5.0 

 OVERSAMPLING ROSE – 85000 

Ponto de Corte 0,505 0,635 0,588 0,504 0,744 

Accuracy 0,7891 0,9553 0,9216 0,7443 0,9999 

IC (95%) 
(0,7840; 

0,7941) 

(0,9526; 

0,9578) 

(0,9182; 

0,9248) 

(0,7388; 

0,7496) 
(0,9997; 1) 

Kappa 0,5782 0,9105 0,8431 0,4885 0,9998 

Mcnemar’s Test  
P-Value 

0,2925 0,6777 0,8753 0,2483 0,2482 

Sensibilidade 0,7892 0,9553 0,9230 0,7444 1 

Especificidade 0,7891 0,9552 0,9201 0,7442 0,9998 

Valor Preditivo 
Positivo 

0,7940 0,9565 0,9224 0,7498 0,9998 

Valor Preditivo 
Negativo 

0,7842 0,9540 0,9206 0,7386 1 

F1-score 0,7866 0,9546 0,9203 0,7414 0,9999 

AUC 0,8709 0,9893 0,9788 0,8139 0,9999 

Precisão 0,7940 0,9565 0,9224 0,7498 0,9998 
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segundo melhor modelo, seguido pelo Random Forest, com accuracy de 92,16% e AUC 

de 0,9788. Ambos os modelos apresentaram F1-scores elevados, indicando um bom 

equilíbrio entre a sensibilidade e o valor preditivo positivo. 

Em contraste, os modelos de Regressão Logística Estatístico e Naive Bayes apresentaram 

desempenhos mais modestos. O accuracy da Regressão Logística foi de 78,91%, com 

AUC de 0,8709, enquanto o Bayes apresentou menores valores em várias métricas, com 

accuracy de 74,43% e AUC de 0,8139. Esses resultados sugerem que ambos os modelos 

podem não ser adequados para conjuntos de dados complexos ou com alta variabilidade. 

• Teste de McNemar 

O Teste de McNemar avalia a significância estatística das diferenças entre os erros de 

classificação dos modelos. Nenhum dos valores de p-value (p > 0,05) indicou diferenças 

estatisticamente significativas nos erros cometidos pelos modelos. Isso implica que, 

apesar das métricas sugerirem variações de desempenho, não há evidencias estatísticas 

de que os modelos diferem substancialmente na classificação de casos discordantes. 

• Sensibilidade e Especificidade 

Os valores ideias alcançados pelo C5.0 em sensibilidade e especificidade refletem a sua 

capacidade de identificar casos positivos sem gerar falsos. O XGBoost e o Random Forest 

também apresentaram equilíbrio entre as métricas, com valores acima de 92% para 

ambos. Já a Regressão Logística e o Bayes apresentaram menor equilíbrio, evidenciando 

limitações na separação das categorias. 

• 𝐹1-score e AUC 

O F1-score de C5.0 confirma o desempenho ideal, enquanto o XGBoost e o Random 

Forest mostraram forte capacidade de classificação com valores de 0,9546 e 0,9203, 

respetivamente. Por outro lado, os modelos probabilísticos que tiveram 𝐹1-scores 

inferiores, refletiram maior dificuldade em equilibrar a sensibilidade e precisão. 

 

Diferentes graus de desequilíbrio 

Foi realizado o oversampling na categoria minoritária, aplicando diferentes níveis de 

geração de observações para analisar o comportamento dos dados sob diferentes graus 

de desequilíbrio. Para isso, foram gerados quatro cenários distintos – 5000, 15000, 

25000 e 35000 observações – mantendo-se o desequilíbrio entre as categorias em 

diferentes intensidades. Essas variações permitem comparar o desempenho dos 
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modelos com diferentes proporções de dados desequilibrados, possibilitando uma 

análise detalhada de como o comportamento do modelo se ajusta conforme aumenta 

ou diminui o desequilíbrio nos dados.  

Na Tabela A6 estão presentes os resultados obtidos nas diferentes métricas de avaliação, 

nos diferentes quatro cenários. 

 

Tabela A  6 - ROSE: Métricas de classificação para diferentes graus de desequilíbrio. 

 Oversampling ROSE 

 

 
Regressão 
Logística XGBoost Random 

Forest Bayes 
 

C5.0 
 

 
Ponto de Corte 

 
5000 

 

15000 
 

25000 
 

35000 

 
 

0,129 
 

0,281 
 

0,384 
 

0,460 

 
 

0,192 
 

0,423 
 

0,537 
 

0,602 

 
 

0,116 
 

0,308 
 

0,440 
 

0,542 

 
 

0,131 
 

0,283 
 

0,38 
 

0,465 

 
 

0,414 
 

0,681 
 

0,745 
 

0,786 

Accuracy 
 

5000 
 

15000 
 

25000 
 

35000 

 
 

0,7886 
 

0,7918 
 

0,7909 
 

0,7887 

 
 

 
0,9313 

 

0,9491 
 

0,9526 
 

0,9538 
 

 
 

0,9138 
 

0,912 
 

0,9131 
 

0,9162 

 
 

0,7464 
 

0,7458 
 

0,7435 
 

0,7443 

 
 

0,982 
 

0,9994 
 

0,9998 
 

0,9998 

 
Kappa 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,3821 
 

0,5322 
 

0,5693 
 

0,5763 
 

 
 

0,7395 
 

0,8773 
 

0,9008 
 

0,9073 

 
 

0,6851 
 

0,7176 
 

0,8187 
 

0,8318 

 
 

0,306 
 

0,4396 
 

0,474 
 

0,4873 

 
 

0,9239 
 

0,9986 
 

0,9996 
 

0,9996 
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 Oversampling ROSE 

 

 
Regressão 
Logística XGBoost Random 

Forest Bayes 
 

C5.0 
 

 
McNemar´s 
Tes P-Value  

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 

 
<0,001 

 

<0,001 
 

<0,001 
 

<0,001 

 
 

 
<0,001 

 

<0,001 
 

<0,001 
 

0,0243 

 
 

 
<0,001 

 

<0,001 
 

<0,001 
 

0,002 

 
 

 
<0,001 

 

<0,001 
 

<0,001 
 

<0,001 

 
 

 
<0,001 

 

0,0044 
 

0,1336 
 

0,0736 

 
Sensibilidade  

 
5000 

 

15000 
 

25000 
 

35000 
 

 
 
 

0,7895 
 

0,7934 
 

0,7924 
 

0,7896 

 
 
 
 

0,9314 
 

0,9492 
 

0,9532 
 

0,9539 
 

 
 
 

0,9154 
 

0,9130 
 

0,9138 
 

0,9164 

 
 
 

0,7483 
 

0,7464 
 

0,7438 
 

0,7446 

 
 
 

0,9823 
 

1 
 

1 
 

1 

Especificidade 
 

5000 
 

15000 
 

25000 
 

35000 
 

 
0,7885 

 

0,7911 
 

0,7899 
 

0,7879 

 
0,9313 

 

0,9490 
 

0,9523 
 

0,9538 

 
0,9136 

 

0,9117 
 

0,9127 
 

0,9161 

 
0,7462 

 

0,7455 
 

0,7433 
 

0,7440 

 
0,9820 

 

0,9992 
 

0,9997 
 

0,9996 

 
Valor Preditivo 

Positivo   
 

5000 
 

15000 
 

25000 
 

35000 
 

 
 

 
0,3580 

 

0,5992 
 

0,7046 
 

0,7643 

 
 

 
0,6694 

 

0,8799 
 

0,9267 
 

0,9473 

 
 

 
0,6128 

 

0,8026 
 

0,8688 
 

0,9048 

 
 

 
0,3058 

 

0,5358 
 

0,6469 
 

0,7170 

 
 

 
0,8907 

 

0,9980 
 

0,9995 
 

0,9995 

 
Valor Preditivo 

Negativo   
 

5000 
 

15000 
 

 
 

 
0,9616 

 

0,9068 
 

 
 

 
0,9891 

 

0,9794 
 

 
 

 
0,9863 

 

0,9638 
 

 
 

 
0,9520 

 

0,8819 
 

 
 

 
0,9973 

 

1 
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Os resultados mostram que o algoritmo C5.0 destaca-se como o mais eficiente em 

praticamente todas as métricas e cenários. No que diz respeito ao accuracy, o C5.0 

atinge valores de 0,9820 a 0,9998 em todos os cenários, indicando uma elevada precisão 

geral. O Kappa também reforça o desempenho superior do C5.0, com valores muito 

próximos nos quatro cenários, com valores entre 0,9239 e 0,9996. Isso sugere que este 

algoritmo apresenta maior confiabilidade ao distinguir casos positivos e negativos. 

Outro ponto relevante é a sensibilidade, onde o C5.0 novamente obtém os melhores 

resultados. No cenário de 5000 observações apresenta um valor de 0,9823, e a partir de 

 Oversampling ROSE 

 

 
Regressão 
Logística XGBoost Random 

Forest Bayes 
 

C5.0 
 

25000 
 

35000 
 

0,8575 
 

0,8113 

0,9698 
 

0,9596 

0,9437 
 

0,9264 

0,8210 
 

0,7698 

1 
 

1 

 
F1-Score  

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 

0,8665 
 

0,8450 
 

0,8223 
 

0,7994 

 
 

0,9593 
 

0,9640 
 

0,9610 
 

0,9567 

 
 

0,9486 
 

0,9370 
 

0,9279 
 

0,9212 

 
 

0,8366 
 

0,8080 
 

0,7802 
 

0,7567 

 
 

0,9896 
 

0,9996 
 

0,9998 
 

0,9998 

 
AUC 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 

0,8744 
 

0,8731 
 

0,8723 
 

0,8711 

 
 

0,9803 
 

0,9871 
 

0,9887 
 

0,9888 

 
 

0,975 
 

0,9745 
 

0,9762 
 

0,9773 

 
 

0,8161 
 

0,8144 
 

0,8134 
 

0,8136 

 
 

0,996 
 

0,9999 
 

1 
 

0,9998 

 
Precisão 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,3580 
 

0,5992 
 

0,7046 
 

0,7643 

 
 

0,6694 
 

0,8514 
 

0,9269 
 

0,9473 

 
 

0,6071 
 

0,8026 
 

0,8688 
 

0,9048 

 
 

0,3058 
 

0,5358 
 

0,6469 
 

0,7170 

 
 

0,8907 
 

0,9979 
 

0,9995 
 

0,9995 
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15000 até 35000 observações amétrica atinge o valor de 1, evidenciando a capacidade 

de o algoritmo identificar corretamente os casos positivos. A mesma tendência é 

observada na especificidade, que varia entre 0,9920 e 0,9997, permanecendo sempre 

muito próximo de 1. 

Adicionalmente, a AUC também indica o C5.0 como a melhor escolha. Os valores vão de 

0,9960 a 1, refletindo um desempenho  praticamente ideal em termos de discriminação 

entre categorias. Outras métricas, como 𝐹1-score (0,9896 a 0,9998), Valores Preditivos 

Negativos (0,9973 a 1) e Valores Preditivos Positivos (0,8907 a 0,9995), reforçam a 

superioridade do C5.0 em comparação aos outros algoritmos. 

Ao comparar os diferentes algoritmos, observa-se que, embora o XGBoost e o Random 

Forest apresentem bons desempenhos (com accuracy superior a 0,9100 e AUC acima de 

0,9700), eles não atingem o mesmo nível de eficiência do C5.0, especialmente em 

métricas como Kappa e sensibilidade. Por outro lado, a Regressão Logística e o Bayes 

demonstram desempenhos inferiores. A Regressão Logística mantém a accuracy em torno 

de 0,7900, 𝐹1-score de 0,8000 a 0,8700 e a precisão só melhora significativamente com 

maior oversampling. O Bayes mostra resultados mais baixos em accuracy e Kappa, 

limitando a sua eficácia. 

