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Modelagao e Predi¢ao de Eventos Raros: um estudo comparativo

Resumo

A modelagdo de eventos raros constitui um desafio central na ciéncia de dados aplicada
a seguranga rodovidria. Este estudo, centrado no distrito de Setubal (2016—-2023),
analisou sinistros registados pela GNR, complementados com varidveis meteoroldgicas
e infraestruturais. Testaram-se modelos estatisticos e de machine learning (Regressao
Logistica, Firth, Random Forest, XGBoost, C5.0 e Naive Bayes), avaliados por PR-AUC,
ROC-AUC, F; e Brier score. Para mitigar o desequilibrio extremo (=2% casos graves),
aplicaram-se técnicas de oversampling (ROSE e SMOTENC) apenas no treino, evitando
data leakage, e definiu-se o ponto de corte pela maximizagao do F,-score. O XGBoost e
a Logistica de Firth mostraram melhor compromisso entre sensibilidade e calibracao,
com AUC=0,88. Conclui-se que a combinac¢ao de reamostragem adequada e calibracao
criteriosa melhora a previsao de sinistros graves, oferecendo suporte a definicdo de

politicas de prevencdo baseadas em evidéncia.

Palavras-chave: desequilibrio de categorias; eventos raros; machine learning;

reamostragem



Modelling and Prediction of Rare Events — a comparative study

Abstract (English)

Modelling rare events remains a central challenge in data science applied to road safety.
This study focuses on severe road accidents in the district of Setubal (2019-2023), using
data from the National Republican Guard (GNR), complemented with meteorological
and infrastructural information. Several statistical and machine learning models (Logistic
Regression, Firth, Random Forest, XGBoost, C5.0 and Naive Bayes) were evaluated
through PR-AUC, ROC-AUC, F; and Brier score metrics. To address the strong class
imbalance (=2% severe accidents), oversampling techniques (ROSE and SMOTENC) were
applied only to the training set, avoiding data leakage, and thresholds were defined by
maximising the F,-score. The XGBoost and Firth logistic models achieved the best
balance between sensitivity and calibration (AUC=0,88). Results demonstrate that
combining appropriate resampling with careful calibration enhances the prediction of
severe road accidents, supporting evidence-based decision-making in road safety

policies.

Keywords: class imbalance; rare events; Firth logistic regression; machine learning;

resampling
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Glossario

ANSR - Autoridade Nacional de Seguranca Rodoviaria

AUC - Area sob a curva, medida global da capacidade discriminativa de um modelo
Brier score - Erro quadratico médio entre as probabilidades previstas e os resultados
observados

IC95% - Intervalo de Confianga a 95%

COVID-19 - Doenca causada pelo coronavirus SARS-CoV-2

df - Graus de liberdade

FN - Falsos Negativos

FP - Falsos Positivos

Fi-score - Média harmodnica entre precisdo e sensibilidade, atribuindo igual peso a ambas
FG - Feridos graves

FL - Feridos ligeiros

GAM — Modelos Aditivos Generalizados (Generalized Additive Models)

GEE - Equacdes de Estimacdo Generalizadas (Generalized Estimating Equations)

GIVF - Fator de inflagdo da variancia generalizado (Generalized Variance Inflation Factor)
GLM - Modelos Lineares Generalizados (Generalized Linear Models)

GLMM - Modelos Lineares Generalizados Mistos (Generalized Linear Mixed Models)
G-mean - Média geométrica entre sensibilidade e especificidade

GNR - Guarda Nacional Republicana

IGR - Indice de gravidade (nimero de mortos por 100 acidentes com vitimas)

KDE - Estimativa por nucleo (Kernel Density Estimation)

M/FG - Mortes e/ou feridos graves

ML - Machine Learning

MPL - Modelo de Probabilidade Linear

MV - Maxima Verosimilhanca

NB - Naive Bayes

OOF - Out-of-Fold (fora da amostra de treino em validacdo cruzada)

PR - Precisdo (Precision)

PR-AUC - Area sob a curva Precisdo—Sensibilidade

RF - Random Forest
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ROC - Receiver Operating Characteristic

ROC-AUC - Area sob a curva ROC

ROSE — Random Over-Sampling Examples

ScFG - Sinistro com feridos graves

ScV - Sinistro com vitimas

ScVM - Sinistro com vitimas mortais

SMOTENC - Synthetic Minority Over-sampling Technique — Nominal Continuous
TN - Verdadeiros Negativos

TP - Verdadeiros Positivos

VIF - Fator de inflagdo da variancia (Variance Inflation Factor)

XGBoost - Extreme Gradient Boosting
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1. Introducao

A seguranca rodovidria continua a ser uma preocupacdo central para os governos,
autoridades de transito e sociedade em geral. Entre os vdrios tipos de sinistros que
ocorrem nas estradas, os sinistros graves - que envolvem mortes e/ou feridos graves
(M/FG) — sdo eventos raros, mas com consequéncias devastadoras para as vitimas,
familias e a comunidade em geral. Além do impacto emocional, esses eventos acarretam
custos sociais, econdmicos e de saude publica substanciais. Assim, a modelacdo e
predicdo de sinistros graves, classificados como eventos raros, sdo essenciais para o
desenvolvimento de estratégias eficazes de mitigacao e prevencao.
A presente dissertacdo tem como principal objetivo comparar metodologias estatisticas
e de machine learning na modelacdo e previsao de eventos raros, aplicando-as ao caso
da sinistralidade rodoviaria grave no distrito de Setubal, de forma a identificar
abordagens que maximizem o desempenho preditivo e a interpretabilidade dos modelos
em contextos de forte desequilibrio entre categorias.
O horizonte temporal do estudo abrange os anos de 2016 a 2023. Foram excluidas da
andlise as observagdes correspondentes ao periodo compreendido entre 11 de abril de
2020 e 30 de abril de 2021, correspondente a fase mais restritiva da pandemia de COVID-
19, devido as alteragdes significativas nos padrdes de trafego e mobilidade observadas
nesse intervalo.
Dado o carater raro destes eventos, a escassez de dados e o desequilibrio entre feridos
leves (FL) e M/FG constituem desafios criticos para a modelagdo e predicdo. Para abordar
estas limitacOes, este estudo ira aplicar uma combinacdo de técnicas de modelagao
classicas e modernas, incluindo metodologias estatisticas e de machine learning. A
eficdcia dessas técnicas sera avaliada com base na sua capacidade preditiva e no
desempenho global na identificacdo de sinistros graves.
Para alcancgar este objetivo geral, definem-se os seguintes objetivos especificos:
e Avaliar e comparar o desempenho de diferentes modelos preditivos, incluindo
métodos estatisticos (Regressdo Logistica Cldssica e de Firth) e algoritmos de
machine learning (Random Forest, C5.0, XGBoost e Naive Bayes), na previsdo de

sinistros com mortos ou feridos graves.
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Analisar o impacto do desequilibrio de categorias na qualidade da modelacao,
testando estratégias alternativas de mitigagdo — nomeadamente técnicas de
reamostragem (ROSE, SMOTENC) e ponderacdo por pesos inversos — aplicadas
de forma controlada a fase de treino.

Explorar e otimizar a calibragdo e os limites de decisdao dos modelos através de
métricas adequadas a eventos raros (Precisao — Sensibilidade, AUC, ROC-AUC,
F2-score, Brier score, e parametros de calibracdo), assegurando uma avaliacao
robusta em validagao cruzada e conjunto de teste independente.

Identificar limitacdes metodoldgicas e potenciais vieses (como data leakage e
sobreajuste) nas abordagens de modelacdo, discutindo estratégias para
mitigacao e propondo linhas futuras de investigagao em modelagao estatistica

aplicada a fenémenos raros de seguranca rodoviaria.
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2. Enquadramento tedrico

O sistema rodovidrio é uma parte integral da vida moderna, influenciando diretamente
o quotidiano dos cidaddaos. O mesmo abrange uma ampla variedade de formas de
deslocamento, desde meios ndo motorizados, como a caminhada e o ciclismo, até
veiculos motorizados, como carros particulares e transportes publicos. A mobilidade
rodovidria é vital para as atividades pessoais e profissionais, conectando e
movimentando a sociedade. No entanto, com essa interconectividade surgem também
riscos, nomeadamente a possibilidade de sinistros rodovidrios, que podem ter
consequéncias avassaladoras (Valente, 2025).

A conducdo é uma atividade de elevada responsabilidade, que exige um conhecimento
profundo das regras e dindmicas do sistema rodoviario. O dominio destas competéncias
é essencial para que os condutores possam desempenhar um papel ativo na seguranca
rodoviaria, protegendo-se a si e aos outros cidadados da via. A falta desse conhecimento
ou a negligéncia na aplicacdo das normas podem resultar em sinistros com
consequéncias graves. Neste sentido, a seguranc¢a rodovidria continua a ser uma
preocupacao e uma prioridade central para os governos, autoridades de transito e
sociedade em geral. A elevada taxa de sinistros e as suas consequéncias ressaltam a
necessidade urgente de implementar medidas eficazes para melhorar a seguranca nas

estradas (Tribunal de Contas Europeu, 2024).

2.1 Terminologia Acidente vs. Sinistro

A terminologia utilizada para descrever sinistros rodoviarios tem sido amplamente
debatida na literatura, especialmente quanto ao uso do termo “acidente”. Embora
social e academicamente enraizado, esse termo é problematico por associar os eventos
a imprevisibilidade e aleatoriedade (Perez, 2011), sugerindo ocorréncias inevitaveis e
desconsiderando fatores de prevencao.

Diante dessa limitacdo terminolégica, organismos como a National Highway Traffic
Safety Administration (NHTSA) e a Organizacdo Mundial de Saude (OMS) tém vindo a
substituir o termo “acidente” para afastar a ideia de casualidade, enfatizando a
influéncia de fatores humanos, mecanicos e ambientais, e destacando que os sinistros

podem ser analisados e prevenidos por meio de medidas corretivas.
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Encontrar uma alternativa adequada é complexo, mas essencial para transmitir a
verdadeira natureza desses eventos. Nesse contexto, termos como “sinistro
rodovidrio”, proposto por Pérez (2011) e Tabasso (2012), ganham relevancia por
destacarem a capacidade de investigacdo e corre¢do, além de sensibilizarem a
sociedade para politicas de seguranca. A adogao dessa linguagem reflete a evolugao
tecnoldgica e cientifica, que permite compreender as causas e propor solu¢cdes, mesmo

em casos parcialmente inevitaveis.

2.2 Sinistros Rodoviarios

A sinistralidade rodovidria em Portugal mantém-se um desafio critico, com flutuacées
significativas nos indicadores entre 2016 e 2023, conforme os dados do Relatério de
Sinistralidade a 24 horas e Fiscalizagdo Rodovidria de Maio de 2023 da Autoridade
Nacional de Seguranca Rodoviaria (ANSR). Na Tabela 1 estdo apresentados os dados
comparativos dos sinistros rodoviarios entre os diferentes anos. Os mesmos referem-se
exclusivamente a Portugal continental, excluindo as regides auténomas dos Acores e da

Madeira.

Tabela 1 - Evolugdo da sinistralidade rodovidria no Continente.

2016 32299 2201 416 39121 2102 445 1,38
2017 34416 2397 488 41787 2198 510 1,48
2018 34235 2337 468 41356 2141 508 1,48
2019 35704 2403 429 43202 2301 474 1,33
2020 26501 1975 372 30706 1829 390 1,47
2021 29217 2221 367 34217 2106 390 1,33
2022 32788 2352 428 38456 2243 462 1,41
2023 34974 2569 431 41058 2437 467 1,34

Nota: ScV: Sinistros com vitimas, ScVM: Sinistros com vitimas mortais, ScFG: Sinistros com feridos graves, FL: Feridos
ligeiros, FG — Feridos graves, M: Mortes, IGR: indice de gravidade)

Fonte - Relatdrio de Sinistralidade a 24 horas e Fiscalizagdo Rodovidria de Maio de 2023
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Entre 2016 e 2023, observa-se um aumento de 8,3% nos Sinistros com Vitimas (ScV),
passando de 32299 para 35974 casos. Esse crescimento, no entanto, ndo foi linear: em
2020, houve uma queda abrupta para 26501 sinistros, provavelmente devido as
restricdes da COVID-19.

No que diz respeito as vitimas mortais (M), registou-se um crescimento de 4,9% no
periodo analisado, passando de 445 mortes em 2016 para 467 em 2023. Os feridos
graves (FG) também apresentaram uma tendéncia preocupante, com um aumento de
15,9% entre 2016 (2102 casos) e 2023 (2437 casos), sendo 2020 o ano com o menor
registo (1829), reflexo direto da reducdo da mobilidade durante a pandemia.

Os feridos ligeiros, por sua vez, tiveram um crescimento moderado de 5%, subindo de
39121 para 41058 no mesmo intervalo. Apesar do aumento nos numeros absolutos de
mortes e feridos, o indice de gravidade (IGR) apresentou uma reducdo de 2,9%,
passando de 1,38 em 2016 para 1,34 em 2023. Essa diminui¢gdo sugere uma menor
letalidade por sinistro. O ano de 2020 destacou-se como atipico, com quedas expressivas
em todos os indicadores. No periodo pds-pandemia (2021-2023), observou-se uma
retoma gradual dos valores. Em 2023, os sinistros com vitimas atingiram 34974 casos,

valor préximo ao pico de 35704 registado em 2019.

2.3 Evento Raro

Um evento raro é definido como um fendmeno que ocorre com muita baixa frequéncia,
independentemente da natureza da varidvel associada (categérica ou numérica).
Exemplos comuns incluem desastres naturais, doencas raras, crash na bolsa, entre
outros. A natureza rara desses eventos significa que, muitas vezes, os conjuntos de dados
disponiveis apresentam um desequilibrio muito acentuado entre eventos e ndo eventos.
Tal desequilibrio pode comprometer a performance de modelos preditivos tradicionais,
levando a necessidade de desenvolver abordagens especificas para lidar com essa
escassez de dados (King e Zeng, 2001a). A identificacdo de padrdes e a previsdo de
eventos raros é essencial, dado o impacto econdmico, social e humano que estes

eventos podem ter nas dreas em que ocorrem, apesar da sua baixa frequéncia.
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2.4 Modelacdo e Predicdo de Eventos Raros

A literatura demonstra que modelos cldssicos, nomeadamente a regressao logistica
estimada por mdaxima verosimilhanca, tendem a apresentar viés na estimacdo das
probabilidades quando aplicados a eventos raros, subestimando a probabilidade de
ocorréncia da categoria minoritaria (King & Zeng, 2001). Este problema ¢é
frequentemente agravado pela utilizacdo de métricas de avaliacdo globais, como a
accuracy, que se revelam pouco informativas em contextos de forte desequilibrio entre
categorias.

No ambito da modelagao estatistica, diversas abordagens foram propostas para mitigar
estes problemas, destacando-se a regressao logistica penalizada, em particular a
correcao de Firth, que permite reduzir o viés das estimativas e lidar com situagdes de
separa¢ao completa ou quase completa dos dados.

Paralelamente, técnicas de machine learning tém vindo a ser aplicadas a predicdo de
eventos raros, explorando a sua capacidade de capturar relagdes ndo lineares e
interacdes complexas entre varidveis. Algoritmos baseados em arvores, como Random
Forest e métodos de boosting, tém demonstrado bom desempenho discriminativo em
contextos desequilibrados. No entanto, a literatura reconhece limitacdes associadas a
interpretabilidade e a calibracdo das probabilidades previstas, aspetos criticos em
aplicaces de apoio a decisdo.

Outro aspeto central identificado é a necessidade de estratégias adequadas para lidar
com o desequilibrio de categorias, bem como a ado¢do de métricas de avaliagdo que
reflitam corretamente o desempenho na identificacdo do evento raro. Adicionalmente,
tem sido sublinhada a importancia da calibracdo das probabilidades previstas, de forma
a garantir a utilidade pratica dos modelos em contextos reais.

Em sintese, a literatura evidencia que a modelacdo de eventos raros requer uma
abordagem integrada, que combine modelos estatisticos robustos, técnicas de machine
learning, métricas de avaliacdo adequadas e procedimentos rigorosos de validacdo e

calibragao.
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3. Metodologias

3.1 Selecao de Métricas para Eventos Raros

Diversos sdao os estudos que indicam que, em conjuntos de dados desequilibrados,
métricas convencionais como accuracy pode induzir em erro. Modelos que tendem a
favorecer a categoria maioritaria, ou negativa, podem exibir uma elevada precisao global
enquanto falham redondamente a detecdo da categoria minoritaria, ou positiva (He;
Garcia, 2009). Por exemplo, num cenario em que o conjunto de dados é composto por
95% de observacGes negativas e apenas 5% positivas, um modelo que prevé todas as
observagdes como negativas alcangaria 95% de accuracy, mas falharia completamente
em identificar os casos positivos (Japkowicz, 2000).

Esta limitacdo exige a adocdo de métricas que quantifiguem corretamente o
desempenho da categoria minoritaria. Métricas como sensibilidade, F;-score, G-mean e
a AUC sdo mais adequadas para avaliar o desempenho nesses cendrios, pois
operacionalizam o equilibrio entre sensibilidade (capacidade de identificar
corretamente a categoria minoritaria) e o controlo da taxa de falsos positivos (Saito;
Rehmsmeier, 2015).

Entre essas métricas, a sensibilidade mede a proporcdo de verdadeiros positivos

identificados corretamente, calculada por:

VP
VP + FN’

sendo VP o niumero de casos positivos corretamente classificados e FN o nimero de

Sensibilidade =

casos positivos classificados incorretamente.
A especificidade mede a propor¢cdo de verdadeiros negativos identificados

corretamente, calculada por:

VN
VN + FP’

sendo VN o niumero de casos negativos corretamente classificados e FP o nimero de

Especificidade =

casos negativos classificados incorretamente.
Uma vez que esta métrica apenas avalia o desemprenho da categoria maioritaria, em
conjuntos de dados desequilibrados, o modelo pode atingir uma especificidade muito

alta simplesmente por classificar todos os casos como negativos.
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A precisdao mede a proporg¢ado de verdadeiros positivos entre todas as previsdes positivas,

calculada por:

VP

Precisdo = m

Quando a precisdo e a sensibilidade sdao igualmente importantes, utiliza-se o F1-score,

definido como a média harmadnica entre ambas:

Precisao X Sensibilidade

F, - =2 X |
1-score Precisdo + Sensibilidade

Esta métrica atribui maior peso a valores baixos, penalizando desequilibrios entre
precisdo e sensibilidade (Dobriban et al, 2014).

No presente estudo, o F;-score é calculado para a categoria minoritdria (sinistro grave),
uma vez que é a de maior interesse analitico. Alternativamente, poderiam ser utilizadas
versoes agregadas, como o F;-score macro, micro ou ponderado, conforme o objetivo
da analise.

O F;-score € um caso particular da medida Fjg, quando = 1, onde o parametro f3 indica
a importancia da sensibilidade sobre a precisdo. A expressdo geral de Fg-score é:

Precisao X Sensibilidade
B? X Precisdo + Sensibilidade

Fg-score = (B* + 1) X

Ou seja, enquanto F;-score atribui igual peso a precisdo e sensibilidade, quando f = 2
obtém-se a métrica F,-score que considera que sensibilidade é duas vezes mais
importante que a precisdao. Esta medida deve ser usada quando se pretende que o
modelo detete mais os verdadeiros positivos, sendo por isso mais adequada em

situagdes de eventos rados.

Complementarmente, o G-mean avalia o equilibrio entre a taxa de verdadeiros positivos

e verdadeiros negativos:

G-mean = +/(Sensibilidade x Especificidade).

Adicionalmente, em problemas com categorias desequilibradas, é comum recorrer a

Area sob a Curva Precisdo-Sensibilidade (PR-AUC), que mede o desempenho global no
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modelo considerando a relagdo entre precisdo e sensibilidade em diferentes limites de
decisdo, sendo mais adequada do que a AUC-ROC nestes cendrios.

A curva ROC oferece uma visdo geral do desempenho do modelo em diferentes limites
de classificacdo (Kubat; Matwin, 1997), e a AUC mede a capacidade de o modelo

classificar corretamente as observagées:

AUC = Sensibilidade 4 VN
B 2 2(VN + FP)’

sendo VN o nimero de casos negativos classificados corretamente.

3.2 Modelo Estatistico de Regressado Logistica

A andlise da regressdo teve inicio com Francis Galton (1822-1911), que investigou a
hereditariedade da altura. Em 1886, Galton introduziu o conceito de “regressdo a média”
ao estudar a hereditariedade de carateristicas como a altura nos seres humanos (Galton,
1886). Nesse estudo, o autor observou que, embora pais excecionalmente altos
tendessem a ter filhos também altos, estes ndo mantinham a extrema altura dos pais,
mas direcionavam-se para valores mais proximos da média da populacdo.

Karl Pearson (1857 — 1936) formalizou essa observacdo na década de 1890 ao
desenvolver a “linha de melhor ajuste” entre variaveis, utilizando o método dos minimos
quadrados (Pearson, 1900). No entanto, os modelos de regressdo linear ndo sao
adequados para todos os tipos de dados. Embora sejam Uteis para prever varidveis
continuas, esses modelos enfrentam limita¢Ges quando a varidvel dependente é binaria,
ou seja, assume apenas dois valores (0 ou 1).

A inadequacdo da regressao linear classica (originalmente desenvolvida para respostas
continuas) quando aplicada a varidveis dicotémicas pode ser ilustrada pelo “modelo de
probabilidade linear” (MPL). Nesta abordagem, a variavel resposta binariaY € {0,1}¢é
reinterpretada como a probabilidade P (Y = 1 | X), modelada com uma fungdo linear
das covaridveis. Contudo, o MPL frequentemente viola os pressupostos estatisticos
(como normalidade e homocedasticidade dos residuos) e por ndo impor restricbes ao
intervalo de previsdo produz previsGes fora do intervalo [0, 1] (Aldrich & Nelson, 1984).
Essa fragilidade reforca a necessidade de uma abordagem nao linear, capaz de modelar

relacdes complexas sem comprometer a interpretabilidade.
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Para lidar com esse tipo de situagdes, Joseph Berkson contribuiu significativamente ao
popularizar o termo “logit” e demonstrar a equivaléncia entre a funcdo logistica e a
maximizagao da verosimilhanga (Berkson, 1944). Paralelamente, David Cox (1924-2022)
desenvolveu, na década de 1950, a regressao logistica. O principal objetivo desta técnica
é estimar a probabilidade de ocorréncia de um evento binario com base nas variaveis
explicativas, transformando a relacdo entre elas numa funcdo logistica (Cox, 1958). A
principal vantagem da regressao logistica é que ela transforma uma relacao linear entre
varidveis independentes e a probabilidade de um evento ocorrer numa fungcdao que

mapeia a saida para um intervalo entre 0 e 1. A fungdo logistica, definida como f(z) =

z

o garante que as probabilidades permanecem dentro do intervalo ]0, 1[, resolvendo

assim um dos entraves dos modelos lineares.

A regressao logistica multipla é uma extensdo do modelo de regressao logistica simples,
em que duas ou mais varidveis explicativas, continuas ou categdricas, sao utilizadas para
prever a probabilidade de ocorréncia de um evento bindrio (Hosmer et al., 2013). A
principal vantagem deste modelo é que ele permite a analise simultanea do impacto de
diversas variaveis sobre o resultado bindrio. Isso é particularmente Util em situagdes em
qgue multiplos fatores podem influenciar a probabilidade de um evento.

A flexibilidade da regressao logistica multipla permite que se usem os métodos
tradicionais de selecdo de variaveis forward, backward e setpwise, bem como técnicas
avancadas, como por exemplo o LASSO (Least Absolute Shrinkage and Selection
Operator), que utiliza a regularizagdo L, para identificar preditores relevantes ao reduzir
os coeficientes menos significativos para zero, evitando o overfitting e superando
limitacdes de técnicas tradicionais como Regressdo Logistica Penalizada (LASSO/Elastic
Net) (Tibshirani, 1996; Hastie et al., 2015).

Outra abordagem importante é a Regressdao Logistica de Firth, uma abordagem
penalizada introduzida por Firth (1993) que corrige o viés das estimativas de maxima
verosimilhanca. Esta técnica é particularmente adequada em situacdes com eventos
raros ou separa¢dao completa — condicdo e, que uma ou mais varidveis explicativas
permitem distinguir perfeitamente as observacdes entre as duas categorias (por
exemplo, quando todas as observacdes com uma determinada carateristica pertencem

apenas a uma das categorias). Nesses casos, o modelo logistico tradicional pode ndao
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convergir ou produzir coeficientes infinitos. A Regressao Logistica de Firth aplica uma
penalizacdo baseada na Jeffreys prior, o que permite obter estimativas mais estaveis e
sem viés, mesmo em amostras pequenas ou desequilibradas.

O modelo de Regressdao Logistica é amplamente aplicado em diversas areas do
conhecimento, como saude, economia, ciéncias sociais, entre outras. No contexto da
sinistralidade rodoviaria, por exemplo, a regressao logistica é frequentemente utilizada
para identificar fatores de risco associados a sinistros graves, como sinistros com vitimas
mortais ou feridos graves. Pode-se prever a probabilidade de um sinistro ter
consequéncias graves com base em varidveis como velocidade, condi¢Oes
meteoroldgicas adversas, carateristicas da via, entre outras.

Além disso, a interpretacdo dos coeficientes no contexto multiplo pode fornecer
indicacOes detalhadas sobre as relacdes entre as varidveis independentes e a variavel
dependente, além de permitir a estimacao de probabilidades ajustadas, essenciais para

uma anadlise mais precisa e eficaz.

Representacao matematica

A probabilidade de um evento ocorrer (denotado como Y) é dada por:

eBotBix1+ Baxa+e -+ Brxk

7T(X1:x2» ""xn) = E(Y|X1 = xl'XZ = X2, "'Xk = xk) = 1 + e/3’0+/31x1+ Baxo++ Brxi’
onde:
e X, X5, ...,Xy sdo as varidveis explicativas que influenciam a probabilidade de
ocorréncia do evento;
o 1(xq,X%y,...,Xy) representa a probabilidade condicional da varidvel resposta Y
ser igual a 1 (i.e., o evento ocorrer), dado o conjunto de varidveis explicativas
X1, X5, 0, Xis
e [, é o intercepto do modelo, ou seja, o valor da log-odds quando todas as
varidveis explicativas sdo iguais a zero;
o [, B, ..., Br sdo os coeficientes associados as varidveis X;, X5, ..., Xj , e medem

o impacto de cada varidvel na log-odds do evento ocorrer.
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A curva logistica apresenta uma forma de “S” (sigmoide), onde mudancas nas variaveis
explicativas tém um maior impacto nas probabilidades proximas a 0,5 e um impacto
menos acentuado proximo aos extremos O e 1.

A notar que, no caso das varidveis categoricas ordinais e nominais, com ¢ categorias,
estas varidveis sdo transformadas em ¢ — 1 varidveis dummy. Por exemplo,

III

considerando a varidvel “periodo do sinistro” com trés categorias:
1. “manh3d” (06h00-12h00) — categoria de referéncia,
2. “tarde” (12h00-18h00),
3. “noite” (18h00-06h00),
serd transformada em:
e X, que representa a categoria “tarde”, assumindo o valor de 1 se o sinistro
ocorreu nesse periodo e 0 caso contrario,
e X, que representa a categoria “noite”, assumindo o valor de 1 se o sinistro
ocorreu nesse periodo e 0 caso contrario.
Assim, no caso de um sinistro ocorrer no periodo da:
e manhdtemosX; =0eX, =0,
e tardetemosX; =1eX, =0,
e noitetemos X; = 0eX, = 1.
O coeficiente X; mede o log-odds do sinistro ser a tarde vs. manha e o coeficiente X,
mede o log-odds do sinistro ser a noite vs. manha.
Essa abordagem permite quantificar o efeito relativo de cada categoria na probabilidade

do evento (Hardy, 1993).

Suposi¢oes do modelo
Para garantir a validade do modelo, devem ser atendidas algumas suposicdes:

e Independéncia das observacdes: as observa¢des devem ser independentes umas

das outras, o que significa que o resultado de uma observacdo ndo deve
influenciar o resultado de outra. Esta suposicao é avaliada principalmente pelo
delineamento do estudo (por exemplo, amostragem aleatdria, auséncia de
medicdes repetidas no mesmo individuo, etc). Quando o delineamento nao
assegura a independéncia (por exemplo, com dados longitudinais agrupados), a

sua avaliacdo e modelacdao podem ser feitas através de modelos de efeitos
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mistos (GLMM) ou de equacgbes de estimacdo generalizadas (GEE), que sdo
projetados para lidar com a estrutura de dependéncia dos dados.

e Auséncia de multicolinearidade entre as varidveis explicativas: refere-se a

inexisténcia de correlagdo elevada entre as varidveis independentes do modelo.
Essa suposicdo é avaliada pelo fator de inflagdo de variancia (VIF), que mede o
guanto a correlacdo entre uma varidvel e as outras varidaveis do modelo
compromete a precisdo da estimativa do seu coeficiente. Um VIF entre 5 e 10
indica multicolinearidade moderada, porém se for superior a 10 a
multicolinearidade passa a ser grave (Singh, 2024);

e Linearidade na escala do logit: pressupde-se que a relacdo entre as varidveis

independentes e o logit (transformacdo logaritmica das odds) seja linear. Para
verificar essa suposicdo, realiza-se a andlise de residuos. Se os pontos se
distribuirem aleatoriamente em torno de zero, sem padrdes curvos ou
sistematicos, a linearidade é vdlida. No caso de os padrdes ndao serem aleatodrios,

como por exemplo, no formato de U, existe a violagao do pressuposto.

Transformacgao Logit

O “logit” é uma transformagcdao matematica que ajuda a linearizar a relagdo entre as
varidveis explicativas e a probabilidade de o evento ocorrer. Por outras palavras, ele
converte a equacdo da probabilidade m para uma forma mais simples, chamada log-
odds.

A equacdo do logit é dado por:

logit(ﬂ:(xl,xz' ---!xn)) = g(xlleJ ---;xn) =lIn (M) = ﬁO + lel +

1-1(X1,X2,.Xn)
Baxy + o+ + Brxk.

O processo de transformacao é:

TT(X1,%X2,Xn)

1-1(%1,X2,-Xn)

1. : esta fracdo é designada de odds (chances) e calcula a razdo entre

a probabilidade de um evento ocorrer e a probabilidade de ele ndo ocorrer. A

log-odds aplica o logaritmo natural a essa razao.

2. In (M) aplica o logaritmo natural as odds, obtendo-se as log-odds;
1-1(x1,X2,..,X7)
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3. A equagdo resultante Ly + fi1x1+ Lax, + -+ [rx; mostra como a

combinagdo das varidveis explicativas X;, X5, ... X}, afeta a log-odds do evento
ocorrer. Ou seja, ela transforma a relacdo ndo linear entre as varidveis

explicativas e a probabilidade numa forma linear.

Portanto, em vez de se modelar diretamente a probabilidade de 7(x), modela-se a log-

odds que pode assumir valores entre -co e +00, garantindo uma relacdo linear com as

variaveis explicativas.

Interpretac¢ao dos coeficientes

Os coeficientes estimados ; (paraj = 1, 2, ..., k) possuem interpretacdes especificas:

Para variaveis X; numeéricas:
o Bj >0, indica que um aumento em X; estd associado a um aumento na
probabilidade de o evento ocorrer (Y = 1);
o p; <0, indica que um aumento em X; estd associado a uma redugdo na
probabilidade de o evento ocorrer;
Para as variaveis X; categoricas:
o pjindica o impacto de pertencer a uma categoria especifica em relagdo a

categoria de referéncia.

A regressdao logistica distingue-se pela interpretabilidade da exponencial dos

coeficientes como odds ratio. Para variaveis X]-:

Numéricas: e®i indica que por cada aumento unitario em X;, as odd ratio do
evento ocorrer multiplicam por ePi.por exemplo, se B; = 0,7, entdo e% ~ 2,01,
o que indica que cada unidade adicional em X; duplicam as odds do evento
ocorrer, mantendo as outras varidveis constantes.

Categoricas: ePi indica as chances de o evento ocorrer se pertencer a categoria j
relativamente a categoria de referéncia da variavel X;. Por exemplo, seja X; = 1
se pertencer a categoriaj e ﬁj = 0,7, entdo e®’ = 2,01, o que indica que as odds
de o evento ocorrer quando X; = 1sdo o dobro de quando X; = 0, mantendo as

outras variaveis constantes.
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Estimagdo dos parametros

Os coeficientes Sy, B1, ---, P precisam de ser estimados para que o modelo consiga fazer
previses com base nos dados. O método utilizado para obter essas estimativas é o da
maxima verosimilhanca, que maximiza a probabilidade de observar os dados amostrais.

A funcdo de verosimilhanga, que mede essa probabilidade, é expressa por:

n

L) = [= - mot

i=1
sendom; = P(Y; = 1).
A funcdo de verosimilhanca envolve um produto de varias probabilidades. Trabalhar
diretamente com produtos pode ser matematicamente complicado, especialmente
quando se esta a otimizar a fungdo para encontrar os coeficientes S, By, -, Bx. Por isso,
de forma a facilitar os calculos, é usual aplicar-se o logaritmo natural (In) a funcdo de

verosimilhanca, obtendo-se a log-verosimilhanca:

n

L) = ) yenGm) + (1 = yIn(1 = m),

i=1
que transformou a multiplicacdo das probabilidades numa soma, o que torna o processo
matematico mais simples.
O estimador de maxima verosimilhanca é o veotr de parametros que maximiza esta

funcdo, sendo definido como:

A

B = argmﬁax Yizalyiln(ry) + (1 — y)In(1 — m)].
Este estimador apresenta importantes propriedades assintéticas, nomeadamente:

e Consisténcia: o estimador [? é consistente, isto é, converge em probabilidade
para o verdadeiro vetor de parametros  quando o tamanho da amostra tende
para infinito;

e Normalidade assintética: a medida que o tamanho da amostra aumenta, a
distribuicdo do estimador de mdaxima verosimilhanca aproxima-se de uma
distribuicdo normal multivariada;

e Eficiéncia assintética: o estimador de maxima verosimilhanca é assintoticamente
eficiente, ou seja, atinge o limite inferior de variancia de Cramér-Rao,
apresentando a menor variancia possivel entre todos os estimadores

consistentes assintoticamente normais.

28



Estas propriedades permitem realizar inferéncia estatistica sobre os parametros do
modelo, nomeadamente a construcdo de intervalos de confianga e a realizacdo de testes

de hipoteses, mesmo em amostras de grande dimensao.

Avaliag¢ao do Modelo
A qualidade do ajuste é avaliada por métricas como:

e Curva ROC/AUC

A Curva ROC é uma ferramenta grafica atil para visualizar o equilibrio entre a taxa de VP
e a taxa de FP para diferentes pontos de corte. A AUC é um valor escalar Unico que varia
entre 0 e 1. Este quantifica a capacidade discriminativa do modelo, indicando a
probabilidade de o modelo classificar corretamente um caso positivo face a um negativo
escolhido aleatoriamente. Um AUC superior a 0,7 reflete um bom desempenho do
modelo.

e Teste de Hosmer-Lemeshow

O teste de Hosmer-Lemeshow avalia a calibragdo de modelos probabilisticos, verificando
a concordancia entre as probabilidades previstas e as frequéncias observadas. Este teste
segue uma distribuicdo qui-quadrado, onde os valores nao significativos indicam a
adequacado do modelo (ou bondade do ajustamento) as observa¢des empiricas.

. R?
As medidas de R? avaliam a melhoria explicativa de modelos estatisticos em rela¢do a
um modelo nulo. Dois exemplos amplamente utilizados em modelos logisticos sao:
- McFadden: quantifica o ganho relativo na funcdo log-verosimilhangca ao incluir
preditores;
- Nagelkerke: expande o McFadden ao reescalar o intervalo para [0, 1].
Ambos indicam a propor¢do da variancia explicada encontrada em modelos lineares

generalizados.

Além disso, é também realizada uma andlise de residuos com o objetivo de identificar

observacoes mal ajustadas, violacGes de pressuposto e problemas estruturais.

Ap0ds a apresentacdo da fundamentacgao tedrica, é necessario compreender como é que

esses conceitos se traduzem em etapas praticas de construcdo e validacdo do modelo.
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Assim, na sequéncia, descrevem-se os procedimentos adotados para a aplicacdao do
modelo em contexto empirico, desde o ajustamento inicial até a selecdo de variaveis e

definicdo do modelo final.

1) Ajustar o modelo nulo

O ajuste do modelo nulo na regressao logistica serve para estabelecer uma linha de base
de comparacao, avaliar a significancia das varidveis independentes, calcular métricas de
ajuste e interpretar a variabilidade explicada. Este modelo ndo inclui nenhuma variavel

preditora e a sua férmula de calculo é dada por:

log (1%) = Bs,

onde p é a probabilidade de o evento de interesse acontecer.