Em relação aos cenários analisados, os resultados indicam que o desempenho melhora 

de forma significativa até 25000 observações. Nos cenários de 15000 e 25 observações 

o C5.0 atinge valores ideais, demonstrado a sua capacidade de generalização com dados 

mais robustos. No entanto, no cenários com 35000 observações, não há um ganho 

expressivo em relação aos de 25000 observações. 

Dessa forma, os resultados apontam que o algoritmo C5.0, especialmente nos cenários 

de 15000 e 25000 observações, é a melhor opção para a previsão de sinistros com 

“Mortes/Feridos Graves”, superando consistentemente os outros modelos avaliados. 

 

Undersampling + Oversampling 

Foi adotada uma abordagem combinada de undersampling e oversampling para lidar 

com os dados desequilibrados das categorias. O objetivo é ajustar a quantidade de 

observações para que um modelo seja composto por categorias equilibradas. Posto isto, 

inicialmente foi criado um modelo com 42000 observações, onde 21000 correspondem 

à categoria minoritária e 21000 à categoria maioritária. 
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São ainda criados outros dois modelos, um com 10000 observações (5000 categoria 

minoritária + 5000 categoria maioritária) e outro modelo com 20000 observações 

(10000 categoria minoritária + 10000 categoria maioritária), ambos com categorias 

equilibradas. Ao contrário da abordagem anterior, que focava unicamente no 

oversampling, aqui iniciou-se com a aplicação do undersampling à categoria maioritária, 

removendo uma parte das observações dos sinistros “Feridos Leves”. Em seguida, foi 

aplicado o oversampling à categoria minoritária, aumentando o número de observações 

dos sinistros “Mortes/Feridos Graves” por meio da replicação ou criação de dados 

sintéticos. Assim, assegura-se que ambas as categorias estão balanceadas nos dois 

modelos, permitindo que os algoritmos de machine learning trabalhem com dados mais 

equilibrados. 

Esta abordagem permite avaliar e sintetizar um número mais reduzido de dados da 

categoria minoritária que poderá ajudar na melhoria do desempenho dos algoritmos.  

 

Modelo com 42000 observações 

• Undersampling 

Inicialmente, aplicou-se a técnica de undersampling para equilibrar a base de dados, 

reduzindo o número de observações da categoria maioritária para aproximar-se da 

categoria minoritária. O processo foi conduzido da seguinte forma: 

• Categoria minoritária (“Mortes/Feridos Graves”): todos os 995 sinistros com 

mortes/feridos graves foram mantidos na base de dados sem alterações. 

• Categoria maioritária (“Feridos Leves”): foi realizada uma amostragem aleatória 

simples, sem reposição, dos 42317 sinistros com Feridos Leves. 

A partir dessa abordagem, criou-se um conjunto de proporções controladas, onde a 

categoria maioritária passou a ter 21,11 vezes o número de observações da categoria 

minoritária, resultando num total de 21999 observações, sendo 21004 da categoria 

maioritária e 995 observações da categoria minoritária. 

 

• Oversampling 

Após o undersampling, aplicou-se o método de oversampling à categoria minoritária 

para aumentar a representatividade de “Mortes/Feridos Graves” ao gerar novos dados 

sintéticos, resultando num aumento significativo no número de observações desta 
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mesma categoria. No final deste processo a base de dados passou a ter categorias mais 

balanceadas, evitando que a categoria maioritária dominasse o modelo. Os valores de 

cada categoria encontram-se representados na Tabela A7. 

 

Tabela A  7 - ROSE: Composição do modelo com e sem  undersampling e com undersampling+oversampling de 42000 

observações. 

 

• Divisão dos dados em treino e teste 

De seguida, os conjuntos de dados foram dividido em dois subconjuntos: 70% dos dados 

foram alocados para treino e 30% para teste. Neste sentido a divisão, Tabela A8, 

encontra-se da seguinte forma: 

- Conjunto de treino: contém 29595 observações. 

- Conjunto de teste: contém 12405 observações. 

 

Tabela A  8 - ROSE: Divisão dos dados do modelo de regressão logística (42000  observações) em dois subconjuntos: 

treino e teste e respetivo número de observações por categoria em cada subconjunto. 

  

  

 

Métrica 
ROSE – 42000 observações 

Feridos Leves Mortes/Feridos Graves 

Modelo Simples 42317 995 

Modelo com 
Undersampling 21004 995 

Modelo com Under 
+ Oversampling 21004 20996 

 
ROSE UNDER + OVER 42000 observações 

Treino Teste 

Feridos Leves 14793 6211 

Mortes/Feridos Graves 14802 6194 

29595 12405 
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• Ajustamento do Modelo 

Após a preparação dos dados, procedeu-se ao ajustamento do modelo Regressão 

Logística Estatístico. Os resultados obtidos estão apresentados na Tabela A9.  

 

Tabela A  9 - ROSE: Modelo múltiplo de regressão logística ajustado para a existência de “Mortes/Feridos Graves” nos 

sinistros com vítimas de 42000 observações. 

Variável Coeficiente Std. Error P-value 

Intercept -1,0514 0,2204 <0,001 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

-0,3405 0,1408 0,0156 

Concelho2ABMMS 
(ALMADA, BARREIRO, MOITA, 

MONTIJO e SESIMBRA) 
-0,5394 0,1426 <0,001 

Concelho2SS 
(SANTIAGO DO CACÉM e 

SETÚBAL) 
-0,6777 0,1557 <0,001 

tipoacidColisão -1,7865 0,1336 <0,001 

tipoacidDespiste -0,9917 0,1386 <0,001 

tipolocal2Fora das localidades 0,4704 0,0550 <0,001 

tipovia2EM – Estrada Municipal 0,2596 0,1634 0,1122 

tipovia2EN/IC/ER 
 (Estrada Nacional, Itinerário 

Complementar e Estrada 
Regional) 

1,0254 0,0802 <0,001 

horaacid1new6h 0,7128 0,1559 <0,001 

horaacid1new8h-13h -0,2945 0,0533 <0,001 

fugaSim -1,6045 0,1410 <0,001 

PercCondMCat2[75,100] 0,2859 0,0519 <0,001 

HaVeicPesadoSim 1,0398 0,0883 <0,001 



 157 

 

A análise dos coeficientes resultantes do modelo de regressão logística fornece 

informações detalhadas sobre os fatores que influenciam mais e menos a gravidade dos 

sinistros rodoviários. Os dados extraídos não apenas confirmam algumas suposições, 

mas também revelam nuances sobre como certas variáveis interagem para afetar os 

desfechos dos sinistros. 

As variáveis com níveis de significância mais elevados para o modelo são: 

• Presença de Veículos Motociclos (“HaVeicMoto”): é a variável que mais aumenta 

a probabilidade de um sinistro emergir em “Mortes/Feridos Graves”, 

multiplicando em mais de 15 vezes as probabilidades de gravidade; 

Variável Coeficiente Std. Error P-value 

HaVeicLigSim 0,4219 0,0975 <0,001 

HaVeicMotoSim 2,7397 0,0837 <0,001 

HoraLaboralSim -0,3566 0,0505 <0,001 

MedianaIdadeVeic 0,0447 0,0037 <0,001 

ig_ponderado 0,0833 0,0085 <0,001 

tipovia2EM – Estrada 
Municipal:  HaVeicMotoSim 

-0,11298 0,2396 0,6378 

tipovia2EN/IC/ER:  
HaVeicMotoSim 

-0,6632 0,1151 <0,001 

Concelho2AGSSP:  
ig_ponderado 

-0,0267 0,0076 <0,001 

Concelho2ABMMS:  
ig_ponderado 

-0,0502 0,0075 <0,001 

Concelho2SS:  ig_ponderado -0,0064 0,0084 0,4474 

tipoacidColisão:  ig_ponderado -0,0265 0,0042 <0,001 

tipoacidDespiste:  
ig_ponderado 

-0,0174 0,0046 <0,001 

tipovia2EM – Estrada 
Municipal:  ig_ponderado 

0,0385 0,0090 <0,001 

tipovia2EN/IC/ER: 
ig_ponderado 

0,0004 0,0019 0,8489 
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• Presença de Veículos Pesados (“HaVeicMoto”): a presença de veículos pesados 

também eleva consideravelmente o risco de sinistros com “Mortes/Feridos 

Graves”. Esta variável eleva o risco em aproximadamente 2,8 vezes; 

• Tipo de via (“tipovia2EN/IC/ER”): sinistros em estradas nacionais, itinerários 

complementares ou estradas regionais são mais propensos de resultar em 

“Mortes/Feridos Graves”. A mesma aumenta a probabilidade em cerca de 2,8 

vezes. 

Porém, existem algumas variáveis com coeficientes negativos o que reduz a 

probabilidade de “Mortes/Feridos Graves”. Essas variáveis são: 

• Tipo de Sinistro (Colisão): a colisão apresenta cerca de 83% menos de 

probabilidade de gravidade em comparação com os outros tipos de sinistros; 

• Tipo de Sinistro (Despiste): está associado a uma redução de cerca de 63% no 

risco de gravidade; 

• Fuga do Condutor (fugaSim): em sinistros onde o condutor foge, a probabilidade 

de “Mortes/Feridos Graves” é aproximadamente 80% menor. 

Além destes fatores principais, o modelo também destaca: 

• Efeitos geográficos: alguns concelhos, como ABMMS, AGSSP e SS apresentam 

menor risco; 

• Horário: sinistros às 6h da manhã duplicam o risco de gravidade, enquanto que 

entre as 8h e 13h reduzem as probabilidades; 

• Idade do veículo: cada ano adicional da idade média aumenta o risco em cerca 

4,6%; 

• Perfil dos condutores: maior proporção de condutores jovens também aumenta 

a gravidade. 

Tais resultados indicam que fatores relacionados ao tipo de veículo (principalmente 

motociclos e pesados),  às caraterísticas da via e ao horário do sinistro são determinantes para 

o aumento da gravidade dos sinistros, enquanto o tipo de sinistro e o comportamento de fuga 

estão associados a uma redução desse risco. 

 

• Comparação do desempenho entre os modelos de classificação 
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Na última etapa desta análise, será realizada comparação detalhada entre os modelos 

de classificação desenvolvidos. O desempenho de cada modelo será avaliado com base 

nas métricas apresentadas na Tabela A10. 

 

Tabela A  10 - ROSE: Métricas de classificação para 42000 observações – Undersampling + Oversampling. 

 

Métrica 
Regressão 

Logística 

 

XGBoost 
Random 

Forest 

 

Bayes 

 

C5.0 

 
UNDER + OVER – ROSE 42000 

Ponto de Corte 0,502 0,631 0,59 0,504 0,734 

Accuracy 0,7911 0,9507 0,9152 0,7460 0,9977 

IC (95%) (0,7838; 
0,7982) 

(0,9468; 
0,9545) 

(0,9102; 
0,9200) 

(0,7382; 
0,7536) 

(0,9967; 
0,9985) 

Kappa 0,5821 0,9015 0,8304 0,4920 0,9955 

Mcnemar’s Test 
P-Value 

0,6800 1 0,9263 0,9432 0,1859 

Sensibilidade 0,7925 0,9508 O,9154 0,7460 0,9984 

Especificidade 0,7896 0,9507 0,9150 0,7459 0,9971 

Valor Preditivo 

Positivo 
0,7897 0,9506 0,9148 0,7454 0,9971 

Valor Preditivo 

Negativo 
0,7924 0,9509 0,9156 0,7465 0,9984 

F1-score 0,7910 0,9508 0,9153 0,7462 0,9977 

AUC 0,8709 0,9869 0,9752 0,8144 0,9997 

Precisão 0,7897 0,9506 0,9148 0,7454 0,9971 

 

A análise considera várias métricas de desempenho para determinar o modelo mais 

eficiente. De seguida é discutido as métricas mais relevantes: 

1) Accuracy 

O C5.0 apresenta o melhor desempenho geral, com accuracy quase perfeito, indicando 

alta confiabilidade nas previsões. O XGBoost e o Random Forest também de destacam, 
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mantendo níveis elevados. A Regressão Logística e o Bayes têm desempenhos 

moderados. 