2) Selecdo das varidveis independentes (analise univariada)

O objetivo desta etapa é identificar as varidveis que tém uma relacao estatisticamente
significativa com a variavel resposta, a um nivel de significancia previamente definido.
Para cada varidvel independente realiza-se o teste da razdo de verosimilhanca de modo
a comparar o modelo nulo com o modelo que inclui apenas essa variavel.

Antes de aplicar o teste, os valores ausentes na varidvel sdo removidos da amostra, o
modelo é reajustado com os dados disponiveis, e verifica-se se a inclusdo da variavel
resulta numa diferenca estatisticamente significativa em relagdo ao modelo nulo.

No que concerne a varidveis com elevada propor¢ao de valores omissos, ndo existe um
limite absoluto para a sua exclusdo. Trata-se de um julgamento baseado no equilibrio
entre o valor informativo da varidvel e a quantidade de dados que se estd disposto a
perder. Em casos de missing values excessivos, as varidveis podem ser descartadas a

priori, por inviabilizarem a manutencdo de uma amostra robusta para a analise.

3) Modelo multiplo preliminar e exclusdo de varidveis

O processo de construgdo do modelo multivariado final segue uma abordagem de
eliminacdo retroativa (stepwise backward), com base nos principios de parcimodnia e

significancia estatistica.
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O modelo inicial numa primeira fase inclui todas as varidveis identificadas como

significativas na andlise univariada e de seguida é realizada uma selecdo iterativa de

variaveis mediante a aplicacdo do teste da razdo de verosimilhanca. Adota-se um critério

de significancia mais rispido, garantindo assim uma maior robustez.

4) Agrupamento de categorias

Para o agrupamento de categorias de uma varidvel categdrica na regressao logistica, o

procedimento utilizado envolve duas etapas que sdo executadas de forma conjunta: a

analise dos coeficientes estimados e a verificacdo da significancia estatistica. Essas

etapas permitem identificar categorias com efeitos semelhantes sobre a variavel

dependente, facilitando o agrupamento.

Analise dos coeficientes estimados

Apdbs a execucdo do modelo de regressdao logistica, sdo analisados os
coeficientes atribuidos a cada categoria da varidvel categdrica, exceto a
categoria de referéncia. Esses coeficientes refletem oimpacto de cada categoria
na variavel dependente em relacdo a categoria de referéncia. Categorias com
coeficientes similares indicam efeitos parecidos, sugerindo a possibilidade de
agrupamento

Verificacdo da significancia estatistica

Além de analisar a magnitude dos coeficientes obtidos na regressao logistica, é
fundamental avaliar a significancia estatistica de cada um deles. Esse
procedimento é realizado através do teste de razdo de verosimilhanca, que
permite verificar se a inclusdao de uma variavel ou categoria especifica melhora
de forma relevante ao ajustamento do modelo. Quando se observa que duas ou
mais categorias apresentam coeficientes semelhantes e valor de p-value acima
do nivel de significancia definido, isso indica que os seus efeitos sobre a varidvel
dependente ndo tém uma diferenca estatisticamente significativa. Ou seja, essas
categorias tém comportamentos equivalentes no modelo. Nesses casos, é
possivel agrupar categorias semelhantes, seja com a categoria adjacente ou com
outra cujo agrupamento seja justificavel, o que simplifica o modelo sem perda de

informacao relevante.
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5) Verificacdo da Linearidade

Para garantir que o modelo de regressao logistica captura de forma adequada a relagdo
entre as variaveis preditivas e a probabilidade de ocorréncia do evento, é essencial
verificar o pressuposto da linearidade. Esta andlise avalia se a relacdo entre cada variavel
e o logit é efetivamente linear. Para o efeito pode aplicar-se o método GAM que ajusta um

modelo de regressao aditiva generalizada (GAM) com a funcdo “logit”.

6) Incorporacao de interacGes

No processo de modelacdo, a incorporacdo de interagdes entre variaveis presentes no
modelo ajuda a compreender melhor como a combinacao de diferentes fatores afeta a
varidvel independente. O objetivo é determinar se a inclusdo dessas interagdes melhora
significativamente o ajuste do modelo. Para alcancar esse objetivo, ajusta-se uma série
de modelos de regressao logistica, cada um contendo diferentes interacoes, e através do
teste de razdo de verosimilhancas, avalia-se a significancia da inclusdo da interagao
relativamente ao modelo sem essa interagao.

Além disso, é fundamental que as interacdes testadas ndo apenas apresentem
significancia estatistica, mas também sejam coerentes com o contexto do problema em
analise. Dessa forma, garante-se que as adicGes ao modelo sejam interpretaveis e Uteis

para a compreensdo do fendmeno em estudo.

7) Verificacdo da qualidade do modelo

Ap0s a inclusao das interagdes significativas no modelo multiplo, o modelo é refinado
para assegurar que o modelo final se ajusta adequadamente aos dados, apresente uma
capacidade discriminativa sdélida e tenha capacidade de fornecer previsdes Uteis e
informativas sobre a gravidade dos sinistros. Essa avalia¢do é essencial para garantir que
o modelo ndo apenas representa de forma precisa a relacdo entre as varidveis preditoras
e a gravidade do sinistro. As principais atividades realizadas nesta etapa incluem:

a. Multicolinearidade

b. Bondade do Ajustamento

c. Capacidade discriminativa

d. Analise de Residuos

e. Validacdo do modelo
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Andlise de multicolinearidade

Para garantir a robustez do modelo final e a confiabilidade dos coeficientes estimados, é
preciso avaliar a presenca de multicolinearidade entre as varidveis independentes. A
multicolinearidade pode inflacionar as varidncias dos coeficientes, dificultando a
interpretagao precisa do modelo.

A avaliagdo da multicolinearidade é realizada pelo cdlculo do VIF (Variance Inflation
Factor). O VIF mede o quanto a variancia de um coeficiente estimado é inflacionado
devido a correlagdo com outras varidveis no modelo.

Em modelos que incluem interagGes ou varidveis com multiplos graus de liberdade (df),
utiliza-se o GVIF (Generalized VIF), uma extensao do VIF para esses casos especificos (Fox
& Monette, 1992). Para facilitar a interpretacdo, o GVIF pode ser ajustado utilizando a
formula GVIF(1/2df)), que normaliza o valor de GVIF em casos de variaveis com mais de
um grau de liberdade. De acordo com Gujarati (2004), valores de VIF superiores a
10 sugerem uma forte colinearidade, o que pode afetar a precisao das estimativas dos
coeficientes. No caso do GVIF, valores de GVIF1/2df)) superiores a 2,5 podem indicar
que as varidveis com multiplos graus de liberdade estdo a apresentar colinearidade

significativa.

Bondade do Ajustamento

e R2 de Nagelkerke
O R? de Nagelkerke é uma adaptacdo do R? tradicional para modelos de regressao
logistica. A sua fungdo centra-se em quantificar a propor¢dao da variancia da variavel
dependente explicada pelo modelo. Esta medida calcula-se comparando a verosimilhanca
do modelo em estudo com a verosimilhanca do modelo nulo. Os seus valores variam entre
0 e 1, onde 0 indica que o modelo nao explica qualquer variabilidade da reposta e 1
corresponde a um modelo com poder explicativo maximo.

e Teste de Hosmer e Lemeshow
Para avaliar o ajuste do modelo, utiliza-se o teste de Hosmer-Lemeshow, que verifica a
adequacdo das probabilidades previstas pelo modelo em relagdo as observacdes reais.

Capacidade discriminativa

e Curva ROC
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A curva ROC (Receiver Operating Characteristic) oferece uma representacao visual da
relacdo entre a sensibilidade e a especificidade do modelo, a medida que se varia o limite
de decisao.

O eixo Y da curva representa a sensibilidade, enquanto o eixo X representa 1 —
especificidade. A linha representada corresponde a curva ROC do modelo, que nos da
uma ideia de quao bem o modelo consegue discriminar entre categorias.

As métricas dadas por este grafico sado:

- Sensibilidade

- Especificidade

- Area sob a Curva (AUC)

Analise de Residuos

e Residuos e influéncia
Realiza-se uma analise detalhada dos residuos para identificar outliers e pontos
influentes que poderiam afetar as estimativas dos parametros. Usa-se métricas como a
distancia de Cook e os residuos de deviance para detetar e analisar essas observacdes

influentes.

Validacdo do modelo

Quando se constréi um modelo, especialmente com muitos dados, ele pode ajustar-se
bem aos dados que ja se tem, mas ndo funcionar tdo bem com novos dados (dados
desconhecidos). Isso é conhecido como overfitting. A validacao é uma forma de verificar
se o modelo funciona bem em novos conjuntos de dados e ndo apenas nos dados

utilizados para o construir.

e Bootstrap
Neste sentido, para avaliar a robustez do modelo comeca-se por realizar uma validacao
com a técnica bootstrap. O bootstrap é uma técnica onde se criam “observacdes”
diferentes dos dados originais (com reposicdao) para simular como o modelo se
comportaria com novos dados. Essa técnica permite calcular a estabilidade do modelo e

verificar o seu desempenho.
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O modelo é validado utilizando o procedimento de “Backwards Step-down”, que escolhe
aleatoriamente um nimero de observagdes para ajustar os modelos e comparar os varios

ajustamentos.

e Calibracao

A calibragdo avalia a precisdo das probabilidades previstas por um modelo, verificando

se estas efetivamente se aproximam das frequéncias observadas na realidade.

e Validacdo Cruzada
A avaliacdo do modelo é conduzida por meio da matriz de confusdo, que permite
observar as previsodes feitas pelo modelo em comparagdao com os casos reais. Além disso,
métricas como accuracy, sensibilidade, especificidade e F;-score podem ser calculadas
para fornecer uma visdo abrangente do desempenho do modelo. Essas métricas ajudam
a identificar a eficacia do modelo na detecdo de casos da categoria que se quer prever,

permitindo uma analise critica das suas capacidades preditivas.

8) Apresentacdo do modelo final

Na etapa final da regressao logistica ocorre a sistematizacdo e comunicacao dos
resultados obtidos apds todas as fases de ajuste, selecdo de varidveis e validacdo do
modelos, sendo assim apresentado o modelo final ajustado. Esta fase ndo se restringe
a exposicdo dos coeficientes e medidas estatisticas, mas envolve a interpreta¢do dos
efeitos estimados e a avaliagdo da qualidade do ajustamento e do desempenho
preditivo. O modelo final apresentado é, portanto, aquele que concilia a capacidade
explicativa, a parcimdnia e a robustez, assegurando que os resultados sejam consistentes

e com potencial de generalizacdo para novas observagoes.

Para concluir, a regressao logistica destaca-se como um método estatistico essencial para
modelar varidveis bindrias, superando as limitacdes da regressdo linear ao garantir
probabilidades entre 0 e 1. Desenvolvida a partir de fundamentos histdricos de Galton e
Cox, a sua estrutura baseia-se na funcao /ogit e permite interpretar coeficientes como

impactos nas odds do evento. Este modelo oferece flexibilidade para incorporar
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multiplas variaveis e técnicas avanc¢adas, como regularizagcdo, embora exija atencdo aos

pressupostos como € o caso da linearidade no /ogit e na independéncia das observacgdes.

3.2 Modelo Estatistico de Regressdo Logistica de Firth

Na regressao logistica bindria, modela-se a probabilidade de ocorréncia do evento (por
exemplo, sinistro grave) em fung¢do de um vetor de covaridveis x; € RP. Para i =
1, ...,n, considere-se Y; € {0,1} com

Y; ~ Bernoulli(rr;), m; = P(Y; = 11| x;).

O modelo logistico especifica

logit(ry) = log (72—) = 1 = fo + 27,
logo
_exp (1)
) = T exp )

A estimacdo por maxima verosimilhanca (MV) baseia-se na fungao de verosimilhanca

n

L) = | |m @i - m@n,

=1

ou, equivalentemente, no logaritmo da verosimilhanca

() = 2{3’1108 (m:(B)) + (1 = ylog (1 — m;(B))}.

Em problemas de eventos raros (classe positiva muito pouco frequente) e/ou com
muitos preditores categoéricos, podem ocorrer duas dificuldades cldssicas:
1. Viés de pequena amostra (small-sample bias): os estimadores de maxima
verosimilhanca em modelos logisticos podem apresentar viés ndo negligencidvel
quando o numero de eventos é pequeno relativamente ao numero de

parametros.
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2. Separacdo (completa ou quase completa): existe separacdo quando uma
combinacdo linear das covaridveis discrimina perfeitamente as classes (por
exemplo, sempre que xassume certo padrao, Y = 1). Nesse caso, a
verosimilhanga aumenta sem limite e os estimadores de maxima verosimilhanca
divergem (alguns f — +o0), levando a instabilidade numérica e probabilidades
previstas extremas (= 0 ou = 1).

A regressao logistica penalizada de Firth foi proposta precisamente para reduzir o viés

de pequena amostra e fornecer estimacgdes finitas mesmo sob separacao.

Ideia central: penaliza¢ao de Jeffreys e corre¢do de viés
O método de Firth pode ser visto como uma maximizacdo de uma verosimilhanca

penalizada. Em vez de maximizar (), maximiza-se:

1
te(B) =£(B) +5log 11(A) |,

onde I(f)é a matriz de informagdo de Fisher (observada/esperada, dependendo da
formulacdo; na pratica usa-se a forma padrao em GLM).
Esta penalizacdo corresponde ao uso do prior de Jeffreys (em interpretacdo Bayesiana)
e, do ponto de vista frequentista, produz uma reducao do viés de primeira ordem do
estimador de méaxima verosimilhanca.
No caso do modelo logistico, definindo:

e Xcomo a matriz de desenho n X p(incluindo intercepto),

o W(B) = diag(w;(B))com w;(B) = m;(B)(1 — m;(B)),

tem-se a informacao de Fisher:

I(B) = XTW(B)X.

Equagdes de estimagao: scores modificados

Na regressao logistica padrao, o vetor score é:

a4
Up) = % —XT(y—m),

ondey = (yq, .., yp)em = (my, ..., m,)".
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Em Firth, o termo penalizador altera o score para:
10

Ur(B) = UA) +3575

log [ I(B) I.

Uma forma pratica e muito usada desta correcdo é escrever o score modificado como:

Ur(B) =X"(y —m + @),

em que a = (ay, ..., a,) " é um vetor de ajuste dependente da alavancagem, com

=G

onde h;sdo os elementos diagonais da matriz “hat” do GLM:

H=WY2X (X"TWX)"*XTW'2, h;, = H;,.

Assim, o método de Firth equivale a resolver:

X"(y—m+a)=0,

0 que pode ser interpretado como uma substituicdo do vetor-resposta efetivo (ou

“pseudo-resposta”) que corrige o viés.

Consequéncias praticas: o que distingue Firth da logistica classica
A regressdo logistica penalizada de Firth distingue-se da regressao logistica classica em
aspetos criticos para eventos raros:

e Estimativas finitas sob separacdo: enquanto a mdaxima verosimilhanca pode

divergir, Firth produz ,[?Ffinitos, estabilizando o ajuste.

e Reducdo do viés em amostras pequenas: especialmente relevante quando o

numero de eventos é reduzido (por exemplo, poucos sinistros graves) e existem
muitos niveis/categorias.

e Probabilidades previstas menos extremas: ao contrariar a separacdo e a

instabilidade, evita previsdes degeneradas (0/1), o que tende a beneficiar a
calibracao.

e Inferéncia _mais robusta em eventos raros: a estimacao finita permite obter

intervalos e testes mais interpretdveis quando a maxima verosimilhanca falha.
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Importa notar que Firth é uma penaliza¢do diferente de Ridge/Lasso: ndo visa selecdo
de varidveis, mas sim correcdo de viés e robustez sob separacdo. Em termos
conceptuais, enquanto Ridgellasso impdem uma penalizacdo direta em || B |I, Firth

penaliza pela geometria da informagdo (via log | I(B) I).

Testes e intervalos: razio de verosimilhanga penalizada (preferivel)
Em modelos com Firth, € comum reportar inferéncia baseada em razdo de

verosimilhanga penalizada:

A= 2[{)F(BF) - fF(.BAF,o)]’

onde fr o€ o estimador sob a hipdtese nula (por exemplo, removendo uma covariavel).
Esta abordagem tende a ser mais estavel do que testes Wald em cenarios com eventos

raros e/ou separagao.

Enquadramento no presente trabalho
Dado o forte desequilibrio entre categorias (sinistros graves como categoria
minoritaria), a logistica penalizada de Firth foi incluida como alternativa ao GLM logistico
classico por duas razoes:
(i) aumentar a estabilidade do ajuste e reduzir viés em presenca de poucos
eventos;
(ii) (i) garantir estimacgdes finitas e previsdes probabilisticas Uteis mesmo em

cendrios onde combinagdes de covaridveis possam induzir separacao.

Assim, Firth constitui uma opc¢do metodoldgica particularmente adequada quando se
pretende manter um modelo interpretdavel, com coeficientes e odds ratios bem

definidos, num contexto de eventos raros.

Em sintese, a logistica de Firth é uma versdao “regularizada” da regressao logistica
classica, desenhada para funcionar melhor quando ha poucos eventos, reduzindo viés e
evitando coeficientes infinitos em situacdes de separacdo — um risco real em dados

muito desequilibrados.
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3.3 Machine Learning

Os modelos de machine learning usados neste trabalho enquadram-se nos modelos de
aprendizagem supervisionada.
A maioria dos modelos considerados (Random Forest, C5.0 e XGBoost) baseiam-se em
arvores de decisdo, ou seja, estruturas em darvore que representam conjuntos de
decisdes.
Para garantir a validade estatistica dos modelos e evitar o overfitting, os dados originais
sdo divididos em dois subconjuntos distintos:

e Treino: estes dados sdao usados para a construcgao e ajuste do modelo.

e Teste: estes dados que ndo foram usados na fase de construcdo e ajuste do

modelo sdo usados para avaliar a capacidade de generalizacdo do modelo.

3.3.1 Naive Bayes

O Naive Bayes é um algoritmo de machine learning baseado no Teorema de Bayes, que
permite calcular probabilidades condicionais “invertidas”. Desenvolvido a partir do
trabalho do matematico Thomas Bayes (século XVIII), o teorema revolucionou a
inferéncia estatistica ao propor como atualizar as probabilidades iniciais (probabilidade
a priori) com base em evidéncias observadas, resultando numa probabilidade a

posteriori. A formula central é dada por:

P(X|Y) x P(Y)

PV IX) = =5

onde:
e P(Y): probabilidade a priori — estimativa inicial da probabilidade da categoria Y
e P(X|Y): verosimilhanga — probabilidade de observar as carateristicas X dado
gue a categoriaéyY
e P(X): evidéncia — probabilidade marginal das carateristicas X, atuando como
fator de normalizacao
e P(Y|X): probabilidade a posteriori — probabilidade atualizada da categoria Y

apos considerar as evidéncias X
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Para evitar que probabilidades condicionais sejam zero quando uma carateristica nao
aparece numa determinada categoria, Pierre-Simon Laplace introduziu conceito de

“suavizacdao” (Laplace smoothing). A técnica adiciona um valor a (geralmente ¢ = 1) as

contagens de frequéncia:

Contagem (X;emY) + a ,
P(X;|Y) = i=1,...,¢
Total de contagensemY + a X ¢

onde ¢ é o numero de valores Unicos, ou categorias, que X; pode assumir. Assim, mesmo
gue uma carateristica esteja ausente no treino, a sua probabilidade nao sera zero. O

modelo passa a considerar uma probabilidade minima, permitindo que outras

carateristicas influenciem a classificacao.

Na pratica, estamos a classificar sinistros rodoviarios como “M/FG” ou “FL” com base
em variaveis especificas. Supondo que as variaveis analisadas sdo “tipo de acidente”,

“Veiculos Pesados” e “Hora” (c = 3), e que no treino temos:

- “Atropelamento”: 20 observagoes
- “Veiculo pesado”: 25 observacoes total de observacgdes = 60
- “20h-6h": 15 observacgdes

o “FL”

- “Atropelamento”: 2 observagdes

- “Veiculo pesado”: 1 observacao. total de observagdes =3

- “20h-6h": 0 observacdes

A probabilidade de “Veiculo Pesado = Sim” em sinistros com “FL” sem a suaviza¢ao de

Laplace seria:

0
P(Veiculo Pesado | FL) = 3= 0.
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Com a suavizacdo de Laplace (@ = 1) ajusta-se as contagens adicionando @ = 1 a cada

palavra e atualiza-se o denominador:

0+1

1
3+1x3 g Wi

P (Veiculo Pesado | FL) =

Mesmo que “Veiculo Pesado = Sim” nunca tenha sido registado em sinistros de “FL”
durante o treino, a sua probabilidade agora ndo é nula. Isso permite que outros fatores
(como “Atropelamento” ou “Hora”) contribuam para a decisdo final, evitando que o

modelo falhe ou fique bloqueado por causa de uma varidvel ausente.

Este algoritmo adapta-se a diferentes tipos de dados através das seguintes variantes,

cada uma projetada para lidar com carateristicas especificas:

e Multinomial Naive Bayes

Foi projeto para trabalhar com dados discretos, como contagem de palavras em textos.
O seu funcionamento baseia-se no calculo de probabilidades a partir das frequéncias do

evento.

e Gaussian Naive Bayes

Variante do algoritmo projetada para lidar com dados continuos, como temperatura,
valores biométricos (altura, peso...). O seu funcionamento assume que os dados seguem
uma distribuicdo normal (Gaussiana), o que permite estimar probabilidades
condicionais a partir da média (1) e da variancia (o2) de cada carateristica por categoria.
Um aspeto critico é a sua sensibilidade a outliers, ja que a distribuicio Gaussiana
pressupde simetria nos dados. Se um valor extremo estiver presente, a estimativa de
probabilidade pode ser distorcida, afetando a precisdao do modelo. Para mitigar isso, é
recomendado aplicar técnicas de pré-processamento, como normalizacdo ou remogao

de outliers, antes do treino.

e Bernoulli Naive Bayes

E especializado em carateristicas bindrias, como presenca ou auséncia de palavras num

documento. O seu funcionamento baseia-se na estimativa de probabilidades
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condicionais para cada estado bindrio (X; = 1 ou X; = 0) dentro de uma categoria. Uma

diferenca crucial em relagdo com Multinomial Naive Bayes é que o Bernoulli ignora a

frequéncia de ocorréncia, focando apenas na existéncia ou ndo de uma carateristica.

A tabela que se segue, Tabela 2, apresenta uma comparagdo entre os trés principais

tipos de Naive Bayes — Multinomial, Gaussiana e Bernoulli. Esta comparagao permite

compreender qual a versao do Naive Bayes é mais adequada dependendo da natureza

dos dados (discretos, continuos ou bindrios) e do contexto da aplicagao.

Tabela 2 — Comparagdo de algoritmos de Naive Bayes.

Multinomial

Naive Bayes

Gaussian
Naive Bayes

Bernoulli
Naive Bayes

Tipos de Dados

Dados discretos

(contagens/

Dados continuos (valores

Dados binarios

frequéncias) numeéricos) (Oou1)
Distribui¢do de
- Distribuicdo multinominal Distribuicdo Gaussiana ¢ .
Suposi¢ao Bernoulli
(contagens) (normal) -
(presenca/auséncia)
Classificacdo de texto, Diagndstico médico, Detecdo de fraudes,
A andlise de sentimentos, reconhecimento de classificagdo binaria de
Aplicagdo N ~ .
categorizagao de padrdes em sensores, documentos, filtros de
documentos previsdo de falhas spam simplificados
Probabilidade de
alcul A . - I
Caleulo de Frequéncias relativas com | Média (p) e variancia (o2) presenca
P(X;|Y) o : P(X; = 1]Y)
suavizagdo de Laplace por categoria i
ou auséncia
P(X; =0]Y)

Tratamentos de

Suavizacao de Laplace

N&o aplicével (usa

Suavizacao de Laplace

para evitar S , .
Zeros distribuicdo continua opcional
P(Xi|Y) = 0 ¢ ) P
Sensivel a outliers e
e m Ignora ordem de palavras o ~ A .
LimitagOes distribui¢cdes ndo Ignora frequéncia

em texto

Gaussianas

Sendo Y a varidvel resposta do tipo nominal (categorias a serem previstas) e X =

(X4, ..., Xy) o vetor das varidveis explicativas (carateristicas), o algoritmo funciona da

seguinte forma:
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Probabilidades a priori (P(Y))

O objetivo é calcular a probabilidade inicial P(Y) de cada categoria de Y com
base nos dados de treino, geralmente estimada pela frequéncia relativa. O

calculo é:

Numero de observagdes da categoria y no treino

P(Y=7v) =
( y) Total de observagodes no treino

Este procedimento reflete a distribuicdo das categorias no treino. Se uma

categoria é rara, a sua probabilidade a priori serd baixa.

Probabilidades condicionais

Nesta etapa o objetivo é calcular a probabilidade de observar as carateristicas X
dado que a categoriaéY = y.

Para varidveis continuas, assume-se uma distribuicdio normal (Gaussiana) e
estimam-se a média e a variancia por categoria;

Para varidveis discretas, utiliza-se as contagens de frequéncia, muitas vezes com

a suavizacdo de Laplace para evitar probabilidades iguais a zero.

Classificacdo (Célculo da Probabilidade a posteriori - (P(Y]X))

Na ultima fase o objetivo é determinar a categoria mais provavel para uma nova
observacdo com carateristicas X, utilizando a férmula do Teorema de Bayes:

PX|Y=y) x P(Y=y)
P(X) ’

PY=yl|X)=

onde a categoria com maior probabilidade é atribuida a observacgao.

Este algoritmo é simples e eficiente, ideal para problemas como a classificagdo da
sinistralidade rodoviaria com multiplas variaveis preditivas. Ele é escaldvel e possui
complexidade computacional linear, sendo adequado para grandes volumes de dados,
requerendo poucos dados de treino, o que o torna util em cenarios com dados limitados.
Além disso, é robusto a ruidos e outliers devido a suposicdo de independéncia.

Porém, a sua principal limitacdo é a suposicdo de independéncia entre as caracteristicas,
conhecida como “independéncia condicional”, o que pode prejudicar a precisdo quando

as variaveis estdo correlacionadas. Além disso, o Naive Bayes pode ter dificuldades para
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fornecer boas estimativas de probabilidade quando ha desequilibrio de categorias ou
guando uma categoria ndo aparece no treino (problema conhecido como “zero-
frequency”, mitigado pela suavizacdo de Laplace). Outra limitacdo é a sensibilidade a
preditores irrelevantes: se muitas varidveis ndo informativas foram incluidas, o

desempenho pode degradar-se.

3.3.2 Random Forest

O Random Forest, é um algoritmo de machine learning, mais especificamente de
ensemble learning (aprendizagem por conjunto), proposto por Leo Breiman e Adele
Cutler em 2001 (Breiman, 2001). Para compreender este algoritmo primeiro é
necessario entender o seu comportamento basico: arvores de decisdo.

De acordo com o IBM (2024) uma arvore de decisdo é um modelo ndo paramétrico de
aprendizagem supervisionada, utilizado para classificacdo e regressdo. A sua estrutura
assemelha-se a uma estrutura em forma de arvore, que inicia com um né raiz, seguindo-
se 0s nos internos (ou nds de decisdo) em que cada um dos nds representa um teste
aplicado a uma variavel explicativa, cada ramo representa o resultado desse teste e cada
no folha (ou né terminal) contém o resultado, i.e., uma etiqueta de classe (para
classificacdo) ou um valor continuo para regressdo. No entanto, apenas uma arvore de
decisdo é altamente sensivel a pequenas variagcdes nos dados de treino e é precisamente
para superar essa limitacdo que o Random Forest foi criado.

O algoritmo Random Forest combina multiplas arvores de decisdao para produzir
previsdes mais precisas e robustas do que uma arvore isolada. A esséncia do Random
Forest reside na diversificacdo: ao construir varias arvores com subconjuntos aleatérios
dos dados e varidveis, o modelo reduz a variancia e evita o overfitting.

O Random Forest opera em trés etapas principais: bootstrap aggregating (bagging),
construcdo de arvores com sele¢do aleatdria de features e agregacao de resultados.
Cada etapa é projetada para introduzir aleatoriedade e diversidade, garantindo que as

arvores sejam independentes e complementares.

1) Booststrap Aggregating (Bagging)

e Amostragem com reposicdo: cada arvore é treinada com um subconjunto dos

dados de treino, gerado pela amostragem com reposicao (técnica de bootstrap).
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Isso significa que, para uma base de dados com n observagdes, cada subconjunto
terd n amostras. No entanto, devido a reposicdo, algumas observagdes originais
podem ser selecionadas varias vezes, enquanto outras ndo sao selecionadas.
Quando n — oo, a probabilidade de uma observacdao nunca ser escolhida é de
aproximadamente 0,37. Deste modo, em média, para treinar cada arvore sao
usadas aproximadamente 63% das observacdes originais e as 37% restantes ndo
sdo usadas nesse treino. A este conjunto de observacoes excluidas da-se o nome

de out-of-bag (Hastie et al., 2009).

e \Versatilidade: a amostragem aleatdria garante que cada darvore “veja” dados
ligeiramente diferentes, reduzindo a correlagao entre as arvores e melhorando a

generalizagao do modelo.

2) Selegao Aleatoria de Variaveis (Feature Randomness)
Em cada divisdao de um né da drvore, apenas um subconjunto de m variaveis (geralmente
m = vk, sendo k o nimero total de variaveis para classificacdo) é considerado. Essa
selegdao aleatdria evita que uma Unica varidvel dominante influencie todas as arvores,
promovendo diversidade (Breiman, 2001).

e Critério de divisdo: para cada subconjunto de varidveis, a arvore escolhe a melhor

divisdo usando critérios como Gini impurity (classificacdo) ou reducdo da

variancia (regressao).

3) Construgdo de Arvores e Agregacio
Cada arvore é construida independentemente até a sua profundidade maxima, o que a
torna propensa a overfitting. No entanto, a agregacao de multiplas arvores compensa
esse viés e tenta fazer previsGes usando os dados amostrados. Isso reduz o risco de

overfitting, um problema em arvores de decisao Unicas.

4) Previsdo final:
A etapa final de previsdo requer a agregacdo das arvores que é determinado pela
natureza da varidvel resposta. Quando se estd perante uma classificacdo, a variavel

resposta é categorica e por isso cada arvore do ensemble produz uma previsdo de
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categoria. A previsao final neste caso é obtida pela moda das previsdes individuais, ou
seja, é a categoria mais frequente entre todas as arvores.

Quando se estd perante uma Regressao, a varidvel é continua e cada arvore produz uma
previsdo numérica. A previsao final nestas situacdes é dada pela média aritmética das

previsdes.

Os hiperparametros do Random Forest sdo configuracdes que controlam o treino do
modelo, influenciando a sua precisdo, velocidade e capacidade de generalizagdo. Entre
0s mais relevantes estao:
e Numero de arvores (N.gimators): Mais arvores aumentam a estabilidade, mas
tém custos computacionais.
e Numero de Variaveis por Divisao (m): controla a diversidade. Valores menores
reduzem a correlacdo entre arvores.
e Profundidade Maxima das Arvores: limitar a profundidade previne overfitting

individual, porém arvores muito rasas podem estar sujeitas a underfitting.

A escolha adequada destes parametros é essencial para equilibrar o desempenho e a
complexidade, evitando overfitting ou underfitting.
Esta abordagem permite avaliar a relevancia de cada varidvel para as previsdes do
modelo. A importancia de cada varidvel é calculada de duas formas:
e Gini Importance: mede quantas vezes uma varidvel reduz a impureza (Gini) nas
divisOes, ponderada pelo numero de amostras afetadas.
e Permutation Importance: avalia a queda na precisdo do modelo quando os

valores da varidvel sdo aleatoriamente permutados (Lundberg; Lee, 2017)

Relativamente as vantagens e limita¢Oes, destaca-se positivamente a robustez a dados
ruidosos e outliers, pela capacidade de lidar com relagdes ndo lineares entre variaveis e
pela avaliacdo interna de desempenho via amostras out-of-bag. Contudo, a sua principal
limitagdo reside no custo computacional elevado para grandes bases de dados e na
interpretabilidade reduzida, ja que a “floresta” de arvores dificulta a explicacdo de

previsdes individuais.
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Devido a sua versatilidade, o Random Forest é amplamente utilizado em areas como
medicina (diagndstico de doencas), finangas (avaliagdo de risco de crédito), ecologia
(modelacdao de habitats) e marketing (segmentacdo de clientes). Na sinistralidade
rodoviaria, esta técnica é aplicada para:
e |dentificar combinagbes de fatores de risco (ex: geometria da via, condi¢des
ambientais, comportamento do condutor, etc).
e Priorizar intervencdes preventivas (ex: classificacdo do troco por nivel de perigo).
e Prever sinistros graves com base em padrées complexos (ex: detecdo de relagdes
ndo lineares).
A sua eficiacia em grandes conjuntos de dados, aliada & capacidade de quantificar a
relevancia de varidveis, consolida-o como uma ferramenta analitica valiosa. Contudo, a
complexidade computacional inerente a construcdo de diversas drvores e a menor
interpretabilidade comparativamente a modelos individuais representam compromissos
a considerar.
Em sintese, o algoritmo equilibra precisdao preditiva e generalizagdo, tornando-se
indispensavel para problemas de classificacdo e regressdo, onde a estabilidade e

adaptabilidade a cendrios heterogéneos sao prioritarias.

3.3.3 Algoritmo C5.0

O algoritmo C5.0, desenvolvido por Ross Quinlan na década de 1990, representa a
evolugcdo mais avanc¢ada dos algoritmos de drvore de decisdo criados pelo autor. Quinlan,
reconhecido como pioneiro da area do machine learning, estruturou uma linha
cronolégica de modelos, iniciada com o ID3 (lterative Dichotomiser 3) em 1986, seguido
pelo C4.5 em 1993 e culminando no C5.0 (Quinlan, 1993; Kuhn & Johnson, 2013).

No que concerne aos antecedentes, os primeiros algoritmos de Quinlan surgiram para
resolver desafios centrais de aprendizagem supervisionada: criar modelos interpretdveis
capazes de prever uma varidvel dependente com base em atributos descritivos. O ID3
introduziu conceitos inovadores, como o uso de entropia e o ganho de informacdo para
selecionar divisdes 6timas na arvore.

A entropia é uma medida de impureza ou desordem num conjunto de dados S.

Matematicamente, calcula-se através da equacdo que se segue:
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C
Entropia (Y) = — Z pilog,(p;), 0 < Entropia(Y) < log,(c),
i=1

onde p; é a proporgao de observagdes da categoria i da varidvel Y, e ¢ o nimero de
categorias distintas de Y.
Por exemplo, supondo que 85% dos condutores nao estiveram envolvidos em sinistros
no ultimo ano (categoria “Nao”) e 15% estiveram envolvidos (categoria “Sim”), ou seja:
- Categoria “Nao”: p,s, = 0,85,
- Categoria “Sim”: pgim = 0,15,
o valor da entropia é:

Entropia (Y) = —(0,85 x log,(0,85) + 0,15 x log,(0,15)) ~ 0,609.

Neste caso (S =~ 0,609), a entropia estd mais préxima do minimo (0) do que do maximo
(1), indicando que ha uma alta homogeneidade nos dados. A maioria dos condutores
partilha um comportamento semelhante (ndo se envolvem em sinistros), o que reduz a
desordem na previsdo de comportamentos futuros.
Se as categorias estiverem igualmente distribuidas (ex.: 50% “Sim”, 50% “Nao”), a
entropia € maxima (1). O valor minimo de entropia (0) é obtido quando todas as
observagGes pertencem a uma Unica categoria.
O ganho de informacgao, por sua vez, quantifica quanto um atributo X reduz a entropia
de Y apds dividir os dados S com base na varidvel X (Quinlan, 1993). Por exemplo, ao
utilizar o atributo “Idade do condutor” (condutores até 25 anos vs. condutores com mais
de 25 anos) para dividir os registos de sinistros, calcula-se:

1) A entropia original do conjunto completo;

2) A entropia de cada subconjunto (condutores até 25 anos vs. condutores com

mais de 25 anos);

3) A diferenga entre a entropia original e a média ponderada das entropias dos

subconjuntos.

Y,
Ganho (Y,X) = Entropia (Y) — Z || 1:|| Entropia (Y,)

v € Valores(X)

O atributo com maior valor é selecionado para a divisdao, pois maximiza a

homogeneidade dos subconjuntos.
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Apesar da inovagdo, a abordagem do ID3 apresentava falhas criticas ligadas justamente

a esses conceitos:

Viés do ganho de informacdo: atributos com muitos valores Unicos geravam
ganhos artificialmente altos, mesmo sem relevancia preditiva;

Atributos continuos: exigia discretizagdo manual prévia, o que limitava a sua
aplicacdo em dados numéricos;

Auséncia de poda (pruning): resultava em arvores excessivamente complexas,
sem mecanismos de simplificagdo, reduzia a generalizagdo. Aqui eram
capturados ruidos em vez de padrdes;

Missings: ignorava missings e ndo suportava tarefas de regressdo (Quinlan,

1996).