 

2) Kappa 

O Kappa no C5.0 é de 0,9955 muito próximo ao ideal. O XGBoost e o Random Forest 

também tiveram um bom desempenho, porém não tão elevado como o anterior. 

Modelos mais simples como a Regressão Logística e o Bayes apresentam concordâncias 

moderadas, sendo 0,5821 e 0,4920, respetivamente. 

 

3) Sensibilidade 

A sensibilidade de C5.0 foi 0,9984, mostrando que quase todos os sinistros foram 

corretamente identificados. O XGBoost (0,9508) e o Random Forest (0,9154) também 

detetam a maioria dos sinistros graves, enquanto a Regressão Logística (0,7925) e o 

Bayes (0,7460) deixam de identificar uma parte significativa desses casos. 

 

4) Especificidade 

O modelo C5.0 apresenta uma especificidade muito boa (0,9971), minimizando falsos 

positivos e garantindo alta confiabilidade nas previsões de Feridos Leves. O XGBoost 

(0,9507) e Random Forest (0,9150) também têm boa precisão, embora com 

desempenho ligeiramente inferior a C5.0. Em contraste, a Regressão Logística (0,7896) 

e o Bayes (0,7459) mostram especificidade limitada, indicando maior propensão a falsos 

positivos. 

 

5) Valor Preditivo Positivo 

No Valor Preditivo Positivo temos o C5.0 com 0,9971, garantindo alta confiabilidade 

ao prever “Mortes/Feridos Graves”. O XGBoost e o Random Forest mantêm os níveis 

sólidos de precisão de “Mortes/Feridos Graves”, enquanto a Regressão Logística (0,7897) 

e o Bayes (0,7462) apresentam um desempenho mais limitado. 

 

6) Valor Preditivo Negativo 

Em relação ao Valor Preditivo Negativo, o C5.0 também lidera com 0,9984, praticamente 

eliminado falsos negativos e garantindo a correta identificação de Feridos Leves. O 
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XGBoost (0,9509) e o Random Forest (0,9156) mantêm alta confiabilidade, mas a 

Regressão Logística (0,7924) e o Bayes (0,7465) têm resultados mais fracos. 

 

7) F1-score 

No F1-score, o C5.0 é novamente superior (0,9977), evidenciando um equilíbrio ideal 

entre sensibilidade e precisão. O XGBoost (0,9508) e o Random Forest (0,9153) também 

são consistentes, quanto a Regressão Logística (0,7910) e o Bayes (0,7462) apresentam 

desempenhos moderados. 

 

8) AUC 

Na AUC, o C5.0 atinge um valor muito próximo do ideal (0,9997), evidenciando a sua 

capacidade de discriminar entre Mortes/Feridos Graves e Feridos Leves. O XGBoost 

(0,9869) e o Random Forest (0,9752) também são excelentes, enquanto a Regressão 

Logística (0,8709) e o Bayes (0,8144) têm desempenhos aceitáveis, porém inferiores. 

 

9) Precisão 

No que diz respeito à precisão, todos os modelos apresentam valores semelhantes, 

variando minimamente entre 0,7454 e 0,9971. Esses valores mostram que há dificuldade 

em garantir que os casos previstos como “Mortes/Feridos Graves” sejam realmente 

“Mortes/Feridos Graves”. 

Após a análise detalhada de todas as métricas avaliadas, é possível identificar o modelo 

mais adequado para o objetivo proposto, considerando tanto o seu desempenho geral 

quanto a sua capacidade de prever “Mortes/Feridos Graves” com precisão e 

confiabilidade. Entre os modelos estudados, o C5.0 destaca-se como a melhor escolha, 

apresentando um excelente desempenho nas diferentes métricas. Embora o XGBoost e 

o Random Forest também mostrem um bom desempenho, ambos ficam ligeiramente 

atrás do C5.0 em termos de precisão e equilíbrio geral. Por outro lado, a Regressão 

Logística e o Bayes apresentam um desempenho mais limitado, com métricas mais 

baixas em sensibilidade, especificidade e outros indicadores, tornando-os menos 

indicados para o objetivo do estudo. 
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Modelos com 10000 e 20000 observações 

1) Undersampling 

Procedeu-se ao pré-processamento dos dados utilizando novamente a técnica de 

undersampling, seguindo um procedimento semelhante ao realizado anteriormente 

para as 42000 observações, mas desta vez considerando um menor número de 

observações: 

• Categoria minoritária (“Mortes/Feridos Graves”): todos os 995 sinistros com 

mortes/feridos graves foram mantidos na base de dados sem alterações. 

• Categoria maioritária (“Feridos Leves”): foi realizada uma amostragem aleatória 

simples, sem reposição, dos 42317 sinistros com feridos leves. 

 

Neste âmbito, foram criados dois conjuntos a partir da categoria maioritária, com 

proporções controladas em relação à categoria minoritária: 

i. Conjunto 1: foram selecionados aleatoriamente sinistros correspondentes a 5.03 

vezes o número de observações da categoria minoritária. 

ii. Conjunto 2: um segundo conjunto foi criado com sinistros correspondentes a 

5.03 

vezes o número de observações da categoria minoritária. 

 

1) Oversampling 

Após o undersampling, aplicou-se o método de oversampling à categoria minoritária 

para aumentar a representatividade de Mortes/Feridos Graves ao gerar novos dados 

sintéticos, resultando num aumento significativo no número de observações desta 

mesma categoria. No final deste processo a base de dados passou a ter categorias mais 

balanceadas, evitando que a categoria maioritária dominasse o modelo. Os valores de 

cada categoria encontram-se representados na Tabela A11.  
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Tabela A  11 - ROSE: Valores das categorias do modelo simples, com undersampling e com 

undersampling+oversampling. 

 
10000 20000 

Feridos Leves Mortes / 
Feridos Graves Feridos Leves Mortes / 

Feridos Graves 

Modelo Simples 42317 995 42317 995 

Modelo com 
Undersampling 5004 995 9999 995 

Modelo com 
Under + Over 

Sampling 

 
5004 

 
4996 

 
9999 

 
10001 

 

 
2) Divisão dos dados em treino e teste 

De seguida, os conjuntos de dados foram dividido em dois subconjuntos: 70% dos dados 

foram alocados para treino e 30% para teste. Neste sentido a divisão com 10000 

observações, Tabela A12, encontra-se da seguinte forma: 

- Conjunto de treino: contém 7048 observações. 

- Conjunto de teste: contém 2952 observações. 

 

Tabela A  12 - ROSE: Divisão dos dados do modelo de regressão logística (10000 observações) em dois subconjuntos: 

treino e teste e respetivo número de observações por categoria em cada subconjunto. 

 ROSE UNDER + OVER 10000 

Treino Teste 

Feridos Leves 3515 1489 

Mortes/Feridos Graves 3533 1463 

  

 

A divisão com 20000 observações, Tabela A13, centra-se: 

- Conjunto de treino: contém 14080 observações. 

- Conjunto de teste: contém 5920 observações. 

7048 2952 
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Tabela A  13 - ROSE: Divisão dos dados do modelo de regressão logística (20000 observações) em dois subconjuntos: 

treino e teste e respetivo número de observações por categoria em cada subconjunto 

 ROSE UNDER + OVER 20000 

Treino Teste 

Feridos Leves 3515 1489 

Mortes/Feridos Graves 10565 4431 

  

 

3) Ajustamento do Modelo 

Após a preparação dos dados, realizou-se o ajustamento do modelo Regressão Logística 

Estatístico para o modelo com 10000 observações e para o modelo com 20000 

observações. Os resultados de ambos encontram-se representados nas Tabelas A14 e 

A15 respetivamente. 

 

Tabela A  14 - ROSE: Modelo múltiplo de regressão logística ajustado para a existência de “Mortes/Feridos Graves” 

nos sinistros com vítimas, com 10000 observações. 

Variável Coeficiente Std. Error P-value 

Intercept 0,4270 0,4661 0,3596 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

-0,6204 0,2681 0,0207 

Concelho2ABMMS 
(ALMADA, BARREIRO, MOITA, 

MONTIJO e SESIMBRA) 
-0,9854 0,2773 0,0004 

Concelho2SS 
(SANTIAGO DO CACÉM e 

SETÚBAL) 
-0,9052 0,3054 0,0030 

tipoacidColisão -2,2456 0,3000 <0,001 

tipoacidDespiste -1,6181 0,3118 <0,001 

tipolocal2Fora das localidades 0,5476 0,1146 <0,001 

tipovia2EM – Estrada Municipal 0,5335 0,3135 0,0888 

14080 5920 
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Variável Coeficiente Std. Error P-value 

tipovia2EN/IC/ER 
 (Estrada Nacional, Itinerário 

Complementar e Estrada 
Regional) 

0,9100 0,1632 <0,001 

horaacid1new6h 0,8759 0,3275 0,0075 

horaacid1new8h-13h -0,3308 0,1099 0,0026 

fugaSim -1,3000 0,3030 <0,001 

PercCondMCat2[75,100] 0,0242 0,1072 0,8217 

HaVeicPesadoSim 1,0258 0,1788 <0,001 

HaVeicLigSim 0,0016 0,2047 0,9936 

HaVeicMotoSim 2,4375 0,1723 <0,001 

HoraLaboralSim -0,2051 0,1066 0,0544 

MedianaIdadeVeic 0,0320 0,0076 <0,001 

ig_ponderado 0,0581 0,0157 0,0002 

tipovia2EM – Estrada 
Municipal:  HaVeicMotoSim 

0,2955 0,5233 0,5722 

tipovia2EN/IC/ER:  
HaVeicMotoSim 

-0,3351 0,2350 0,1539 

Concelho2AGSSP:  
ig_ponderado 

-0,0077 0,0130 0,5528 

Concelho2ABMMS:  
ig_ponderado 

-0,0301 0,0128 0,0186 

Concelho2SS:  ig_ponderado 0,0040 0,0148 0,7865 

tipoacidColisão:  ig_ponderado -0,0277 0,0095 0,0034 

tipoacidDespiste:  
ig_ponderado 

-0,0094 0,0100 0,3449 

tipovia2EM – Estrada 
Municipal:  ig_ponderado 

0,0238 0,0193 0,2172 

tipovia2EN/IC/ER: 
ig_ponderado 

0,0067 0,0038 0,0764 
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Tabela A  15 - ROSE: Modelo múltiplo de regressão logística ajustado para a existência de “Mortes/Feridos Graves” 

nos sinistros com vítimas, com 20000 observações. 

Variável Coeficiente Std. Error P-value 

Intercept -0,8302 0,3294 0,0117 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

-0,1630 0,2058 0,4283 

Concelho2ABMMS 
(ALMADA, BARREIRO, MOITA, 

MONTIJO e SESIMBRA) 
-0,3954 0,2082 0,0576 

Concelho2SS 
(SANTIAGO DO CACÉM e 

SETÚBAL) 
-0,4905 0,2295 0,0326 

tipoacidColisão -1,8543 0,2073 <0,001 

tipoacidDespiste -1,0281 0,2140 <0,001 

tipolocal2Fora das localidades 0,4659 0,0803 <0,001 

tipovia2EM – Estrada Municipal 0,0611 0,2588 0,8133 

tipovia2EN/IC/ER 
 (Estrada Nacional, Itinerário 

Complementar e Estrada 
Regional) 

0,8698 0,1164 <0,001 

horaacid1new6h 0,7794 0,2352 0,0009 

horaacid1new8h-13h -0,3308 0,0774 <0,001 

fugaSim -1,4074 0,1931 <0,001 

PercCondMCat2[75,100] 0,1693 0,0747 0,0234 

HaVeicPesadoSim 0,8393 0,1274 <0,001 

HaVeicLigSim 0,2883 0,1433 0,0442 

HaVeicMotoSim 2,5182 0,1177 <0,001 

HoraLaboralSim -0,3916 0,0732 <0,001 
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Ao estabelecer a comparação  entre estes dois modelos e o modelo previamente 

estimado (modelo de oversampling com 85000 observações), verifica-se que o conjunto 

de variáveis com efeitos estatisticamente significativos - tanto positivos quanto 

negativos – revela-se estável e consistente. 