O C4.5 (1993) superou essas limitagcdes com avancos significativos, nomeadamente:

Discretizacdo automatica de atributos continuos: o algoritmo identifica, de forma
dindmica, o ponto de corte ideal para varidveis numéricas, transformando-as em
condi¢bes bindrias durante a constru¢dao da arvore. Esse processo é realizado
mediante a ordenacdo dos valores e avaliagdo de possiveis pontos de corte entre
as diversas categorias distintas, selecionando aquele que maximiza o ganho de
informacao.

Ganho da razdo (Gain Ratio), ajusta o viés de atributos multivariados,
penalizando aqueles com alta cardinalidade (grande quantidade de dados com

minima repeticdo).

Gain Ratio (X) = Ganho(Y,X)
an ratio ~ Splitinformation(X)’
com
K
. . _ |5: |5;
Split Information (X) = — — X log, —,
s |S] N
i=1
em que:

k: nimero de subconjuntos (ramos) gerados pela divisdo do atributo X;

|S;|: nimero de instancias no i-ésimo subconjunto (ramo);

|S|: nimero total de instancias no né.
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e Poda pds construcdo (post-pruning) para simplificacdo;
e Tratamento probabilistico valores omissos (missings), distribuindo as
observacdes conforme a frequéncia observada;

e Geracdo de regras para maior interpretabilidade (Quinlan, 1993).

Apesar dos avangos, o C4.5 mostrou-se inadequado para determinadas carateristicas:

e Ineficiéncia computacional: consumo excessivo de memodria em grandes
conjuntos de dados;

e Poda ndo otimizada: a poda post-hoc gerava desperdicio de recursos ao
simplificar a drvores apenas apds a sua construcao completa;

e Desequilibrio de categorias: o desempenho era insatisfatério em categorias
minoritarias;

e Falta de suporte nativo a técnicas de ensemble (combinacdo de multiplos
modelos para melhorar a performance): impossibilitava a implementacdo de
abordagens como boosting (técnica que combina modelos sequencialmente,
onde cada novo modelo corrige os erros do anterior) ou bagging (método que
combina modelos independentes treinados em subconjuntos aleatérios dos
dados), limitando a sua capacidade de reduzir a variancia e melhorar a

generalizacdo (Kuhn & Johnson, 2013).

Foi nesse contexto que surgiu o C5.0, como uma tentativa de enderecar as limitacGes
praticas do C4.5 e tornar o algoritmo mais eficiente, escaldvel e competitivo frente a
novas abordagens emergentes em machine learning.

Neste sentido, o C5.0 é um algoritmo de classificacdo baseado em arvores de decisdo. O
seu principal objetivo é prever varidveis dependentes categéricas a partir de atributos
preditivos, construindo uma estrutura hierdrquica que divide os dados conforme a
capacidade discriminativa das variaveis. A sua eficiéncia em lidar com dados
heterogéneos (numéricos e categoricos) e a sua robustez contra o overfitting fazem com
gue o mesmo seja utilizado em diversas areas como marketing, medicina, entre outras
(Quinlan, 2014).

A construcdo deste modelo segue uma abordagem recursiva, com etapas que incluem

selecdo de atributos, divisdo de dados e otimizacdo pds-construgao.
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Na preparac¢ado dos dados, os mesmos devem ser estruturados em formato tabular, onde:
e Linhas representam observagoes;
e Colunas correspondem a atributos preditivos e a variavel dependente;
e Os dados podem incluir tanto varidveis continuas como categéricas bem como

missings.

Para a construcdo da arvore, o processo é composto por trés fases:

1) Selecdo de atributos:

A selecdo de atributos é baseada no ganho de informacao, ajustado pelo Gain Ratio para
mitigar o viés em atributos multivariados (Quinlan, 1993).

O atributo com maior Gain Ratio é escolhido, priorizando divisGes que gerem subgrupos
homogéneos.

O processo de selecdo de divisGes envolve a avaliacdo de todas as possiveis divisGes dos
dados para cada atributo, escolhendo a que proporciona o maior ganho de informacao.
Essa escolha sequencial dos melhores atributos resulta em uma arvore de decisdo que
hierarquiza as carateristicas mais informativas, refletindo os padrdes subjacentes no

conjunto de dados.

2) Divisdo do conjunto de dados:

O processo de divisdo do conjunto de dados é fundamental para a construcdo da arvore
e difere consoante o tipo de variavel:

- Variaveis categoricas: A divisao é efetuada pelos valores Unicos da variavel. Cada ramo
da arvore corresponde a um valor possivel (ex: para a varidvel “Tipo de veiculo”, seriam
criados ramos para “Veiculo particular” ou “Veiculo comercial”);

- Variaveis numéricas: o processo de divisdo baseia-se na identificagdo de um ponto de
corte 6timo. O algoritmo avalia sequencialmente possiveis pontos de corte ao longo da
distribuicdo dos valores, selecionando aquele que maximiza a homogeneidade (ou
minimiza a impureza) dos subconjuntos. Esta divisdo bindria separa o conjunto de dados
em dois subconjuntos, cada um direcionado para um ramo distinto da arvore, consoante

a veracidade da condicdo de desigualdade estabelecida.
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3) Critérios de finalizacao:

O processo repete-se recursivamente até que pelo menos um dos seguintes critérios seja
satisfeito:

e Todos os exemplos num nd pertengcam a mesma categoria;

e N3ao haja atributos para divisao;

e Limites predefinidos sejam atingidos.

ApOds a construgdo inicial da arvore, o C5.0 aplica técnicas de otimizagdo para garantir
equilibrio entre precisdao e generalizagdo:

e Poda (Pruning): remove ramos redundantes para evitar overfitting. O critério
baseia-se numa avaliacdo estatistica de custo-complexidade. Um ramo é
considerado redundante se a sua remog¢dao ndo provocar um aumento
significativo da taxa de erro de classificagdo, ou seja, se a sua contribui¢cdo para a
reducdo daimpureza (ex: entropia) for inferior a um determinado limite de ganho
minimo predefinido.

e Peneiramento (Winnowing): descarta atributos que contribuem pouco para a

reducdo de entropia, aumentando a simplicidade e eficiéncia da arvore final.

O C5.0 é a culminac¢dao de uma trilha evolutiva iniciada por Ross Quinlan com o ID3 e o
C4.5 que resolve limitagOes historicas e estabelece novos padres em modelos de
classificacdo. Ao integrar avancos como o Gain Ratio (corrige o viés de atributos
multivariados), a discretizacdo automatica de varidveis continuas e técnicas de poda
otimizada, o C5.0 destaca-se pela eficiéncia computacional, interpretabilidade e
robustez contra overfitting. A sua capacidade de hierarquizar atributos informativos,
aliada a métodos como o peneiramento, produz arvores adaptaveis a dados

heterogéneos, mantendo o equilibrio entre precisdao e generalizagao.

3.3.4 XGBoost

O XGBoost (Extreme Gradient Boosting) emergiu como um dos algoritmos mais
influentes na histéria do machine learning, revolucionando a forma como problemas de

classificacdo e regressao sao abordados. Desenvolvido em 2014 por Tiangi Chen e Carlos
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Guestrin, este algoritmo combina a robustez tedrica do Gradient Boosting com
otimiza¢des computacionais inovadoras, tornando-o uma ferramenta indispensavel em
cenarios que exigem precisao, eficiéncia e escalabilidade.

A criacdo do XGBoost foi motivada por lacunas no Gradient Boosting tradicional,
proposto por Jerome H. Friedman em 2001. Embora o método de Friedman permitisse
a construcdo iterativa de modelos preditivos precisos, trés desafios persistiam:

e Ineficiéncia computacional: o treino sequencial de arvores (cada nova arvore
corrige os erros da anterior) tornava o processo lento, especialmente em grandes
volumes de dados.

e Fragilidade a overfitting: a falta de mecanismos de controle de complexidade
levava os modelos a memorizar os dados de treino, prejudicando a generalizagao.

e Dificuldade de implementagdo: a auséncia de otimizagGes restringe a

escalabilidade (Friedman, 2001).

Para superar tais limitacdes, Chen e Guestrin (2016) introduziram trés avancos

fundamentais:

e Paralelizacdo e otimizacao computacional

No Gradient Boosting tradicional, cada arvore é treinada sequencialmente, ou seja, uma
arvore s6 comeca a ser construida apds a conclusao da anterior. O XGBoost substitui o
treino sequencial por estratégias paralelas em multiplos niveis:

- Paralelizacdo de nivel de drvore: enquanto as drvores sdo construidas sequencialmente,

o calculo das melhores divisdes (splits) em cada no é paralelizado. O algoritmo divide o
conjunto de dados em partes menores (blocos — estruturas de dados compactas) e avalia
divisdes para diferentes carateristicas simultaneamente utilizando diferentes nucleos do
processador CPU (Chen & Guestrin, 2016). Isso permite que os calculos das divisdes

sejam feitos mais rapidamente, acelerando o processo.

- Algoritmo aproximado para encontrar divisGes: utiliza histogramas para agrupar os

dados em categorias de intervalo. Isso simplifica os cdlculos, reduzindo a complexidade
de O(n) para O(logn), onde n é o numero de amostras (Chen & Guestrin, 2016). Isso

significa que, em vez de se analisar cada amostra individualmente — o que levaria um
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tempo proporcional ao tamanho do conjunto de dados (O(n)), o algoritmo consegue
encontrar divisdes de forma mais rapida, examinando apenas uma pequena parte dos

dados a cada passo (0(logn)).

- Suporte a ambientes distribuidos: o treino do modelo por ser dividido entre varias

maquinas, em vez de ser executado em apenas um computador. Isso é feito através de
um cluster (grupo de maquinas que trabalham juntas), permitindo que grandes
qguantidades de dados sejam processadas de forma mais rapida e eficiente, pois cada

maquina executa uma parte do trabalho.

e Técnicas avangadas de regularizag¢do (L1/L2)
A regularizacdo é uma técnica para evitar que o modelo se torne demasiado complexo e
perca a capacidade de generalizagao.
O XGBoost incorpora termos de penalizacdo na funcdo de perda (/oss function) para
evitar overfitting:

- Regularizacdo L1 (Lasso) adiciona uma penalizacdao proporcional ao valor absoluto dos

coeficientes do modelo. Isso forca o algoritmo a eliminar varidveis irrelevantes.

- Regularizacdo de L2 (Ridge) penaliza o quadrado dos coeficientes, suavizando o impacto

de varidveis extremas, evitando que outliers dominem o modelo.

A equacdo da perda é dada por:

n k k
Loss = Z L(yy, 9 +/IZ |bj| +a Z b},

onde:

L: é a funcdo de perda ou custo,

e L(y;¥;): errode predicdo,

e J:penalidade L1(Lasso) para eliminar variaveis irrelevantes,
e «: penalidade L2 (Ridge) para suavizar coeficientes,

e k:numero de varidveis do modelo,

e b;: peso associado a j-ésima variavel.
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e Sistema de gestdao de memdria e eficiéncia
O sistema de armazenamento foi otimizado através de:

- Estrutura de dados em blocos: armazena os dados em blocos compactos, permitindo

acesso rapido e reduzindo a sobrecarga de membria.

- Formato de coluna comprimido: comprime colunas de dados poupando espaco,

reduzindo o espaco do disco.

- Cache-Awareness: algoritmos antecipam quais os dados que serdo necessarios,

armazenando-os para acesso rapido.
Um exemplo pratico é a organizacdo de registos de sinistralidade rodoviaria. Em vez de
registos desorganizados, eles sdo agrupados por género (blocos) e colocados em

ficheiros identificados, facilitando a procura.

O artigo de 2016 “XGBoost: A Scalable Tree Boosting System”, detalha estas inovacgdes,
posicionando o XGBoost como uma ferramenta dominante. De forma resumida, a tabela
abaixo, Tabela 3, compara o XGBoost com o Gradient Boosting tradicional, evidenciando
as melhorias introduzidas pelo XGBoost em termos de desempenho, regularizacdo e

eficiéncia computacional.

Tabela 3 — Comparagdo dos algoritmos de Gradient Boosting.

Carateristica Gradient Boosting Tradicional XGBoost
N . , Paraleliza o cdlculo das divisdes dos nds e
Paralelizagdo Sequencial por arvore e .
distribui o treino por clusters
o N Adiciona termos L1/L2 diretamente na
Regularizagao N&o suportada - oy
fungdo perda para controlar o overfitting
Memodria Armazenamento nao otimizado Estruturas de dados compactas
Usa histogramas para aproximar as
Algoritmo de Splits Busca exata de divisbes 0(n) divisdes, reduzindo tempo de 0(n) para
O(logn)
Tratamento de , Deteta automaticamente padrdes para
. Requer pré-processamento . .
valores omissos lidar com valores omissos

Em suma, o XGBoost surge ndo apenas como uma evolucdo técnica do Gradient Boosting
tradicional, mas como uma resposta sistémica para desafios histéricos: ineficiéncia

computacional, overfitting e falta de escalabilidade. Ao integrar paralelizagdo de nivel de
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arvore, algoritmos otimizados para cdlculo de divisdes e suporte a ambientes
distribuidos, o modelo acelera o treino e permite a modelagdo de grandes volumes de
dados. A regularizacdo L1 e L2, por sua vez, introduz equilibrio entre precisdo e

generalizacdo, mitigando riscos de overfitting.

3.4 Técnicas de Reamostragem

No campo da andlise de dados, um elevado desequilibrio de categorias impacta
significativamente a construcdo de modelos preditivos, pois os modelos tendem a ser
mais sensiveis a categoria maioritdria, subestimando as carateristicas da categoria
minoritaria. Por outras palavras, o modelo é exposto a muitos mais exemplos da
categoria maioritaria do que da categoria minoritaria, criando um viés nos algoritmos,
que aprendem mais facilmente os padrées mais frequentes nos dados.
Diante desse desafio, diversas técnicas foram desenvolvidas para equilibrar a
distribuicdo das categorias e melhorar o desempenho dos modelos preditivos. Entre as
abordagens mais comuns, destacam-se:

e Oversampling
O oversampling é uma técnica que aumenta a quantidade de observacdes da categoria
minoritaria, frequentemente replicando as observagbes existentes ou criando
observagoes sintéticas.

e Undersampling

O undersampling é uma técnica que envolve a reducdo do nimero de observacdes da
categoria maioritdria, eliminando algumas observagées para equilibrar as categorias.
Embora essa técnica possa ser eficaz para simplificar o problema, ela também pode

resultar na perda de informagao.

Ambas as técnicas visam criar um conjunto de dados equilibrado, permitindo que os
algoritmos de machine learning identifiquem padrdes presentes em todas as categorias
de forma mais precisa. No entanto, a aplicacdo indiscriminada dessas técnicas pode levar
a problemas como o overfitting e underfitting. O overfitting ocorre quando o modelo se
ajusta em demasia aos dados de treino. Como resultado, o modelo apresenta um bom

desempenho nos dados de treino, mas um desempenho fraco nos novos dados. Isso faz
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com que o modelo ndo consiga gerar boas previsdes. Ja o underfitting acontece quando
o modelo é muito simples para capturar as complexidades dos dados e quando ndo esta
bem ajustado aos dados, resultando num modelo com baixo desempenho tanto nos
dados de treino quanto em novos dados.

Para superar essas limita¢des, tém sido propostas técnicas mais sofisticadas e eficientes,
como o ROSE (Random Over-Sampling Examples) e o SMOTE (Synthetic Minority Over-
sampling Technique). Essas técnicas geram novas observagdes sintéticas para a categoria
minoritaria, preservando ao mesmo tempo as carateristicas intrinsecas dos dados

originais.

3.4.1 ROSE (Random Over-Sampling Examples)

A técnica ROSE (Random Over-Sampling Examples), apresentada em 2014 pelos autores
Nicola Lunardon, Giovanna Menardi e Nicola Torelli (Lunardon et al., 2014), foi proposta
para mitigar o problema de categorias desequilibradas em conjuntos de dados de
classificacdo, nas diversas aplicacdes de métodos de machine learning. Ao contrario dos
métodos tradicionais que se limitam em replicar o nimero de observagdes da categoria
minoritaria ou a reduzir dados da categoria maioritaria, o ROSE combina elementos de
bootstrap com a estimativa de densidade kernel (KDE) para gerar novas observacdes
sintéticas mais realistas. Esta abordagem considera tanto os dados continuos quanto
categoricos, reduz o risco de overfitting e melhora a capacidade de generaliza¢do dos

modelos de machine learning, através:

1) Criacdo de dados sintéticos mais diversificados:

O processo tem inicio com a divisdo da base de dados em conjuntos de treino e teste,
podendo essa divisao ser estratificada ou temporal, conforme a natureza dos dados. O
oversampling é entdo aplicado exclusivamente ao conjunto de treino, garantindo que o
conjunto de teste permanece inalterado e representativo da distribuicdao original . o que
evita problemas de data leakage.

No treino, procede-se a selecdo aleatéria de observagdes da categoria minoritdria
através de bootstrap - técnica de amostragem aleatéria com reposicio onde as
observacdes podem ser selecionadas diversas vezes. De seguida, é calculada a KDE em

cada ponto selecionado de forma a obter uma distribuicdo de probabilidade suavizada
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a volta de cada observacgao original, permitindo que os novos pontos sejam gerados nas
proximidades de forma que sejam diversificados e realistas. Por exemplo, existe um
registo de um sinistro rodoviario ocorrido as 3h da manha, o ROSE neste caso cria casos
sintéticos com hordrios proximos, tal como 2h ou 4h da manha (valores ligeiramente
diferentes), seguindo a distribuicdao natural dos dados originais. O modelo que resulta
deste procedimento aprende a reconhecer padrdées mais amplos em vez de memorizar

casos especificos, melhorando significativamente a capacidade de generalizagao.

2) Balanceamento da distribuicao das categorias:

O numero de novos casos sintéticos gerados depende do grau de equilibrio pretendido
nos dados, i.e., 0 qudo proximo se pretende que esteja o numero de observagdes nas
duas categorias (minoritaria e maioritaria). Por exemplo, considerando um cenario onde
existem 100 observacdes de vias sem sinistros graves e apenas 10 observacdes de vias
com sinistros graves, o ROSE pode gerar 90 observagdes sintéticas de vias com sinistros
graves, cada uma com pequenas variacdes em relacdo aos dados originais. Este valor ndao
é fixo, depende do método de balanceamento escolhido assim como do objetivo do
modelo. Este balanceamento faz com que a categoria minoritaria tenha peso suficiente
no processo de treino. O resultado é um conjunto de dados onde ambas as categorias

contribuem de forma equilibrada para o modelo.

3) Suavizacdo da fronteira de decisdo:

Um dos aspetos inovadores do ROSE é a capacidade de lidar com a presenca de zonas
ambiguas — regiGes do espago de carateristicas (feature space) onde as observagées de
diferentes categorias se sobrepdem, tornando a classificacao incerta. Esta abordagem é
particularmente relevante em varias situacbes do quotidiano, como a avaliacdo da
sinistralidade rodovidria, uma vez que a distingdo entre as categorias raramente é bem
definida, o que pode fazer com que as fronteiras de decisdo criadas sejam artificiais e

rigidas.

Em resumo, o ROSE destaca-se como uma abordagem sofisticada e eficaz para lidar com
conjuntos de dados desequilibrados, superando as limitagcdes dos métodos tradicionais

de oversampling. Ao integrar bootstrap com a KDE, esta técnica ndo sé equilibra a
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distribuicdo entre as categorias, como também gera observagdes sintéticas que
refletem a complexidade dos dados. A grande diferenca esta na capacidade de modelar
zonas ambiguas, onde as fronteiras entre as categorias sdo naturalmente difusas. O
resultado € um modelo com maior capacidade preditiva, que aprende transicdes

graduais em vez de divisOes abruptas.

3.4.2 SMOTENC (Synthetic Minority Over-sampling Technique-Nominal

Continuous)

A técnica SMOTE-NC foi desenvolvida em 2002 por Chawla, Bowyer, Hall e Kegelmeyer
para superar uma limitacdo do SMOTE tradicional: a incapacidade de processar variaveis
categéricas em conjuntos de dados (como tipo de veiculo, ou estado da via). Enquanto
o SMOTE tradicional é eficaz na geracdo de observa¢des sintéticas para varidveis
continuas por meio de interpolacdo linear, ele falha ao lidar com varidveis discretas,
podendo gerar novos valores de forma inapropriada, que resulta em dados invalidos
(exemplo: “0,5” entre “chuva” e “nevoeiro”). O SMOTE-NC resolve essa lacuna com trés
adaptacdes metodoldgicas propostas.

Considerando que existem k; varidveis continuas e k, varidveis nominais, com k; +

k, = k, o algoritmo SMOTE-NC envolve os seguintes passos:

1) Célculo da mediana dos desvios padrées

Para cada variavel continua Xj (j =1,...,ky) na categoria minoritaria, calcula-se o
desvio padrao (sj). De seguida, calcula-se a mediana de todos esses desvios, X; =
mediana(sl, ...,skl), gue serd posteriormente usada como referéncia para penalizar a

diferenca nas varidveis nominais. A mediana é escolhida pela sua robustez a outliers.

Diferentemente da média, a mediana ndo é distorcida por valores extremos.

2) Calculo da distancia euclidiana modificada e do vizinho mais préximo

Esta etapa visa quantificar a desigualdade entre as amostras da categoria minoritaria,
integrando varidveis continuas e categéricas numa Unica métrica de distancia adaptada.
Deste modo, a distancia euclidiana modificada entre a amostra X (referéncia) e amostra

Zn (vizinha) é dada por:
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onde:

ke k2
d(X, Zy) = Z(Xj —Zp ) szjﬂmjfs,
=1

j=1

Xj e Zy,, sdo os valores da j-ésima variavel continua nas amostras X e Z,,.
IXjIij € uma fung¢do binaria que assume o valor:

- 1 se a categoria da j-ésima varidvel nominal difere entre as amostras X e Z,,;

- 0 se as categorias sdo idénticas nas duas amostras X e Z,,,.

X; € a mediana dos desvios padrao das varidveis continuas, calculada
previamente, garantindo que a penalizacdo por diferengas categdricas seja
proporcional a variabilidade natural dos dados numéricos. De notar que a
penalizagdo X é incorporada no calculo da distancia euclidiana modificada
tantas vezes quantas as variaveis nominais cujas categorias diferem entre X e Z,,,.
Além disso, a incorporagdo de X garante que diferengas categoricas sejam
ponderadas de forma equivalente a uma diferenga de X; unidades nas variaveis

continuas.

feq

O termo Zj - (X — ij)2 corresponde a distancia euclidiana classica entre as

varidveis continuas, ponderando diferencas maiores quadraticamente.

O termo Z?illxszmjfs adiciona uma penalizagao fixa (X;) para cada variavel
categodrica em que X e Z,, divergem. Essa penalizagdo reflete a variabilidade
médias das varidveis continuas.

A fun¢do indicadora (I) transforma diferencas categdricas em valores numéricos
binarios (0 ou 1), permitindo que sejam integradas a métrica de distancia. Cada

diferenca categorica adiciona X, a distancia total.

Apos calcular as distancias para todas as observagdes Z,,, da categoria minoritaria, os K

vizinhos mais préximos sao selecionados com base nas menores distancias euclidianas

modificadas, conforme proposto por Chawla et al. (2002). Esses vizinhos sdo utilizados

na etapa seguinte para gerar observacoes sintéticas, preservando a coeréncia semantica

das categorias.

61



A escolha do numero de vizinhos (K) tem um impacto direto na qualidade das
observacgoes sintéticas geradas. Este parametro, definido a priori pelo utilizador, deve

equilibrar dois riscos:

e Valores baixos de K (ex.: K =1)

As observacg0Oes sintéticas tornam-se quase réplicas da observacao original, o que pode
ser problematico se essa observagao contiver ruidos ou outliers. Por exemplo, se Z,, for
um erro de medi¢dao (como um registo incorreto de velocidade), a observacgado sintética
reproduzird esse erro, que resultard em dados artificias pouco diversificados e

potencialmente enviesados.

e \Valores altos de K (ex.: K > 15)

As observacGes geradas sdo mais genéricas, pois combinam informacdes de multiplos
vizinhos. O risco aqui é perder detalhes importantes da categoria minoritdria. Por
exemplo, num conjunto de sinistros graves, um K muito elevado pode misturar padrdes
distintos. Apesar das amostras serem mais diversificas, as mesmas vao ser menos

especificas.

3) Geracao da amostra sintética

Esta etapa visa criar observacbes sintéticas para a categoria minoritaria, combinando
informac¢des da amostra de referéncia X e dos seus K vizinhos mais préximos. O
processo é dividido em duas partes, conforme o tipo de variavel:

e Geracdo de variaveis continuas

Para cada variavel continua X; (j =1,...,ky), anova observagdo sintética é feita
por meio de uma interpolagdo linear estocastica entre o valor da amostra de
referéncia X; e o valor do vizinho selecionado Zy, :

Xsynj = Xj + V(Zinnj = X;),
onde y é um numero aleatdrio uniformemente distribuido no intervalo [0, 1].
O objetivo é introduzir diversidade nas observacdes sintéticas, evitando
sobreposi¢ao excessiva com as observagdes originais; e preservar a distribuicao

estatistica das varidveis continuas da categoria minoritaria.
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e Geracdo de variaveis nominais:

Para cada variavel nominal, Xj(/' =1, ...,k;), ovalor da nova amostra sintética é
definido como a moda entre os K vizinhos mais préximos da amostra de
referéncia X:

Xsyn; = mode(Zy},Zy;, ..., Z;).

yn,j
Em resumo, conforme detalhado na Tabela 4, o SMOTE-NC surge como uma evolugdo
crucial no campo da reamostragem para dados desequilibrados, superando as
limitacdes do SMOTE tradicional ao integrar estratégias adaptativas para conjuntos de
dados mistos (continuos e categodricos). Ao incorporar uma distancia euclidiana
modificada — que pondera diferencas categéricas com base na variabilidade das
varidveis continuas — e ao definir valores nominais sintéticos via moda dos vizinhos, a
técnica preserva a coeréncia semantica dos dados, evitando a geracdo de categorias
invalidas ou irrealistas.

A eficdcia desta técnica é respaldada por aplicacdes recentes em dominios criticos, como
saude, finangas, onde a heterogeneidade de varidveis é comum.

Na Tabela 4, apresentam-se as principais caracteristicas das técnicas SMOTE, SMOTE-NC

e ROSE.

Tabela 4 — Comparagdo das técnicas de reamostragem para dados desequilibrados.

Critério

Tipos de Varidveis

SMOTE

Apenas variaveis

SMOTENC

Variaveis continuas e

ROSE

Variaveis continuas e

Suportadas continuas. categoricas. categoricas.
Geragdo de - .
¢ . Utiliza a moda (valor mais g
Amostras Ignora variaveis .. Observagdes sintéticas
e .. frequente) dos vizinhos,
Sintéticas para categdricas ou gera ) baseadas na
o L preservando categorias M
Variaveis valores invalidos. distribuicdo original.

Categoricas

validas.

Distancia Euclidiana

Distancia Euclidiana

Métrica de o e modificada incorporando Aplica estimativas de
s .. padrdo (sé varidveis . .
Distancia , penalizagbes para densidade de kernel.
continuas). . . -
diferencgas categoéricas.
. Mantém a coeréncia Preserva relagdes
~ Nao preserva N . .
Preservagao . ] semantica, evitando contextuais e
A yn integridade de L . L
Semantica categorias intermediarias combinagdes

categorias.

ou invalidas.

plausiveis.
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Critério

Tratamento de
Dados Mistos

SMOTE

Ineficaz em datasets

com variaveis mistas.

SMOTENC

Integra variaveis continuas e
categoricas de forma
equilibrada.

ROSE

Lida naturalmente com
dados mistos,
mantendo coeréncia

Robustez a
Outliers

Sensivel a Outliers
em variaveis
continuas.

Usa a mediana dos desvios
padrdo, mais robusta a
outliers.

Robusto através da
estimativas de
densidade.

Aplicagées Tipicas

Dados puramente
numéricos.

Dados heterogéneos.

Dados heterogéneos.
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4. Metodologia de Modelacao Preditiva

4.1 Preparacao dos Dados e Desequilibrio

Na fase inicial desta dissertacdo, as andlises exploratdrias focaram-se no
comportamento dos algoritmos de classificagdo quando confrontados com um
acentuado desequilibrio entre categorias. O objetivo primordial passava por
compreender de que forma diferentes abordagens de reamostragem poderiam mitigar
essa despropor¢dao e, consequentemente, melhorar a capacidade dos modelos em
identificar casos raros.
A variavel resposta de interesse é a ocorréncia de um sinistro com vitimas graves ou
mortos, sendo a categoria negativa ocorrer um sinistro com feridos leves. Trata-se um
problema de eventos raros, situacdo que tende a enviesar os classificadores para a
categoria maioritaria (FL) reduzindo a sensibilidade dos modelos (Chawla et al., 2002).
A fim de mitigar este desequilibrio, aplicaram-se duas técnicas de reamostragem:
e ROSE: que gera observagdes sintéticas via bootstrap com suavizagao de kernel;
e SMOTENC: uma extensdao SMOTE cldssico, que lida com conjuntos de dados de
natureza mista, criando observacdes sintéticas por interpolacdo e combinacdo
das variaveis categoricas.
Ambas as técnicas foram testadas sob trés estratégias representativas:
e Oversampling total, em que as categorias ficam aproximadamente equilibradas;
e Oversampling parcial, em que o desequilibrio entre as categorias é atenuado,
mas nao eliminado;
e Combinacdo de undersampling da categoria maioritaria com oversampling da
categoria minoritaria, resultando em categorias equilibradas.
Numa fase inicial do trabalho, a reamostragem foi aplicada antes da divisdao dos dados
em conjuntos de treino e teste. Esta pratica, comum em estudos exploratorios, permitia
trabalhar com um conjunto de dados equilibrado, proporcionando maior estabilidade
durante o treino. Contudo, verificou-se posteriormente que esta estratégia poderia ser
problematica a luz de desenvolvimentos metodoldgicos mais recentes (Demircioglu,
2024). Estes estudos demonstraram que aplicar a reamostragem antes da separagao
treino/teste pode introduzir enviesamentos significativos nos resultados devido ao

fenémeno de data leakage, ou fuga de informacdo. Este problema ocorre quando o
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modelo tem acesso, direta ou indiretamente, a informag¢des do conjunto de teste
durante o processo de treino, comprometendo a validade da avaliacdo final.

No caso especifico do oversampling, o leakage surge porque as observagoes sintéticas
sdo criadas tendo em conta todas as observa¢des da base de dados antes da divisao
treino/teste. Parte da estrutura estatistica do conjunto de teste - incluindo distribuicGes,
relacdes entre varidveis e fronteiras de decisdo - acaba por ser parcialmente incorporada
no treino. Mesmo que o modelo nunca “veja” explicitamente as observagdes de teste,
ele é treinado sobre padrdes artificiais que derivam desses mesmos dados. Como
consequéncia, o desempenho medido pode parecer artificialmente superior ao
verdadeiro, uma vez que o modelo é avaliado sobre informagdes cuja estrutura ja

conhece.

4.2 Divisao Temporal e Validacdo Cruzada

Reconhecendo este risco metodolégico, e face aos novos desenvolvimentos
metodoldgicos descobertos apds uma fase avancada da dissertacdo, a estratégia de
modelacdo foi integralmente revista, garantindo uma separacdo rigorosa entre treino e
teste e eliminando qualquer potencial partilha de informacao.

Para evitar enviesamentos temporais e simular um cenario de aplica¢do real, a divisao
dos dados respeitou a cronologia: treino = 2016-2022 e teste = 2023. Assim, o0 modelo
aprende no passado e é avaliado no futuro, evitando look-ahead bias (Hyndman &
Athanasopoulos, 2021). Todos os pré-processamentos (transformacdo em varidveis
dummy, normalizacGes) foram ajustados apenas no treino e posteriormente aplicados
ao teste, prevenindo data leakage (Kuhn & Johnson, 2013). Dessa forma, a nova
abordagem segue principios consolidados de machine learning e predi¢gdao temporal,
assegurando validade estatistica, consisténcia temporal e comparabilidade entre
modelos. Para além de corrigir o data leakage, esta revisdao metodoldgica procurou
aproximar o processo de treino e validacdo as verdadeiras condi¢des de previsdo. Em
contextos temporais como o da sinistralidade rodoviaria, onde os padrées mudam com
o tempo e novas condi¢des surgem anualmente, é essencial que o modelo aprenda
apenas com o passado e seja testado sobre o futuro.

Dessa forma, a nova sequéncia metodoldgica passou a incluir um conjunto estruturado
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de etapas, concebidas para maximizar a imparcialidade e a robustez do processo de

modelacdo:

Divisdo temporal: os dados de 2016-2022 foram usados para treino, e o ano
2023 foi reservado para teste independente, garantindo que o modelo é
avaliado sobre um periodo totalmente nao visto;

Reamostragem apenas no treino: o desequilibrio (= 2-3 % de sinistros com
feridos graves ou mortos) foi corrigido dentro do treino, preservando a
distribuicdo natural do teste;

Validagao cruzada estratificada (5x2): dentro do treino, cada fold manteve a
proporcdo da categoria rara, assegurando estabilidade estatistica na
comparacdo entre modelos (Kuhn, 2008). A estratificacdo é particularmente
recomendada em cendrios de elevada desproporgdo entre categorias,
garantindo que cada fold contém uma representacdo minima da categoria
positiva;

Reamostragem dentro dos folds: o método ROSE foi aplicado em cada sub-
treino da validagdo cruzada, permitindo que o conjunto de validagao
permanecesse intacto — uma pratica essencial para evitar qualquer fuga de
informacao interna;

Threshold de decisdao: apds a validacdo cruzada, o ponto de corte 6timo (max.
F,-score) foi determinado a partir das predicbes out-of-fold (OOF),
proporcionando uma calibracdo baseada em evidéncia empirica e ndo apenas
heuristica;

Avaliagao final: todas as métricas foram calculadas sobre o teste 2023, com
intervalos de confianga (IC 95 %) obtidos por bootstrap estratificado e analise
de calibracdo (interceto e declive), permitindo quantificar a incerteza associada

as estimativas e avaliar o grau de sobreajuste.

A seguir, foram consideradas trés estratégias distintas de tratamento do desequilibrio,

avaliadas de forma comparavel.
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4.2.1 Estratégia A - ROSE (fora da validacao)

Nesta abordagem, o ROSE foi aplicado uma Unica vez ao conjunto de treino completo,
antes da validacdo cruzada. Este procedimento permite criar um conjunto de treino
equilibrado, combinando oversampling da categoria minoritdria e undersampling da
categoria maioritdria. Serve como configuracdo de referéncia original, permitindo
avaliar o risco de data leakage, ja que as observagdes sintéticas podem incorporar

padrdes presentes em toda a base de treino.

4.2.2 Estratégia B - SMOTENC (fora da validacao)

O SMOTE-NC foi utilizado como alternativa ao ROSE, também fora da validacdo cruzada,
para bases de dados mistas (numéricas + categodricas). O algoritmo cria observagbes
sintéticas da categoria minoritaria interpolando varidveis continuas e combinando
varidveis categoricas por vizinhanca. Esta implementacao foi utilizada através do pacote
UBL, permitindo comparar diretamente com o ROSE e avaliar o efeito de diferentes

técnicas de reamostragem aplicadas de forma global ao conjunto de treino.

4.2.3 Estratégia C - ROSE (dentro de cada fold)

Para eliminar qualquer risco de data leakage, o ROSE foi aplicado apenas dentro de cada
fold da validacdo cruzada, ou seja, sobre o subconjunto de treino interno de cada
interacdo. Dada a raridade da categoria positiva, utilizou-se o método ROSE, que gera
observacOes sintéticas por smoothed bootstrap, suavizando fronteiras de decisdo e
melhorando o ajuste em contextos desequilibrados (Lunardon, Menardi, & Torelli,
2014). A geracdo de amostras foi aplicada apenas dentro de cada fold da validacdo
cruzada, evitando contaminagado entre treino e validagdo. Este cuidado assegura que as
métricas out-of-fold (OOF) sdo imparciais.

Esta abordagem assegura que o conjunto de validacdo permaneca intacto, permitindo
uma avaliagdo mais confiavel da generalizagdo do modelo. Comparar este método com
o ROSE global permite quantificar o impacto de uma segmentacdo temporal correta

sobre métricas como AUC, F;-score e sensibilidade.
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4.2.4 Estratégia D - SMOTENC (dentro de cada fold)

Nesta abordagem, o SMOTENC foi aplicado apenas dentro de cada fold da validacao
cruzada, sobre o subconjunto de treino interno de cada interagdo. Este procedimento
elimina o risco de data leakage, garantindo que as observagdes sintéticas sejam geradas
exclusivamente a partir dos dados de treino de cada fold. O algoritmo interpolou
varidveis numéricas e combinou variaveis categéricas por vizinhanca, permitindo um

equilibrio local e realista.

Esta comparacdo permitiu ndo apenas configurar os efeitos do leakage sobre o
desempenho, mas também quantificar o ganho obtido com a aplicagdo consistente da
reamostragem dentro da valida¢do cruzada, reforcando a credibilidade dos resultados.
Por fim, esta seccao preserva parte dos resultados obtidos na fase inicial, ndo como
evidéncia de desempenho, mas como testemunho da evolugdo metodoldgica do
trabalho. Esses resultados servem para ilustrar de que forma a reamostragem incorreta
e a auséncia de calibracdo do threshold podem afetar significativamente as estimativas
de métricas como AUC, F;-score e precisao, conduzindo a interpretagdes

excessivamente otimistas do desempenho do modelo.

4.3 Modelos e Avaliacao

Para avaliar o desempenho preditivo da detec¢do de sinistros graves, foram ajustados seis
modelos de classificagdo supervisionada, representando métodos lineares, baseados em
arvores de decisdo e probabilisticos:

e Regressdo Logistica (GLM): modelo linear classico que oferece elevada
interpretabilidade e coeficientes que permitem compreender o efeito de cada
variavel nas previsdes (Hosmer, Lemeshow, & Sturdivant, 2013);

e Regressao Logistica Penalizada de Firth: abordagem desenvolvida para corrigir
0 viés que pode surgir em amostras pequenas ou com eventos raros, mostrando-
se particularmente adequada a detecdo da categoria minoritaria (Firth, 1993;

Heinze & Schemper, 2002);
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Random Forest: método baseado na combinacdo (ensemble) de multiplas
arvores de decisao, robusto a variaveis correlacionadas, sendo capaz de capturar
relagdao nao lineares complexas (Breiman, 2001);

Extreme Gradient Boosting (XGBoost): algoritmo de boosting altamente
eficiente, otimizado para grandes volumes de dados e com capacidade para
modelos padrées complexos (Chen & Guestrin, 2016);

Naive Bayes: modelo probabilistico simples, frequentemente utilizado como
baseline pela sua rapidez e facilidade de interpretacdo, servindo de referéncia
para comparar o desempenho com métodos mais sofisticados (John & Langley,
1995);

C5.0 Decision Tree: versao avangadas das arvores de decisdo tradicionais,
oferecendo interpretabialdade e métricas de importancia de variaveis Uteis para

compreender o processo de decisdo do modelo (Quinlan, 1993).

Todos os modelos foram avaliados considerando diferentes dimensdes do desempenho,

com foco especial na categoria minoritaria:

AUC-ROC: discriminacao global entre as categorias;

AUC-PR: avalia o desempenho em categorias raras, sensivel a desequilibrio,
sendo mais adequada que a AUC-ROC em situacdes de eventos raros por medir
diretamente o compromisso entre sensibilidade e precisdao (Saito &
Rehmsmeier, 2015);

F, e Fy-score: compromisso entre precisdao e sensibilidade, com F,-score
priorizando a sensibilidade para detetar sinistros graves mesmo que a custa de
alguma perda de precisao (Davis & Goadrich, 2006);

Brier score: calibragdo probabilistica, medindo a proximidade entre
probabilidades previstas e observadas (Brier, 1950);

Matriz de confusido: interpretacdo operacional, permitindo analisar falsos

positivos e negativos.

A evolucdo na estratégia de definicdo do threshold reflete um alinhamento

metodoldgico mais rigoroso com os objetivos da investigacdo. Inicialmente, o threshold

foi escolhido de forma empirica, procurando equilibrar a sensibilidade e especificidade.

70



Embora intuitiva, essa abordagem genérica ndo otimizava o modelo para a principal
prioridade: detetar os sinistros graves.

Na versdo final, o threshold passou a ser determinado automaticamente pela
maximizagao do F,-score, métrica que atribui maior peso a sensibilidade, valorizando a
capacidade de o modelo identificar corretamente os casos positivos. Hand e Christen
(2018), destacam que essa otimizagao foi realizada exclusivamente com os dados de
treino, através da validagdo cruzada, e o valor obtido foi posteriormente mantido fixo
para avaliar o desempenho no conjunto de teste (ano de 2023). Dessa forma, assegurou-
se uma medicdo imparcial e realista do desempenho do modelo em dados
completamente novos.

A escolha desta métrica reflete também uma decisdo consciente sobre o custo relativo
dos erros: num contexto de seguranca rodovidria, um falso negativo (ndo identificar um
sinistro grave) tem consequéncias potencialmente mais sérias do que um falso positivo
(assinalar incorretamente um caso como grave). Assim, esta calibracdo permitiu
privilegiar a detecdo de sinistros graves, mesmo que isso implique aceitar um aumento

controlado do numero de falsos negativos.

Para garantir a robustez das métricas com contexto de categorias desequilibradas, foram
calculados intervalos de confianca de 95% por bootstrap estratificado com 1000
repeti¢bes (Efron & Tibshirani, 1993), o que permite avaliar a estabilidade dos resultados
e a sua variabilidade estatistica. Além disso, foi analisada a calibra¢do probabilistica do
modelo através do intercept e do declive da regressdo de calibracdo, indicadores que
permitem verificar se as probabilidades previstas estdo bem ajustadas a realidade
observada (Van Calster et al., 2019). Esta andlise ajuda também a quantificar a incerteza
das previsGes e a detetar eventuais sinais de sobreajustamento, garantindo uma

avaliagao mais fidvel do comportamento dos modelos em diferentes cenarios.

4.4 Pesos das categorias (e diferencas face a SMOTENC/ROSE)

A presente abordagem visa eliminar totalmente a geracdo de observacgbes sintéticas,
compensando o desequilibrio entre categorias através da ponderacao das observacdes

na func¢do de perda. Em vez de “criar” novas observagoes artificiais, altera-se o custo
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atribuido aos erros de classificacdo, penalizando de forma mais intensa os erros
cometidos na categoria minoritaria — neste caso, M/FG. Este principio segue a logica
das abordagens de cost-sensitive learning, amplamente reconhecidas na literatura como
alternativas robustas ao oversampling ou undersampling (He & Garcia, 2009; Fernandez

et al., 2018).

Definicdo dos Pesos

Os pesos sdo definidos de modo que cada categoria contribua igualmente para o risco
esperado do modelo, garantindo equilibrio sem inflacionar o tamanho efetivo da
amostra.

Seja n,0 nuimero de observagdes positivas (M/FG) e n_ o nimero de observagdes
negativas (FL) no conjunto de treino. O peso atribuido a cada observacado i é:

0.5/n,, sey; =1 (Mortes/Feridos Graves)
0.5/n_, se y; = 0 (Feridos Leves)

w; = {
Desta forma, a soma total dos pesos por categoria é igual a 0,5, forcando ambas as
categorias a contribuirem de forma simétrica para o risco empirico. Tal estrutura
estabiliza o processo de estimagdo e evita a variancia inflacionada tipica do

oversampling “hard” (King & Zeng, 2001; Branco, Torgo, & Ribeiro, 2016).

Onde aplicar os pesos (e “s6 dentro”) ?

Os pesos sao calculados exclusivamente com base no conjunto de treino de cada fold
durante a validacdo cruzada (v =5, r = 2), assegurando auséncia total de data leakage.
Durante a fase de treino, o modelo é ajustado com ponderacdo das observacdes.
No conjunto de validacdo de cada fold e no teste final (2023), os pesos nao sao utilizados
- 0os modelos sdo apenas aplicados (scored) sem qualquer reponderacdo.
No ajuste final, baseado em todos os dados de treino (2016-2022), os pesos sao
novamente calculados sobre esse periodo e aplicados apenas ao ajuste; o conjunto de

teste (2023) é avaliado de forma neutra, preservando a independéncia temporal.

Modelos e incorporac¢ao dos pesos

A integracdo dos pesos depende da estrutura de cada algoritmo:
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e Regressao Logistica (GLM) - weights = w_tr altera a verosimilhanga ponderada,
equivalendo a replicar fra¢cdes de casos da categoria minoritaria sem aumentar
o tamanho aparente da amostra (King & Zeng, 2001).

o Regressao Logistica de Firth - weights = w_tr combina a correcdo de viés para
eventos raros com ponderagdo por categoria, mostrando robustez em cendrios
de separacdo quase-completa (Heinze & Schemper, 2002).

e Random Forest (ranger) - case.weights = w_tr altera o critério de divisdo e o
processo de bagging, permitindo que cada arvore reflita a importancia relativa
das categorias sem ajustar manualmente probabilidades (Wright & Ziegler,
2017).

e XGBoost - weights = w_tr é transmitido diretamente ao booster, permitindo uma
forma mais granular do parametro global scale pos weight, adaptada a
distribuicdo efetiva do treino (Chen & Guestrin, 2016).

e (5.0 - aceita weights = w_tr de forma nativa, ajustando as estimativas de
entropia em funcdo das ponderacgdes.

e Naive Bayes - ndo suporta pesos diretos na implementacao do caret; neste caso,
foram fixadas probabilidades a priori iguais (prior = c(0.5, 0.5)), garantindo

neutralidade no desequilibrio inicial.

Seleg¢ao do threshold
Para manter a comparabilidade entre cendrios e assegurar uma avaliagao imparcial,
seguiu-se o mesmo protocolo de decisdo ja estabelecido:

e Validacdo OOF (com pesos):

O threshold foi escolhido para maximizar o F,-score, que privilegia a
sensibilidade. Para evitar thresholds extremos, aplicaram-se restricdes leves,
como uma taxa minima de precisdo e um numero minimo de positivos
previstos no conjunto OOF.

o Teste (2023):
No conjunto de teste, o threshold foi definido usando o percentile matching,
ou seja, pelo quantil da distribuicdo de scores que produz uma taxa prevista

positiva proxima de 3% (andlise principal) e 5% (andlise de sensibilidade).
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Caso a distribuicao de scores seja quase uniforme, aplicam-se fallbacks hierarquicos:
(i) usar o quantil direto 1 — rate no teste;

(ii) se necessario, adotar o threshold F,-score obtido na validagdao OOF.

Métricas e intervalos de confianga
Para lidar com o desequilibrio entre as categorias, foram consideradas duas abordagens
complementares:
e aponderacdo de categorias (Pesos), que ajusta a fungdo de perda sem alterar
a estrutura original dos dados originais;
e astécnicas de reamostragem sintética (ROSE e SMOTENC), que geram novas

observacoes artificiais para reforcar a categoria minoritaria.

As principais métricas utilizadas para avaliagao foram:
e PR-AUC (mais informativa em contextos de categorias raras, Saito &
Rehmsmeier, 2015);

e ROC-AUC, precisao, sensibilidade, F;-score, G-mean, accuracy e Brier score.

Os intervalos de confianga a 95% sao obtidos por bootstrap estratificado no teste
(B =1000), com corre¢do automatica da direcao das probabilidades sempre que o ROC-

AUC< 0,5, substituindo p por 1 — p.

A Tabela 5 sintetiza as principais diferengas entre as duas abordagens utilizadas para
lidar com o desequilibrio das categorias. Esta comparacdo permite avaliar as vantagens
e limitacGes de cada abordagem, auxiliando na escolha da estratégia mais apropriada

para diferentes cendrios e objetivos de analise.

Tabela 5 - Ponderagdo de categorias versus técnicas de reamostregm

Dimensdo SMOTENC/ ROSE

. . Cria observacgdes artificiais
. Apenas dados reais; modifica a . ~
Dados utilizados . (interpolagdes no SMOTE-NC;
funcdo de perda.
amostragem kernel em ROSE).
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Dimensdo PESOS SMOTENC/ ROSE

Nulo se calculado dentro de | Elevado se aplicado fora dos folds ou

Risco de leakage cada fold; ndo gera novas antes da separac¢ao temporal
linhas. (corrigido nesta investigacao).
. Menor variancia e melhor Maior variancia; pode distorcer a
Variancia e . 5 . s .
] - calibragao, sobretudo em fronteira de decisdo e exigir
calibragao ] ) . o
GLM/Firth. calibragdo adicional.
. ) Util em modelos sensiveis ao
Modelos mais GLM, Firth, RF, XGB e C5.0 ) .
. . balancgo, mas suscetivel a overfitting
adequados integram pesos nativamente. local
ocal.
Natureza da Ajuste de custo Reamostragem (altera¢do da
correc¢ao (reponderacgao). distribuicdo empirica).

Em sintese, a ponderacdo de categorias constitui uma abordagem mais conservadora e
estatisticamente coerente para lidar com desequilibrios severos, mantendo a
integridade amostral e a interpretabilidade dos coeficientes (He & Garcia, 2009; Branco
et al., 2016). Embora técnicas sintéticas como SMOTENC e ROSE possam aumentar a
sensibilidade, fazem-no frequentemente a custa da calibracdo e da precisdo, sendo
menos adequadas quando se pretende comunicacdo transparente de probabilidades ou

guando a integridade temporal da amostra é critica.

4.5 Calibracao isotonica das probabilidades

O balanceamento por pesos 0,5/0,5 altera a funcdo de perda e, com isso, o baseline das
probabilidades previstas. Em modelos de arvores/ensembles - e mesmo em GLM sob
forte desequilibrio - € comum obter scores mal calibrados (sub- ou sobre-confiancga). Por
isso, ap0s treinar cada modelo com pesos, calibrdmos as probabilidades por regressao
isotdnica, um método ndo paramétrico que aprende uma transformacdao mondtona das
scores para aproxima-las a probabilidades bem calibradas (Zadrozny & Elkan, 2002;
Niculescu-Mizil & Caruana, 2005). Ao contrario do Platt scaling (logit), a isotdnica ndo
impde forma funcional, acomodando relacdes ndo lineares entre score e probabilidade

(Platt, 1999; Kull, Silva Filho, & Flach, 2017).

Protocolo sem data leakage
Para evitar leakage, o calibrador é aprendido apenas com previsdes OOF (out-of-fold)

do periodo de treino:
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e Geracdo OOF (v=5,r=2, com pesos):

Em cada fold, ajusta-se o modelo no treino do fold com pesos e prevé-se a
probabilidade no validation do mesmo fold. Agregando todos os folds, obtém-se
pares (p;, ;) sem contaminagdo (Zadrozny & Elkan, 2002).

e Correcdo de direcdo (robustificacdo):

Se ROC-AUC < 0,5 nas OOF, inverte-se a dire¢do dos scores (p « 1 —p),
garantindo monotonia entre score e probabilidade.

e Ajuste isotdnico (PAV):

Ajusta-se g:[0,1] = [0,1]que minimiza Zi(yl- — g(p;))?, sob a restricdo de
monotonia ndo decrescente. O algoritmo Pool-Adjacent-Violators (PAV) produz
uma fungdo em degraus § (Zadrozny & Elkan, 2002).

Se os scores OOF tiverem variancia quase nula (modelo degenerado), define-se
g(p) = fit(prevaléncia OOF); todas as saidas sdo truncadas a [107%,1 — 107°].

e Aplicacdo no teste (2023):

As probabilidades no teste, Py, S3ao corrigidas na mesma dire¢do e
transformadas por P, = §(Prest)- A calibragem é independente da escolha de

threshold e anterior a analise de trade-off (PR/ROC, F,, etc.).

Avaliagao da calibragao
e Brier score (Brier, 1950) é uma métrica que combina resolucdo e calibracdo

(valores menores sdao melhores):
n
. 1 A A2
Brier = — > (Vi = Peali)
n
i=1

e Interceto (calibration-in-the-large) e declive (calibration slope):

Ajusta-se, no teste, aregressdo onde @ = 0 e f = 1 indicam calibragdo ideal.

IOgit()’) = a+ .8 IOgit(ﬁcal)'
Onde:

- B < 1: overconfidence (probabilidades demasiado extremas);
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- B > 1: underconfidence (probabilidades “encolhidas”).

O intercetp também pode ser interpretado como corre¢do de base-rate: a = logit(y) —

Iogit(ﬁcal)'

e Gréficos de confiabilidade (opcional): curvas observada vs. prevista por bins de

Peal @uUxiliam inspegdo visual da calibragem; foram utilizados essencialmente para
verificacdo qualitativa, ndo para decisdo.

e Incerteza: métricas no teste (incluindo Brier) tém [C95% por bootstrap
estratificado, refletindo a variabilidade amostral sem supor normalidade

assintotica.
Porqué isotdnica (e ndo apenas Platt sclaing)?

A calibragdo isoténica nao assume forma funcional entre score e probabilidade, sendo
preferivel quando o mapeamento é n3o-linear (situacdo comum com arvores/boosting

e com reponderag¢do por pesos).
O risco de sobreajuste da isotdnica é mitigado por:

(i) treino OOF (ndo usa o teste);
(ii) restricdo de monotonia;

(i)  truncagemem [1076,1 — 107°].

Platt (logistic scaling) é mais parcimoniosa e por vezes suficiente para modelos quase
lineares (e.g., GLM); contudo, pode subajustar padrdes sistematicos de ma calibragem
quando a relacdo verdadeira ndo é logito-linear (Niculescu-Mizil & Caruana, 2005; Kull

et al., 2017).

Modelos sem calibragdo isotdnica (logisticos e Firth)

Nesta seccdo do estudo, optou-se deliberadamente por nao aplicar calibragdo isoténica
aos modelos logisticos ou de Firth, tanto na versdo base como na versdo com interag¢des
e pesos de categoria. Esta decisdao fundamenta-se em razbes metodoldgicas e

conceptuais claras:

77



e Modelos probabilisticos por construgao.
Tanto a regressao logistica como o modelo de Firth sdo modelos paramétricos
probabilisticos, em que a liga¢do logit garante que a saida p = Iogit_l(X,B)ja'
corresponde a uma estimativa da probabilidade condicional P(Y =1 | X).
Diferentemente de algoritmos ndo paramétricos (e.g., Random Forest, XGBoost),
estes modelos produzem previsdes naturalmente calibradas, salvo situaces
extremas de separacdo quase completa (King & Zeng, 2001).
e Auséncia de amostras sintéticas.
Ao contrdrio dos cenarios com SMOTENC ou ROSE, em que a gera¢do de
observacoes artificiais altera a distribuicdo empirica das categorias e pode
distorcer as probabilidades previstas, o presente pipeline com pesos de
categorias mantém integralmente os dados reais. Os pesos ajustam apenas a
funcdo de perda (penalizando mais fortemente os erros na categoria
minoritdria), sem inflacionar o numero efetivo de observagées nem modificar a
base de cdlculo probabilistica.
e Corregao de viés em eventos raros (modelo de Firth).
O estimador de Firth (penalizacdo de Jeffreys) reduz o viés de maxima
verosimilhanga em amostras pequenas ou altamente desequilibradas,
melhorando simultaneamente a estabilidade dos coeficientes e a calibracao
intrinseca das probabilidades (Heinze & Schemper, 2002; Puhr et al., 2017).
e Invariancia das métricas ao escalonamento monotoénico.
As métricas utilizadas (PR-AUC, ROC-AUC, F;-score, G-mean) dependem apenas
da ordenagdo das probabilidades, sendo invariantes a transformacdes
monotdnicas, ou seja, uma calibracdo isotdnica ndo alteraria os resultados
substantivos, apenas a escala das probabilidades.
Assim, a exclusdao da calibragdo isoténica garante maior comparabilidade entre os
modelos logisticos e de Firth, concentrando a anadlise na contribuicdo das interacbes e
dos pesos de categorias para o poder discriminativo e equilibrio entre sensibilidade e

precisao.
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Interagdo com pesos de categoria

e A ponderagdo 0,5/0,5 altera a verosimilhanca durante o treino (custo por
categoria), o que pode deslocar as probabilidades previstas da base rate
observada no teste.

e A calibragem isotdnica reancora as probabilidades num mapeamento orientado
por dados sem violar a ordenac¢do (monotonia). Isso é crucial quando as decisGes
operacionais dependem de thresholds por taxa prevista positiva (=3%/=5%): a
calibragem melhora o Brier e a coeréncia probabilistica, mantendo o PR-AUC

(baseado na ordenacgao) essencialmente inalterado.

Salvaguardas e edge cases
e Scores quase constantes: usar calibrador constante §(p) = 7 evita instabilidade;
documenta-se o caso e considera-se retirar o modelo do ensemble operacional.
e Inversdo de direcdo: verificacdo sistematica (AUC OOF) evita calibrar scores “ao
contrario”.
e Extrapolagdo: como § é fungdo em degraus definida em [0,1], ndo hd

extrapolacdo; usa-se clipping para extremos numéricos.

4.6 Interacdes em modelos lineares e de Firth

A introducdo de termos de intera¢do pretende capturar efeitos de moderagao (isto é,
qguando o efeito de uma varidvel depende do nivel de outra). Em teoria, isso pode
melhorar a discriminacdo quando a relacdo X —» Y é verdadeiramente n3o aditiva
(Harrell, 2015; Hastie, Tibshirani, & Friedman, 2009). Contudo, em dados observacionais,
raros e desequilibrados, existem vdrias razbes pelas quais as interacdes podem nao se

traduzir em ganhos de predicdo em teste temporal:

Viés—variancia e complexidade excessiva

Cada interacdo aumenta a dimensao do espaco de parametros (via produtos, sobretudo
com dummies para categorias), elevando a variancia do estimador e o risco de
sobreajustamento a padrdes locais de 2016-2022 que nao se replicam em 2023 (Babyak,

2004; Kuhn & Johnson, 2013; Hastie et al., 2009). Mesmo com Firth (que reduz o viés em
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separacdo/quase separacdo), a variancia preditiva pode crescer e anular ganhos

aparentes de treino/OOF.

Sinais praticos:
e ganhos de métrica em OOF que desaparecem ou invertem no teste temporal;
e grande sensibilidade do resultado a pequenas alteracdes de definicdo das

interagdes.

Esparsidade e separacao local

Combinagdes raras (p. ex., certos niveis de tipovia2 x concelho2 x HaVeicMoto) geram
células com baixas contagens. Em logistica classica, isso favorece quase-separacao,
coeficientes instaveis e previsdes degeneradas. O estimador de Firth ajuda, mas pode
“congelar” efeitos extremos em regides pouco suportadas, penalizando a generalizacdo

(Heinze & Schemper, 2002; King & Zeng, 2001).

Sinais praticos:
e avisos de separacdo, coeficientes muito grandes, scores muito “achatadas” ou

guase binarias em subgrupos.

Deriva temporal (dataset shift)

InteragGes capturam padrdes contextuais (infraestrutura x composicdo do trafego x
condigbes), vulneraveis a mudangas entre anos: obras, enforcement, clima atipico, mix
de frota, etc. O que é “verdade” em 2016.2022 pode mudar em 2023 - logo, as interacdes
perdem valor preditivo fora de amostra (Quifionero-Candela, Sugiyama, Schwaighofer,

& Lawrence, 2009).

Sinais praticos:

e melhorias em CV aleatdria que ndao se mantém no holdout temporal.

Multicolinearidade e pseudo-replica de nao linearidades
Interagdes entre continuas/categdricas podem imitar ndo linearidades que seriam

melhor modeladas por splines (restricted cubic splines, tensor-product smooths) em vez
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de simples produtos. O resultado sdo coeficientes instaveis e ganhos ilusérios em treino,

sem beneficio em teste (Harrell, 2015; Wood, 2017).

Boa pratica:
e preferir fungdes de suavizagdo para continuas (e, quando necessario, interagdes

via tensor-product splines) antes de proliferar produtos de dummies.

Interagao + desequilibrio + thresholding

Em categorias raras, o desenho de interacdes pode alterar a distribuicdo das scores da
minoria, tornando o threshold operacional mais sensivel. Se o limite ndo for
harmonizado (via rate-matching em teste), falsas perdas (precisao/sensibilidade=0)
podem surgir por threshold demasiado conservador, ndo por falta de sinal (Kuhn &

Johnson, 2013).

Boa pratica:
e corrigir a direcdo das probabilidades no teste e usar percentil por rate (3% e 5%),

como adotado.

Diagndsticos recomendados (e que justificam decisoes)

e Suporte minimo por célula de interacdo. Quantificar contagens por combinacdo;
lump de niveis raros quando necessario;

e Estabilidade temporal. Comparar efeitos e métricas por subperiodos ou com CV
“rolling-origin” (quando viavel);

e Robustez a threshold. Fixar rate no teste (3%/5%) e verificar se alteracdes
pequenas do quantil mudam drasticamente precisao/sensibilidade;

e Alternativas suavizadas. Testar splines para continuas e, se necessario, interacdes
suaves (te()) em GAMs (Wood, 2017), ou ridge (glmnet) para estabilizar
coeficientes (Friedman, Hastie, & Tibshirani, 2010);

e Hierarquia de modelacdo. Cumprir o principio hierdrquico (ndo incluir interacdo
sem os termos principais) e pré-especificar um conjunto pequeno e plausivel de

interagdes (Harrell, 2015).
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Consideragdes sobre a aplicagao das interagdes
No contexto deste estudo, resultados inferiores em modelos com intera¢cdes nao
implicam que “interacdes ndo existam”; significam que, dado o split temporal e a
amostra disponivel, os custos associados a complexidade/variancia podem superar os
ganhos de reducdo de viés.
Apds a aplicacdo de correcdo da direcao das scores e rate-matching no conjunto de teste,
as interagdes com métricas nulas foram eliminadas, e os modelos com interacdes
demonstraram tendéncia a recuperagdo, particularmente no cenario com rate =~ 5%.
Apesar disso, os ganhos permanecem modestos com o facto de que a base aditiva mais
0s pesos ja capta grande parte do sinal preditivo.
Para fins operacionais, recomenda-se priorizar modelos estaveis, como Firth ponderado,
e incorporar apenas interagbes que:

e Possuam suporte estatistico suficiente;

e Persistam no tempo;

e Melhorem PR-AUC/sensibilidade sem degradar Brier de forma relevante.

4.7 Discussao critica das escolhas metodoldgicas

As opc¢Oes metodoldgicas adotadas refletem o esforco em equilibrar rigor estatistico,
relevancia pratica e limitagdes inerentes ao problema dos eventos raros.

A escolha da PR-AUC como métrica principal justifica-se pelo forte desequilibrio entre
categorias. Em problemas de eventos raros, a ROC-AUC tende a subestimar o
desempenho, pois atribui igual peso as categorias positiva e negativa, sendo pouco
sensivel ao numero desproporcionadamente elevado de negativos. J4 a PR-AUC
concentra-se na relagdo entre sensibilidade e precisdo, oferecendo uma avaliacdo mais
informativa da capacidade do modelo em identificar corretamente os casos positivos
(Saito & Rehmsmeier, 2015). Em contextos como a detecdo de sinistros graves, a PR-
AUC fornece uma métrica mais realista e discriminativa do que a ROC-AUC.
Adicionalmente, a utilizacdo do F,-score para a selecdo do ponto de corte reforca essa
prioridade metodolégica. Enquanto métricas simétricas como o F;-score tratam
igualmente precisdo e sensibilidade, o F,-score da maior peso a sensibilidade, refletindo

a preocupagdo em minimizar falsos negativos mesmo a custa de um aumento nos falsos
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positivos (Davis & Goadrich, 2006). Esta decisdo traduz a prioridade pratica em nado
falhar a detecdo de sinistros graves, alinhando-se ao principio da precaugdo em saude
publica e seguranca rodovidria.
Do ponto de vista do pré-processamento e modelacdo, seguiu-se uma sequéncia
estruturada que combina rigor estatistico e técnicas de machine learning. Os dados
foram divididos temporalmente, com 2016-2022 para treino e 2023 para teste,
garantindo uma avalia¢cdo adequada correta. Para lidar com o desequilibrio extremo,
aplicou-se reamostragem intra-fold via ROSE e SMOTENC, preservando a integridade
dos folds de validacdo cruzada e evitando estimativas excessivamente otimistas
(Lunardon, Menardi, & Torelli, 2014).
Em termos de modelos treinados, optou-se por uma abordagem hibrida, incorporando:
e métodos estatisticos tradicionais, como regressao logistica classica (GLM) e
regressao penalizada de Firth;
e algoritmos de machine learning, incluindo Naive Bayes, Random Forest, C5.0 e
XGBoost.
Esta diversidade permitiu comparar o desempenho de abordagens paramétricas e ndo
paramétricas, fornecendo insights sobre robustez e interpretabilidade. O processo
metodoldgico adotado encontra-se no Apéndice 3.
A avaliacdo de desempenho foi cuidadosamente delineada para eventos raros,
utilizando métricas de sensibilidade, precisdo, F,/F,-scores, PR-AUC, ROC-AUC e Brier
Score. A definicdo do threshold de decisdao priorizou a maximizacdo do F,-score,
complementada por andlise de sensibilidade considerando diferentes taxas previstas
positivas (3% e 5%). Posteriormente, a calibragdo das probabilidades foi realizada via
regressao isotdnica, curvas de calibracdao e validagdao por bootstrap, reforcando a
confianca na interpretacao das predicdes.
Essa abordagem metodoldgica estruturada evidencia que cada etapa - divisdo temporal,
pré-processamento, reamostragem, treino, avaliacao e calibrac¢ao - foi cuidadosamente
projetada para maximizar a robustez, reduzir vieses e produzir modelos confiaveis para

a identificacdo de eventos raros.
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4. Analise dos Dados

A base de dados analisada neste estudo reflete os registos de sinistros rodovidrios
ocorridos no distrito de Setubal entre os anos de 2016 e 2023, fornecidos pela GNR de
Setubal. Estes dados foram complementados com informacgGes adicionais provenientes
de outras fontes relevantes como:

e Instituto Portugués do Mar e da Atmosfera (IPMA), que disponibilizou dados
meteoroldgicos, tais como as condi¢des climaticas no momento dos sinistros
(chuva, nevoeiro, etc.).

e Infraestruturas de Portugal (IP), que contribuiu com informacGes sobre as
carateristicas fisicas e operacionais das vias, incluindo o tipo de pavimento,
sinalizacdo, condicdes de manutencdo, entre outros aspetos que podem afetar a
seguranca rodoviaria.

Inicialmente, a base de dados continha 53649 observagdes, que englobam tanto
“Feridos Leves” como “Mortes/Feridos Graves” e 1198 variaveis. Posteriormente, foi
decidido excluir o periodo da pandemia, compreendido entre 11 de abril de 2020 até 20
de abril de 2021. Esse periodo foi marcado por medidas governamentais rigorosas de
prevencdo a COVID-19, como confinamentos obrigatdrios, limitacdes de deslocagdes,
restricdes de hordrios, entre outras. Essas medidas tiveram um impacto significativo no
volume de trafego nas estradas, resultando numa reducdo substancial no nimero de
veiculos em circulagao. Esta redugdo, por sua vez, influenciou diretamente a frequéncia
e a natureza dos acidentes registados durante esse intervalo de tempo.

Também foram excluidos os concelhos que ndo pertenciam ao distrito de Setubal,
nomeadamente, Amadora, Lisboa, Loures, Sintra e Vila Franca de Xira.

Ao final da exclusdo do periodo da pandemia e dos concelhos que ndo pertencem ao
distrito de Setubal, a base de dados foi consolidada em 47731 observacdes. Para este
estudo, o objetivo principal € modelar e prever a gravidade de um sinistro, que foi
tratada como a varidvel resposta. Esta é uma varidvel de natureza qualitativa nominal,
com duas categorias: “Feridos Leves” e “Mortes/Feridos Graves”. Neste sentido, as
variaveis independentes analisadas, selecionadas com base na sua relevancia para a
previsdao da gravidade do sinistro, encontram-se sintetizadas e descritas no Anexo 1. Esta

decisdo visa evitar distor¢cdes nos dados devido as alteragbes significativas no
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comportamento do trafego e nas condi¢des rodovidrias. Isso assegura a que os
resultados obtidos reflitam de maneira precisa e equitativa as verdadeiras tendéncias

e os fatores associados a sinistralidade rodoviaria no distrito de Setubal.

5.1 Modelo Estatistico de Regressao Logistica Binomial

A analise de dados por meio de um modelo de regressao logistica foi a abordagem
utilizada para compreender arelacdo entre a variavel dependente binaria e as variaveis
independentes.

Seguiu-se a metodologia descrita por Hosmer-Lemeshow (Hosmer et al., 2013), para

ajustar o modelo regressao logistica.

5.1.1 Selecdo das Varidveis Independentes (Andlise Univariada)

Devido ao grande numero de varidveis disponiveis (1198 no total), foi necessario
priorizar e selecionar apenas aquelas consideradas mais relevantes para a analise da
regressdao. Numa primeira fase, varidaveis com uma taxa de valores omissos muito
elevada foram automaticamente excluidas, por representarem um risco para a robustez
dos modelos, podendo introduzir enviesamento e reduzir o poder estatistico da analise.
Apds esta triagem, aplicou-se o teste da razdao de verosimilhangas com um nivel de
significancia de 5%, de modo a identificar as varidveis que tém uma relagao
estatisticamente significativa com a varidvel resposta. A identificacdo completa das

variaveis significativas resultantes desta andlise univariada encontram-se no Anexo 2.

5.1.2 Modelo Multiplo Preliminar e Exclusao de Varidveis

Inicialmente, foi criado um modelo onde foram incluidas apenas as varidveis que se
revelaram significativas na analise univariada. Este modelo inicial, serviu como ponto de
partida para a selecdo de variaveis que seriam mantidas no modelo final.

Utilizando um nivel de significancia de 1%, procedeu-se a exclusao progressiva das
varidveis que se tornaram nado significativas, com base no teste de razdo de
verosimilhangas. Priorizou-se a exclusdao de varidveis com um elevado nimero de

categorias, independentemente do valor de p-value associado, por uma questdo de
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parciménia. A lista final das varidveis selecionadas, assim como a sua classificacao,

encontram-se apresentadas no Anexo 3.

5.1.3 Agrupamento de Categorias

Com o objetivo de reduzir a complexidade do modelo e assegurar a sua estabilidade
estatistica, procedeu-se ao agrupamento de categorias em algumas variaveis
explicativas. Esta etapa tem como objetivo evitar problemas de sobreajuste associados
a categorias com baixa frequéncia, aumentar a parciménia do modelo e,
simultaneamente, preservar a capacidade explicativa.

O processo de agrupamento baseou-se na significancia estatistica das categorias
individuais, garantindo que as categorias com comportamentos semelhantes fossem
consideradas em conjunto. A seguir, apresentam-se as varidveis sujeitas a este processo,
bem como os respetivos agrupamentos definidos.

a. Varidvel Concelho (“concelho”): a categoria de referéncia foi definida como

“ALCACER DO SAL". Foram realizados os seguintes agrupamentos:
i. As categorias “ALCOCHETE”, “GRANDOLA”", “SEIXAL”’, “SINES” e “PALMELA”
foram agrupadas sob a nova categoria “AGSSP”.
As categorias “SANTIAGO DO CACEM” e “SETUBAL” foram agrupadas sob a nova
categoria “SS”.

b. Varidvel Tipo de Via (“tipovia”): a categoria de referéncia foi “A-Auto Estrada”.

Os agrupamentos foram:

i.As categorias ndo significativas (“Arruamento”, “EF — Estrada Florestal”, “IP —
Itinerario Principal”, “Outra Via”, “PNT — Ponte” e “VAR — Variante”) foram
agrupadas com a categoria de referéncia sob a nova categoria
“AE/A/EF/IP/O/P/V".

ii.As categorias significativas “EM — Estrada Nacional”, “IC — Itinerario

III

Complementar” e “ER — Estrada Regional” foram agrupadas sob a nova
categoria “EN/IC/ER”.

c. Variadvel Percentagem de condutores masculinos envolvidas no acidente

(categorizada) (“PercCondMCat”): A categoria de referéncia foi “[0,25)”. As

categorias “[25,50)” e “[50,75)” foram consideradas ndo significativas e,
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portanto, agrupadas com a categoria de referéncia sob a nova categoria
“Perc25- 75"

d. Varidvel Hora do Acidente (“horaacid”): A categoria de referéncia foi “0”. O

agrupamento foi o seguinte:

. A categoria “6” foi agrupada sob a nova categoria “6h”.

i. As categorias “8”, “9”, “10”, “11”, “12” e “13” foram agrupadas sob a nova

categoria “8h-13h”".

iii. A categoria “7” foi agrupada as categorias “14”, “15”, “16”, “17”, “18”, “19”,
ll20ll' llzllll II22II' ll23ll' IIOII’ lll”, ”2”’ II3II’ ll4ll e l15ll' formando a nova Categoria
“14h-5h", dado que os coeficientes estimados revelaram-se proximos e o teste
da razdo de verosimilhanca ndo evidenciou diferencas estatisticamente

significativas entre estas categorias.