 

4) Comparação do desempenho entre os modelos de classificação 

Na última etapa desta análise, será realizada a comparação detalhada entre os modelos 

de classificação desenvolvidos. O desempenho de cada modelo será avaliado com base 

nas métricas apresentadas na Tabela A16. 

Variável Coeficiente Std. Error P-value 

MedianaIdadeVeic 0,0443 0,0053 <0,001 

ig_ponderado 0,0915 0,0133 <0,001 

tipovia2EM – Estrada 
Municipal:  HaVeicMotoSim 

0,3461 0,3766 0,3582 

tipovia2EN/IC/ER:  
HaVeicMotoSim 

-0,4316 0,1642 0,0086 

Concelho2AGSSP:  
ig_ponderado 

-0,0350 0,0118 0,0029 

Concelho2ABMMS:  
ig_ponderado 

-0,0576 0,0117 <0,001 

Concelho2SS:  ig_ponderado 0,0143 0,0129 0,2671 

tipoacidColisão:  ig_ponderado -0,0286 0,0069 <0,001 

tipoacidDespiste:  
ig_ponderado 

-0,0179 0,0073 0,0138 

tipovia2EM – Estrada 
Municipal:  ig_ponderado 

0,0509 0,0148 0,0006 

tipovia2EN/IC/ER: 
ig_ponderado 

0,0030 0,0027 0,2679 
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Tabela A  -  ROSE: Métricas de classificação para 10000 e 20000 observações – Undersampling + Oversampling. 

 
 

 
Regressão 
Logística 

 
XGBoost 

 
Random 

Forest 

 
Bayes 

 
C5.0 

UNDER + OVER ROSE 

Ponto de Corte 
 

10000 
 

20000 

 
 

0,488 
 

0,499 

 
 

0,640 
 

0,619 

 
 

0,580 
 

0,602 

 
 

0,525 
 

0,531 

 
 

0,618 
 

0,709 

Accuracy 
 

10000 
 

20000 

 
 

0,7815 
 

0,7875 

 
 

0,9231 
 

0,9395 

 
 

0,8774 
 

0,9025 

 
 

0,7324 
 

0,7373 

 
 

0,9295 
 

0,9878 

IC (95%) 
 

10000 
 

20000 

 
 

(0,7662; 
0,7963) 

 
(0,7769; 
0,7979) 

 
 

(0,9129; 
0,9325) 

 
(0,9332; 
0,9455) 

 
 
 

(0,8650; 
0,8890) 

 
(0,8947; 
0,9100) 

 
 

(0,7160; 
0,7483) 

 
(0,7259; 
0,7485) 

 
 
 

(0,9197; 
0,9385) 

 
(0,9847; 
0,9905) 

 

Kappa 
 

10000 
 

20000 

 
 

0,5630 
 

0,5750 

 
 

0,8462 
 

0,8791 

 
 

0,7547 
 

0,8051 

 
 

0,4648 
 

0,4747 

 
 

0,8591 
 

0,9757 

McNemar´s 
Tes P-Value  

 
10000 

 
20000 

 
 

 
0,8132 

 
1 

 
 

 
0,7906 

 
0,9579 

 
 

 
0,4305 

 
0,9336 

 
 

 
0,8033 

 
1 

 
 

 
0,9447 

 
1 
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Regressão 
Logística 

 
XGBoost 

 
Random 

Forest 

 
Bayes 

 
C5.0 

UNDER + OVER ROSE 

Sensibilidade 
 

10000 
 

20000 

 
 

0,7820 
 

0,7881 

 
 

0,9241 
 

0,9400 

 
 

0,8817 
 

0,9033 

 
 

0,7327 
 

0,7383 

 
 

0,9296 
 

0,9879 

Especificidade 
 

10000 
 

20000 

 
 

0,7811 
 

0,7869 

 
 

0,9221 
 

0,9390 

 
 

0,8731 
 

0,9017 

 
 

0,7320 
 

0,7364 

 
 

0,9295 
 

0,9878 

Valor Preditivo 
Positivo   

 
10000 

 
20000 

 
 
 

0,7782 
 

0,7881 

 
 
 

0,9210 
 

0,9394 

 
 
 

0,8722 
 

0,9024 

 
 
 

0,7288 
 

0,7380 

 
 
 

0,9283 
 

0,9879 

Valor Preditivo 
Negativo 

 
10000 

 
20000 

 
 
 

0,7848 
 

0,7869 

 
 
 

0,9252 
 

0,9396 

 
 
 

0,8826 
 

0,9026 

 
 
 

0,7360 
 

0,7366 

 
 
 

0,9307 
 

0,9878 

F1-Score  
 

10000 
 

20000 

 
 

0,7829 
 

0,7869 

 
 

0,9236 
 

0,9393 

 
 

0,8778 
 

0,9022 

 
 

0,7340 
 

0,7365 

 
 

0,9301 
 

0,9878 
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A análise comparativa dos cinco modelos (Regressão Logística, XGBoost, Random Forest, 

Bayes e C5.0) revela que o C5.0 destaca-se como o modelo mais eficiente para prever 

“Mortes/Feridos Graves” neste conjunto de dados, especialmente com 20000 

observações. Este modelo apresenta superioridade na maioria das métricas avaliadas, 

incluindo accuracy, Kappa, F1-score e AUC, indicando uma excelente capacidade de 

identificação de casos positivos e na discriminação entre as categorias. 

Modelos como o XGBoost e Random Forest também apresentam um desempenho 

competitivo, sendo opções secundárias viáveis. Já a Regressão Logística e o modelo de 

Bayes apresentam limitações significativas, ficando aquém dos modelos de machine 

learning. 

Dessa forma, o cenário com 20000 observações utilizando o C5.0, destaca-se como a 

melhor configuração para prever sinistros com “Mortes/Feridos Graves”, oferecendo 

maior robustez e capacidade de generalização. 

  

 
 

 
Regressão 
Logística 

 
XGBoost 

 
Random 

Forest 

 
Bayes 

 
C5.0 

UNDER + OVER ROSE 

AUC  

10000 

 

20000 

 

0,8742 

 

0,8705 

 

0,9709 

 

0,9820 

 

0,8722 

 

0,9688 

 

0,8111 

 

0,8077 

 

0,9738 

 

0,9978 

Precisão  

10000 

 

20000 

 

0,7803 

 

0,7881 

 

0,9210 

 

0,9394 

 

0,8753 

 

0,9024 

 

0,7288 

 

0,7380 

 

0,9283 

 

0,9879 
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Apêndice B  - SMOTENC 

Para lidar com o desequilíbrio entre as categorias no conjunto de dados, foi aplicada a 

técnica SMOTENC, uma extensão do SMOTE tradicional, que permite o balanceamento 

de conjuntos de dados com variáveis contínuas e categóricas. O SMOTENC gera amostras 

sintéticas para a categoria minoritária, preservando a integridade das variáveis 

categóricas, o que evita distorções que poderiam ocorrer com o SMOTE tradicional. 

 

Dados equilibrados 

Com o objetivo de equilibrar a distribuição das categorias, tal como realizado 

anteriormente, aplicou-se a técnica SMOTENC. O processo resultou num conjunto de 

dados equilibrados com um total de 85000 observações, como detalhado na Tabela B1. 

 

Tabela B 1 - SMOTENC: Modelo de regressão logística com e sem oversampling. 

 

2) Divisão dos dados em treino e teste 

O conjunto de dados foi dividido em treino e teste, com uma proporção de 70% para 

treino e 30% para teste. A divisão, Tabela B2, resultou nos seguintes subconjuntos: 

• Conjunto de treino: 59374 observações 

• Conjunto de teste: 25260 observações 

•  

Tabela B 2 - Divisão dos dados do modelo de regressão logística (85000 observações) em dois subconjuntos: treino e 

teste e respetivo número de observações por categoria em cada subconjunto. 

Métrica 
Oversampling Regressão Logística – 85000 Observações 

Feridos Leves Mortes / Feridos Graves 

Modelo Simples 42317 995 

Modelo com 
Oversampling 42317 42317 

 
Regressão Logística – 85000 Observações 

Treino Teste 

Feridos Leves 29817 12500 

Mortes/Feridos Graves 29557 12760 

59374 25260 
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2) Ajustamento do modelo 

O próximo passo foi ajustar um modelo de Regressão Logística. Foram testados 

diferentes valores de over_ratio, sendo o valor utilizado over_ratio = 1 e K = 5. Os 

resultados encontram-se na Tabela B3. 

 

Tabela B 3 - SMOTENC: Modelo múltiplo de regressão logística ajustado para a existência de “Mortes/Feridos Graves” 

nos sinistros com vítimas. 

Variável Coeficiente Std. Error P-value 

Intercept -1,9980 0,1693 <0,001 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

0,1100 0,1077 0,3068 

Concelho2ABMMS 
(ALMADA, BARREIRO, MOITA, 

MONTIJO e SESIMBRA) 
-0,2050 0,1088 0,0595 

Concelho2SS 
(SANTIAGO DO CACÉM e 

SETÚBAL) 
-0,8017 0,1213 <0,001 

tipoacidColisão -1,3081 0,1086 <0,001 

tipoacidDespiste -0,5936 0,1123 <0,001 

tipolocal2Fora das localidades 0,5707 0,0406 <0,001 

tipovia2EM – Estrada Municipal -0,6070 0,1439 <0,001 

tipovia2EN/IC/ER 
 (Estrada Nacional, Itinerário 

Complementar e Estrada 
Regional) 

1,0692 0,0586 <0,001 

horaacid1new6h -0,2612 0,1374 0,0574 

horaacid1new8h-13h -0,4225 0,0390 <0,001 

fugaSim -5,7327 0,5372 <0,001 

PercCondMCat2[75,100] 0,3383 0,0378 <0,001 
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Neste modelo de regressão logística, as variáveis que se destacam com mais e menos 

impacto na gravidade dos sinistros rodoviários são as mesmas observadas no modelo 

com a técnica ROSE. O modelo confirma as tendências identificadas anteriormente. 

 

3) Comparação do desempenho entre os modelos de classificação 

O processo de análise comparativa será realizado para o modelo SMOTENC, seguindo a 

mesma abordagem adotada no modelo anterior, a comparação entre os modelos será 

feita com base nas métricas de desempenho, como accuracy, sensibilidade, 

especificidade, entre outras, cujos resultados estão na Tabela B4. 

Variável Coeficiente Std. Error P-value 

HaVeicPesadoSim 0,7339 0,0657 <0,001 

HaVeicLigSim 0,4145 0,0722 <0,001 

HaVeicMotoSim 2,7477 0,0597 <0,001 

HoraLaboralSim -0,2976 0,0362 <0,001 

MedianaIdadeVeic 0,0544 0,0029 <0,001 

ig_ponderado 0,1139 0,0070 <0,001 

tipovia2EM – Estrada 
Municipal:  HaVeicMotoSim -0,1463 0,1803 0,4170 

tipovia2EN/IC/ER:  
HaVeicMotoSim -0,5750 0,0836 <0,001 

Concelho2AGSSP:  
ig_ponderado -0,0431 0,0061 <0,001 

Concelho2ABMMS:  
ig_ponderado -0,0668 0,0061 <0,001 

Concelho2SS:  ig_ponderado -0,0023 0,0069 0,7428 

tipoacidColisão:  ig_ponderado -0,0380 0,0036 <0,001 

tipoacidDespiste:  
ig_ponderado -0,0268 0,0039 <0,001 

tipovia2EM – Estrada 
Municipal:  ig_ponderado 0,0550 0,0069 <0,001 

tipovia2EN/IC/ER: 
ig_ponderado -0,0033 0,0014 0,0215 
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Tabela B 4 - SMOTENC: Métricas de classificação para 85000 observações. 

 

Os resultados evidenciam diferenças significativas no desempenho dos modelos 

avaliados. 

• Desempenho geral 

O C5.0 destaca-se como o algoritmo mais robusto na maioria das métricas analisadas, 

alcançando desempenho ideal em métricas como accuracy (98,17%), sensibilidade 

(98,18%), especificidade (98,17%) e AUC (0,9978). Esses valores refletem uma 

Métrica Regressão 
Logística XGBoost Random 

Forest Bayes C5.0 

 OVERSAMPLING SMOTENC – 85000 

Ponto de Corte 0,510 0,541 0,584 0,931 0,525 

Accuracy 0,7839 0,946 0,8901 0,7586 0,9817 

IC (95%) (0,7788; 
0,7890) 

(0,9432; 
0,9488) 

(0,8861; 
0,8939) 

(0,7532; 
0,7638) 

(0,98; 
0,9834) 

Kappa 0,5677 0,8921 0,7801 0,5171 0,9635 

Mcnemar’s Test  
P-Value 0,5697 0,7452 0,7327 0,6633 0,9258 

Sensibilidade 0,7844 0,9461 0,8904 0,7596 0,9818 

Especificidade 0,7834 0,9460 0,8897 0,7574 0,9817 

Valor Preditivo 
Positivo 0,7871 0,9470 0,8918 0,7617 0,9820 

Valor Preditivo 
Negativo 0,7807 0,9450 0,8883 0,7553 0,9814 

F1-score 0,7820 0,9455 0,8890 0,7564 0,9816 

AUC 0,8670 0,9891 0,9517 0,8237 0,9978 

Precisão 0,7871 0,9470 0,8918 0,7617 0,9819 
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capacidade preditiva ideal, com equilíbrio absoluto entre a deteção de verdadeiros 

positivos e a exclusão de falsos positivos. 

Modelos baseados em árvores, como XGBoost e Random Forest, também apresentam 

desempenhos notáveis. O XGBoost, com accuracy de 94,6% e AUC de 0,9891, destacou- 

se como o segundo melhor modelo. Já o Random Forest apresentou um accuracy de 

89,01% e AUC de 0,9517. Ambos os modelos apresentaram F1-scores elevados, 

indicando um bom equilíbrio entre a sensibilidade e o valor preditivo positivo. 

Em contraste, os modelos de Regressão Logística e Naive Bayes apresentaram 

desempenhos mais modestos. O accuracy da Regressão Logística foi de 78,39%, com AUC 

de 0,870, enquanto o Bayes apresentou menores valores em várias métricas, incluindo 

um accuracy de 75,86% e AUC de 0,8237. Esses resultados sugerem que ambos os 

modelos podem não ser adequados para conjuntos de dados complexos ou com alta 

variabilidade. 

 

• Teste de McNemar 

O Teste de McNemar avalia a significância estatística das diferenças entre os erros de 

classificação dos modelos. Nenhum dos valores de p-value (p > 0,05) indicou diferenças 

estatisticamente significativas nos erros cometidos pelos modelos. Isso implica que, 

apesar das métricas sugerirem variações de desempenho, não há evidencias estatísticas 

de que os modelos diferem substancialmente na classificação de casos discordantes. 

 

• Sensibilidade e Especificidade 

Os valores ideias alcançados pelo C5.0 em sensibilidade e especificidade refletem a sua 

capacidade de identificar casos positivos sem gerar falsos. O XGBoost e o Random Forest 

também apresentaram equilíbrio entre as métricas, com valores acima de 89% para 

ambos. Já a Regressão Logística e o Bayes apresentaram menor equilíbrio, evidenciando 

limitações na separação das categorias. 

 

• 𝐹1-score e AUC 

O F1-score de C5.0 confirma o seu excelente desempenho, enquanto o XGBoost e o 

Random Forest mostraram forte capacidade preditiva, com valores de 0,9455 e 0,8890, 
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respetivamente. Por outro lado, os modelos probabilísticos que tiveram 𝐹1-scores 

inferiores, refletiram maior dificuldade em equilibrar a sensibilidade e precisão. 

Com base nos resultados, o C5.0 é a melhor escolha, destacando-se em todas as métricas 

com um desempenho superior. 

 

Diferentes graus de desequilíbrio 

 

1) Ajuste e seleção do modelo 

Para identificar o melhor modelo, foram testados diferentes parâmetros do valor de “K” 

(número de vizinhos mais próximos) e do “over-ratio” (proporção entre categorias). Na 

abordagem anterior, a técnica ROSE foi utilizada para realizar o oversampling em quatro 

cenários distintos (5000, 15000, 25000 e 35000 observações). Com o objetivo de 

comparar essa abordagem com o SMOTENC, foi necessário ajustar os valores de 

over_ratio e K de forma a atingir um número de observações idêntico. Na tabela que se 

segue, Tabela B5, encontram-se os valores alcançados nesta nova abordagem. 

 

Tabela B 5 - SMOTENC: Alteração do número de observações de "Mortes/Feridos Graves" conforme o oversampling 

aumenta e o número de “Feridos Leves” se mantém constante. 

 
Oversampling com diferentes graus de desequilíbrio 

Feridos Leves Mortes/Feridos Graves 

Modelo Simples 
(42000) 

42317 995 

Modelo com 
Oversampling 5000 42317 6178 

Modelo com 
Oversampling 15000 42317 16165 

Modelo com 
Oversampling 25000 42317 26194 

Modelo com 
Oversampling 35000 42317 36181 

 

 

Na Tabela B6 são apresentados os diversos valores obtidos nos diferentes cenários, 

evidenciando as variações de desempenho dos modelos analisados. 
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Tabela B 6 - SMOTENC: Desempenho do Modelo de Regressão Logística com diferentes graus de desequilíbrio.  

 

Com base na análise das métricas, observa-se que não há diferenças significativas do 

valor de accuracy ou AUC entre os cenários de oversampling. O cenário com 35000 

observações apresentou o maior Kappa (0,5930) e a maior precisão (0,7736), o que 

indica uma redução de falsos positivos e maior confiabilidade na previsão de casos 

positivos. No entanto, esse ganho foi acompanhado por uma queda no 𝐹1-score (0,8077) 

e no  Valor Preditivo Negativo (81,87%),  sugerindo perda de equilíbrio entre as categorias. 

Por outro lado, o cenário com 5000 observações destacou-se pelo maior F1-score (0,8695) 

e pelo melhor Valor Preditivo Negativo (96,28%), mostrando melhor equilíbrio entre a 

sensibilidade e precisão, embora com baixa capacidade preditiva para positivos 

(precisão = 0,3631). 

Métrica OVERSAMPLING SMOTENC  

 5000 15000 25000 35000 

Ponto de Corte 0,136 0,290 0,391 0,474 

Accuracy 0,7929 0,7982 0,7983 0,7971 

IC (95%) 
(0,7862;  

0,7995) 

(0,7921; 

0,8041) 

(0,7927;  

0,8037) 

(0,7919;  

0,8022) 

Kappa 0,3898 0,5449 0,5839 0,5930 

Mcnemar’s Test  
P-Value 

<0,001 <0,001 <0,001 <0,001 

Sensibilidade 0,7941 0,7991 0,7984 0,7971 

Especificidade 0,7927 0,7978 0,7982 0,7970 

Valor Preditivo 
Positivo 

0,3631 0,6081 0,7143 0,7737 

Valor Preditivo 
Negativo 

0,9628 0,9100 0,8623 0,8187 

F1-score 0,8695 0,8502 0,8290 0,8077 

AUC 0,8772 0,8802 0,8772 0,8806 

Precisão 0,3631 0,6081 0,7143 0,7736 
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A Tabela B7 apresenta os resultados do desempenho do “modelo base” da regressão 

logística em diferentes cenários. 

 

Tabela B 7 - SMOTENC: Desempenho do Modelo de Regressão Logística com diferentes graus de desequilíbrio.  

 

OVERSAMPLING SMOTENC 

Regressão 
Logística XGBoost Random 

Forest Bayes 
 

C5.0 
 

 
Ponto de Corte 

 

5000 
 

15000 
 

25000 
 

35000 

 
 
 

0,135 
 

0,294 
 

0,399 
 

0,474 

 
 
 

0,159 
 

0,341 
 

0,44 
 

0,52 

 
 
 

0,064 
 

0,271 
 

0,402 
 

0,548 

 
 
 

0,346 
 

0,761 
 

0,863 
 

0,918 

 
 
 

0,294 
 

0,471 
 

0,512 
 

0,51 

Accuracy 
 

5000 
 

15000 
 

25000 
 

35000 

 
 

0,7917 
 

0,7989 
 

0,7976 
 

0,7975 

 
 
 

0,9121 
 

0,9396 
 

0,9382 
 

0,9446 
 

 
 

0,8579 
 

0,8726 
 

0,8747 
 

0,8891 

 
 

0,7502 
 

0,7606 
 

0,755 
 

0,7604 

 
 

0,9313 
 

0,9689 
 

0,9751 
 

0,9801 

 
Kappa 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,3874 
 

0,5464 
 

0,5827 
 

0,5939 
 

 
 

0,679 
 

0,8549 
 

0,8707 
 

0,8888 

 
 

0,5323 
 

0,7032 
 

0,7395 
 

0,7774 

 
 

0,3113 
 

0,4687 
 

0,4972 
 

0,5196 

 
 

0,7393 
 

0,9242 
 

0,9478 
 

0,96 

 
McNemar´s 
Tes P-Value 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

<0,001 
 

<0,001 
 

<0,001 
 

<0,001 

 
 
 

<0,001 
 

<0,001 
 

<0,001 
 

0,0083 

 
 
 

<0,001 
 

<0,001 
 

<0,001 
 

0,0024 

 
 
 

<0,001 
 

<0,001 
 

<0,001 
 

<0,001 

 
 
 

<0,001 
 

<0,001 
 

<0,001 
 

0,1149 
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OVERSAMPLING SMOTENC 

Regressão 
Logística XGBoost Random 

Forest Bayes 
 

C5.0 
 

 
Sensibilidade 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,7925 
 

0,7995 
 

0,7979 
 

0,7978 

 
 
 
 

0,9124 
 

0,9397 
 

0,9385 
 

0,9449 
 

 
 
 

0,8591 
 

0,8728 
 

0,8753 
 

0,8895 

 
 
 

0,7505 
 

0,7612 
 

0,7563 
 

0,7614 

 
 
 

0,9323 
 

0,9694 
 

0,9752 
 

0,9802 

 
Especificidade 

 
5000 

 

15000 
 

25000 
 

35000 
 

 
 

0,7916 
 

0,7987 
 

0,7974 
 

0,7973 

 
 

0,9121 
 

0,9395 
 

0,9381 
 

0,9444 

 
 

0,8578 
 

0,8726 
 

0,8742 
 

0,8888 

 
 

0,7502 
 

0,7604 
 

0,7542 
 

0,7595 

 
 

0,9312 
 

0,9686 
 

0,9751 
 

0,9800 

 
Valor Preditivo 

Positivo 
 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,3614 
 

0,6093 
 

0,7135 
 

0,7740 

 
 
 

0,6069 
 

0,8591 
 

0,9055 
 

0,9367 

 
 
 

0,4733 
 

0,7289 
 

0,8148 
 

0,8744 

 
 
 

0,3089 
 

0,5550 
 

0,6604 
 

0,7337 

 
 
 

0,6685 
 

0,9239 
 

0,9612 
 

0,9771 

 
Valor Preditivo 

Negativo 
 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,9625 
 

0,9103 
 

0,8619 
 

0,8192 

 
 
 

0,9859 
 

0,9754 
 

0,9602 
 

0,9517 

 
 
 

0,9761 
 

0,9459 
 

0,9173 
 

0,9024 

 
 
 

0,9529 
 

0,8902 
 

0,8304 
 

0,7853 

 
 
 

0,9893 
 

0,9878 
 

0,9842 
 

0,9828 



 180 

  

Os resultados mostram que o algoritmo C5.0 novamente se destaca como o mais 

eficiente em praticamente todas as métricas e cenários analisados com a aplicação da 

técnica SMOTENC. No que diz respeito ao accuracy, o C5.0 atinge valores que variam de 

0,9313 no cenário de 5000 observações a 0,9801 com 35000 observações. O Kappa, 

também reforça o desempenho superior do C5.0, especialmente nos cenários com 

25000 e 35000 observações, onde atinge valores elevados como 0,9478 e 0,9600, 

respetivamente. 