5.1.4 Verificacao da Linearidade

Apds a aplicagao do método GAM (Modelo de Regressdo Aditiva Generalizada), a analise
da linearidade entre a varidvel indice de gravidade e o logit, revelou que o

comportamento nao era linear, conforme ilustrado na Figura 1.
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Figura 1 — Representagdo da fungdo spline (s) resultante da aplicagdo de um GAM para verificagdo do pressuposto

de linearidade para a varidvel indice de gravidade (ig_ponderado).

A comparacdo do AIC (Critério de Informacdo Akaike) entre os dois modelos indica que

o GAM apresenta um AIC menor (7197,020) em compara¢do com o modelo final
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(7539,934). Como o AIC penaliza modelos mais complexos, valores menores indicam um
melhor equilibrio entre ajustamento e parcimdénia. Ambos os modelos possuem o
mesmo numero de graus de liberdade (19), o que sugere que a diferenca no AIC n3o se
deve a complexidade, mas sim a capacidade de o modelo explicar a variabilidade dos
dados. Neste sentido, o GAM é preferivel para inferéncia e previsao, de acordo com o
principio da parcimdnia, uma vez que oferece um melhor ajustamento sem necessidade

de aumentar a complexidade.

5.1.5 Incorporacgao de Interagdes

No processo de modelagdo, a incorporacao de interagdes entre varidveis presentes no
modelo ajuda a compreender melhor como a combinacado de diferentes fatores afeta a
variavel independente. O objetivo é determinar se a inclusdo dessas interacdes melhora
significativamente o ajuste do modelo. Para alcancar esse objetivo, ajusta-se uma série
de modelos de regressao logistica, cada um contendo diferentes interacoes, e através do
teste de razdo de verosimilhancas, avalia-se a significancia da inclusdao da interacao
relativamente ao modelo sem essa interagao.

Neste caso, adotou-se um nivel de significancia de 1% para avaliar a relevancia estatistica
das interacOes, assegurando um maior rigor na selecdo das intera¢des e reduzindo o
risco de incluir aquelas que ndo apresentem um impacto substancial sobre a variavel
dependente. Além disso, é fundamental que as intera¢des testadas ndo apenas
apresentem significadncia estatistica, mas também sejam coerentes com o contexto do
problema em analise. Dessa forma, garante-se que as adicdes ao modelo sejam

interpretdveis e Uteis para a compreensao do fenédmeno em estudo.

5.1.6 Verificacdo da Qualidade do Modelo

Nesta etapa, procedeu-se a analise da qualidade do modelo, conforme se descreve

abaixo.

Analise de multicolinearidade

De modo a garantir a robustez e fiabilidade das estimativas do modelo, avaliou-se a

existéncia de multicolinearidade entre as varidveis preditivas. Os resultados para o
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modelo final encontram-se apresentados na Tabela 6, onde se identificam as variaveis

e as interacBes que apresentam uma colinearidade elevada.

Tabela 6 - Medidas de multicolinearidade e identificagdo de colinearidade elevada nas varidveis explicativas.

Varidvel GVIF d  gyp(1/@df)  Colheardade
concelho2 2551,67 3 3,70 X
tipoacid 373,17 2 440 X
tipolocal2 12,26 1 3,50 X
tipovia2 8,83 2 1,72
horaacidlnew 1,11 2 1,03
fuga 1,01 1 1,00
PercCondMCat2 1,08 1 1,04
HaVeicPesado 1,32 1 1,15
HaVeiclig 1,98 1 1,41
HaVeicMoto 3,06 1 1,75
HoralLaboral 1,15 1 1,07
MedianaldadeVeic 1,06 1 1,03
ig_ponderado 54,60 1 7,39 X
concelho2*tipoacid 48261,74 6 2,46
tipoacid*tipolocal2 31,73 2 2,37
tipovia2*HaVeicMoto 511 2 1,50
ig_ponderado*concelho2 237,36 3 2,49
ig_podenrado*tipoacid 23,68 2 2,21
ig_podenrado*tipovia2 8,28 2 1,70

Embora os valores observados ndo atinjam os niveis criticos que indicam uma
colinearidade severa (valores superiores a 10), a existéncia de valores elevados ainda

aponta para uma possivel correlagao significativa entre algumas variaveis.
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Bondade do Ajustamento

e RZ de Nagelkerke

O modelo de regressao logistica apresentou um Pseudo R? de Nagelkerke de 0,2607 o
que indica que 26,07% da variabilidade da varidvel dependente foi explicada pelas
variaveis independentes. Embora esse valor possa parecer baixo em compara¢do com os
R? da regressao linear, na regressao logistica € comum que o Pseudo R? tenha valores
mais moderados, uma vez que o modelo lida com probabilidades e ndo com variaveis
continuas.

O valor de 0,2607 sugere que o modelo consegue capturar uma porg¢ao significativa da
relacdo entre as varidveis, sendo capaz de distinguir as categorias da variavel
dependente de forma razoavel. Em modelos logisticos, valores acima de 0,2 podem ser
considerados aceitaveis, especialmente em contextos onde a variabilidade n3do explicada

pode ser atribuida a fatores ndo incluidos no modelo.

e Teste de Hosmer e Lemeshow
O teste de Hosmer-Lemeshow forneceu um valor de p-value de 0,501, logo ndo ha
evidéncias estatisticas para rejeitar a hipdtese nula de que o modelo se ajusta bem
aos dados. Portanto, os resultados sugerem que o modelo de regressdo logistica

apresenta um ajuste adequado aos dados.

Capacidade discriminativa

e CurvaROC
A avaliacdo da capacidade discriminativa do modelo foi realizada através da curva ROC,
apresentada na Figura 2. Esta curva constitui uma das ferramentas mais utilizadas para
aferir o desempenho de modelos de classificacdo, uma vez que sintetiza a relacdo entre
verdadeiros positivos e falsos positivos. Ao representar graficamente este equilibrio, a
curva ROC permite avaliar em que medida o modelo consegue distinguir corretamente
as categorias de interesse. Quanto mais a curva se afastar da diagonal aleatdria, maior

sera a sua capacidade discriminativa.
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Figura 2 - Curva ROC do modelo de regresséo logistica final para 43312 observagdes.

Interpretando as métricas sabemos que:
-> Sensibilidade:
Um valor de sensibilidade de 80,8% indica que o modelo conseguiu identificar

corretamente 80,8% dos eventos que ocorreram.

- Especificidade:

Um valor de 77,7% indica que o modelo foi capaz de reconhecer corretamente 77,7%

das situagOes onde o evento ndo ocorreu.

- Area sob a Curva (AUC):

Com um AUC de 0,871, o modelo mostra uma boa capacidade discriminativa, uma vez
que valores proximos a 1 refletem um desempenho muito bom. Isso significa que ha
uma grande probabilidade de o modelo classificar corretamente um caso positivo como

positivo e um caso negativo como negativo.

- Intervalo de confianga para AUC:
O IC de 95% para AUC varia de 0,8599 a 0,8813, indicando que hd 95% de confianga de

IH

que o valor “real” do AUC esta dentro desse intervalo.
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Validacdo do modelo

e Bootstrap
Para avaliar a estabilidade e precisdo das estimativas do modelo, foram geradas 5000 e,
posteriormente, 10000 observacdes bootstrap.
Ap0ds a validacdo do modelo através do procedimento de “Backwards Step-down”, as
varidveis que mantiveram significancia estatistica e relevancia pratica foram:
- tipo de sinistro
- horario do sinistro
- presenca de veiculos pesados
- presenca de motociclos

- mediana da idade dos veiculos

e Calibragao
Partindo para a andlise da calibragdo, as Figuras 3 e 4 apresentam uma curva de
calibracdo que compara a probabilidade prevista pelo modelo com a probabilidade
observada no conjunto de dados. O eixo horizontal representa as probabilidades
previstas pelo modelo, enquanto o eixo vertical mostra as probabilidades observadas,

ou seja, a proporcdo real de ocorréncias de “Mortes/Feridos Graves”.
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Figura 3 - Calibragdo para 5000 repeti¢ées de bootstrap
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Figura 4 - Calibragdo para 10000 repeticbes de bootstrap

Para ambos os casos, os graficos indicam que, para valores de probabilidade previstos
abaixo de 0,3, o modelo tem um desempenho relativamente bom, com a linha aparente
e a linha corrigida pelo otimismo bastante préximas da linha ideal. Isso sugere, para
esses casos, o modelo estd bem calibrado e as suas previsdes refletem de forma
adequada a realidade observada.

Entretanto, para valores de probabilidade mais altos (acima de 0,3), tanto a linha
aparente quanto a corrigida ficam abaixo da linha ideal, indicando uma subestimacao
das probabilidades reais. Ou seja, o modelo tende a prever probabilidades menores do
que as efetivamente observadas.

Neste caso, o modelo apresenta uma boa calibracdo para previsdes de probabilidade
baixa, mas demonstra uma leve tendéncia de subestimagdao para probabilidades mais
elevadas, mesmo apods a corre¢do pelo otimismo. O erro absoluto médio de 0,001 e a
utilizacdo de 5000 ou 10000 repeticdes de bootstrap indicam que o ajuste é estavel e

bem fundamentado, considerando-se também o tamanho da amostra (n=43312).

e Validagao Cruzada
Os dados foram divididos em conjunto de treino e teste, onde 70% das observagdes
pertencem ao treino e 30% das observagdes pertencem ao teste. Na Tabela 7, encontram-

se os valores referentes a cada subconjunto, particularmente a cada categoria.
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Tabela 7 - Divisdo dos dados do modelo de regressdo logistica (43312 observagées) em dois subconjuntos: treino e

teste e respetivo numero de observagdes por categoria em cada subconjunto.

Regressao Logistica — 42000 Observagoes

Treino Teste

Feridos Leves 29613 12704
Mortes/Feridos Graves 706 289

30319 12993

5.1.7 Apresentacao do modelo final

Na Tabela 8, apresentam-se as variaveis que integram o modelo final, as suas respetivas

categorias e a classificacdo atribuida a cada uma delas.

Tabela 8 - Designagdo e classificagdo das varidveis independentes do modelo final de regressdo logistica para 43312

observagdes.

VELEVE Categorias Classificagao

Concelho Alcécer do Sal Qualitativa Nominal
Alcochete, Grandola, Seixal, Sines e Palmela
Almada, Barreiro, Moita, Montijo e Sesimbra
Santiago do Cacém e Setubal

Tipo de acidente Atropelamento Quialitativa Nominal
Colisao
Despiste

Localizagdo do acidente Dentro das localidades Qualitativa Nominal

Fora das localidades

Tipo de via Autoestrada, Arruamento, Estrada Florestal,  Qualitativa Nominal
Itinerario Principal, Outra Via, Ponte e Variante
Estrada Municipal
Estrada Nacional, Itinerario Complementar e
Estrada Regional

Hora com minutos a zero do acidente  14-17h
6h
8h—13h

Qualitativa Nominal

Acidente com fuga N&o Qualitativa Nominal

Sim

94



VELEVE Categorias

% de condutores masculinos
envolvidos no acidente [75-100]
Existéncia de veiculos pesados Ndo

Sim
Existéncia de veiculos ligeiros Néo

Sim

Existéncia de veiculos ciclomotores e N&o

motociclos Sim
Acidente ocorreu no horario Nao
Laboral Sim
Mediana da idade da matricula Nao
dos veiculos Sim
indice de gravidade N3o

Sim

Perc [25-75]

Classificagao

Qualitativa Nominal

Qualitativa Nominal

Qualitativa Nominal

Qualitativa Nominal

Qualitativa Nominal

Quantitativa Numérica

Quantitativa Numérica

Nota: o modelo representado na Tabela 8 foi o modelo aplicado em todas as abordagens

desenvolvidas no estudo.

Na Tabela 9 é apresentado o modelo final ajustado, no qual se encontram as variaveis

incluidas com as categorias correspondentes e os respetivos coeficientes estimados.

Tabela 9 - Modelo logistico multiplo para a existéncia de Mortes/Feridos graves nos sinistros com vitimas (p-value do

teste de Wald).
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VEREVE Categorias Coeficiente Std. Error P-value

Concelho ALCACER DO SAL
AGSSP 0,1353 0,5723 <0,001
ABMMSS 0,5420 0,5509 0,8060
SS -0,7007 0,5556 -0,3292
Tipo de Acidente Atropelamento
Colisdo -1,4680 0,6070 0,2224
Despiste -0,4714 0,5754 <0,001
Localizagdo do Dentro das localidades
Acidente .
Fora das localidades 0,1940 0,2406 0,4086
Tipo de Via AE/A/EF/IP/O/P/V
Estrada Municipal
EN/IC/ER P 0,1892 0,2489 0,4201
0,9815 0,1220 0,4455
Hora com minutosa 14h -5h
zero do acidente 6h 0,6952 0,1889 <0,001
8h—13h -0,3099 0,0818 <0,001
Acidente com fuga Nao
Sim -1,4477 0,2673 <0,001
% de condutores Perc25-75
i 0,3048
mascu!lnos [75, 100] 0,0804 <0,001
envolvidos no
acidente
Existéncia de veiculos N&o
pesados Sim 1,0485 0,1314 <0,001
Existéncia de veiculos Nao
ligeiros Sim 0,6088 0,1304 <0,001
Existéncia de veiculos Nao
2,6520
ciclomotores e Sim 0,1228 <0,001
motociclos
Acidente ocorreu no N3o
horario Sim 10,4670 0,0738 <0,001
laboral
Mediana da idade da
matricula 0,0359 0,0049 <0,001
dos veiculos
indice de gravidade
J 0,0824 0,0075 <0,001

Concelho2AGSSP*
tipoacidColisdo -0,0503 0,5745 0,9302




Categorias Coeficiente Std. Error P-value

Concelho2ABMMS*

tipoacidColisdo -0,9020 0,5814 0,1208
Concelho2SS*

tipoacidColisdo 0,3938 0,6317 0,5330
Concelho2AGSSP*

tipoacidDespiste -0,3217 0,5691 0,5719

Concelho2ABMMS*
tipoacidDespiste -1,0773 0,5792 0,0629

Concelho2SS*
tipoacidDespiste 0,0280 0,6282 0,9644

tipoacidColisdo*

tipolocal2 Fora das 0,5704 0.2564 <0.001
Localidades ’ ’

tipoacidDespiste*tipoloc 0.3353

27 2151
al2 Fora das Localidades 0,2705 0,215

As principais métricas de avaliacdo calculadas da matriz de confusdo, encontram-se na

Tabela 10 com arespetivainterpretacao. Estes resultados correspondem ao modelo final.

Tabela 10 - Resultados das métricas da matriz de confusdo do modelo final de regresséo logistica aplicado a 43312

observagdes para identificagdo de Mortes/Feridos Graves

Métrica Resultado Observagao
Ponte de Corte 0,021 Valor que separa as observagdes e duas categorias.
O modelo classifica corretamente 76,57% das
Accuracy 0,7657 observacdes.
0,7583; .
1C (95%) (O 773) Intervalo de Confianga de 95% para a accuracy.
Kappa 0,0907 O modelo sugere um desempenho muito baixo.
Mcnemar’s Test P- Reflete uma diferencga ndo significativa entre as taxas
<0,001 e .
Value de erro de classificagdo nas duas categorias.
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Métrica Resultado Observacao

O modelo identificou
Sensibilidade 0,7716 corretamente, aproximadamente, 77,16% dos
casos Mortes/Feridos Graves.

O modelo identificou corretamente,

Especificidade 0,7656 aproximadamente, 76,56% dos casos de Feridos
Leves.

Valor Preditivo 0.0697 Das observagdes classificadas como positivas pelo
Positivo ! modelo, 6,97% sao verdadeiras positivas.
Valor Preditivo 0.9933 Das observagdes classificadas como negativas pelo
Negativo ! modelo, 99,33% sdo verdadeiras negativas.

Fl-score 0,8647 Bom desempenho do modelo.

O modelo tem uma boa capacidade de

AUC 0,8538 S
discriminagdo.
Aproximadamente 6,97% observagGes classificadas
Preciséo 0,0697 como positivas s30 mesmo

positivas.

Em suma, o modelo apresenta um bom desempenho geral, mas mostra limitacdes na
precisdao das previsdes positivas, conforme evidenciado pelos valores preditivos e pelo
Kappa. O elevado valor da AUC e do Fl-score sugere que o modelo possui uma

capacidade relevante de discriminacdo entre as categorias.

5.2 Resultados com correcao temporal e reamostragem intra-fold

5.2.1 Resultados Preliminares e Impacto do Oversampling Pré-divisao
Durante a fase inicial do trabalho foram realizadas experiéncias exploratérias com o
objetivo de testar diferentes técnicas de reamostragem para lidar com o forte
desequilibrio entre casos de sinistros fatais e ndo fatais. Testou-se a influéncia de
diferentes graus de desequilibrio e de técnicas de reamostragem (ROSE e SMOTENC)
sobre o desempenho preditivo dos modelos.

Nessas versoes preliminares, o oversampling foi aplicado antes da divisdo dos dados em
treino (70%) e teste (30%), procedimento que, apesar de comum em estudos iniciais,
induz data leakage, contaminando a amostra de teste com observagdes sintéticas

geradas a partir de todo o conjunto de dados.
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Apesar de esta pratica ser comum em abordagens exploratérias, resulta numa
sobrestimacdo das métricas preditivas, dado que os modelos acabam por “ver” padrdes
parciais da amostra de teste durante o treino.

Além disso, nessa versao inicial o threshold para a classificacdo binaria foi definido sem
otimizagdo explicita do F,-score, métrica que, na versao final, foi usada para calibrar o
compromisso entre precisdo e sensibilidade.

Esta seccdo preserva parte desses resultados, ndo como evidéncia de performance, mas
como testemunho da evolu¢gdo metodoldgica do trabalho e como demonstragdao do
impacto que a reamostragem incorreta pode ter nas estimativas de AUC, F;-score e

precisao.

5.2.2 Resultados Preliminares com ROSE (Pré-Divisao)

As Tabelas A12—-A16 da versdo anterior da dissertacdo (disponiveis no Apéndice A)
apresentavam os resultados obtidos apds a aplicacao de undersampling e oversampling
combinados, antes da divisdo aleatdria 70/30.

A Tabela 11 compara os resultados obtidos com a abordagem inicial — em que o
oversampling (no caso, o método ROSE) era aplicado a todo o conjunto de dados antes
da divisdo treino/teste — com os resultados corrigidos, obtidos apds aplicar a

reamostragem apenas no conjunto de treino e ajustar o ponto de corte pelo F,-score.

Tabela 11 - Impacto do oversampling pré-divisdo (exemplo com ROSE)

PR-AUC  PR-AUC ROC- ROC- F1 F1
e A (antes) (depois) A S — (antes) (depois)

P (antes) (depois) P
GLM 0,41 0,16 -0,25 0,93 0,87 -0,06 0,49 0,08 -0,41
RF 0,44 0,15 -0,29 0,94 0,86 -0,08 0,45 0,13 -0,32
XGB 0,46 0,22 -0,24 0,95 0,88 -0,07 0,49 0,11 -0,38
NB 0,39 0,17 -0,22 0,91 0,87 -0,04 0,45 0,08 -0,37
C5.0 0,40 0,16 -0,24 0,92 0,85 -0,07 0,48 0,14 -0,34
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Ambos os conjuntos foram extraidos da mesma base de dados original de sinistros
rodoviadrios do distrito de Setubal (2016-2023), contendo o mesmo numero de
observacoes e varidveis preditoras. A diferenca entre “antes” e “depois” ndo reflete,
portanto, qualquer alteracdo nas fontes de dados, mas exclusivamente a correcao
metodoldgica associada a elimina¢dao do data leakage e a adogao de um critério de
decisdo mais apropriado para eventos raros.

Os resultados “antes” exibiam métricas substancialmente mais elevadas, em particular
no PR-AUC e no F,-score sugerindo um desempenho artificialmente otimista. Apds a
correcdo, observou-se uma reducdo generalizada das métricas (-0,25 a -0,30 pontos no
PR-AUC; -0,30 a -0,40 no F;-score), refletindo uma avaliagdo mais realista da capacidade
de generalizagdo dos modelos.

Apesar desta diminuicdo, a hierarquia relativa entre modelos manteve-se, com o
XGBoost e 0 Random Forest a exibirem desempenho consistentemente superior ao GLM
e ao Naive Bayes, o que confirma a estabilidade estrutural das relagdes modeladas —

apenas as magnitudes das métricas estavam inflacionadas no cenario anterior.

5.2.3 Resultados Preliminares com SMOTENC (Pré-Divisao)

De forma andloga, a aplicacdo do SMOTENC antes da separagdo treino/teste gerou
métricas igualmente elevadas. As Tabelas B8-B17 (ver Apéndice B) mostravam, em
geral, ganhos aparentes de desempenho, com ROC-AUC entre 0,92 a 0,96 e F;-score
médios préximos de 0,45 a 0,50.

A Tabela 12 contém o resumo dos resultados representativos obtidos nesta etapa.

Tabela 12 - Resumo dos resultados representativos

Modelo PR_AUC ROC_AUC Precisdao Sensibilidade F1-score Accuracy
GLM 0,40 0,93 0,34 0,96 0,48 0,91
RF 0,43 0,94 0,36 0,96 0,46 0,92
XGB 0,45 0,95 0,38 0,97 0,48 0,93
NB 0,37 0,90 0,31 0,96 0,46 0,90
c5.0 0,38 0,91 0,33 0,94 0,47 0,91
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Fonte: resultados exploratdrios, fase inicial (Apéncide B)

Tal como no caso anterior, o desempenho mais elevado resulta do contacto indevido
entre observagdes artificiais (geradas por SMOTENC) e observagdes reais no conjunto

de teste.

5.2.4 Discussao Critica

O conjunto das andlises exploratérias oferece valor cientifico ao demonstrar

empiricamente como erros de desenho experimental podem alterar profundamente a

percecdo de desempenho.

A passagem de AUCs proximas de 0,95 para valores realistas em torno de 0,87-0,88

confirma que a separagao temporal e a reamostragem restrita ao treino sdao condi¢des

indispensaveis para avaliagdo honesta em contextos de eventos raros.

Do ponto de vista metodoldgico, esta andlise comparativa é particularmente relevante:

e evidencia o impacto negativo do data leakage na avaliacdo de modelos de
classificacdo com desequilibrio extremo;

e demonstra a importancia de otimizar o ponto de corte em fungdo do objetivo
analitico (neste caso, maximizar a sensibilidade sem degradar em excesso a precisdo);

o e reforga a necessidade de uma validacdo rigorosa e estratificada, garantindo que as

métricas refletem o desempenho em dados verdadeiramente nao observados.

Em sintese:
e Osresultados pré-divisao ndo devem ser interpretados como estimativas validas,
mas sim como caso de estudo sobre o impacto do data leakage.
e A consisténcia da hierarquia de desempenho entre modelos reforca a robustez
estrutural das conclusdes qualitativas.
e As tabelas completas foram preservadas no Apéndice A, garantindo
transparéncia e reprodutibilidade, mas a discussdo quantitativa principal deve

basear-se exclusivamente nos resultados da secg¢ao seguinte.
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5.2.5 ROSE fora da validacao

Os resultados obtidos com o ROSE aplicado fora da validacdo estdo apresentados na
Tabela 13 e na Tabela 14, mostrando métricas de desempenho, matrizes de confusdo e
indicadores de calibracao.

A coluna “Prioridade” indica o critério adotado na avaliacdo e selecdo dos modelos. No
contexto de eventos raros, as métricas classicas de classificacdo, como accuracy ou
mesmo o F;-score, tendem a ser pouco informativas, uma vez que o desequilibrio
extremo entre categorias pode mascarar o verdadeiro desempenho do modelo na
detecdo da categoria minoritaria. Assim, a andlise deu prioridade as métricas mais
sensiveis a este tipo de problema: a area sob a curva Precisao-Sensibilidade (PR-AUC) e
a area sob a curva ROC (ROC-AUC), que avaliam, respetivamente, a capacidade de
distinguir corretamente os casos graves e de manter baixo o nimero de falsos positivos.
Além disso, o limite de decisdo em cada modelo foi ajustado com base no F,-score, uma
métrica que atribui maior peso a sensibilidade relativamente a precisdo. Esta escolha
reflete o objetivo fundamental do estudo, maximizar a identificacdo de sinistros graves,
ainda que a custa de um maior numero de falsos alarmes, o que é coerente com uma
perspetiva de prevencdo e seguranca rodovidria.

Assim, a designacdao “PR-AUC, ROC-AUC; limiar por F,” sintetiza a estratégia global de
avaliacdo: os modelos foram comparados principalmente pela sua discrimina¢do (PR-
AUC e ROC-AUC), sendo o ponto de corte ajustado de modo a otimizar o F,-score.

As colunas “CAL-INTERCEPT” e “CAL-SLOPE” representam os parametros classicos de
calibracdo dos modelos preditivos, avaliando até que ponto as probabilidades estimadas
correspondem a frequéncia real dos eventos observados.

O calibration intercept (interceto de calibracdo) mede o desvio médio entre as
probabilidades previstas e as observadas. Um valor préximo de 0 indica auséncia de viés
sistematico; valores negativos sugerem sobrestimagdo do risco (probabilidades previstas
demasiado elevadas), enquanto valores positivos indicam subestimacao.

Ja o calibration slope (declive de calibracdo) avalia a dispersdo das probabilidades
previstas. O valor ideal é 1, correspondendo a uma calibragdo perfeita: valores inferiores
a 1 refletem excesso de confianca do modelo (probabilidades extremas demasiado
amplificadas), enquanto valores superiores a 1 indicam um modelo demasiado

conservador, com previsdes comprimidas em torno da média.
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A inclusdo destas métricas é essencial em contextos de eventos raros, onde a calibracao
probabilistica tem impacto direto na utilidade pratica do modelo permitindo, por
exemplo, distinguir se uma probabilidade prevista de 10% corresponde efetivamente a
um risco real préximo desse valor, aspeto crucial para aplicagdes em seguranca

rodovidria e decisdo operacional.

Tabela 13 - Métricas no teste (ponto e IC95%) - ROSE fora da validagéo

- PR- ROC- - F1- - CAL- CAL-
Modelo  Prioridade AUC AUC Precisdo  Sensibilidade Acurracy INTERCEPT  SLOPE
PR-AUC,
0.160 0.875 0.044 0.964 0.084 0.670 0.478 0.180 -4.069 0.887
ROC-AUC;
GLM [0.123, [0.851, [0.037, [0.934, [0.072,  [0.656, [0.466, [0.174, [-4.248, [0.801,
limiar por
0.210] 0.896] 0.051] 0.988] 0.096] 0.682] 0.490] 0.186] -3.912] 0.997]
F2
PR-AUC,
0.149 0.859 0.069 0.885 0.128 0.784 0.700 0.122 -3.819 0.548
ROC-AUC;
RF [0.113, [0.834, [0.059, [0.831, [0.111, [0.759, [0.689, [0.116, [-4.023, [0.477,
limiar por
0.196] 0.881] 0.079] 0.927] 0.146] 0.803] 0.710] 0.128] -3.623] 0.617]
F2
PR-AUC,
0.221 0.880 0.059 0.927 0.110 0.759 0.629 0.137 -3.829 0.819
ROC-AUC;
XGB imi [0.168, [0.854, [0.050, [0.889, [0.094, [0.742, [0.617, [0.132, [-4.022, [0.733,
imiar por
0.293] 0.907] 0.069] 0.967] 0.128] 0.777] 0.641] 0.143] -3.640] 0.931]
F2
PR-AUC,
0.170 0.868 0.039 0.988 0.075 0.609 0.390 0.077 -3.106 0.643
ROC-AUC;
NB imi [0.125,  [0.843, [0.033, [0.969, [0.063, [0.598, [0.379, [0.073, [-3.323, [0.582,
imiar por
0.226] 0.890] 0.045] 1.000] 0.086] 0.619] 0.402] 0.082] -2.884] 0.708]
F2
PR-AUC,
0.158 0.849 0.075 0.770 0.137 0.764 0.759 0.107 -3.484 0.440
ROC-AUC;
C5.0 imi [0.118,  [0.820, [0.063, [0.706, [0.116, [0.732, [0.749, [0.102, [-3.712, [0.378,
imiar por
0.207] 0.878] 0.089] 0.836] 0.159] 0.796] 0.769] 0.113] -3.287] 0.528]
F2

Tabela 14 - Matrizes de confusdo e métricas derivadas (Teste 2023) - ROSE fora da validagdo

Modelo  Threshold TN Precisdao Sensibilidade Especificidade  Accuracy
GLM 0,231 159 6 3458 3016 0,044 0,964 0,466 0,478 0,084
RF 0,252 146 19 1974 4500 0,069 0,885 0,695 0,700 0,128
XGB 0,229 153 12 2453 4021 0,059 0,927 0,621 0,629 0,110
NB 0,035 163 2 4046 2428 0,039 0,988 0,375 0,390 0,075
c5.0 0,306 127 38 1563 4911 0,075 0,770 0,759 0,759 0,137

O GLM apresenta uma sensibilidade muito elevada (0,964), porém uma precisdo muito
baixa (0,044) e accuracy limitada (0,478), resultando em muitos falsos positivos (3458).
Este padrao decorre diretamente do F,-score, que privilegia a dete¢do de casos
positivos, mas penaliza a seletividade. O Naive Bayes segue um comportamento

semelhante: sensibilidade muito elevada (0,998), precisdo baixa (0,039) e accuracy
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reduzida (0,390), indicando que também funciona como um “screening sensivel” mas

com muitos falsos alarmes.

Nos ensembles, observa-se melhor equilibrio entre métricas. O XGBoost apresenta a
maior PR-AUC (0,221) e uma ROC-AUC também elevada (0,880), evidenciando boa
capacidade de discriminacdo e priorizacdo correta dos casos positivos — algo essencial
em contextos de forte desequilibrio. O Random Forest, apesar de ligeiramente abaixo
em PR-AUC, combina sensibilidade (0,885) e especificidade (0,695) de forma
equilibrada, refletido no G-Mean mais elevado (0,784), o que reduz o numero de falsos
positivos por verdadeiros positivos. O C5.0 exibe um comportamento semelhante ao
Random Forest, com boa accuracy (0,759) e melhor F1-score (0,137), o que indica um
desempenho estavel e mais eficiente na identificacdo de verdadeiros positivos sem
sacrificar demasiado a precisao.

Em termos de calibracdao, todos os modelos revelam intercepts negativos e slopes
inferiores a 1, indicando que as probabilidades previstas tendem a estar deslocadas e
excessivamente extremas. Entre eles, os modelos baseados em 4rvores (RF, XG e C5.0)
exibem menores erros de calibracao (Brier entre 0,107 e 0,137) em comparag¢do com o
GLM (0,180), sugerindo previsbes mais fidveis e probabilidades mais préximas das
verdadeiras ocorréncias.

De forma geral, com ROSE fora, os modelos de arvores e ensembles combinam melhor
discriminagcdo e equilibrio, enquanto o GLM e o Naive Bayes funcionam como

“screeners” sensiveis, mas com muitos falsos alarmes.

5.2.6 ROSE dentro da validacao

Os resultados obtidos com o ROSE aplicado dentro da validagdo encontram-se
apresentados na Tabela 15 e na Tabela 16. A anadlise destas tabelas permite comparar
diretamente o efeito da reamostragem intra-fold sobre precisao, sensibilidade, accuracy

e calibracdo em relacdo ao ROSE fora.
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Tabela 15 - Métricas no teste (ponto e IC95%) - ROSE dentro do fold

- PR- - e - - CAL-
Modelo Prioridade AUC Precisdo Sensibilidade Acurracy INTERCEPT
PR-AUC,
0,161 0,873 0,115 0,721 0,198 0,787 0,855 0,192 -3,754 1,289
ROC-AUC;
GLM limi [0,124; [0,849; [0,096; [0,646; [0,168; [0,745; [0,846; [0,188; [-3,921; [1,163;
imiar por
0,212] 0,896] 0,135] 0,789] 0,227] 0,824] 0,863] 0,197] -3,612] 1,436)
F2
PR-AUC,
0,195 0,877 0,137 0,594 0,223 0,733 0,897 0,048 -2,096 0,981
ROC-AUC;
RF [0,145; [0,851; [0,113; [0,513; [0,187; [0,681; [0,890; [0,045; [-2,262; [0,852;
limiar por
0,256] 0,899] 0,163] 0,671] 0,259] 0,778] 0,904] 0,051] -1,941] 1,117]
F2
PR-AUC,
0,194 0,878 0,124 0,661 0,209 0,763 0,876 0,025 -1,077 1,038
ROC-AUC;
XGB [0,146; [0,852; [0,102; [0,588; [0,175; [0,721; [0,868; [0,023; [-1,256; [0,921;
limiar por
0,259] 0,903] 0,146] 0,732] 0,241] 0,803] 0,883] 0,028] -0,927] 1,168]
F2
PR-AUC,
0,145 0,854 0,100 0,667 0,174 0,751 0,843 0,027 -0,604 0,608
ROC-AUC;
NB [0,109; [0,828; [0,084; [0,595; [0,147; [0,710; [0,834; [0,024; [-0,847; [0,546;
limiar por
0,192] 0,878] 0,118] 0,738] 0,201] 0,792] 0,851] 0,031] -0,405] 0,678]
F2
PR-AUC,
0,161 0,863 0,115 0,655 0,196 0,755 0,866 0,044 -1,922 0,654
ROC-AUC;
C5.0 [0,121; [0,837; [0,094; [0,581; [0,164; [0,712; [0,858; [0,041; [-2,101; [0,502;
limiar por
0.,212] 0,887] 0,134] 0,727] 0,226] 0,797] 0,874] 0,047] -1,768] 0,849]
F2

Tabela 16 - Matrizes de confusdo e métricas derivadas (Teste 2023) - ROSE dentro do fold

Modelo  Threshold FP TN Precisdao Sensibilidade Especificidade  Accuracy
GLM 0,638 119 46 919 5555 0,115 0,721 0,858 0,855 0,198
RF 0,374 98 67 617 5857 0,137 0,594 0,905 0,897 0,223
XGB 0,131 109 56 769 5705 0,124 0,661 0,881 0,876 0,209
NB 0,041 110 55 990 5484 0,100 0,667 0,847 0,843 0,174
c5.0 0,273 108 57 830 5644 0,115 0,655 0,872 0,866 0,196

Curvas Precision—Recall (Teste 2023)
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Figura 5 - Curvas Precisd@o-Sensibilidade (Teste 2023)
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Curvas ROC (Teste 2023)
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Figura 6 - Curvas ROC (Teste 2023)

Com o ROSE aplicado dentro da validacao, os resultados tornam-se mais consistentes e
realistas, refletindo melhor o comportamento esperado em dados verdadeiramente nao
vistos. Hd um ganho generalizado em precisdo e accuracy em praticamente todos os
modelos, acompanhando por uma ligeira reducao da sensibilidade - uma troca esperada,
ja que o oversampling é agora restrito ao treino e n3do interfere no teste.

O GLM evidencia essa melhoria de forma clara: a precisdo aumenta substancialmente
(de 0,044 para 0,115) enquanto a sensibilidade se ajusta para 0,721, resultando num F; -
score de 0,198 e G-mean de 0,787. Este comportamento indica que o modelo se torna
mais seletivo, reduzindo falsos positivos (919 vs. 3458 anteriormente) sem comprometer
em demasia a capacidade de detetar positivos. A calibracdo também melhora (intercept
= -3,75 ; slope = 1,29), com as probabilidades a refletirem mais fielmente o risco
observado.

Nos modelos de ensemble, observa-se um padrdo idéntico, mas com um desempenho
global superior. O Random Forest alcanga a maior accuracy (0,897) e o melhor F;-score
(0,223) entre todos, combinando uma boa discriminagdao (ROC-AUC = 0,877) com
excelente calibracdo (Brier 0,048 e slope préoximo de 1). O Random Forest mostra ainda
a maior especificidade (0,905), o que se traduz em menor numero de falsos positivos
(617) sem perda excessiva de sensibilidade (0,594), sendo, portanto, um modelo mais
equilibrado e robusto em termos operacionais.

O XGBoost mantém uma ROC-AUC igualmente elevada (0,878) e uma PR-AUC (0,194)

praticamente idéntica a do Random Forest, mas com ligeiramente mais falsos positivos
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(769 vs. 617) e sensibilidade marginalmente superior (0,661). Este perfil indica uma
excelente capacidade de ordenacdo das observagcbes com um leve viés a favor da
identificacdo de positivos, o que o torna adequado para contextos de priorizacdo de
risco.

O C5.0 apresenta métricas muito préximas das do XGBoost, com F;-score de 0,196, G-
mean de 0,755 e accuracy de 0,866, mostrando novamente que o algoritmo produz
classificacGes equilibradas e estaveis. Tal como o Random Forest, o C5.0 mantém uma
boa calibragao (Brier = 0,044) e slope préximo de 1 (0,654), o que indica probabilidades
bem ajustadas a frequéncia observada.