Outro ponto relevante é a sensibilidade, onde o C5.0 novamente apresenta os melhores 

resultados, variando de 0,9323 a 0,9802. Esses valores mostram a boa capacidade que o 

modelo tem em identificar corretamente os casos positivos. A especificidade, segue a 

mesma tendência, com valores que vão de 0,9312 a 0,9800. 

 

OVERSAMPLING SMOTENC 

Regressão 
Logística XGBoost Random 

Forest Bayes 
 

C5.0 
 

 
F1-Score 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 

0,8687 
 

0,8509 
 

0,8284 
 

0,8081 

 
 

0,9476 
 

0,9571 
 

0,9490 
 

0,9480 

 
 

0,9131 
 

0,9077 
 

0,8953 
 

0,8955 

 
 

0,8394 
 

0,8202 
 

0,7904 
 

0,7722 

 
 

0,9594 
 

0,9781 
 

0,9796 
 

0,9814 

 
AUC 

 

5000 
 

15000 
 

25000 
 

35000 
 

 
 

0,8765 
 

0,8813 
 

0,8779 
 

0,8812 

 
 

0,9723 
 

0,9856 
 

0,9862 
 

0,9884 

 
 

0,9396 
 

0,9458 
 

0,9464 
 

0,9522 

 
 

0,8142 
 

0,8263 
 

0,8195 
 

0,8232 

 
 

0,9801 
 

0,9939 
 

0,9963 
 

0,9974 

 
Precisão 

5000 
 

15000 
 

25000 
 

35000 
 

 
 
 

0,3614 
 

0,6093 
 

0,7135 
 

0,7740 

 
 

0,6069 
 

0,8591 
 

0,9055 
 

0,9367 

 
 

0,4733 
 

0,7289 
 

0,8148 
 

0,8744 

 
 

0,3089 
 

0,5550 
 

0,6604 
 

0,7337 

 
 

0,6685 
 

0,9239 
 

0,9612 
 

0,9771 
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A métrica AUC também aponto o C5.0 como a melhor escolha. A mesma apresenta 

valores extremamente elevados, chegando a 0,9974 no cenários com 35000 observações. 

Outras métricas como 𝐹1-score e os valores preditivos positivos e negativos, corroboram 

a superioridade do C5.0. O 𝐹1-score atinge um valor de 0,9814 no cenário de 35000 

observações e o valor preditivo positivo cresce significativamente, passando de 0,6685 

para 0,9771. Porém, o valor preditivo negativo decresce ligeiramente com o aumento de 

observações, variando de 0,9893 a 0,9828. 

Ao analisar os diferentes cenários, observa-se uma clara tendência de melhoria de 

desempenho do modelo C5.0 com o aumento do número de observações. No cenário 

com 5000 observações, os resultados são satisfatórios, mas inferiores em comparação 

com os cenários maiores, com métricas como accuracy (0,9313), 𝐹1-score (0,9594) e AUC 

(0,9801) abaixo dos valores obtidos nos cenários subsequentes. Já os cenários com 

15000 e 25000 observações, o desempenho do C5.0 atinge níveis muito elevados, com 

métricas muito próximas dos valores ideias (accuracy de 0,9689 e 0,9751; F1-score de 

0,9781 e 0,9796; AUC de 0,9939 e 0,9963, respetivamente), refletindo excelente 

capacidade de previsão. No cenário com 35000 observações, o modelo mantém 

resultados muito bons (accuracy  de 0,9801, 𝐹1-score de 0,9814 e AUC de 0,9974). Estes 

ganhos adicionais são mínimos em comparação com o cenário de 25000, sugerindo um 

possível ponto de saturação no desempenho do modelo. 

Dessa forma, os resultados indicam que o algoritmo C5.0, especialmente nos cenários 

de 15000 e 25000 observações, é a melhor opção para a previsão de sinistros com 

“Mortes/Feridos Graves”. 

 

Undersampling e Oversampling 

No presente capítulo, foi adotada a metodologia SMOTENC para lidar com o 

desequilíbrio das categorias. 

Posto isto, foi inicialmente criado um modelo com 42000 observações, onde 21000 

correspondem à categoria minoritária e 21000 à categoria maioritária. São ainda criados 

outros dois modelos, um com 10000 observações ( 5000 categoria minoritária + 5000 

categoria maioritária) e outro modelo com 20000 observações (1000 categoria 

minoritária + 1000 categoria maioritária), ambos com categorias equilibradas. 
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A abordagem seguiu os mesmos passos da metodologia anterior, iniciando com a 

aplicação do undersampling à categoria maioritária, removendo parte das observações 

dos sinistros “Feridos Leves”. Posteriormente, foi aplicado o oversampling à categoria 

minoritária utilizando a técnica SMOTENC. Desta forma, assegura-se que ambas as 

categorias estão balanceadas nos modelos gerados, possibilitando que os algoritmos de 

machine learning trabalhem com dados mais equilibrados. 

 

Modelo com 42000 observações 

1) Undersampling 

A técnica de undersampling foi aplicada para equilibrar a base de dados, ajustando o 

número de observações da categoria maioritária para aproximá-lo ao da categoria 

minoritária. Esse processo envolveu a redução aleatória de observações da categoria 

predominante, sendo: 

• Categoria minoritária (“Mortes/Feridos Graves”): todos os 995 sinistros com 

“Mortes/Feridos Graves” foram mantidos na base de dados sem alterações. 

• Categoria maioritária (“Feridos Leves”): foi realizada uma amostragem 

aleatória simples, sem reposição, dos 42317 sinistros com “Feridos Leves”. 

O procedimento foi repetido de forma idêntica na aplicação do SMOTENC. Em ambas as 

metodologias, manteve a proporção controlada entre as categorias: a categoria 

maioritária com 21,11 vezes o número de observações da categoria minoritária. O ajuste 

resultou no mesmo total de 21999 observações, sendo 21004 da categoria maioritária e 

995 observações da categoria minoritária. Essa repetição assegura a consistência nos 

modelos e a comparabilidade entre os resultados das duas abordagens. 

 

2) Oversampling 

De forma a equilibrar a base de dados, aplicou-se o undersampling na categoria 

minoritária. Os valores finais estão na Tabela B8.  
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Tabela B 8 - Composição do modelo com e sem undersampling e com undersampling+oversampling de 42000 

observações (SMOTENC). 

 
SMOTENC – UNDER + OVER 42000 

Feridos Leves Mortes / Feridos Graves 

Modelo Simples 42317 995 

Modelo com 
Undersampling 21004 995 

Modelo com Under 
+ Over Sampling 21004 20982 

 

1) Divisão dos dados em treino e teste 

O conjunto de dados foi dividido em dois subconjuntos: 70% para treino e 30% para 

teste. O resultado desta divisão, Tabela B9, encontra-se da seguinte forma: 

- Conjunto de treino: contém 29587 observações. 

- Conjunto de teste: contém 12399 observações. 

 

Tabela B 9 - SMOTENC: Divisão dos dados do modelo de regressão logística (42000 observações) em dois subconjuntos: 

treino e teste e respetivo número de observações por categoria em cada subconjunto. 

 SMOTENC UNDER + OVER 42000 

Treino Teste 

Feridos Leves 14764 6240 

Mortes/Feridos Graves 14823 6159 
 

 

 

 

2) Ajustamento do Modelo 

Utilizando os dados pré-processados, ajustou-se um modelo de Regressão Logística para 

prever a probabilidade do evento de interesse. Os coeficientes estimados e as medidas 

de ajuste do modelo estão sumarizadas na Tabela B10. 

29587 12399 
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Tabela B 10 - SMOTENC: Modelo múltiplo de regressão logística ajustado para a existência de “Mortes/Feridos Graves” 

nos sinistros com vítimas com 42000 observações. 

Variável Coeficiente Std. Error P-value 

Intercept -1,9515 0,1575 <0,001 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

0,1865 0,0999 0,0619 

Concelho2ABMMS 
(ALMADA, BARREIRO, MOITA, 

MONTIJO e SESIMBRA) 
-0,0100 0,1012 0,9213 

Concelho2SS 
(SANTIAGO DO CACÉM e 

SETÚBAL) 
-0,4522 0,1118 <0,001 

tipoacidColisão -1,4312 0,1005 <0,001 

tipoacidDespiste -0,7407 0,1046 <0,001 

tipolocal2Fora das localidades 0,5641 0,0376 <0,001 

tipovia2EM – Estrada Municipal -0,4977 0,1332 0,0002 

tipovia2EN/IC/ER 
 (Estrada Nacional, Itinerário 

Complementar e Estrada 
Regional) 

1,0683 0,0544 <0,001 

horaacid1new6h -0,3069 0,1228 0,0124 

horaacid1new8h-13h -0,4524 0,0359 <0,001 

fugaSim -3,7486 0,2132 <0,001 

PercCondMCat2[75,100] 0,3500 0,0346 <0,001 

HaVeicPesadoSim 0,7361 0,0601 <0,001 

HaVeicLigSim 0,3457 0,0676 <0,001 

HaVeicMotoSim 2,6787 0,0545 <0,001 

HoraLaboralSim -0,3052 0,0332 <0,001 
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Os sinistros envolvendo motociclos (“HaVeicMotoSim”) , veículos pesados 

(“HaVeicPesadoSim”) e os Sinistros em Estradas Nacionais, Itinerários Complementares 

ou Estrada Regional (“tipovia2EN/IC/ER”) são fatores intrínsecos ligados a eventos mais 

graves. Por outro lado, variáveis como a ocorrência de Colisões (“tipoacidColisão”), 

sinistros em que há fuga (“fugaSim”) e sinistros durante o período da manhã 

(“horaacid1new8h-13h”) tendem a estar associadas a sinistros menos graves. 

 

3) Comparação do desempenho entre os modelos de classificação 

Por fim, é comparado detalhadamente o desempenho dos modelos de classificação, 

utilizando as métricas da Tabela B11. 

 

 

Variável Coeficiente Std. Error P-value 

MedianaIdadeVeic 0,0566 0,0026 <0,001 

ig_ponderado 0,1066 0,0063 <0,001 

tipovia2EM – Estrada 
Municipal:  HaVeicMotoSim 

-0,0491 0,1670 0,7686 

tipovia2EN/IC/ER:  
HaVeicMotoSim 

-0,5464 0,0780 <0,001 

Concelho2AGSSP:  
ig_ponderado 

-0,0417 0,0056 <0,001 

Concelho2ABMMS:  
ig_ponderado 

-0,0680 0,0056 <0,001 

Concelho2SS:  ig_ponderado -0,0139 0,0063 0,0261 

tipoacidColisão:  ig_ponderado -0,0303 0,0031 <0,001 

tipoacidDespiste:  
ig_ponderado 

-0,0187 0,0034 <0,001 

tipovia2EM – Estrada 
Municipal:  ig_ponderado 

0,0476 0,0066 <0,001 

tipovia2EN/IC/ER: 
ig_ponderado 

-0,0018 0,0014 0,1791 
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Tabela B 11 - SMOTENC: Métricas de classificação para 42000 observações - Undersampling + Oversampling. 