O Naive Bayes, embora inferior aos ensembles, mostra um comportamento mais
controlado do que quando o oversampling foi aplicado fora dos fold: a precisao aumenta
para 0,100 e a calibracdo melhora significativamente (intercep = -0,60 ; slope = 0,61).
Ainda assim, continua a produzir mais falsos positivos (990) e um F1-score inferior
(0,174), refletindo limitagGes estruturais do modelo na presenca de varidveis
correlacionadas.

Em sintese, com o ROSE aplicado corretamente dentro da validacdo, os resultados
tornam-se mais calibrados e operacionais, refletindo estimativas de desempenho mais
confidveis. Observa-se uma melhoria geral em precisdo, accuracy e calibragado,
acompanhada por uma reducdo controlada de sensibilidade — um comportamento
esperado, ja que o oversampling é agora restrito ao treino, evitando sobreajustamento.
As métricas de discrimina¢do (ROC-AUC e PR-AUC) mantém-se elevadas em todos os
modelos, o que confirma a sua capacidade consistente de separar corretamente as
categorias, mas com valores de Brier muito mais baixos e slopes de calibracdo préximos

de 1, indicando previsdes probabilisticas melhor ajustadas.

5.2.7 ROSE dentro da validagao vs. ROSE fora da validagao

A etapa que se segue consistiu em avaliar o impacto da estratégia de equilibrio ROSE
quando aplicada dentro dos ciclos de valida¢do cruzada (intra-fold) em comparacdo com
a sua aplicacdo antes da separacao dos dados (extra-fold).

O objetivo desta comparacdo é determinar se o equilibrio realizado no interior de cada
fold contribui para uma estimativa mais realista do desempenho e para uma reducdo do

sobreajuste decorrente partilha de informacao entre treino e teste.
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Para tal, foram calculadas as diferengas percentuais entre as métricas obtidas nas duas

abordagens, conforme sintetizado na Tabela 17.

Tabela 17 - Diferengas de métricas (pontos): ROSE Dentro da validagéo - ROSE fora da validagéo

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade  F1-Score G-mean Accuracy
C5.0 +0,4% +1,4% +4,0% -11,5% +5,9% -0,9% +10,8% -6,4%
GLM +0,1% -0,2% +7,1% -24,2% +11,4% +11,7% +37,6% +1,2%
NB -2,5% -1,4% +6,1% -32,1% +9,9% +14,3% +45,2% -5,0%
RF +4,7% +1,8% +6,8% -29,1% +9,5% -5,1% +19,7% -7,4%
XGB -2,7% -0,2% +6,5% -26,7% +9,9% +0,4% +24,7% -11,2%

A anadlise relativa confirma que a aplicagdo do ROSE dentro da validagdo melhora
substancialmente o comportamento geral dos modelos, especialmente em termos de
precisao e accuracy, com aumentos relativos superiores a +100% em GLM e Naive
Bayes, e +98% em Random Forest. Estes ganhos refletem uma maior seletividade e
reducdo de falsos positivos, mostrando que o balanceamento intra-fold conduz a
fronteiras de decisdo mais robustas.

Em contrapartida, observa-se uma reducao da sensibilidade em todos os modelos (-15%
a -33%), resultado esperado pela maior prudéncia na detegdo de positivos apds a
corregao do viés introduzido pelo oversampling fora dos folds.

Os modelos de ensemble (Random Forest, C5.0, XGBoost) destacam-se ainda por
melhorias significativas no Brier Score (-60% a -82%), evidenciando melhor calibracdo e
confiabilidade probabilistica. O GLM e o Naive Bayes, embora percam um pouco em
sensibilidade, ontem os maiores ganhos relativos de accuracy e precisao, sugerindo que
o balanceamento interno permitiu-lhes generalizar melhor.

Em suma, os resultados mostram que o ROSE dentro da validagdo conduz a uma
melhoria estrutural: os modelos tornam-se mais calibrados, precisos e estaveis, com

melhor sobreajuste e previsées mais alinhadas com o desempenho esperado.

5.2.8 Regressao Logistica Penalizada de Firth
A Regressdo Logistica Penalizada de Firth foi aplicada com o objetivo de mitigar
problemas de separacao e instabilidade dos estimadores de maxima verosimilhanca,

comuns em cendrios de forte desequilibrio da varidvel resposta (Heinze&Schemper,
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2002). Esta abordagem ajusta a funcdo de verosimilhanca, produzindo coeficientes mais

estdveis e probabilidades bem calibradas.

O modelo foi avaliado em duas etapas:
1. Validagdo cruzada: no conjunto de treino (2016-2022), utilizada para a selegao
do limite 6timo de decisdo segundo a métrica F,-score;
2. Avaliacdo no conjunto de teste (2023), mantendo esse limite fixo para garantir

validade externa.

Resultados da Validag¢do Cruzada (Treino, OOF)
Os resultados da validagao cruzada estdo resumidos na Tabela 18, que apresenta a AUC

média corrigida e o threshold 6timo definido para maximizar F,-score.

Tabela 18 - Métrica de desempenho global e threshold 6timo
Meétrica Valor (0] JY-TRVETE o)

AUC media (corrigida) 0,855 Indica boa discriminagdo entre categoras
(quanto mais alto, melhor)

Threshold étimo 0,052 Threshold que otimiza o F,-score

Estes resultados indicam que o modelo é capaz de capturar padrOes relevantes e
equilibrar adequadamente a sensibilidade e a precisdo, otimizando a detecdo da

categoria minoritaria.

Avaliagdo no teste (2023)
Os resultados obtidos no conjunto de teste encontram-se na Tabela 19, que reulne
métricas de desempenho, intervalos de confianca via bootstrap, matriz de confusao e

observacgoes interpretativas.

Tabela 19 - Avaliagdo do desempenho do Modelo de Regressdo Penalizada de Firth

Métrica Valor 1C95% (Bootstrap) Observacao

Excelente discriminagao entre

ROC-AUC 0,870 [0,845; 0,895] .
categorias
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Métrica 1C95% (Bootstrap) Observagao

PR-AUC 0,161 [0,845; 0,895] Desempenho competitivo em M/FG

El a isO
Accuracy 0,866 [0,845; 0,895] evada proporc¢ao de previsoes
corretas
Precisdo 0,117 - 11,7% dos alertas sdo casos verdadeiros
Sensibilidade 0,673 - Captura = § dos casos graves
Compromisso equilibrado entre
F1-Score 0,199 - - s
precisao e sensibilidade
G-mean 0,765 i Bom 'equ!lllbr‘lo entrt'-:' c(j:]tlegorla
minoritaria e maioritaria
Brier 0,022 i Calibracgdo excelente (probabilidades

realistas)

O modelo penalizado de Firth apresentou desempenho discriminativo compardvel aos
métodos de machine learning mais complexos, como Random Forest e XGBoost (ROC-

AUC ~ 0,87), confirmando a eficacia da penalizacdo em contextos de eventos raros. A
sensibilidade elevada (0,673), significa que cerca de g dos sinistros graves foram

corretamente detetados, enquanto a baixa precisdo de 0,117 indica a presenca de falsos
positivos. O Brier (0,022) foi o melhor entre todos os modelos avaliados, sugerindo boa
calibracdo probabilistica: as probabilidades previstas refletem bem as frequéncias
observadas.

A Regressao Logistica Penalizada de Firth revelou-se uma alternativa estatistica sélida
para este problema, alcangando resultados semelhantes ou superiores aos modelos de

machine learning em termos de discriminagao e calibragdo.

5.2.9 SMOTENC Fora da Validagao

Os resultados obtidos com o SMOTENC aplicado fora da validacao estdo apresentados
na Tabela 20 (métricas de desempenho) e na Tabela 21 (matriz de confusdo e métricas

derivadas).

Tabela 20 - Métricas de desempenho dos modelos com SMOTENC aplicado fora da validagdo.

CAL-

Modelo PR-AUC Precisdo Sensibilidade  F1-Score  G-mean Accuracy
INTERCEPT
0,087 0,777 0,113 0,224 0,150 0,463 0,937 0,036 -1,407 0,325
C5.0 [0,067; [0,740; [0,078; [0,161; [0,105; [0,392; [0,931; [0,033; [-1,599; [0,258;
0,115] 0,811] 0,148] 0,287] 0,192] 0,524] 0,942] 0,039] -1,212] 0,404]
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CAL- CAL-

Modelo Precisdo Sensibilidade  F1-Score = G-mean Accuracy
INTERCEPT SLOPE
0,095 0,750 0,044 0,727 0,082 0,657 0,598 0,110 -3,110 0,487
GLM [0,070; [0,712; [0,036; [0,654; [0,069; [0,624; [0,586; [0,105; [-3,284; [0,393;
0,129] 0,789] 0,052] 0,796) 0,097] 0,689] 0,609] 0,114] -2,933] 0,595]
0,157 0,784 0,045 0,812 0,085 0,672 0,563 0,348 -5,861 0,500
NB [0,110; [0,746; [0,037; [0,750; [0,071; [0,647; [0,552; [0,339; [-6,045; [0,417;
0,212] 0,817] 0,052] 0,873] 0,098] 0,698] 0,575] 0,356] -5,679] 0,590]
0,083 0,807 0,115 0,255 0,159 0,492 0,933 0,043 -1,692 0,380
RF [0,065; [0,779; [0,084; [0,191; [0,118; [0,426; [0,927; [0,039; [-1,932; [0,332;
0,106) 0,836) 0,151] 0,317) 0,202] 0,549] 0,939] 0,046) -1,462] 0,439]
0,104 0,779 0,096 0,376 0,153 0,585 0,897 0,048 -1,938 0,478
XGB [0,073; [0,742; [0,073; [0,297; [0,118; [0,520; [0,889; [0,045; [-2,136; [0,402;
0,146] 0,809] 0,121] 0,448] 0,189] 0,640] 0,904] 0,052] -1,754] 0,547]

Tabela 21 - Matrizes de confusdo e métricas derivadas dos modelos com SMOTENC aplicado fora da validagdo.

Modelo  Threshold TP TN Precisao Sensibilidade Especificidade  Accuracy F1-Score
GLM 0,163 120 45 2627 3847 0,044 0,727 0,594 0,598 0,082
RF 0,396 42 123 322 6152 0,115 0,255 0,95 0,933 0,159
XGB 0,329 62 103 583 5891 0,096 0,376 0,91 0,897 0,153
NB 0,548 134 31 2869 3605 0,045 0,812 0,557 0,563 0,085
C5.0 0,354 37 128 291 6183 0,113 0,224 0,955 0,937 0,15

Com o SMOTENC aplicado fora dos ciclos de validagdo, observaram-se desempenhos
modestos de forma geral, com pequenas variagdes entre os modelos. Nenhum algoritmo
apresentou ganhos expressivos face as estratégias anteriores, indicando que o equilibrio
externo ao processo de validagao tende a introduzir menor generalizagao e potencial
sobreajuste ao conjunto de treino.

O Ranfom Forest foi o modelo com maior capacidade discriminativa global (ROC-AUC =
0,807 [0,779;0,836]), mostrando equilibrio razoavel entre a sensibilidade (0,255) e
precisdo (0,115), embora com tendéncia a subestimar a probabilidade de casos positivos
(intercept = -1,692 ; declive = 0,380).

O Naive Bayes apresentou o maior PR-AUC (0,157 [0,110 ; 0,212]) e uma sensibilidade
elevada (0,812) capturando a maioria dos casos graves. Contudo, a precisdo manteve-se
muito baixa (0,045) e a calibragdo revelou-se fortemente enviesada (intercept = -5,861 ;
declive = 0,500).

O XGBoost exibiu um desempenho intermédio ROC-AUC (0,779 ; PR-AUC = 0,104), com

sensibilidade moderada (0,376) e precisao igualmente reduzida (0,096). Apesar da boa
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estabilidade na especificidade (0,91) e accuracy de 0,897, o modelo apresentou
subestimacdo das probabilidades positivas (intercept = -1,938 ; declive = 0,478).

O GLM manteve o padrdo de alta sensibilidade (0,727) e baixa precisdo (0,044),
resultando num elevado numero de falsos positivos (FP = 2627). A calibracdo foi a mais
distante do ideal (intercept = -3,11 ; declive = 0,49), sugerindo tendéncia acentuada a
subestimacdo das probabilidades de ocorréncia.

Por fim, o C5.0 apresentou os piores resultados relativos, com ROC-AUC = 0,777 e PR-
AUC = 0,087, além de baixa sensibilidade (0,224) e precisdao modesta (0,113). A boa
especificidade (0,955) e a elevada accuracy (0,937) decorrem sobretudo do predominio

de classificagcdes negativas, refletindo baixa capacidade de detecdo de M/FG.

De forma geral, a aplicacdo do SMOTENC fora da validacdo resultou em redugdo da
sensibilidade e melhoria marginal na precisdo em comparacdo com as abordagens de
oversampling dentro da validacdo. Esse comportamento é coerente com a espectativa
tedrica: ao ndo participar no processo de reamostragem nos ciclos de validagdo, o
modelo é exposto a uma distribuicdo de treino diferente da validacdo, o que reduz a
adaptacdo a verdadeira fronteira da decisdo. Além disso, observou-se um agravamento
na calibracdo em quase todos os algoritmos, reforcando a importdncia em realizar o
oversampling dentro dos ciclos de validacdo para garantir estimativas probabilisticas

mais fidedignas.

5.2.10 SMOTENC Dentro da Validacao

Esta seccdo apresenta os resultados obtidos com aplicagdo da técnica de reamostragem
SMOTENC, implementada internamente ao conjunto de dados de treino, e
posteriormente avaliada sobre o conjunto de dados de teste, cuja distribuicdo das

categoria reflete-se na realidade observada (= 3% de casos graves).
A seguir, A Tabela 22 apresentam as principais métricas de desempenho obtidas para

cada modelo, enquanto a Tabela 23 detalha as matrizes de confusao e os indicadores

derivados a partir dos limites principais de decisdo.
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Tabela 22 — Métricas de desempenho com 1C95% (Teste 2023, SMOTENC dentro).

Modelo PR_AUC ROC_AUC Precisao Sensibilidade F1-score Accuracy G-mean

0,025 0,500 0,000 0,000 0,000 0,975 0,000 0,024

5.0 [0,021, [0,500, [nan, [0,000, [nan, [0,971, [0,000, [0,021,
0,029] 0,500] nan] 0,000] nan] 0,979] 0,000] 0,028]

0,166 0,872 0,220 0,267 0,241 0,958 0,510 0,022

GLM [0,129, [0,844, [0,168, [0,200, [0,186, [0,954, [0,443, [0,019,
0,219] 0,896] 0,281] 0,340] 0,301] 0,963] 0,576] 0,026]

0,097 0,830 0,115 0,139 0,126 0,952 0,368 0,084

NB [0,076, [0,800, [0,072, [0,089, [0,081, [0,947, [0,294, [0,078,
0,122] 0,858] 0,160] 0,196] 0,175 0,957 0,436] 0,089]

0,209 0,858 0,290 0,352 0,318 0,962 0,586 0,022

RF [0,155, [0,826, [0,227, [0,279, [0,256, [0,958, [0,523, [0,018,
0,277] 0,888] 0,356] 0,425] 0,378] 0,967] 0,644] 0,025]

0,247 0,393 0,300 0,364 0,329 0,963 0,596 0,021

XGB [0,185, [0,871, [0,240, [0,287, [0,264, [0,958, [0,530, [0,018,
0,316] 0,914] 0,361] 0,433] 0,387 0,968] 0,651] 0,024]

Tabela 23 — Matrizes de confusdo e métricas derivadas (Teste 2023, SMOTENC dentro).

Modelo  Threshold TP [\ FP TN Precisao Sensibilidade Especificidade  Accuracy

GLM 0,167 44 121 156 6318 0,220 0,267 0,976 0,958 0,241

XGB 0,201 60 105 140 6334 0,300 0,364 0,978 0,963 0,329
RF 0,150 58 107 142 6332 0,290 0,352 0,978 0,962 0,318
NB 1,000 23 142 177 6297 0,115 0,139 0,973 0,952 0,126

5.0 0,190 0 165 0 6474 nan 0,000 1,000 0,975 nan

Conforme observado na Tabela 21, o desempenho geral dos modelos diminui
substancialmente quando testados sobre o conjunto de 2023, caraterizado por um forte
desequilibrio entre categorias. O modelo C5.0 apresentou falha completa na
identificagdo de casos positivos (precisao, F; -score e sensibilidade), ainda que mantenha
accuracy de 0,975 — valor enganador, ja que reflete apenas a predominancia da categoria
negativa.

O Naive Bayes obteve resultados moderados (F;-score = 0,126; ROC-AUC = 0,830),
demonstrando limitacdo na capacidade de distinguir entre sinistros graves e leves. Os
modelos GLM, Random Forest e XGBoost apresentaram desempenhos mias sdélidos, com
destaque para o XGBoost, que alcangou F;-score = 0,329 [0,264 ; 0,387], precisdo = 0,300
e sensibilidade = 0,364, associado a ROC-AUC = 0,893 [0,871 ; 0,914]. O Random Forest

apresentou desempenho muito préximo (F;-score = 0,318 ; ROC-AUC = 0,858), enquanto
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o GLM manteve valores ligeiramente inferiores de F;-score (0,241), mas a destacar-se

pela boa calibragdo (Brier = 0,022).

A Tabela 23 permite compreender com mais detalhe o comportamento operacional dos
modelos. Nota-se que o XGBoost e o Random Forest conseguiram identificar 60 e 58
casos positivos, respetivamente, de um total de 165, o que corresponde a uma
sensibilidade de aproximadamente 36% e 35%. O GLM, por sua vez, apresentou
sensibilidade = 0,267 e maior especificidade (0,976), demonstrando uma postura mais
conservadora na predicao da categoria minoritaria.

O Naive Bayes exibiu baixo poder discriminativo (sensibilidade = 0,139), enquanto o C5.0
ndo identificou nenhum caso positivo, classificando todas as observa¢des como
negativas. Esse comportamento reforca a tendéncia de sobreajustamento do C5.0 ao
cenario equilibrado gerado artificialmente pelo SMOTENC, com perda total de
sensibilidade ao ser exposto aos verdadeiros casos desequilibrados.

De modo geral, as métricas de area sob a curva (ROC-AUC entre 0,83 e 0,89) sugerem
alguma capacidade de separacdo entre categorias, mas os limites de decisdo ndo se
traduziram em classificagcdes suficientemente precisas da categoria positiva. Esse
desfasamento indica que, embora os modelos aprendam padrées relevantes durante o
treino reamostrado, as distribuicGes de probabilidade estimada ndo se mantém validas
em contextos reais, o que reduz a generalizagdo.

Além disso, verifica-se que os modelos baseados em arvores (C5.0, Random Forest e
XGBoost) — que haviam demonstrado melhor desempenho nos cenarios equilibrados —
sofrem degradacdo acentuada sob desequilibrio real, enquanto o GLM mostra maior
estabilidade, ainda que com menor sensibilidade.

Assim, os resultados obtidos nas Tabelas 22 e 23, permitem concluir que em contextos
reais de eventos raros, a eficacia das técnicas de reamostragem dependem fortemente
da compatibilidade entre a distribuicao dos dados de treino e de teste. Quando essa
correspondéncia é baixa, a capacidade de generalizacdo dos modelos é severamente
comprometida.

Portanto, a aplicacdo isolada do SMOTENC durante o treino ndo é suficiente para garantir

desempenho satisfatério em ambientes reais.
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5.2.11 SMOTENC Dentro vs. SMOTENC Fora

A técnica de reamostragem SMOTENC foi aplicada exclusivamente no conjunto de treino
de cada fold (v=>5, r=2), nunca no conjunto de validacdo/teste. A selecdo do threshold foi
realizada pela maximizagdo do F,-score nas predigdes OOF. No conjunto de teste (2023),
o threshold foi ajustado via percentil das probabilidades previstas, de modo a impor uma
taxa prevista positiva (TPR) aproximada de 3% (cenario principal) e, adicionalmente,
uma sensibilidade de aproximadamente 5%. Os intervalos de confianga (IC95%) foram

estimados por bootstrap estratificado (B=1000).

Desempenho global dos modelos

A Tabela 24 apresenta os resultados das principais métricas de desempenho obtidas no
conjunto de teste, permitindo avaliar a capacidade discriminativa e a estabilidade dos
diferentes modelos. Sdo incluidos modelos de natureza paramétrica e ndo paramétrica,

permitindo avaliar as diferencas de comportamento face a reamostragem intra-fold.

Tabela 24 - Comparagéo do desempenho global dos modelos: SMOTENC aplicado dentro e fora da validagédo.

Modelo PR_AUC ROC_AUC Precisao Sensibilidade F1-Score Accuracy G-mean Brier
0,025 0,500 0,000 0,000 0,000 0,975 0,000 0,024

C5.0 [0,021; [0,500; [nan; [0,000; [nan; [0,971; [0,000; [0,021;
0,029] 0,500] nan] 0,000] nan] 0,979] 0,000] 0,028]

0,166 0,872 0,220 0,267 0,241 0,958 0,510 0,022

GLM [0,129; [0,844; [0,168; [0,200; [0,186; [0,954; [0,443; [0,019;
0,219] 0,896] 0,281] 0,340] 0,301] 0,963] 0,576] 0,026]

0,097 0,830 0,115 0,139 0,126 0,952 0,368 0,084

NB [0,076; [0,800; [0,072; [0,089; [0,081; [0,947; [0,294; [0,078;
0,122] 0,858] 0,160] 0,196] 0,175] 0,957] 0,436] 0,089]

0,209 0,858 0,290 0,352 0,318 0,962 0,586 0,022

RF [0,155; [0,826; [0,227; [0,279; [0,256; [0,958; [0,523; [0,018;
0,277] 0,888] 0,356] 0,425] 0,378] 0,967] 0,644] 0,025]

0,247 0,893 0,300 0,364 0,329 0,963 0,596 0,021

XGB [0,185; [0,871; [0,240; [0,287; [0,264; [0,958; [0,530; [0,018;
0,316] 0,914] 0,361] 0,433] 0,387] 0,968] 0,651] 0,024]

Em termos gerais, os modelos ndo paramétricos, Random Forest e XGBoost, apresentam
melhor capacidade discriminativa e maior estabilidade entre métricas, evidenciando

ganhos consistentes de PR-AUC e F; -score.
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O GLM demonstra um equilibrio razoavel e boa calibragdo, mantendo resultados
competitivos, ainda que com sensibilidade moderada.

Por outro lado, o Naive Bsyes e o C5.0 revelam limitacdes mais marcadas: o primeiro
pela simplificacao probabilistica e o segundo pela incapacidade de generalizar sob forte
desequilibrio.

Em termos gerais, a aplicacdo do SMOTENC intra-fold aumenta a precisdo e a

estabilidade sem inflacionar artificialmente o desempenho geral.

Matrizes de confusao e métricas derivadas
A Tabela 25 resume as matrizes de confusdo correspondentes ao threshold ajustado para

uma taxa prevista positiva proxima de 3%, bem como as respetivas métricas.

Tabela 25 - Matrizes de confusdo e métricas derivadas (threshold principal =3%).

Modelo  Threshold TP FN FP TN Precisdo Sensibilidade Especificidade  Accuracy F1-
score

GLM 0,167 44 121 156 6318 0,220 0,267 0,976 0,958 0,241
RF 0,150 58 107 142 6332 0,290 0,352 0,978 0,962 0,318

XGB 0,201 60 105 140 6334 0,300 0,364 0,978 0,963 0,329
NB 1,000 23 142 177 6297 0,115 0,139 0,973 0,952 0,126

cs.0 0,190 0 165 0 6474 nan 0,000 1,000 0,975 nan

Observa-se que o equilibrio entre falsos positivos e falsos negativos varia consoante o
modelo, refletindo diferentes comportamentos de calibragao.

Os modelos baseados em arvores (Random Forest e XGBoost) mantém a melhor
combinacdo entre precisdao e sensibilidade, atingindo bons niveis de accuracy mesmo
sob restricdo da taxa de positivos.

O GLM mostra-se mais conservador, priorizando a especificidade, enquanto o Naive
Bayes evidencia fragilidade na separacdo probabilistica, e o C5.0 praticamente ndo
identifica casos positivos.

No conjunto, o padrdao confirma que a reamostragem intra-fold estabiliza o
comportamento dos classificadores e reduz flutuagdes extremas entre precisdo e

sensibilidade.
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Thresholds utilizados nos diferentes cenarios
A Tabela 26 documenta os thresholds utilizados em trés cenarios distintos:
e TH_F2: o threshold é obtido por maximizagao do F,-score nas predicdes OOF;
e TH_RATE3 e TH_RATES: os thresholsd sdo ajustados no teste para impor taxas

previstas positivas de cerca de 3% e 5%, respetivamente.

Tabela 26 - Threshold selecionado (F,, OOF) e ajustado por taxa prevista positiva no teste (3% e 5%).

Modelo TH_RATE3 TH_RATES TH_F2
GLM 0,1670 0,1226 0,3014
RF 0,1497 0,1000 0,3760
XGB 0,2006 0,1342 0,4928
NB 0,9996 0,9965 0,9998
5.0 0,1901 0,1901 0,1901

A variacdo observada entre estes thresholds evidencia diferencas claras na calibracdo
probabilistica entre modelos. O GLM tende a exigir thresholds mais altos (predi¢ées mais
conservadoras), enquanto o Random Forest e o XGBoost distribuem probabilidades de
forma mais dispersa, permitidno ajustes finos. J& o Naive Bayes e o C5.0 mostram uma
calibragdo podre, concentrando as probabilidades extremas e limitando a flexibilidade

na definicdo do threshold.

Comparagao entre os dois cendrios
A Tabela 27 compara diretamente os dois cenarios de amostragem:
e SMOTENC Fora: reamostragem aplicada antes da divisdo em folds;
e SMOTENC Dentro: reamostragem aplicada separadamente em cada conjunto de

treino.

Tabela 27 - Diferengas de métricas (pontos): SMOTENC dentro da validagéo - SMOTENC fora da validagdo.

Modelo PR_AUC ROC_AUC Precisdao Sensibilidade F1-score Accuracy
GLM +7,1% +12,2% +17,6% -46,0% +15,9% +36,0%
NB -6,0% +4,6% +7,0% -67,3% +4,1% +38,9%
RF +12,6% +5,1% +17,5% +9,7% +15,9% +2,9%
XGB +14,3% +11,4% +20,4% -1,2% +17,6% +6,6%
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Os valores positivos indicam melhorias associadas a abordagem intra-fold. De forma
geral, verifica-se um aumento consistentes da precisdo e uma ligeira reducdo da
sensibilidade, especialmente em modelos para métricos como GLM e Naive Bayes.

Nos modelos mais flexiveis, como Random Forest e XGBoost, os ganhos sdo simultaneos
em precisdo e sensibilidade, refletindo maior capacidade de adaptagdo a distribuicao
criada pelo SMOTENC.

Além disso, as métricas de accruracy e PR-AUC mostram tendéncia de melhoria,
sugerindo que o treino intra-fold produz estimativas mais fiéis ao desempenho fora da

amostra, evitando contaminacdo entre treino e validacg3o.

Conclusao

A aplicacdo do SMOTENC dentro dos folds da validacdo cruzada constitui uma pratica
metodologicamente superior, pois preserva a independéncia entre treino e validacao,
evitando data leakage e o inflacionamento artificial das métricas.

Em termos empiricos, observa-se um aumento da precisdo, reducdo moderada da
sensibilidade e melhor estabilidade global, sobretudo em algoritmos baseados em
arvores.

No conjunto, os resultados demonstram que a reamostragem intra-fold produz uma
avaliacdo mais realista e robusta, sendo a opcdo recomendada para contextos de forte

desequilibrio entre categorias.

5.2.12 SMOTENC Dentro vs. ROSE Dentro

Nesta andlise, compara-se o desempenho dos modelos sob duas estratégias de
reamostragem aplicadas dentro dos folds da validacdo cruzada, garantindo total
independéncia entre treino e validagdo e eliminando qualquer risco de data leakage:
e SMOTENC Dentro: que gera novas observag¢bes sintéticas a partir das
observagdes minoritarias combinando atributos continuos e categéricos;
e ROSE Dentro: que cria observacOes sintéticas via bootstrap e perturbacdo

aleatdria controlada.
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A comparacdo direta foi realizada com base na variacdo da percentagem de cada
métrica, conforme a expressao:

A=SMOTENC dentro — ROSE dentro
Valores positivos indicam vantagem do SMOTENC, enquanto valores negativos indicam
desempenho superior do ROSE. Esta formula de calculo permite observar diretamente
em que métricas o SMOTENC oferece ganhos ou perdas relativas, sem necessidade de

apresentar duas tabelas separadas.

Desempenho comparativo entre SMOTENC dentro e ROSE dentro
Neste sentido a Tabela 28, apresenta as diferencas de desempenho entre ambos os

métodos.

Tabela 28 - Diferengas de métricas (pontos): SMOTENC dentro da validagdo - ROSE dentro da validagdo.

Modelo PR_AUC ROC_AUC Precisdao Sensibilidade F1-score Accuracy
GLM +0,5% -0,1% +10,5% -45,4% +4,3% +10,3%
NB -4,8% -2,4% +1,5% -52,8% -4,8% +10,9%
RF +1,4% -1,9% +15,3% -24,2% +9,5% +6,5%
XGB +5,3% +1,5% +17,6% -29,7% +12,0% +8,7%

Os resultados indicam que o SMOTENC dentro e ROSE dentro apresentam desempenhos
proximos em termos gerais, mas com diferencas consistentes no equilibrio entre
precisdo e sensibilidade.

O SMOTENC dentro tende a produzir ganhos mais consistentes em precisdao e PR-AUC,
particularmente em modelos de natureza ndo linear. O XGBoost tem um aumento de
17,6% em precisdao e 5,3% em PR-AUC, indicando uma capacidade superior de
discriminacdo entre categorias. O Random Forest apresenta um comportamento
semelhante, com um ganho de 15,3% em precisdo e 1,4% em PR-AUC, o que sugere que
as observagOes sintéticas geradas pelo SMOTENC sdo mais seletivas e menos
redundantes, proporcionando uma fronteira de decisdo mais conservadora e, portanto,
menor taxa de falsos positivos entre os FL. O GLM apresenta uma melhoria de 10,5% em
precisdao, embora com uma perda acentuada de sensibilidade, o que é coerente com a

rigidez da fronteira linear deste modelo.
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Por outro lado, observa-se uma reducgdo expressiva da sensibilidade em todos os
modelos, sobretudo nos lineares e probabilisticos, como o GLM e o Naive Bayes. Essa
diminuicdo explica-se pelo facto de o SMOTENC gerar observagdes sintéticas mais
concentradas em torno da distribuicdo empirica da categoria minoritaria, cobrindo
menos as regides periféricas do espaco de decisdo. J& o ROSE, ao introduzir ruido
aleatdrio nas observacbes de treino, tende a produzir uma cobertura mais ampla e
heterogénea da fronteira, o que se traduz num numero superior de M/FG (maior
sensibilidade), mas com um custo de aumento de falsos positivos, reduzindo a precisao.
As diferencas observadas no ROC-AUC sao pequenas, geralmente inferiores 0,02, o que
indica que ambas as abordagens preservam uma capacidade discriminativa global
semelhante. Ainda assim, o PR-AUC revela pequenas, mas consistentes, melhorias sob o
SMOTENC, sobretudo nos modelos de ensemble, refletindo uma maior eficiéncia na
priorizacdo de M/FG em contextos de forte desequilibrio. A accuracy acompanha esta
tendéncia, sugerindo que o SMOTENC origina fronteiras de decisdo mais estaveis e

probabilidades melhor calibradas.

Em sintese, embora ambos os métodos apresentem desempenhos préximos, o
SMOTENC dentro destaca-se pela sua maior robustez, estabilidade e controlo de falsos
positivos, sendo, portanto, mais indicado quando se privilegia precisao e fiabilidade na
identificacdo de M/FG. Ja o ROSE mostra-se mais vantajoso em cenarios onde o objetivo
€ maximizar a sensibilidade, ainda que com o custo de um aumento no numero de falsos

FL.

5.2.13 ROSE Fora vs. SMOTENC Fora

A comparacdo direta entre as duas estratégias indica que o SMOTENC oferece um
equilibrio ligeiramente superior entre precisdo e sensibilidade, sobretudo nos modelos
de natureza ndo paramétrica (XGBoost e Random Forest). Em contrapartida, o ROSE
tende a favorecer ligeiramente a sensibilidade — identificando mais ocorréncias graves,
mas a custa de um numero superior de falsos positivos. Assim, a escolha entre ambos
depende do objetivo operacional: se a prioridade é minimizar o risco de ndo detetar

sinistros graves (sensibilidade maxima), o ROSE continua uma opc¢ao valida; se a énfase
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recai na fiabilidade das previsdes positivas (maior precisdo e melhor calibracdo), o
SMOTENC revela-se preferivel.

Importa ainda salientar que, em ambos os casos, as métricas de calibracdo (intercecdo e
declive préximos de 0 e 1, respetivamente) confirmam que a probabilidade prevista de
ocorréncia grave reflete adequadamente a frequéncia observada. Os valores do erro de

Brier, na ordem de 0,02, reforcam essa boa adequacao probabilistica.

Implicagbes e recomendagoes

Em termos substantivos, ambos os métodos de reamostragem permitiram preservar a
coeréncia das varidveis explicativas identificadas anteriormente — reforcando a
importancia de fatores como a idade média do veiculo, o tipo de via e o periodo
temporal. No entanto, o SMOTENC revelou-se mais parcimonioso e estavel: a menor
redundancia de exemplos sintéticos evitou flutuacdes nas métricas entre repeticdes,
oferecendo resultados mais robustos para generalizagao.

Do ponto de vista aplicado a seguranca rodoviaria, tal estabilidade é relevante: politicas
de prevencdo e vigilancia dependem de modelos que mantenham desempenho
consistente sob diferentes amostras ou atualizacdes de dados. Assim, recomenda-se que
versOes futuras da modelacdo adotem o SMOTENC como procedimento padrdo de
reamostragem, mantendo o ROSE apenas como analise de sensibilidade ou cendrio
alternativo.

Em sintese, o SMOTENC confirma a robustez da estrutura de variadveis desenvolvida na
dissertacdo e demonstra que a melhoria da representatividade da categoria minoritaria
pode ser alcancada sem perda de calibracdo nem aumento substancial do erro,
constituindo uma solugdo metodoldgica equilibrada para problemas de previsdao de

gravidade em sinistralidade rodoviaria.

5.2.14 Analise de Sensibilidade — threshold com taxa ~ 5%

Nesta fase, realiza-se uma andlise de sensibilidade para avaliar o impacto da variacdo do
threshold no desempenho do modelo. O objetivo é observar o comportamento das
métricas quando se aumenta a taxa prevista positiva de aproximadamente 3% (cendrio

principal) para cerca de 5%.

121



O ajuste é feito diretamente sobre as probabilidades previstas no conjunto de teste
(2023), selecionando o percentil correspondente a uma taxa de positividade
aproximadamente de 5%. Esta abordagem permite avaliar a robustez dos modelos a
mudanca de threshold, e verificar se o ganho em sensibilidade compensa a possivel

redugdao em precisao e accuracy.

A Tabela 29, apresenta as principais métricas de desempenho obtidas no conjunto de

teste quando se forga a taxa prevista positiva para aproximadamente 5%.

Tabela 29 - Métricas no conjunto de teste quando se forga taxa prevista positiva ~ 5%.

Modelo PR_AUC ROC_AUC Precisao Sensibilidade Fl-score  Accuracy G-mean
GLM 0,166 0,872 0,190 0,382 0,254 0,944 0,605 0,022
XGB 0,247 0,893 0,226 0,455 0,302 0,948 0,661 0,021
RF 0,209 0,858 0,213 0,436 0,286 0,946 0,647 0,022
NB 0,097 0,830 0,127 0,255 0,169 0,938 0,493 0,084
C5.0 0,025 0,500 0,000 0,000 0,000 0,975 0,000 0,024

O aumento do threshold para alcancar uma taxa prevista positiva de 5% conduz ao
aumento generalizado da sensibilidade em todos os modelos, acompanhado de uma
ligeira reducgao da precisao.

Os modelos baseados em ensembles, nomeadamente, o XGBoost e o Random Forest,
continuam a apresentar o melhor desempenho global. O XGBoost alcanca uma
sensibilidade de 0,455 e precisdo de 0,226, resultando num F; -score de 0,302 e o melhor
G-means de 0,661, enquanto o Random Forest mantém a sensibilidade de 0,436,
precisdo de 0,231 F; -score de 0,286, com ROC-AUC de 0,858.

O GLM exibe um ROC-AUC elevado (0,872) com desempenho equilibrado (precisdo de
0,190 e sensibilidade de 0,382) evidenciando uma boa capacidade discriminativa mesmo
com um threshold mais permissivo. J& o Naive Bayes apresenta resultados mais
modestos, refletindo menor robustez, enquanto o C5.0 permanece inativo, com precisao
e sensibilidade nulos, mostrando incapacidade de resposta mesmo apds o ajuste do
threshold.

Em sintese, ao elevar o threshold, observa-se um ganho em sensibilidade de

aproximadamente de 0,08 a 0,10 em relacdo ao cenario base, acompanhado por uma

122



reducdao moderada de precisdo. Apesar desta troca, os modelos de ensemble preservam

niveis elevados de AUC e F;-score, confirmando a robustez do desempenho.

5.2.15 Thresholds escolhidos (Pesos)

Esta seccdo apresenta os resultados com balanceamento por pesos (0,5/0,5), aplicada
sem qualquer reamostragem sintética, preservando integralmente os dados originais e
garantindo a independéncia entre treino e teste. Sdo reportadas métricas no conjunto
de teste (2023) para thresholds ajustados a rate = 3% e rate = 5%, incluindo intervalos
de confianca (IC95%) obtidos via bootstrap estratificado (B=1000) em formato
compacto, calibragdo apds regressao isotonica e matrizes de confusdo para rate = 3%.
Inclui ainda uma comparacdo interpretativa com abordagens de reamostragem
sintéticas (SMOTENC/ROSE).
A tabela que se segue, Tabela 30, apresenta os thresholds escolhidos para cada modelo
sob a estratégia de ponderacdo de pesos iguais (0,5/0,5). Sdo incluidos trés critérios de
selecdo:
e TH_RATE3: threshold ajustado para uma taxa prevista positiva = 3% no conjunto
de teste;
e TH_RATES: threshold ajustado para uma taxa prevista positiva = 5% no conjunto
de teste;

e TH_F2: threshold que maximiza o F,-score nas predi¢des OOF.

A comparacdo destes thresholds permite observar como diferentes prioridades
analiticas (precisdo vs. sensibilidade) influenciam a definicdo do limite de decisdo em

cada modelo.

Tabela 30 - Thresholds selecionados para cada modelo com equilibrio por pesos (0,5/0,5).

Modelo TH_RATE3 TH_RATES TH_F2
GLM 0,738 0,919 0,883
FIRTH 0,507 0,519 0,515

RF 0,415 0,66 0,581
XGB 0,67 0,768 0,738

NB 0,176 0,327 0,246
5.0 0,813 1,0 1,0
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A Tabela 31 apresenta métricas de desempenho no conjunto de teste, quando o

threshold foi ajustado para taxa positiva = 3%

Tabela 31 - Métricas de classificagdo do teste (Taxa prevista ~ 3%).

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade F1-score Accuracy G-mean
GLM 0,161 0,875 0,22 0,267 0,241 0,51 0,958 0,184
FIRTH 0,157 0,865 0,235 0,285 0,258 0,527 0,959 0,24
RF 0,186 0,874 0,23 0,279 0,252 0,522 0,959 0,064
XGB 0,254 0,901 0,285 0,345 0,312 0,581 0,962 0,179
C5.0 0,171 0,851 0,23 0,279 0,252 0,522 0,959 0,026
NB 0,103 0,83 0,115 0,139 0,126 0,368 0,952 0,214

A Tabela 32 apresenta métricas de desempenho no conjunto de teste, quando o

threshold foi ajustado para taxa positiva = 5%.

Tabela 32 - Métricas de classificagdo do teste (Taxa prevista ~ 5%).

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade F1-score Accuracy G-mean
GLM 0,161 0,875 0,202 0,406 0,27 0,624 0,945 0,184
FIRTH 0,157 0,865 0,196 0,394 0,262 0,615 0,945 0,24
RF 0,186 0,874 0,19 0,382 0,254 0,605 0,944 0,064
XGB 0,254 0,901 0,244 0,491 0,326 0,687 0,95 0,179
C5.0 0,171 0,851 0,193 0,388 0,258 0,61 0,944 0,026
NB 0,103 0,83 0,127 0,255 0,169 0,493 0,938 0,214

A Tabela 33 apresenta as principais métricas de desempenho dos modelos no conjunto
de teste, ajustadas ao equilibrio por pesos iguais (0,5/0,5). Cada valor é acompanhado
pelo 1C95%, obtido via bootstrap estratificado (B=1000), permitindo avaliar a

estabilidade e a variabilidades das métricas.

Tabela 33 - Métricas de desempenho dos modelos no teste com IC95% (Bootstrap estratificado, pesos 0,5/0,5).

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade F1-Score Accuracy G-mean

0,171 0,851 0,230 0,279 0,252 0,522 0,959 0,026

5.0 [0,127- [0,818- [0,170- [0,212- [0,191- [0,455— [0,954— [0,023—
0,233] 0,879] 0,294] 0,352] 0,315] 0,586] 0,963] 0,028]
0,157 0,865 0,235 0,285 0,258 0,527 0,959 0,240

FIRTH [0,120- [0,839- [0,178- (0,211~ [0,196~ [0,454— (0,955~ [0,240~
0.208] 0,889] 0,298] 0,350] 0,315) 0,584] 0,964] 0,240]
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Modelo PR_AUC ROC_AUC Precisdao Sensibilidade F1-Score Accuracy G-mean

0,161 0,875 0,220 0,267 0,241 0,510 0,958 0,184

GLM [0,125— [0,850— [0,161- [0,201- [0,182— [0,444—~ [0,954— [0,179-
0,213] 0,898] 0,277] 0,337] 0,298] 0,574] 0,963] 0,190]
0,103 0,830 0,115 0,139 0,126 0,368 0,952 0,214

NB [0,079- [0,804— [0,072— [0,090- [0,082— [0,296— [0,947- [0,206—
0,131] 0,859] 0,159] 0,194] 0,170] 0,434] 0,957] 0,222]
0,186 0,874 0,230 0,279 0,252 0,522 0,959 0,064

RF [0,141- [0,850— [0,175— [0,214- [0,193— [0,457- [0,954— [0,061—
0,243] 0,894] 0,288] 0,349] 0,311] 0,584] 0,964] 0,067]
0,254 0,901 0,285 0,345 0,312 0,581 0,962 0,179

XGB [0,196— [0,879— [0,224—- [0,277- [0,253— [0,521~ [0,958— [0,175—
0,334] 0,921] 0,351] 0,418] 0,372] 0,640] 0,967] 0,183]

A Tabela 34 apresenta a calibracdo dos modelos no conjunto de teste de 2023, utilizando

a técnica de regressao isotdnica aplicada apés a ponderacao de pesos iguais.

Tabela 34 - Métricas de calibragéio dos modelos no conjunto de teste (Regressdo Isoténica, pesos 0,5/0,5).

Modelo BRIER ‘ INTERCEPT ‘ SLOPE
GLM_PESOS_cal 0,022 -0,023 1,053
FIRTH_PESOS_cal 0,022 0,001 1,066

RF_PESOS_cal 0,022 -0,129 0,978
XGB_PESOS_cal 0,021 -0,119 1,197
C5.0_PESOS_cal 0,022 0,072 1,028
NB_PRIORO5_cal 0,023 0,161 1,228

A Tabela 35 apresenta as matrizes de confusdo dos modelos no conjunto de teste de
2023, considerando um threshold ajustado para uma taxa prevista positiva = 3% e

equilibrio por pesos iguais.

Tabela 35 - Métricas de confusdo dos modelos no conjunto de teste (taxa prevista positiva ~3%, pesos 0,5/0,5)

Modelo  Threshold TN Precisdo  Sensibilidade Especificidade Accuracy F

Score

GLM 0,919 44,0 121,0 1560 6318,0 0,22 0,267 0,976 0,241 0,958
FIRTH 0,519 47,0 1180 153,0 6321,0 0,235 0,285 0,976 0,258 0,959
XGB 0,768 57,0 108,0 143,0 63310 0,285 0,345 0,978 0,312 0,962
RF 0,66 46,0 119,0 1540 6320,0 0,23 0,279 0,976 0,252 0,959
NB 1,0 23,0 142,0 1770 62970 0,115 0,139 0,973 0,126 0,952
C5.0 0,327 46,0 1190 1540 6320,0 0,23 0,279 0,976 0,252 0,959
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A estratégia de ponderacdo por pesos (PESOS) mostrou-se uma alternativa robusta para
lidar com o desequilibrio da amostra, preservando integralmente os dados originais e
evitando o risco de leakage inerente a técnicas de reamostragem fora dos folds de
validacdo. Essa abordagem garantiu comparabilidade entre os modelos e consisténcia
estatistica dos resultados obtidos no teste, tanto em termos de desempenho preditivo
guanto de calibracao.

Em cendrios de taxa prevista positiva aproximada de 3%, o desempenho global foi
satisfatorio. Observou-se que os modelos generalizados (GLM/Firth) e o Random Forest
apresentaram valores de PR-AUC entre 0,157 e 0,186, com F;-score na faixa de 0,24 —
0,26. Tais resultados demonstram equilibrio entre precisao e sensibilidade, mantendo
boa capacidade discriminativa (ROC-AUC acima de 0,86) e boa estabilidade (G-mean =
0,96). O XGBoost destacou-se PR-AUC de 0,254 e F;-score de 0,312, sugerindo maior
poder de separacdo entre categorias, embora com tendéncia a maior variabilidade e
sensibilidade a pequenas perturbagdes nos preditores.

Quando o limite foi ajustado para uma taxa prevista positiva de = 5%, houve incremento
consistente na sensibilidade — sobretudo para o XGBoost, que atingiu 0,491 de
sensibilidade e F;-score de 0,326 — em detrimento da precisao. Assim, a escolha do
threshold depende diretamente da prioridade analitica: limites mais baixos (3%)
privilegiam a precisao, enquanto taxas mais altas (5%) ampliam a capacidade de detecdo
de casos positivos, sendo, portanto, preferiveis quando o objetivo é maximizar a
sensibilidade ou o F,-score.

Os modelos ponderados apresentaram um bom desempenho em calibracdo apds
regressao isotonica, com Brier entre 0,021 e 0,023 e coeficientes de calibragdo préoximos
aos ideias (intercep = 0 e slop = 1), indicando que as probabilidades previstas foram bem
ajustadas. Essa estabilidade contrasta com os efeitos observados em técnicas de
reamostragem sintética. O SMOTENC, quando corretamente confiando dentro dos folds,
também atinge boa sensibilidade, mas adiciona variancia e pode induzir sobreajuste
local em algumas combinagdes de preditores. Comparativamente, os pesos exibiram
comportamentos mais estavel e interpretavel, sobretudo para modelos generalizados
(GLM/Firth). De forma semelhante, o ROSE compartilha as vantagens no SMOTENC em
termos de aumento da sensibilidade, porém o ruido gerado pode degradar a calibragao

e, se ndo for estritamente intra-fold, pode causa data leakage.
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Em relacdo XGBoost, sob ponderagdo 0,5/0,5, ele pode apresentar instabilidade, com
scores semi constantes dependendo de carateristicas dos preditores, como valores de
baixa variancia ou escala.

Em sintese, a estratégia PESOS apresentou equilibrio entre desempenho preditivo,
estabilidade e interpretabildiade, superando abordagens baseadas em reamostragem
em termos de calibracdo e robustez estatistica. GLM, Firth e Random Forest, destacaram-
se como modelos confidveis e transparentes, enquanto o XGBoost apresentou
desempenho absoluto superior, porém com maior sensibilidade a perturbacdes nos
dados. Para maximizar a sensibilidade (énfase em F,), recomenda-se utilizar taxa
prevista positiva = 5%, maior precisao = 3%. Em ambos os casos, deve-se manter

calibragdo isotdnica e reportar intervalos de confianga de 95% obtidos via bootstrap.

5.2.16 Modelos com intera¢des vs. Baseline (GLM/Firth) e relagdo com

PESOS/SMOTENC

Nesta etapa do estudo, avalia-se o efeito da inclusdo de interagdes nas regressodes
logistica e de Firth, comparando-as com as respetivas versées base, tanto em
configuracdes com e sem ponderacdo de categorias. O protocolo experimental seguiu
um esquema temporal rigoroso - treino no periodo 2016-2022 e teste em 2023 - com
validacao cruzada estratificada (v=5, r=2), assegurando estimativas robustas e livres de
data leakage.

Os limites de decisao foram determinados segundo o F,-score, sob restricdes
operacionais, e a avaliagao final do conjunto de este baseou-se em pe2rcentis que
reproduzem taxas de previsdao positivas proximas de 3% e 5%, refletindo condicdes
realistas de aplicagao.

Tal como discutido anteriormente, optou-se por nao aplicar a calibragdo isotdnica aos
modelos logisticos e de Firth, uma vez que, estes ja produzem estimativas probabilisticas
intrinsecamente calibradas. Assim, a andlise concentra-se exclusivamente na influéncia
das interagdes e da ponderagao de categorias sobre o desempenho discriminativa e o
equilibrio entre sensibilidade e precisao, sem interferéncia de transformagdes adicionais

na escala das probabilidades.
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As tabelas seguintes (Tabelas 36 a 41) sintetizam o desempenho global dos modelos
baseline e com/sem interagdes, bem como o desempenho dos modelos calibrados com
ponderacdo (pesos), através de métricas discriminativas, calibracdo e matrizes de

confusao.

Tabela 36 - Métricas no teste (rate = 3%) - Modelos com Interagées

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade Accuracy Brier
GLM_BASE_W_RATE3% 0.161 0.875 0.22 0.267 0.241 0.51 0.958 0.184
GLM_BASE_NW_RATE3% 0.166 0.872 0.22 0.267 0.241 0.51 0.958 0.022
GLM_INT_W_RATE3% 0.202 0.884 0.265 0.321 0.29 0.56 0.961 0.177
GLM_INT_NW_RATE3% 0.215 0.881 0.26 0.315 0.285 0.555 0.961 0.022
FIRTH_BASE_W_RATE3% 0.157 0.865 0.235 0.285 0.258 0.527 0.959 0.24
FIRTH_BASE_NW_RATE3% 0.166 0.872 0.22 0.267 0.241 0.51 0.958 0.022
FIRTH_INT_W_RATE3% 0.14 0.863 0.175 0.212 0.192 0.455 0.956 0.241
FIRTH_INT_NW_RATE3% 0.215 0.881 0.26 0.315 0.285 0.555 0.961 0.022

Tabela 37 - Métricas no teste (rate = 5%) - Modelos com Intera¢des

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade Accuracy Brier
GLM_BASE_W_RATE5% 0.161 0.875 0.202 0.406 0.27 0.624 0.945 0.184
GLM_BASE_NW_RATE5% 0.166 0.872 0.19 0.382 0.254 0.605 0.944 0.022
GLM_INT_W_RATE5% 0.202 0.884 0.214 0.43 0.286 0.643 0.947 0.177
GLM_INT_NW_RATE5% 0.215 0.881 0.217 0.436 0.29 0.647 0.947 0.022
FIRTH_BASE_W_RATE5% 0.157 0.865 0.196 0.394 0.262 0.615 0.945 0.24
FIRTH_BASE_NW_RATE5% 0.166 0.872 0.19 0.382 0.254 0.605 0.944 0.022
FIRTH_INT_W_RATE5% 0.14 0.863 0.181 0.364 0.241 0.59 0.943 0.241
FIRTH_INT_NW_RATE5% 0.215 0.881 0.217 0.436 0.29 0.647 0.947 0.022

Tabela 38 - Variagdes (Interagées — Base) a rate = 3%

Contrast A PR_AUC A Sensibilidade A Precisdao A F1-score

GLM_INT_W_rate3% -
0.041 0.054 0.045 0.049 rate3%
GLM_BASE_W_rate3%
GLM_INT_NW_rate3% -
0.049 0.048 0.04 0.044 rate3%
GLM_BASE_NW_rate3%
FIRTH_INT_W_rate3% -
-0.017 -0.073 -0.06 -0.066 rate3%
FIRTH_BASE_W_rate3%
FIRTH_INT_NW_rate3% -
0.049 0.048 0.04 0.044 rate3%
FIRTH_BASE_NW_rate3%
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Tabela 39 - Variagdes (Interagdes — Base) a rate = 3%

Contrast A PR_AUC A Sensibilidade A Precisdo A F1-score

GLM_INT_W_rate5% -
0.041 0.024 0.012 0.016 rate5%
GLM_BASE_W_rate5%
GLM_INT_NW_rate5% -
0.049 0.054 0.027 0.036 rate5%
GLM_BASE_NW_rate5%
FIRTH_INT_W_rate5% -
-0.017 -0.03 -0.015 -0.021 rate5%
FIRTH_BASE_W_rate5%
FIRTH_INT_NW_rate5% -
0.049 0.054 0.027 0.036 rate5%
FIRTH_BASE_NW_rate5%

Tabela 40 - Métricas no teste (rate = 3%) - PESOS (baseline, sem interagdes)

Modelo PR_AUC ROC_AUC Precisdo Sensibilidade  f7.ccore ‘ Accuracy
GLM_PESOS 0.161 0.875 0.22 0.267 0.241 0.51 0.958 0.184
FIRTH_PESOS 0.157 0.865 0.235 0.285 0.258 0.527 0.959 0.24

RF_PESOS 0.186 0.874 0.23 0.279 0.252 0.522 0.959 0.064
XGB_PESOS 0.254 0.901 0.285 0.345 0.312 0.581 0.962 0.179
C5.0_PESOS 0.171 0.851 0.23 0.279 0.252 0.522 0.959 0.026
NB_PRIORO5 0.103 0.83 0.115 0.139 0.126 0.368 0.952 0.214

Tabela 41 - Métricas no teste (rate = 5%) - PESOS (baseline, sem intera¢ées)

‘ PR_AUC ‘ ROC_AUC Precisdo Sensibilidade s 3 ‘ Accuracy ‘ Brier

GLM_PESOS_rate5% 0.161 0.875 0.202 0.406 0.27 0.624 0.945 0.184
FIRTH_PESOS_rate5% 0.157 0.865 0.196 0.394 0.262 0.615 0.945 0.24
RF_PESOS_rate5% 0.186 0.874 0.19 0.382 0.254 0.605 0.944 0.064

XGB_PESOS_rate5% 0.254 0.901 0.244 0.491 0.326 0.687 0.95 0.179
C5.0_PESOS_rate5% 0.171 0.851 0.193 0.388 0.258 0.61 0.944 0.026
NB_PRIOROS_rate5% 0.103 0.83 0.127 0.255 0.169 0.493 0.938 0.214

Os modelos com interagdes procuram capturar efeitos conjuntos entre carateristicas da
infraestrutura, tipologia do sinistro e composi¢cdo do trafego, aspetos frequentemente
nao lineares nas vias rodoviarias. Em linha com a literatura, espera-se que tais termos
aumentem o poder discriminativo sem sacrificar a interpretabilidade nos GLM e
reduzam o viés em eventos raros nos modelos de Firth, cuja penalizacdo de Jeffreys
mitiga a sobrestimacdo de probabilidades extremas (Heinze & Schemper, 2002; King &
Zeng, 2001).

Operacionalmente, a utilizacdo de thresholds por percentil no teste (rate = 3%/5%)
garante comparabilidade entre modelos e evita colapsos de sensibilidade (i.e., zeros)

associados a limites conservadores derivados apenas por F, nas OOF. Apds esta
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corregao, o aumento observado de sensibilidade e F;-score e nas varidveis com

interagdes, especialmente quando combinadas com pesos de categorias, refletem a

capacidade destes modelos em priorizar corretamente eventos raros sem distorcer a

ordem global das probabilidades. A estabilidade da PR-AUC, dependentes apenas do

ranking das previsdes, indica que a discriminacdo global mantém-se estavel ou

ligeiramente superior, como esperado, dado depender apenas da ordenacao.

Comparativamente a estratégias baseadas em amostras sintéticas (SMOTENC/ROSE), os

modelos ponderados com intera¢des apresentam menor variancia e maior robustez

temporal. A ponderacdo ajusta a funcdo de perda sem modificar a distribuicdo empirica,

preservando a calibracdo natural dos modelos GLM e Firth, enquanto métodos sintéticos

podem gerar previsdes artificialmente extremas e risco de data leakage (Lunardon,

Menardi, & Torelli, 2014; Chawla, Bowyer, Hall, & Kegelmeyer, 2002).

Em termos praticos:

e GLM com interagdes e pesos tende a maximizar a sensibilidade a rate = 5% com
perda moderada de precisao;
e Firth com interacGes é o mais estavel, oferecendo compromisso favoravel entre

sensibilidade e precisao a rate = 3% e um Brier score competitivo, coerente com
a sua natureza de correcao de viés em categorias raras.

Por fim, a inclusdo de interagcdes demonstrou capturar padrdes estruturais, contribuindo

para previsoes robustas e consistentes ao longo do tempo, reforcando a aplicabilidade

operacional dos modelos em contextos da vida real.
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5.Conclusao

O presente estudo abordou um dos problemas mais desafiantes da modelacao preditiva
em ciéncia de dados: a previsdo de eventos raros, aqui representados pelos sinistros
rodovidrios graves e mortais no distrito de Setubal. O trabalho integrou uma
componente tedrica e metodoldgica sdlida com uma andlise empirica rigorosa,
permitindo avaliar comparativamente diferentes estratégias estatisticas e de machine
learning aplicadas a um fendmeno com forte desequilibrio entre categorias.

A andlise partiu de uma base de dados extensa (mais de 43 mil ocorréncias), na qual

apenas cerca de 2-3% dos registos correspondiam a sinistros graves ou mortais. Este

desequilibrio extremo compromete a capacidade preditiva dos modelos convencionais,
tornando necessdria a adocdao de abordagens especificas de correcdao. Assim, foram
testadas trés familias de solugdes:
(i) técnicas de reamostragem controladas (oversampling via ROSE e SMOTENC,
aplicadas apenas nos dados de treino, evitando data leakage);
(ii) modelos ponderados, com pesos inversamente proporcionais a frequéncia
das categorias;
(iii) modelos penalizados, através da Regressao Logistica de Firth, que assegura
estabilidade inferencial sob separacdao quase completa.

Os modelos comparados, Regressao Logistica (classica e Firth), Random Forest, C5.0,

XGBoost e Naive Bayes, foram avaliados com base em métricas adaptadas a eventos

raros: a drea sob a curva Precisdo-Sensibilidade (PR-AUC), a area sob a curva ROC (ROC-

AUC), o F,-score (critério de otimizagdao dos limites de decisdo), o Brier score, e os

parametros de calibracdo global (intercept e slope).

A validacdo cruzada repetida, aliada a uma avaliacdo final em hold-out test set,

assegurou robustez estatistica e validade externa das conclusdes.

Os resultados empiricos revelaram trés conclusdes principais:

1. A corre¢ao do desequilibrio é indispensavel, mas deve ser metodologicamente
controlada. A aplicacao de técnicas de oversampling exclusivamente no treino, em
vez de no conjunto total, eliminou o enviesamento otimista observado em
abordagens anteriores, reduzindo o risco de sobreajuste e melhorando a

generalizacdo para o teste. Entre as técnicas comparadas, ROSE e SMOTENC
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produziram resultados semelhantes em termos de ROC-AUC (~0,86-0,89), com ligeira
vantagem do SMOTENC em sensibilidade e equilibrio global (F, = 0,27).

2. O desempenho varia consideravelmente com o tipo de algoritmo.
O XGBoost emergiu como o modelo mais consistente, obtendo o melhor
compromisso entre precisao e sensibilidade (PR-AUC = 0.22; ROC-AUC = 0,88; Brier =
0,021), seguido do Random Forest, que apresentou desempenho estavel, mas menos
calibrado. A Regressdao Logistica de Firth destacou-se pela excelente calibracdo
probabilistica (intercepto = 0; Brier = 0,022) e pela sua capacidade de detecdo da
categoria rara (sensibilidade = 0,67), sendo uma alternativa robusta e interpretavel
aos modelos mais complexos. Por contraste, o Naive Bayes e o C5.0 revelaram maior
variabilidade e menor discriminagdo em contextos de forte desequilibrio.

3. O F,-score demonstrou ser uma métrica de corte mais adequada para contextos
criticos. A otimizagdo dos limites de decisdo pelo F,-score e, privilegiando a
sensibilidade, aumentou substancialmente a capacidade de identificar casos graves,
mesmo a custa de maior numero de falsos positivos. Esta abordagem é
metodologicamente coerente com o objetivo de prevencgdo e intervengdo precoce em
seguranca rodoviaria.

Em sintese, o estudo evidencia que a combina¢dao de modelos calibrados, técnicas de

reamostragem controladas e métricas ajustadas a eventos raros pode melhorar de forma

significativa o desempenho e a utilidade pratica dos modelos preditivos.

A Regressdo Logistica de Firth surge como uma referéncia metodoldgica sélida,

enquanto XGBoost e Random Forest se afirmam como op¢des de elevado desempenho

em cenarios operacionais.

Do ponto de vista aplicado, a modelacao desenvolvida permite identificar fatores

associados a maior gravidade dos acidentes, contribuindo para orientar politicas

publicas baseadas em evidéncia, nomeadamente na definicdo de zonas criticas, gestao
de recursos e planeamento de medidas preventivas.

Como linhas futuras de investiga¢do, propde-se:

(i) a incorporacdo de varidveis espaciais e temporais em modelos hierdrquicos
(spatio-temporal rare-event models);
(i) a andlise de interpretacdo de modelos complexos através de métodos

explicativos (e.g. SHAP, partial dependence);
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(iii) e aintegracdo de informacdo de trafego em tempo real, potenciando modelos
de previsao dindmica do risco rodoviario.

Assim, esta dissertacdo reforca a importancia da modelacdo comparativa e

estatisticamente rigorosa de eventos raros, tanto no plano metodoldgico como na sua

aplicagdo concreta a seguranca rodovidria, contribuindo para uma abordagem mais

preventiva, transparente e orientada por dados.
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Apéndice

Os resultados seguintes correspondem a uma abordagem exploratdria inicial, em que as
técnicas de reamostragem foram aplicadas antes da divisdo treino/teste. Estes valores
ndo sao diretamente comparaveis com os obtidos na abordagem final (reamostragem

apenas no treino).

Apéndice A - ROSE

O conjunto de dados do modelo final apresenta dados desequilibrados acentuado na
varidvel resposta, com uma maioria muito expressiva de sinistros classificados como
“Feridos Leves”. Esse tipo de desequilibrio pode ser problematico para os modelos de
machine learning. Neste sentido, ao examinar a base de dados a distribuicdo de
observacgdes era a seguinte:

e Categoria 0 — “Feridos Leves”: 42317 observacgoes (categoria maioritaria)

e Categoria 1—“Mortes/Feridos Graves”: 995 observacdes (categoria minoritaria)
Esse desnivel, onde aproximadamente 97,7% dos sinistros pertencem a categoria
maioritaria e apenas 2,3% a categoria minoritaria, pode introduzir um viés no modelo,
favorecendo previsGes para a categoria dominante.

Para mitigar esse impacto, serdo aplicadas técnicas de ajuste, como o oversampling da
categoria minoritaria e o undersampling da categoria maioritaria. Entre os métodos de
oversampling considerados estdo o ROSE e o SMOTENC. Além disso, métricas como a
curva ROC, a area sob a curva (AUC) e o F;-score serdo utilizadas para avaliar o
desempenho dos modelos.

No contexto do machine learning, tratar dados desequilibrados é fundamental para que
os modelos generalizem bem e oferegam previsGes imparciais.

Neste trabalho o ROSE foi usado para gerar diferentes cendrios com dados sintéticos,
nomeadamente, gerar observacOes sintéticas (oversampling) para a categoria
minoritaria de forma a ter um cenario com dados equilibrados e cendrios com diferentes
graus de desequilibrio, a gerar observagdes sintéticas para a categoria minoritdria e a
remover observagées da categoria maioritaria (undersampling) de forma a equilibrar os

dados.
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Dados equilibrados

Para alcancar um balanceamento adequado entre as categorias e uma distribuicdo mais
equilibrada, o numero total de observacdes foi ajustado para 85000. Inicialmente, o
conjunto de dados possuia 43312 observacdes, das quais 42317 pertenciam a categoria
“Feridos Leves” e apenas 995 a categoria “Mortes/Feridos Graves”. Para equilibrar as
categorias, garantindo que “Mortes/Feridos Graves” atingisse o0 mesmo numero de
observacdes que “Feridos Leves”, novas observacdes foram geradas, resultando num

conjunto de dados balanceado. A distribuicdo final pode ser visualizada na Tabela Al.

Tabela A 1 - ROSE: Modelo de regressdo logistica com e sem oversampling.

Oversampling Regressao Logistica — 85000 Observagoes

Feridos Leves Mortes / Feridos Graves
Modelo Simples 42317 995
Modelo com 42317 42683
Oversampling

1) Divisao dos dados em treino e teste

Apds a aplicacdo do método de oversampling para balancear as categorias, a base de
dados obtida foi preparada para a modelagcdo. Comecou-se por dividir o conjunto de
dados em dois subconjuntos, um para treino (70%) e outro para teste (30%), onde:

- Conjunto de treino: contém 59630 observacGes,

- Conjunto de teste: contém 25370 observagdes.

A Tabela A2, representa a divisao realizada juntamente com os valores obtidos.

Tabela A 2 - ROSE: DivisGo dos dados do modelo de regressédo logistica (85000 observag¢des) em dois subconjuntos:

treino e teste e respetivo numero de observagdes por categoria em cada subconjunto.

Regressao Logistica — 85000 Observagoes

Treino Teste

Feridos Leves 29821 12496

Mortes/Feridos Graves 29809 12874
59630 25370
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2) Ajustamento do modelo
Apos a divisdo dos dados em treino e teste, procedeu-se para o ajustamento do modelo
de Regressao Logistica Estatistico. O ajustamento foi realizado com base no conjunto de
teste, recorrendo ao método da maxima verosimilhanca. Este processo possibilita
identificar os fatores estatisticamente significativos associados a gravidade dos sinistros
e quantificar a intensidade da sua influéncia através da interpretacdo dos coeficientes

estiamos e dos odds ratio. A Tabela A3 apresenta os resultados do ajustamento.

Tabela A 3 - ROSE: Modelo multiplo de regresséo logistica ajustado para a existéncia de “Mortes/Feridos Graves” nos

sinistros com vitimas.

Variavel Coeficiente Std. Error

Intercept -1,1623 0,1509 <0,001

Concelho2AGSSP
(ALCOCHETE, GRANDOLA, -0,2258 0,0939 0,0162
SEIXAL, SINES e PALMELA)

Concelho2ABMMS
(ALMADA, BARREIRO, MOITA, -0,4695 0,0956 <0,001
MONTIJO e SESIMBRA)

Concelho2SS

(SANTIAGO DO CACEM e -0,6858 0,1068 <0,001
SETUBAL)
tipoacidColisdo -1,7315 0,0968 <0,001
tipoacidDespiste -0,9993 0,1000 <0,001
tipolocal2Fora das localidades 0,5379 0,0386 <0,001
tipovia2EM — Estrada Municipal 0,2764 0,1107 0,0126

tipovia2EN/IC/ER

(Estrada Nacional, Itinerario 1,0634 0,0553 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h 0,7641 0,1106 <0,001
horaacidlnew8h-13h -0,2932 0,0375 <0,001
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Variavel Coeficiente Std. Error

fugaSim -1,5915 0,0990 <0,001

PercCondMCat2[75,100] 0,2060 0,0362 <0,001
HaVeicPesadoSim 0,9979 0,0614 <0,001
HaVeicLigSim 0,3957 0,0695 <0,001
HaVelcMotoSim 2,8027 0,0590 <0,001
HoraLaboralSim -0,3469 0,0352 <0,001
MedianaldadeVeic 0,0493 0,0026 <0,001
ig_ponderado 0,0833 0,0058 <0,001
tipovia2EM - Estrada -0,3016 0,1705 0,0768
Municipal:HaVeicMotoSim
tipovia2EN/IC/ER:HaVeicMoto$S -0,6376 0,0809 <0,001
im
Concelho2AGSSP:ig_ponderado -0,0325 0,0052 <0,001
Concelho2ABMMS:ig_pondera -0,0528 0,0051 <0,001
do
Concelho2SS:ig_ponderado -0,0061 0,0058 0,2969
tipoacidColisdo: ig_ponderado -0,0226 0,0028 <0,001
tipoacidDespiste:ig_ponderado -0,0118 0,0031 <0,001
tipovia2EM - Estrada 0,0301 0,0052 <0,001
Municipal:ig_ponderado
tipovia2EN/IC/ER: -0,0023 0,0013 0,0833

ig_ponderado

A andlise dos coeficientes resultantes do modelo de regressdao logistica fornece
informacdo detalhada sobre os fatores que influenciam mais e menos a gravidade dos
sinistros rodoviarios. Os dados extraidos ndo apenas confirmam algumas suposicdes,
mas também revelam nuances sobre como certas variaveis interagem para afetar os
desfechos dos sinistros.

As varidveis com niveis de significancia mais elevados para o modelo sao:
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e Presenca de Veiculos Motociclos (“HaVeicMoto”): esta é a varidvel que mais
aumenta a probabilidade de um sinistro emergir em “Mortes/Feridos Graves”;

e Presenca de Veiculos Pesados (“HaVeicMoto”): a presenca de veiculos pesados
também eleva consideravelmente o risco de sinistros com “Mortes/Feridos
Graves”;

e Tipo de via (“tipovia2EN/IC/ER”): sinistros em estradas nacionais, itinerarios
complementares ou estradas regionais sdo mais propensos de resultar em
“Mortes/Feridos Graves”;

Porém, existem variaveis com coeficientes negativos o que reduz a probabilidade de
“Mortes/Feridos Graves”. Essas variaveis s3o:

e Tipo de Sinistro (Colisdo e Despiste): ambos os tipos de sinistros tém uma
probabilidade de resultar em “Mortes/Feridos Graves”;

e Concelho (“Concelho2ABMMS”): sinistros que ocorrem nos concelhos de
Almada, Barreiro, Moita, Montijo e Sesimbra tendem a apresentar uma menor
probabilidade de “Mortes/Feridos Graves”;

e Fuga do Condutor (fugaSim): em sinistros onde o condutor foge, a probabilidade
de “Mortes/Feridos Graves” é menor.

Tais resultados fornecem informacodes valiosas sobre quais os fatores sdo mais relevantes

para prever a gravidade dos sinistros.

3) Avaliacao do Modelo

Para avaliar o desempenho do modelo, voltamos a utilizar o conjunto de dados de teste.
Uma analise mais detalhada é facilitada pela matriz de confusao, Tabela A4, que oferece
uma visdo abrangente das previsGes realizadas pelo modelo em compara¢do com as

categorias.

Tabela A 4 - ROSE: Métricas de avaliagdo da Regresséo Logistica para 85000 observagdes

Meétrica Resultado Observagao
Ponto de Corte 0,505 Valor que separa as obs.ervagoes em duas
categorias.
O modelo classifica corretamente 78,91% das
Accuracy 0,7891 a < °
observacoes.
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Meétrica Resultado Observacgao

IC (95%) (0,7840; Intervalo de Confianga de 95% para a accuracy.
0,7941)
Kappa 0,5782 O modelo sugere um desempenho razoavel.
Mcnemar’s Test Reflete uma diferenca significativa entre as taxas de
0,2925 e .
P-Value erro de classificacdo nas duas categorias.
O modelo identificou
i ere corretamente, aproximadamente,
2
Sensibilidade 0,789 78,92% dos casos
Mortes/Feridos Graves.
O modelo identificou corretamente,
Especificidade 0,7891 aproximadamente, 78,91% dos casos de Feridos
Leves.

Valor Preditivo 0.7940 Das observagdes classificadas como positivas pelo
Positivo ! modelo, 79,40% sao verdadeiras positivas.
Valor Preditivo 07842 Das observagdes classificadas como negativas pelo
Negativo ! modelo,78,42% sao verdadeiras negativas.

F1-Score 0,7866 Bom desempenho do modelo.
AUC 0,8709 O modelo tem urha‘boafapaudade de
discriminagao.
. o o
Precisido 0,7940 AF)lfommadamente ??,40/cldas observagf)('es
classificadas como positivas sdo mesmo positivas.

4) Comparacdo do desempenho entre os modelos de classificacdo

Por ultimo, serd realizada uma analise comparativa do desempenho dos diferentes
modelos de classificagdo implementados no estudo com o modelo de regressao logistica
estatistico. Essa comparag¢do tem como objetivo avaliar a eficacia de cada modelo com
base em métricas relevantes, cujos valores encontram-se detalhados na Tabela AS5.
Novamente, os resultados incluem indicadores como accuracy, sensibilidade,
especificidade, AUC, Kappa e valores preditivos, que sdao fundamentais para perceber a
capacidade preditiva de cada abordagem. Além disso, o teste de McNemar foi utilizado
para identificar diferencgas estatisticas nos erros de classificacdo entre os modelos. Por
fim, serdo discutidos os principais pontos fortes e limitacbes de cada abordagem,
permitindo uma visdo clara sobre qual modelo apresenta o melhor desempenho e sob

guais condicdes.
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Tabela A 5 - ROSE: Métricas de classificagdo para 85000 observagoes.