 

Os resultados indicam que o modelo C5.0 obteve o melhor desempenho geral, com alto 

valor de accuracy (0,9656), Kappa (0,9313), sensibilidade (0,9657), especificidade 

(0,9655), 𝐹1-score (0,9659) e AUC (0,9946). Esses resultados sugerem que o C5.0 

apresenta uma boa capacidade de discriminação entre casos positivos e negativos, além 

Métrica Regressão 
Logística XGBoost Random 

Forest Bayes C5.0 

 UNDER + OVER – SMOTENC 42000 

Ponto de Corte 0,502 0,553 0,600 0,837 0,528 

Accuracy 0,7998 0,9340 0,8806 0,7546 0,9656 

IC (95%) (0,7927; 
0,8068) 

(0,9295; 
0,9383) 

(0,8748; 
0,8863) 

(0,7469; 
0,7621) 

(0,9623; 
0,9688) 

Kappa 0,5996 0,8680 0,7613 0,5091 0,9313 

Mcnemar’s Test  
P-Value 0,7029 0,7530 0,8150 0,6117 0,8844 

Sensibilidade 0,8001 0,9344 0,8807 0,7553 0,9657 

Especificidade 0,7995 0,9337 0,8806 0,7538 0,9655 

Valor Preditivo 
Positivo 0,7975 0,9329 0,8792 0,7518 0,9651 

Valor Preditivo 
Negativo 0,8021 0,9352 0,8820 0,7574 0,9662 

F1-score 0,8008 0,9344 0,8813 0,7556 0,9659 

AUC 0,8816 0,9848 0,9459 0,8258 0,9946 

Precisão 0,7975 0,9329 0,8792 0,7518 0,9651 
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de manter o equilíbrio muito bom entre sensibilidade e precisão. O alto valor de Kappa 

indica que a concordância entre previsões e observações reais é substancialmente 

superior ao que seria esperado. 

 O modelo XGBoost também apresentou um bom desempenho, especialmente em 

termos de AUC (0,9848). Embora os seus valores de accuracy, 𝐹1-score e Kappa serem 

ligeiramente inferiores aos de C5.0, o XGBoost permanece como uma alternativa 

robusta. 

O modelo de Regressão Logística apresentou resultados intermédios, com métricas mais 

modestas, indicando que, embora seja útil para previsões gerais, pode não ser tão eficaz 

quanto aos modelos baseados em árvores. 

Os modelos Random Forest e Bayes tiveram desempenhos ligeiramente inferiores, 

sugerindo limitações na capacidade de generalização frente à complexidade e 

desequilíbrio dos dados. 

Adicionalmente, todos os modelos apresentaram valores de p-value superiores a 0,05 

no Mcnemar’s Test, indicando que não há diferenças estatisticamente significativas nos 

erros de classificação entre eles. 

Em termos práticos, a análise evidencia que o C5.0 é a melhor escolha para a previsão 

de sinistros graves neste conjunto de dados, oferecendo não apenas alta precisão, mas 

também confiabilidade na classificação de casos críticos. O XGBoost pode ser 

considerado uma alternativa viável, especialmente em contextos onde se prioriza 

discriminação entre categorias, enquanto modelos probabilísticos como Bayes ou 

Regressão Logística podem ser mais limitados quando se lida com dados altamente 

desequilibrados ou com caraterísticas complexas.  

 

Modelos com 10000 e 20000 observações 

 

1) Undersampling 

Procedeu-se ao pré-processamento dos dados utilizando novamente a técnica de 

undersampling, seguindo um procedimento semelhante ao realizado anteriormente 

para as 42000 observações, mas desta vez considerando um menor número de 

observações: 
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• Categoria minoritária (“Mortes/Feridos Graves”): todos os 995 sinistros com 

“Mortes/Feridos Graves” foram mantidos na base de dados sem alterações. 

• Categoria maioritária (“Feridos Leves”): foi realizada uma amostragem 

aleatória simples, sem reposição, dos 42317 sinistros com “Feridos Leves”. 

Posto isto, foram criados dois conjuntos com base na categoria maioritária, mantendo 

proporções controladas em relação à categoria minoritária: 

• Conjunto 1: inclui um número de sinistros selecionados aleatoriamente 

equivalente a 5,03 vezes o total de observações da categoria minoritária. 

• Conjunto 2: foi composto de maneira similar, também considerando sinistros 

correspondentes a 10,05 vezes o número de observações da categoria 

minoritária. 

 

2) Oversampling 

A Tabela B12 apresenta a comparação de desempenho entre diferentes modelos de 

machine learning para a classificação de dados relacionados a “Feridos Leves” e 

“Mortes/Feridos Graves” em dois cenários de volume de dados (10000 e 20000 

observações). 

 

Tabela B 12 -  SMOTENC: Valores das categorias do modelo simples, com undersampling e com 

undersampling+oversampling. 

 
10000 20000 

Feridos Leves Mortes / 
Feridos Graves Feridos Leves Mortes / 

Feridos Graves 

Modelo Simples 42317 995 42317 995 

Modelo com 
Undersampling 5004 995 9999 995 

Modelo com Under 
+ Over Sampling 

 
5004 

 
5004 

 
9999 

 
9999 
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3) Divisão dos dados em treino e teste 

A fim de realizar a modelação, os conjuntos de dados foram divididos em dois 

subconjuntos: 70% dos dados foram alocados para treino e 30% para teste. A divisão 

com 10000 observações, Tabela B13, contém: 

- Conjunto de treino: 7053 observações. 

- Conjunto de teste: 2955 observações. 

 

Tabela B 13 - SMOTENC: Divisão dos dados do modelo de regressão logística (10000 observações) em dois 

subconjuntos: treino e teste e respetivo número de observações por categoria em cada subconjunto. 

 SMOTENC UNDER + OVER 10000 

Treino Teste 

Feridos Leves 3509 1495 

Mortes/Feridos Graves 3544 1460 
 

  

  

 

A divisão com 20000 observações, Tabela B14, contém: 

- Conjunto de treino: 14078 observações. 

- Conjunto de teste: 5920 observações. 

 

Tabela B 14 - SMOTENC: Divisão dos dados do modelo de regressão logística (20000 observações) em dois 

subconjuntos: treino e teste e respetivo número de observações por categoria em cada subconjunto. 

 SMOTENC UNDER + OVER 20000 

Treino Teste 

Feridos Leves 7042 2957 

Mortes/Feridos Graves 7036 2963 

 

 

 

4) Ajustamento do Modelo 

Foram ajustados os dois modelos de Regressão Logística, onde a Tabela B15 apresenta 

os resultados do primeiro modelo (10000 observações), enquanto a Tabela B16 

14078 5920 

7053 2955 



 190 

apresenta os resultados do segundo modelo (20000 observações). 

 

Tabela B 15 - SMOTENC: Modelo múltiplo de regressão logística ajustado para a existência de Mortes/Feridos Graves 

nos sinistros com vítimas, com 10000 observações. 

 
Variável 

Coeficiente Std. Error P-value 

SMOTENC 10000 

Intercept -1,1824 0,4830 0,0144 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

-0,2014 0,3282 0,5395 

Concelho2ABMMS (ALMADA, 
BARREIRO, MOITA, MONTIJO e 

SESIMBRA) 
-0,2481 0,3284 0,4498 

Concelho2SS 
(SANTIAGO DO CACÉM e SETÚBAL) -0,3799 0,3529 0,2817 

tipoacidColisão -1,5789 0,2808 <0,001 

tipoacidDespiste -1,0550 0,2963 0,0004 

tipolocal2Fora das localidades 0,4590 0,1180 0,0001 

tipovia2EM – Estrada Municipal -0,7522 0,4426 0,0893 

tipovia2EN/IC/ER (Estrada 
Nacional, Itinerário 
Complementar e Estrada 

Regional) 

1,1425 0,1654 <0,001 

horaacid1new6h -0,0307 0,3889 0,9370 

horaacid1new8h-13h -0,4432 0,1123 <0,001 

fugaSim -3,0009 0,4893 <0,001 

PercCondMCat2[75,100] 0,3034 0,1076 0,0048 

HaVeicPesadoSim 0,7547 0,1925 <0,001 

HaVeicLigSim 0,2979 0,2120 0,1600 

HaVeicMotoSim 2,6418 0,1772 <0,001 



 191 

 
Variável 

Coeficiente Std. Error P-value 

SMOTENC 10000 

HoraLaboralSim -0,5080 0,1037 <0,001 

MedianaIdadeVeic 0,0451 0,0079 <0,001 

ig_ponderado 0,0968 0,0203 <0,001 

tipovia2EM – Estrada Municipal:  
HaVeicMotoSim 0,5205 0,6059 0,3903 

tipovia2EN/IC/ER:  
HaVeicMotoSim -0,8328 0,2334 0,0004 

Concelho2AGSSP:  ig_ponderado -0,0421 0,0191 0,0272 

Concelho2ABMMS:  
ig_ponderado -0,0721 0,0188 0,0001 

Concelho2SS:  ig_ponderado -0,0253 0,0205 0,2175 

tipoacidColisão:  ig_ponderado -0,0191 0,0079 0,0157 

tipoacidDespiste:  ig_ponderado -0,0002 0,0089 0,9846 

tipovia2EM – Estrada Municipal:  
ig_ponderado 0,0717 0,0237 0,0025 

tipovia2EN/IC/ER: ig_ponderado -0,0047 0,0040 0,2409 
 

Tabela B 16 - SMOTENC: Modelo múltiplo de regressão logística ajustado para a existência de Mortes/Feridos graves 

nos sinistros com vítimas, com 20000 observações. 

 
Variável 

Coeficiente Std. Error P-value 

SMOTENC 20000 

Intercept -2,0417 0,3570 <0,001 

Concelho2AGSSP 
(ALCOCHETE, GRÂNDOLA, 
SEIXAL, SINES e PALMELA) 

0,2200 0,2286 0,3358 

Concelho2ABMMS (ALMADA, 
BARREIRO, MOITA, MONTIJO e 

SESIMBRA) 
-0,1465 0,2292 0,5228 



 192 

 
Variável 

Coeficiente Std. Error P-value 

SMOTENC 20000 

Concelho2SS 
(SANTIAGO DO CACÉM e SETÚBAL) -0,8335 0,2559 0,0011 

tipoacidColisão -1,4199 0,2207 <0,001 

tipoacidDespiste -0,8428 0,2321 0,0003 

tipolocal2Fora das localidades 0,6549 0,0832 <0,001 

tipovia2EM – Estrada Municipal -0,3086 0,3050 0,3117 

tipovia2EN/IC/ER (Estrada 
Nacional, Itinerário 
Complementar e Estrada 

Regional) 

1,3286 0,1194 <0,001 

horaacid1new6h 0,1898 0,2585 0,4628 

horaacid1new8h-13h -0,3977 0,0799 <0,001 

fugaSim -3,9213 0,5259 <0,001 

PercCondMCat2[75,100] 0,1918 0,0767 0,0124 

HaVeicPesadoSim 0,7324 0,1317 <0,001 

HaVeicLigSim 0,4722 0,1508 0,0017 

HaVeicMotoSim 2,8414 0,1246 <0,001 

HoraLaboralSim -0,4091 0,0744 <0,001 

MedianaIdadeVeic 0,0560 0,0058 <0,001 

ig_ponderado 0,1207 0,0157 <0,001 

tipovia2EM – Estrada Municipal:  
HaVeicMotoSim -0,1621 0,3912 0,6786 

tipovia2EN/IC/ER:  
HaVeicMotoSim -0,6255 0,1676 0,0002 

Concelho2AGSSP:  ig_ponderado -0,0578 0,0144 <0,001 

Concelho2ABMMS:  
ig_ponderado -0,0800 0,0143 <0,001 
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Variável 

Coeficiente Std. Error P-value 

SMOTENC 20000 

Concelho2SS:  ig_ponderado -0,0214 0,0158 0,1742 

tipoacidColisão:  ig_ponderado -0,0297 0,0066 <0,001 

tipoacidDespiste:  ig_ponderado -0,0122 0,0073 0,0960 

tipovia2EM – Estrada Municipal:  
ig_ponderado 0,0422 0,0144 0,0034 

tipovia2EN/IC/ER: ig_ponderado -0,0108 0,0028 0,0001 

 

Ao compararmos estes dois modelos, com o modelo anterior (modelo de oversampling 

com 85000 observações), nota-se que, em grande parte, as mesmas variáveis continuam 

a destacar-se em termos de impacto significativo sobre a ocorrência de sinistros com 

mortes/feridos graves. No entanto algumas nuances devem ser ressaltadas: 

• Variáveis com maior impacto positivo: semelhante ao modelo anterior, as 

variáveis relacionadas à existência de motociclos e veículos pesados 

continuam a exercer um papel crucial. Sinistros ocorridos em Estradas 

Nacionais, Itinerários Complementares e Estradas Regionais novamente 

apresentam maior probabilidade de resultar em sinistros onde resultam 

“Mortes/Feridos Graves”. 

 

5) Comparação do desempenho entre os modelos de classificação 

Na etapa final, realizar-se-á uma análise comparativa dos modelos de classificação 

desenvolvidos, com base nas métricas de desempenho apresentadas na Tabela B17. 

 



 194 

Tabela B 17 - SMOTENC: Métricas de classificação para 10000 e 20000 observações - Undersampling + Oversampling. 

 
 Regressão 

Logística XGBoost Random 
Forest Bayes 

 
C5.0 

 

UNDER + OVER SMOTENC 

Ponto de Corte 
 

10000 
 

20000 

 
 

0,505 
 

0,510 

 
 

0,553 
 

0,565 

 
 

0,576 
 

0,604 

 
 

0,750 
 

0,845 

 
 

0,558 
 

0,540 

Accuracy 
 

10000 
 

20000 

 
 

0,7885 
 

0,8000 

 
 

0,8772 
 

0,9105 

 
 

0,8470 
 

0,8561 

 
 

0,7387 
 

0,7505 

 
 

0,8579 
 

0,9172 

IC (95%) 
 

10000 
 

20000 

 
 

(0,7733; 
0,8031) 

 
(0,7896; 
0,8101) 

 
 

(0,8648; 
0,8888) 

 
(0,9029; 
0,9176) 

 
 

(0,8335; 
0,8598) 

 
(0,8469; 
0,8649) 

 
 

(0,7225; 
0,7545) 

 
(0,7393; 
0,7615) 

 
 
 

(0,8448; 
0,8703) 

 
(0,9099; 
0,9241) 

 

Kappa 
 

10000 
 

20000 

 
 

0,5770 
 

0,6000 

 
 

0,7543 
 

0,8209 

 
 

0,6941 
 

0,7122 

 
 

0,4775 
 

0,5010 

 
 

0,7157 
 

0,8345 

 
McNemar´s  Test  

P-Value 
 

10000 
 

20000 

 
 

 
 

0,7490 
 

0,9305 

 
 

 
 

0,8337 
 

0,9654 

 
 

 
 

0,7420 
 

1 

 
 

 
 

0,7460 
 

0,9585 

 
 

 
 

0,9611 
 

1 

Sensibilidade 
 

10000 
 

20000 

 
 

0,7890 
 

0,8009 

 
 

0,8774 
 

0,9109 

 
 

0,8479 
 

0,8562 

 
 

0,7390 
 

0,7513 

 
 

0,8568 
 

0,9173 
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A análise dos resultados evidência que o desempenho dos modelos melhora 

significativamente com o aumento do número de observações. Isso é notável em 

métricas como accuracy, sensibilidade, especificidade e 𝐹1-score, onde os valores se 

tornam mais elevados e consistentes com um maior número de observações. 

 
 Regressão 

Logística XGBoost Random 
Forest Bayes 

 
C5.0 

 

UNDER + OVER SMOTENC 

Especificidade 
 

10000 
 

20000 

 
 

0,7880 
 

0,7991 

 
 

0,8769 
 

0,9100 

 
 

0,8462 
 

0,8559 

 
 

0,7385 
 

0,7497 

 
 

0,8589 
 

0,9171 

Valor Preditivo 
Positivo 

 
10000 

 
20000 

 
 
 

0,7842 
 

0,7998 

 
 
 

0,8744 
 

0,9103 

 
 
 

0,8433 
 

0,8562 

 
 
 

0,7340 
 

0,7505 

 
 
 

0,8557 
 

0,9173 
Valor Preditivo 

Negativo 

 
10000 

 
20000 

 
 
 

0,7927 
 

0,8002 

 
 
 

0,8799 
 

0,9107 

 
 
 

0,8507 
 

0,8559 

 
 
 

0,7434 
 

0,7505 

 
 
 

0,8600 
 

0,9171 

F1-Score  

 
10000 

 
20000 

 
 

0,7903 
 

0,7997 

 
 

0,8784 
 

0,9104 

 
 

0,8484 
 

0,8559 

 
 

0,7409 
 

0,7501 

 
 

0,8594 
 

0,9171 

AUC 

 
10000 

 
20000 

 
 

0,8719 
 

0,8795 

 
 

0,9515 
 

0,9737 

 
 

0,9217 
 

0,9339 

 
 

0,8124 
 

0,8191 

 
 

0,9294 
 

0,9753 

Precisão 
10000 

 
20000 

 
 

0,7842 
 

0,7998 

 
 

0,8744 
 

0,9103 

 
 

0,8433 
 

0,8562 

 
 

0,7340 
 

0,7505 

 
 

0,8557 
 

0,9173 
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Os modelos XGBoost e C5.0 destacaram-se como os mais eficazes. O XGBoost 

apresentou um accuracy de 0,9044 e uma AUC de 0,972 com 20000 observações, 

enquanto o C5.0 alcançou o maior accuracy (0,9177) e uma AUC de 0,9753 no mesmo 

cenário. Além disso, o C5.0 apresentou maios Kappa (0,8355), indicando uma alta 

concordância entre as previsões e os valores reais. 

Em suma, os resultados mostram que os modelos XGBoost e C5.0 são os mais adequados 

e que o aumento de observações contribui para a precisão e a estabilidade das previsões. 
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Anexos 

Anexo 1 

Categoria Variável Descrição 

Localização concelho Concelho 

kmacid 
Quilómetro onde ocorreu o 

sinistro 

sitacid Local do sinistro 

Tipo de Sinistro tipoacid Tipo de sinistro 

naturezaacid Natureza do sinistro 

fuga Sinistro com fuga 

ig_ponderado Índice de gravidade 

Via e Infraestrutura tipoberma Tipo de berma 

tipolocal Localização do sinistro 

tipovia Tipo de via 

Tracado Traçado da via em planta 

tracadoperfil Traçado da via em perfil 

marcaspad1 Marcas no pavimento 

d_n_vias Número de vias 

faixasentido Faixa de rodagem com sentido 
único ou dois sentidos 

estadoconserv Estado de conservação 

intervias Interseção de vias 

tipopiso Tipo de piso 

obras Obstáculos ou obras 

danosvia Danos na via 

Condições Ambientais fatoresatmos1 Fatores atmosféricos 

sensepcentral1 Sentido do separador central 

sinallum1 Sinalização luminosa 

sinais Sinais 

luminos Luminosidade 

choveu Choveu? 

sol Estava sol? 



 198 

Categoria Variável Descrição 

ff_med Intensidade média do vento (m/s) 

Fatores Temporais diasemanaacid Dia da semana do sinistro 

horaacid1 Hora com minutos a zero do 
sinistro 

HoraLaboral Sinistro ocorreu no horário 
laboral 

PicoTráfego Pico de tráfego 

feriado Sinistro ocorreu num dia feriado 
diaacid Dia do mês do sinistro 

anoacid Ano do sinistro 

mesacid Mês do sinistro 

Tipo de Veículo HaVeicPesado Existência de veículos pesados 
HaVeicLig Existência de veículos ligeiros 

HaVeicMoto Existência de ciclomotores e 
motociclos 

HaVeicEsp Existência de veículos de 
especiais 

HaVeicTrator Existência de veículos tratores 
HaVeicMisto Existência de veículos mistos 

HaVeicMerc Existência de veículos de 
mercadorias 

HaVeicPassag Existência de veículos de 
passageiros 

Caraterísticas dos Condutores condader1 Condições de aderência 

PercCondMCat 
% de condutores masculinos 
envolvidas no sinistro 
(categorizada) 

PercCondFCat 
% de condutores femininas 
envolvidas no sinistro 
(categorizada) 

MinAnosLicCond Mínimo de anos de licença/ carta 
dos condutores 

MaxAnosLicCond Máximo de anos de licença/ carta 
dos condutores 

MinIdadeCond Mínimo das idades dos 
condutores 

MaxIdadeCond Máximo das idades dos 
condutores 

MinIdadeVeic Mínimo da idade da matrícula 
dos veículos 

MaxIdadeVeic Máximo da idade da matrícula 
dos veículos 
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Categoria Variável Descrição 

Fatores Humanos causas2 Causas do sinistro 

Medianataxalcool Mediana da taxa de alcoolemia 
Contexto Social Aulas Sinistro ocorreu durante o 

período de aulas 
unsaude Unidade de saúde 

 

Anexo 2 

 

Categoria Variáveis 

Localização concelho, freguesia 

Via / Estrutura 
tipoberma, tipolocal2, tipovia, tracadoperfil, tracado, 

tracadoperfil, d_n_vias, intervias, faixasentido, estadoconserv, 
obras, danosvia 

Marcação e Sinalização marcaspav1, sensepcentral1, sinais, sinallum1  

Condições Ambientais fatoresatmos1, luminos, choveu, sol 

Tempo diasemanaacid2, horaacid1, horaacid, HoraLaboral, diaacid, 
mesacid, anoacid, feriado, PicoTrafego, Aulas 

Características do 
Sinistro 

tipoacid, naturezaacid, sitacid, causas2, fuga 

Veículos HaVeicPesado, HaVeicLig, HaVeicMoto, HaVeicEsp, HaVeicTrator, 
HaVeicMisto, HaVeicMerc, HaVeicPassag 

Condução / 
Condutores 

condader1, PercCondMCat, PercCondFCat, MinAnosLicCond, 
MaxAnosLicCond, MedianaAnosLicCond, IQRAnosLicCond 

Álcool Medianataxaalcool, IQRtaxaalcool, Mintaxaalcool, Maxtaxaalcool 

Vítimas IQRIdadeVit, MinIdadeVit, MaxIdadeVit, MedianaIdadeVit 

 
Condutores (Idade) 

 

MinIdadeCond, MaxIdadeCond, MedianaIdadeCond, 
IQRIdadeCond 

Veículos (Idade) MinIdadeVeic, MaxIdadeVeic, MedianaIdadeVeic, IQRIdadeVeic 

Outros kmacid, unsaude, numero_de_arvores 
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Metodologias de Machine Learning 

Anexo 3 – Fluxograma metodológico 

 

 

 
Regressão Logística Clássica 

Técnicas para Eventos Raros  
(aplicadas no treino) 

Regressão Logística 
Penalizada de Firth 

Metodologias Estatísticas 

Naive Bayes Random Forest  C5.0 XGBoost 

ROSE SMOTENC 

Avaliação do Desempenho  
(Eventos Raros) 

Definição do Threshold 

- Maximização do F₂-score 
- Análise de sensibilidade 
  (taxa prevista positiva = 3% e 5 %) 

Calibração das Probabilidades 

- Regressão isotónica 
- Curvas de calibração 
- Brier score 
- Validação por bootstrap 
 

Métricas de Classificação 
- Sensibilidade 
- Precisão 
- F₂-score 
- PR-AUC 
- ROC-AUC 
- Brier Score 
 
 