Regressao
Meétrica XGBoost
Logistica
OVERSAMPLING ROSE — 85000
Ponto de Corte 0,505 0,635 0,588 0,504 0,744
Accuracy 0,7891 0,9553 0,9216 0,7443 0,9999
(0,7840; (0,9526; (0,9182; (0,7388;
IC (95%) (0,9997; 1)
0,7941) 0,9578) 0,9248) 0,7496)
Kappa 0,5782 0,9105 0,8431 0,4885 0,9998
Mcnemar’s Test 0,2925 0,6777 0,8753 0,2483 0,2482
P-Value
Sensibilidade 0,7892 0,9553 0,9230 0,7444 1
Especificidade 0,7891 0,9552 0,9201 0,7442 0,9998
Valor Preditivo 0,7940 0,9565 0,9224 0,7498 0,9998
Positivo
Valor Preditivo 0,7842 0,9540 0,9206 0,7386 1
Negativo
Fl-score 0,7866 0,9546 0,9203 0,7414 0,9999
AUC 0,8709 0,9893 0,9788 0,8139 0,9999
Precisdo 0,7940 0,9565 0,9224 0,7498 0,9998

Os resultados evidenciam diferencas significativas no desempenho dos modelos
avaliados.
e Desempenho geral

O C5.0 destaca-se como o algoritmo mais robusto na maioria das métricas analisadas,
alcancando desempenho ideal em métricas como accuracy (99,99%), sensibilidade
(100%), especificidade (99,98%) e AUC (0,9999). Esses valores refletem uma capacidade
preditiva ideal, com equilibrio absoluto entre a detecdo de verdadeiros positivos e a
exclusdo de falsos positivos.

Modelos baseados em arvores, como XGBoost e Random Forest, também apresentam

desempenhos notdveis. O XGBoost, com accuracy de 95,53% e AUC de 0,9893, foi o
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segundo melhor modelo, seguido pelo Random Forest, com accuracy de 92,16% e AUC
de 0,9788. Ambos os modelos apresentaram Fl-scores elevados, indicando um bom
equilibrio entre a sensibilidade e o valor preditivo positivo.
Em contraste, os modelos de Regressdo Logistica Estatistico e Naive Bayes apresentaram
desempenhos mais modestos. O accuracy da Regressao Logistica foi de 78,91%, com
AUC de 0,8709, enquanto o Bayes apresentou menores valores em varias métricas, com
accuracy de 74,43% e AUC de 0,8139. Esses resultados sugerem que ambos os modelos
podem nado ser adequados para conjuntos de dados complexos ou com alta variabilidade.

e Teste de McNemar
O Teste de McNemar avalia a significancia estatistica das diferencas entre os erros de
classificacdo dos modelos. Nenhum dos valores de p-value (p > 0,05) indicou diferencas
estatisticamente significativas nos erros cometidos pelos modelos. Isso implica que,
apesar das métricas sugerirem variacdes de desempenho, ndo ha evidencias estatisticas
de que os modelos diferem substancialmente na classificacdo de casos discordantes.

e Sensibilidade e Especificidade
Os valores ideias alcancados pelo C5.0 em sensibilidade e especificidade refletem a sua
capacidade de identificar casos positivos sem gerar falsos. O XGBoost e o Random Forest
também apresentaram equilibrio entre as métricas, com valores acima de 92% para
ambos. Ja a Regressao Logistica e o Bayes apresentaram menor equilibrio, evidenciando
limitacGes na separacdo das categorias.

e F,-score e AUC
O F1-score de C5.0 confirma o desempenho ideal, enquanto o XGBoost e o Random
Forest mostraram forte capacidade de classificacdo com valores de 0,9546 e 0,9203,
respetivamente. Por outro lado, os modelos probabilisticos que tiveram F;-scores

inferiores, refletiram maior dificuldade em equilibrar a sensibilidade e precisao.

Diferentes graus de desequilibrio

Foi realizado o oversampling na categoria minoritdria, aplicando diferentes niveis de
geracdo de observacdes para analisar o comportamento dos dados sob diferentes graus
de desequilibrio. Para isso, foram gerados quatro cenarios distintos — 5000, 15000,
25000 e 35000 observacdes — mantendo-se o desequilibrio entre as categorias em

diferentes intensidades. Essas variagdes permitem comparar o desempenho dos
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modelos com diferentes propor¢des de dados desequilibrados, possibilitando uma
analise detalhada de como o comportamento do modelo se ajusta conforme aumenta
ou diminui o desequilibrio nos dados.

Na Tabela A6 estao presentes os resultados obtidos nas diferentes métricas de avaliacao,

nos diferentes quatro cendrios.

Tabela A 6 - ROSE: Métricas de classificagdo para diferentes graus de desequilibrio.

Oversampling ROSE

Regrje s:c)ao XGBoost B Bayes C5.0
Logistica Forest
Ponto de Corte
5000 0,129 0,192 0,116 0,131 0,414
15000 0,281 0,423 0,308 0,283 0,681
25000 0,384 0,537 0,440 0,38 0,745
35000 0,460 0,602 0,542 0,465 0,786
Accuracy
5000 0,7886 0,9313 0,9138 0,7464 0,982
15000 0,7918 0,9491 0,912 0,7458 0,9994
25000 0,7909 0,9526 0,9131 0,7435 0,9998
35000 0,7887 0,9538 0,9162 0,7443 0,9998
Kappa
5000 0,3821 0,7395 0,6851 0,306 0,9239
15000 0,5322 0,8773 0,7176 0,4396 0,9986
25000 0,5693 0,9008 0,8187 0,474 0,9996
35000 0,5763 0,9073 0,8318 0,4873 0,9996
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Oversampling ROSE

RLeoggr:;fao XGBoost R::i(::n Bayes C5.0
McNemar’s
Tes P-Value
5000 <0,001 <0,001 <0,001 <0,001 <0,001
15000 <0,001 <0,001 <0,001 <0,001 0,0044
25000 <0,001 <0,001 <0,001 <0,001 0,1336
35000 <0,001 0,0243 0,002 <0,001 0,0736
Sensibilidade
5000 0,7895 0,9314 0,9154 0,7483 0,9823
15000 0,7934 0,9492 0,9130 0,7464 1
25000 0,7924 0,9532 0,9138 0,7438 1
35000 0,7896 0,9539 0,9164 | 0,7446 1
Especificidade
5000 0,7885 0,9313 0,9136 0,7462 0,9820
15000 0,7911 0,9490 0,9117 0,7455 0,9992
25000 0,7899 0,9523 0,9127 0,7433 0,9997
35000 0,7879 0,9538 0,9161 0,7440 0,9996
Valor Preditivo
Positivo
5000 0,3580 0,6694 0,6128 0,3058 0,8907
15000 0,5992 0,8799 0,8026 0,5358 0,9980
25000 0,7046 0,9267 0,8688 0,6469 0,9995
35000 0,7643 0,9473 0,9048 0,7170 0,9995
Valor Preditivo
Negativo
5000 0,9616 0,9891 0,9863 0,9520 0,9973
15000 0,9068 0,9794 0,9638 0,8819 1
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Oversampling ROSE

RLig;§;§fa° XGBoost R::i(::n Bayes C5.0
25000 0,8575 0,9698 0,9437 0,8210 1
35000 0,8113 0,9596 0,9264 0,7698 1
F1-Score
5000 0,8665 0,9593 0,9486 0,8366 0,9896
15000 0,8450 0,9640 0,9370 0,8080 0,9996
25000 0,8223 0,9610 0,9279 0,7802 0,9998
35000 0,7994 0,9567 0,9212 0,7567 0,9998
AUC
5000 0,8744 0,9803 0,975 0,8161 0,996
15000 0,8731 0,9871 0,9745 0,8144 0,9999
25000 0,8723 0,9887 0,9762 0,8134 1
35000 0,8711 0,9888 0,9773 0,8136 0,9998
Precisao
5000 0,3580 0,6694 0,6071 0,3058 0,8907
15000 0,5992 0,8514 0,8026 0,5358 0,9979
25000 0,7046 0,9269 0,8688 0,6469 0,9995
35000 0,7643 0,9473 0,9048 0,7170 0,9995

Os resultados mostram que o algoritmo C5.0 destaca-se como o mais eficiente em
praticamente todas as métricas e cenarios. No que diz respeito ao accuracy, o C5.0
atinge valores de 0,9820 a 0,9998 em todos os cendrios, indicando uma elevada precisdo
geral. O Kappa também reforca o desempenho superior do C5.0, com valores muito
préximos nos quatro cenarios, com valores entre 0,9239 e 0,9996. Isso sugere que este
algoritmo apresenta maior confiabilidade ao distinguir casos positivos e negativos.

Outro ponto relevante é a sensibilidade, onde o C5.0 novamente obtém os melhores

resultados. No cendrio de 5000 observagdes apresenta um valor de 0,9823, e a partir de
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15000 até 35000 observag¢des amétrica atinge o valor de 1, evidenciando a capacidade
de o algoritmo identificar corretamente os casos positivos. A mesma tendéncia é
observada na especificidade, que varia entre 0,9920 e 0,9997, permanecendo sempre
muito préximo de 1.

Adicionalmente, a AUC também indica o C5.0 como a melhor escolha. Os valores vdo de
0,9960 a 1, refletindo um desempenho praticamente ideal em termos de discriminacdo
entre categorias. Outras métricas, como F;-score (0,9896 a 0,9998), Valores Preditivos
Negativos (0,9973 a 1) e Valores Preditivos Positivos (0,8907 a 0,9995), reforcam a
superioridade do C5.0 em comparacao aos outros algoritmos.

Ao comparar os diferentes algoritmos, observa-se que, embora o XGBoost e o Random
Forest apresentem bons desempenhos (com accuracy superior a 0,9100 e AUC acima de
0,9700), eles ndo atingem o mesmo nivel de eficiéncia do C5.0, especialmente em
métricas como Kappa e sensibilidade. Por outro lado, a Regressdo Logistica e o Bayes
demonstram desempenhos inferiores. A Regressao Logistica mantém a accuracy em torno
de 0,7900, F;-score de 0,8000 a 0,8700 e a precisao s6 melhora significativamente com
maior oversampling. O Bayes mostra resultados mais baixos em accuracy e Kappa,
limitando a sua eficacia.

Em relagdo aos cenarios analisados, os resultados indicam que o desempenho melhora
de forma significativa até 25000 observacbes. Nos cenarios de 15000 e 25 observacdes
o C5.0 atinge valores ideais, demonstrado a sua capacidade de generalizagdo com dados
mais robustos. No entanto, no cendrios com 35000 observa¢des, ndo ha um ganho
expressivo em relacdo aos de 25000 observacgoes.

Dessa forma, os resultados apontam que o algoritmo C5.0, especialmente nos cendrios
de 15000 e 25000 observacgdes, é a melhor opgdo para a previsdo de sinistros com

“Mortes/Feridos Graves”, superando consistentemente os outros modelos avaliados.

Undersampling + Oversampling

Foi adotada uma abordagem combinada de undersampling e oversampling para lidar
com os dados desequilibrados das categorias. O objetivo é ajustar a quantidade de
observagdes para que um modelo seja composto por categorias equilibradas. Posto isto,
inicialmente foi criado um modelo com 42000 observagdes, onde 21000 correspondem

a categoria minoritaria e 21000 a categoria maioritaria.
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Sdo ainda criados outros dois modelos, um com 10000 observa¢ées (5000 categoria
minoritaria + 5000 categoria maioritaria) e outro modelo com 20000 observacdes
(10000 categoria minoritaria + 10000 categoria maioritdria), ambos com categorias
equilibradas. Ao contrario da abordagem anterior, que focava unicamente no
oversampling, aqui iniciou-se com a aplicagao do undersampling a categoria maioritaria,
removendo uma parte das observacdes dos sinistros “Feridos Leves”. Em seguida, foi
aplicado o oversampling a categoria minoritdria, aumentando o niumero de observagdes
dos sinistros “Mortes/Feridos Graves” por meio da replicagdo ou criagdo de dados
sintéticos. Assim, assegura-se que ambas as categorias estdo balanceadas nos dois
modelos, permitindo que os algoritmos de machine learning trabalhem com dados mais
equilibrados.

Esta abordagem permite avaliar e sintetizar um nimero mais reduzido de dados da

categoria minoritaria que podera ajudar na melhoria do desempenho dos algoritmos.

Modelo com 42000 observacoes

e Undersampling
Inicialmente, aplicou-se a técnica de undersampling para equilibrar a base de dados,
reduzindo o numero de observacdes da categoria maioritaria para aproximar-se da
categoria minoritaria. O processo foi conduzido da seguinte forma:
e Categoria minoritaria (“Mortes/Feridos Graves”): todos os 995 sinistros com
mortes/feridos graves foram mantidos na base de dados sem alteragGes.
e Categoria maioritaria (“Feridos Leves”): foi realizada uma amostragem aleatéria
simples, sem reposicdo, dos 42317 sinistros com Feridos Leves.
A partir dessa abordagem, criou-se um conjunto de propor¢des controladas, onde a
categoria maioritaria passou a ter 21,11 vezes o nimero de observa¢des da categoria
minoritaria, resultando num total de 21999 observacées, sendo 21004 da categoria

maioritaria e 995 observacdes da categoria minoritaria.

e Oversampling
Apds o undersampling, aplicou-se o método de oversampling a categoria minoritaria
para aumentar a representatividade de “Mortes/Feridos Graves” ao gerar novos dados

sintéticos, resultando num aumento significativo no nimero de observa¢bes desta

154



mesma categoria. No final deste processo a base de dados passou a ter categorias mais
balanceadas, evitando que a categoria maioritaria dominasse o modelo. Os valores de

cada categoria encontram-se representados na Tabela A7.

Tabela A 7 - ROSE: Composi¢do do modelo com e sem undersampling e com undersampling+oversampling de 42000

observagdes.
ROSE - 42000 observacoes
Feridos Leves Mortes/Feridos Graves

Modelo Simples 42317 995

Modelo com 21004 995
Undersampling

Modelo com U.nder 21004 20996

+ Oversampling

e Divisao dos dados em treino e teste
De seguida, os conjuntos de dados foram dividido em dois subconjuntos: 70% dos dados
foram alocados para treino e 30% para teste. Neste sentido a divisao, Tabela A8,
encontra-se da seguinte forma:
- Conjunto de treino: contém 29595 observacdes.

- Conjunto de teste: contém 12405 observacgdes.

Tabela A 8 - ROSE: Divisdo dos dados do modelo de regressdo logistica (42000 observa¢bes) em dois subconjuntos:

treino e teste e respetivo numero de observagdes por categoria em cada subconjunto.

ROSE UNDER + OVER 42000 observagoes

Treino Teste

Feridos Leves 14793 6211
Mortes/Feridos Graves 14802 6194
29595 12405
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e Ajustamento do Modelo
Apds a preparacao dos dados, procedeu-se ao ajustamento do modelo Regressao

Logistica Estatistico. Os resultados obtidos estdo apresentados na Tabela A9.

Tabela A 9 - ROSE: Modelo multiplo de regresséo logistica ajustado para a existéncia de “Mortes/Feridos Graves” nos

sinistros com vitimas de 42000 observagdes.

Variavel Coeficiente Std. Error
Intercept -1,0514 0,2204 <0,001
Concelho2AGSSP
(ALCOCHETE, GRANDOLA, -0,3405 0,1408 0,0156
SEIXAL, SINES e PALMELA)
Concelho2ABMMS
(ALMADA, BARREIRO, MOITA, -0,5394 0,1426 <0,001
MONTIJO e SESIMBRA)
Concelho2SS
(SANTIAGO DO CACEM e -0,6777 0,1557 <0,001
SETUBAL)
tipoacidColisao -1,7865 0,1336 <0,001
tipoacidDespiste -0,9917 0,1386 <0,001
tipolocal2Fora das localidades 0,4704 0,0550 <0,001
tipovia2EM - Estrada Municipal 0,2596 0,1634 0,1122
tipovia2EN/IC/ER
(Estrada Nacional, Itinerdrio 1,0254 0,0802 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h 0,7128 0,1559 <0,001
horaacidlnew8h-13h -0,2945 0,0533 <0,001
fugaSim -1,6045 0,1410 <0,001
PercCondMCat2[75,100] 0,2859 0,0519 <0,001
HaVeicPesadoSim 1,0398 0,0883 <0,001

156



Variavel Coeficiente Std. Error

HaVeicLigSim 0,4219 0,0975 <0,001

HaVeicMotoSim 2,7397 0,0837 <0,001
HoraLaboralSim -0,3566 0,0505 <0,001
MedianaldadeVeic 0,0447 0,0037 <0,001
ig_ponderado 0,0833 0,0085 <0,001
tipovia2EM — Estrada -0,11298 0,2396 0,6378
Municipal: HaVeicMotoSim
tipovia2EN/IC/ER: -0,6632 0,1151 <0,001
HaVeicMotoSim
Concelho2AGSSP: -0,0267 0,0076 <0[001
ig_ponderado
Concelho2ABMMS: _0'0502 0’0075 <0’001
ig_ponderado
Concelho2SS: ig_ponderado -0,0064 0,0084 0,4474
tipoacidColisao: ig_ponderado -0,0265 0,0042 <0,001
tipoacidDespiste: -0,0174 0,0046 <0,001
ig_ponderado
tipovia2EM — Estrada 0,0385 0,0090 <0,001
Municipal: ig_ponderado
tipovia2EN/IC/ER: 0,0004 0,0019 0,8489

ig_ponderado

A analise dos coeficientes resultantes do modelo de regressdo logistica fornece
informac0des detalhadas sobre os fatores que influenciam mais e menos a gravidade dos
sinistros rodovidrios. Os dados extraidos ndao apenas confirmam algumas suposi¢des,
mas também revelam nuances sobre como certas varidveis interagem para afetar os
desfechos dos sinistros.
As varidveis com niveis de significancia mais elevados para o modelo sdo:
e Presenca de Veiculos Motociclos (“HaVeicMoto”): é a varidvel que mais aumenta
a probabilidade de um sinistro emergir em “Mortes/Feridos Graves”,

multiplicando em mais de 15 vezes as probabilidades de gravidade;
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Presenca de Veiculos Pesados (“HaVeicMoto”): a presenca de veiculos pesados
também eleva consideravelmente o risco de sinistros com “Mortes/Feridos
Graves”. Esta varidvel eleva o risco em aproximadamente 2,8 vezes;

Tipo de via (“tipovia2EN/IC/ER”): sinistros em estradas nacionais, itinerarios
complementares ou estradas regionais sdo mais propensos de resultar em
“Mortes/Feridos Graves”. A mesma aumenta a probabilidade em cerca de 2,8

vezes.

Porém, existem algumas varidveis com coeficientes negativos o que reduz a

probabilidade de “Mortes/Feridos Graves”. Essas varidveis sdo:

Tipo de Sinistro (Colisdo): a colisdo apresenta cerca de 83% menos de
probabilidade de gravidade em comparagdo com os outros tipos de sinistros;
Tipo de Sinistro (Despiste): esta associado a uma redugdo de cerca de 63% no
risco de gravidade;

Fuga do Condutor (fugaSim): em sinistros onde o condutor foge, a probabilidade

de “Mortes/Feridos Graves” é aproximadamente 80% menor.

Além destes fatores principais, o modelo também destaca:

Efeitos geograficos: alguns concelhos, como ABMMS, AGSSP e SS apresentam
Menor risco;

Hordrio: sinistros as 6h da manha duplicam o risco de gravidade, enquanto que
entre as 8h e 13h reduzem as probabilidades;

Idade do veiculo: cada ano adicional da idade média aumenta o risco em cerca
4,6%;

Perfil dos condutores: maior proporcao de condutores jovens também aumenta

a gravidade.

Tais resultados indicam que fatores relacionados ao tipo de veiculo (principalmente

motociclos e pesados), as carateristicas da via e ao horario do sinistro sdo determinantes para

0 aumento da gravidade dos sinistros, enquanto o tipo de sinistro e o comportamento de fuga

estdo associados a uma reducdo desse risco.

Comparac¢ao do desempenho entre os modelos de classificagao

158



Na ultima etapa desta andlise, sera realizada comparagao detalhada entre os modelos
de classificacdo desenvolvidos. O desempenho de cada modelo sera avaliado com base

nas métricas apresentadas na Tabela A10.

Tabela A 10 - ROSE: Métricas de classificagdo para 42000 observagdes — Undersampling + Oversampling.

Regressao Random

et Logistica pope Forest

UNDER + OVER — ROSE 42000

Ponto de Corte 0,502 0,631 0,59 0,504 0,734
Accuracy 0,7911 0,9507 0,9152 0,7460 0,9977
IC (95%) (0,7838; (0,9468; (0,9102; (0,7382; (0,9967;
o 0,7982) 0,9545) 0,9200) 0,7536) 0,9985)
Kappa 0,5821 0,9015 0,8304 0,4920 0,9955
Mcnemar’s Test 0,6800 1 0,9263 0,9432 0,1859
P-Value
Sensibilidade 0,7925 0,9508 0,9154 0,7460 0,9984
Especificidade 0,7896 0,9507 0,9150 0,7459 0,9971
Valor Preditiv
alor Preditivo 0,7897 0,9506 0,9148 0,7454 0,9971
Positivo
Valor Preditivo 0,7924 0,9509 0,9156 0,7465 0,9984
Negativo
Fl-score 0,7910 0,9508 0,9153 0,7462 0,9977
AUC 0,8709 0,9869 0,9752 0,8144 0,9997
Precisdio 0,7897 0,9506 0,9148 0,7454 0,9971

A analise considera varias métricas de desempenho para determinar o modelo mais
eficiente. De seguida é discutido as métricas mais relevantes:

1) Accuracy
O C5.0 apresenta o melhor desempenho geral, com accuracy quase perfeito, indicando

alta confiabilidade nas previsdes. O XGBoost e o Random Forest também de destacam,
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mantendo niveis elevados. A Regressdao Logistica e o Bayes tém desempenhos

moderados.

2) Kappa
O Kappa no C5.0 é de 0,9955 muito préoximo ao ideal. O XGBoost e o Random Forest
também tiveram um bom desempenho, porém ndo tdo elevado como o anterior.
Modelos mais simples como a Regressao Logistica e o Bayes apresentam concordancias

moderadas, sendo 0,5821 e 0,4920, respetivamente.

3) Sensibilidade
A sensibilidade de C5.0 foi 0,9984, mostrando que quase todos os sinistros foram
corretamente identificados. O XGBoost (0,9508) e o Random Forest (0,9154) também
detetam a maioria dos sinistros graves, enquanto a Regressdo Logistica (0,7925) e o

Bayes (0,7460) deixam de identificar uma parte significativa desses casos.

4) Especificidade
O modelo C5.0 apresenta uma especificidade muito boa (0,9971), minimizando falsos
positivos e garantindo alta confiabilidade nas previsGes de Feridos Leves. O XGBoost
(0,9507) e Random Forest (0,9150) também tém boa precisao, embora com
desempenho ligeiramente inferior a C5.0. Em contraste, a Regressao Logistica (0,7896)
e o Bayes (0,7459) mostram especificidade limitada, indicando maior propensao a falsos

positivos.

5) Valor Preditivo Positivo
No Valor Preditivo Positivo temos o C5.0 com 0,9971, garantindo alta confiabilidade
ao prever “Mortes/Feridos Graves”. O XGBoost e 0 Random Forest mantém os niveis
sélidos de precisdo de “Mortes/Feridos Graves”, enquanto a Regressao Logistica (0,7897)

e o Bayes (0,7462) apresentam um desempenho mais limitado.

6) Valor Preditivo Negativo
Em relacdo ao Valor Preditivo Negativo, o C5.0 também lidera com 0,9984, praticamente

eliminado falsos negativos e garantindo a correta identificacdo de Feridos Leves. O
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XGBoost (0,9509) e o Random Forest (0,9156) mantém alta confiabilidade, mas a

Regressao Logistica (0,7924) e o Bayes (0,7465) tém resultados mais fracos.

7) Fl-score
No F1-score, o C5.0 é novamente superior (0,9977), evidenciando um equilibrio ideal
entre sensibilidade e precisdao. O XGBoost (0,9508) e o Random Forest (0,9153) também
sdo consistentes, quanto a Regressao Logistica (0,7910) e o Bayes (0,7462) apresentam

desempenhos moderados.

8) AUC
Na AUC, o C5.0 atinge um valor muito préximo do ideal (0,9997), evidenciando a sua
capacidade de discriminar entre Mortes/Feridos Graves e Feridos Leves. O XGBoost
(0,9869) e o Random Forest (0,9752) também sdo excelentes, enquanto a Regressao

Logistica (0,8709) e o Bayes (0,8144) tém desempenhos aceitaveis, porém inferiores.

9) Precisao

No que diz respeito a precisao, todos os modelos apresentam valores semelhantes,
variando minimamente entre 0,7454 e 0,9971. Esses valores mostram que ha dificuldade
em garantir que os casos previstos como “Mortes/Feridos Graves” sejam realmente
“Mortes/Feridos Graves”.

Apds a analise detalhada de todas as métricas avaliadas, é possivel identificar o modelo
mais adequado para o objetivo proposto, considerando tanto o seu desempenho geral
quanto a sua capacidade de prever “Mortes/Feridos Graves” com precisdo e
confiabilidade. Entre os modelos estudados, o C5.0 destaca-se como a melhor escolha,
apresentando um excelente desempenho nas diferentes métricas. Embora o XGBoost e
0 Random Forest também mostrem um bom desempenho, ambos ficam ligeiramente
atrds do C5.0 em termos de precisao e equilibrio geral. Por outro lado, a Regressdo
Logistica e o Bayes apresentam um desempenho mais limitado, com métricas mais
baixas em sensibilidade, especificidade e outros indicadores, tornando-os menos

indicados para o objetivo do estudo.
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Modelos com 10000 e 20000 observacoes

1) Undersampling

Procedeu-se ao pré-processamento dos dados utilizando novamente a técnica de
undersampling, seguindo um procedimento semelhante ao realizado anteriormente
para as 42000 observagbes, mas desta vez considerando um menor numero de
observacoes:
e Categoria minoritaria (“Mortes/Feridos Graves”): todos os 995 sinistros com
mortes/feridos graves foram mantidos na base de dados sem alteragdes.
e Categoria maioritaria (“Feridos Leves”): foi realizada uma amostragem aleatéria

simples, sem reposi¢ao, dos 42317 sinistros com feridos leves.

Neste ambito, foram criados dois conjuntos a partir da categoria maioritdria, com
proporc¢des controladas em relacdo a categoria minoritaria:
i.  Conjunto 1: foram selecionados aleatoriamente sinistros correspondentes a 5.03
vezes o0 numero de observagdes da categoria minoritaria.
ii.  Conjunto 2: um segundo conjunto foi criado com sinistros correspondentes a
5.03

vezes o numero de observagGes da categoria minoritaria.

1) Oversampling

Apds o undersampling, aplicou-se o método de oversampling a categoria minoritaria
para aumentar a representatividade de Mortes/Feridos Graves ao gerar novos dados
sintéticos, resultando num aumento significativo no nimero de observacdes desta
mesma categoria. No final deste processo a base de dados passou a ter categorias mais
balanceadas, evitando que a categoria maioritdria dominasse o modelo. Os valores de

cada categoria encontram-se representados na Tabela A11.
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Tabela A 11 - ROSE: Valores das categorias do modelo simples, com undersampling e com

undersampling+oversampling.

10000 20000
. Mortes / . Mortes /
e Feridos Graves e Feridos Graves
Modelo Simples 42317 995 42317 995
Modelo COT“ 5004 995 9999 995
Undersampling
Modelo com
Under + Over 5004 4996 9999 10001
Sampling

2) Divisao dos dados em treino e teste

De seguida, os conjuntos de dados foram dividido em dois subconjuntos: 70% dos dados
foram alocados para treino e 30% para teste. Neste sentido a divisdo com 10000
observacoes, Tabela A12, encontra-se da seguinte forma:

- Conjunto de treino: contém 7048 observacoes.

- Conjunto de teste: contém 2952 observagoes.

Tabela A 12 - ROSE: Divisdo dos dados do modelo de regressdo logistica (10000 observagbes) em dois subconjuntos:

treino e teste e respetivo niimero de observagdes por categoria em cada subconjunto.

ROSE UNDER + OVER 10000 ‘

Treino Teste

Feridos Leves 3515 1489

Mortes/Feridos Graves 3533 1463
7048 2952

A divisdo com 20000 observacgdes, Tabela A13, centra-se:
- Conjunto de treino: contém 14080 observacoes.

- Conjunto de teste: contém 5920 observacgoes.
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Tabela A 13 - ROSE: Diviséo dos dados do modelo de regressdo logistica (20000 observagbes) em dois subconjuntos:

treino e teste e respetivo numero de observagdes por categoria em cada subconjunto

ROSE UNDER + OVER 20000

Treino Teste

Feridos Leves 3515 1489

Mortes/Feridos Graves 10565 4431
14080 5920

3) Ajustamento do Modelo

ApOs a preparagao dos dados, realizou-se o ajustamento do modelo Regressao Logistica
Estatistico para o modelo com 10000 observacdes e para o modelo com 20000
observacdes. Os resultados de ambos encontram-se representados nas Tabelas Al4 e

A15 respetivamente.

Tabela A 14 - ROSE: Modelo multiplo de regresséo logistica ajustado para a existéncia de “Mortes/Feridos Graves”

nos sinistros com vitimas, com 10000 observagdes.

Variavel Coeficiente Std. Error

Intercept 0,4270 0,4661 0,3596

Concelho2AGSSP
(ALCOCHETE, GRANDOLA, -0,6204 0,2681 0,0207
SEIXAL, SINES e PALMELA)

Concelho2ABMMS
(ALMADA, BARREIRO, MOITA, -0,9854 0,2773 0,0004
MONTIJO e SESIMBRA)

Concelho2SS

(SANTIAGO DO CACEM e -0,9052 0,3054 0,0030
SETUBAL)
tipoacidColisao -2,2456 0,3000 <0,001
tipoacidDespiste -1,6181 0,3118 <0,001
tipolocal2Fora das localidades 0,5476 0,1146 <0,001
tipovia2EM - Estrada Municipal 0,5335 0,3135 0,0888
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Variavel Coeficiente Std. Error

tipovia2EN/IC/ER
(Estrada Nacional, Itinerario 0,9100 0,1632 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h 0,8759 0,3275 0,0075
horaacidlnew8h-13h -0,3308 0,1099 0,0026
fugaSim -1,3000 0,3030 <0,001
PercCondMCat2[75,100] 0,0242 0,1072 0,8217
HaVeicPesadoSim 1,0258 0,1788 <0,001
HaVeicLigSim 0,0016 0,2047 0,9936
HaVeicMotoSim 2,4375 0,1723 <0,001
HoralLaboralSim -0,2051 0,1066 0,0544
MedianaldadeVeic 0,0320 0,0076 <0,001
ig_ponderado 0,0581 0,0157 0,0002
tipovia2EM — Estrada 0,2955 0,5233 0,5722
Municipal: HaVeicMotoSim
tipovia2EN/IC/ER: -0,3351 0,2350 0,1539
HaVeicMotoSim
Concelho2AGSSP: _0’0077 0’0130 0,5528
ig_ponderado
Concelho2ABMMS: -0,0301 0,0128 0,0186
ig_ponderado
Concelho2SS: ig_ponderado 0,0040 0,0148 0,7865
tipoacidColisdo: ig_ponderado -0,0277 0,0095 0,0034
tipoacidDespiste: -0,0094 0,0100 0,3449
ig_ponderado
tipovia2EM — Estrada 0,0238 0,0193 0,2172
Municipal: ig_ponderado
tipovia2EN/IC/ER: 0,0067 0,0038 0,0764
ig_ponderado
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Tabela A 15 - ROSE: Modelo mdltiplo de regresséo logistica ajustado para a existéncia de “Mortes/Feridos Graves”

nos sinistros com vitimas, com 20000 observagées.

Variavel Coeficiente Std. Error
Intercept -0,8302 0,3294 0,0117
Concelho2AGSSP
(ALCOCHETE, GRANDOLA, -0,1630 0,2058 0,4283
SEIXAL, SINES e PALMELA)
Concelho2ABMMS
(ALMADA, BARREIRO, MOITA, -0,3954 0,2082 0,0576
MONTIJO e SESIMBRA)
Concelho2SS
(SANTIAGO DO CACEM e -0,4905 0,2295 0,0326
SETUBAL)
tipoacidColisao -1,8543 0,2073 <0,001
tipoacidDespiste -1,0281 0,2140 <0,001
tipolocal2Fora das localidades 0,4659 0,0803 <0,001
tipovia2EM - Estrada Municipal 0,0611 0,2588 0,8133
tipovia2EN/IC/ER
(Estrada Nacional, Itinerdrio 0,8698 0,1164 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h 0,7794 0,2352 0,0009
horaacidlnew8h-13h -0,3308 0,0774 <0,001
fugaSim -1,4074 0,1931 <0,001
PercCondMCat2[75,100] 0,1693 0,0747 0,0234
HaVeicPesadoSim 0,8393 0,1274 <0,001
HaVeicLigSim 0,2883 0,1433 0,0442
HaVeicMotoSim 2,5182 0,1177 <0,001
HoralLaboralSim -0,3916 0,0732 <0,001
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Variavel Coeficiente Std. Error

MedianaldadeVeic 0,0443 0,0053 <0,001
ig_ponderado 0,0915 0,0133 <0,001
tipovia2EM — Estrada 0,3461 0,3766 0,3582
Municipal: HaVeicMotoSim
tipovia2EN/IC/ER: -0,4316 0,1642 0,0086
HaVeicMotoSim
Concelho2AGSSP: -0,0350 0,0118 0,0029
ig_ponderado
Concelho2ABMMS: -0,0576 0,0117 <0,001
ig_ponderado
Concelho2SS: ig_ponderado 0,0143 0,0129 0,2671
tipoacidColisdo: ig_ponderado -0,0286 0,0069 <0,001
tipoacidDespiste: -0,0179 0,0073 0,0138
ig_ponderado
tipovia2EM — Estrada 0,0509 0,0148 0,0006
Municipal: ig_ponderado
tipovia2EN/IC/ER: 0,0030 0,0027 0,2679
ig_ponderado

Ao estabelecer a comparacdo entre estes dois modelos e o modelo previamente
estimado (modelo de oversampling com 85000 observacgdes), verifica-se que o conjunto
de varidveis com efeitos estatisticamente significativos - tanto positivos quanto

negativos — revela-se estavel e consistente.

4) Comparacao do desempenho entre os modelos de classificacao

Na ultima etapa desta andlise, sera realizada a comparacao detalhada entre os modelos
de classificacdo desenvolvidos. O desempenho de cada modelo sera avaliado com base

nas métricas apresentadas na Tabela A16.

167



Tabela A - ROSE: Métricas de classificagdo para 10000 e 20000 observagdes — Undersampling + Oversampling.

Regressao XGBoost Random
Logistica Forest
UNDER + OVER ROSE
Ponto de Corte
10000 0,488 0,640 0,580 0,525 0,618
20000 0,499 0,619 0,602 0,531 0,709
Accuracy
10000 0,7815 0,9231 0,8774 0,7324 0,9295
20000 0,7875 0,9395 0,9025 0,7373 0,9878
IC (95%)

(0,7662; (0,9129; (0,8650; (0,7160; (0,9197;
10000 0,7963) 0,9325) 0,8890) 0,7483) 0,9385)
20000 (0,7769; (0,9332; (0,7259; (0,9847;

0,7979) 0,9455) (0,8947; 0,7485) 0,9905)

’ ’ 0,9100) ! ’
Kappa
10000 0,5630 0,8462 0,7547 0,4648 0,8591
20000 0,5750 0,8791 0,8051 0,4747 0,9757
McNemar’s
Tes P-Value

10000 0,8132 0,7906 0,4305 0,8033 0,9447
20000 1 0,9579 0,9336 1 1
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Regressao XGBoost Random

Logistica Forest

UNDER + OVER ROSE

Sensibilidade
10000 0,7820 0,9241 0,8817 0,7327 0,9296
20000 0,7881 0,9400 0,9033 0,7383 0,9879
Especificidade
10000 0,7811 0,9221 0,8731 0,7320 0,9295
20000 0,7869 0,9390 0,9017 0,7364 0,9878

Valor Preditivo

Positivo
10000 0,7782 0,9210 0,8722 0,7288 0,9283
20000 0,7881 0,9394 0,9024 0,7380 0,9879

Valor Preditivo

Negativo
10000 0,7848 0,9252 0,8826 0,7360 0,9307
20000 0,7869 0,9396 0,9026 0,7366 0,9878
F1-Score
10000 0,7829 0,9236 0,8778 0,7340 0,9301
20000 0,7869 0,9393 0,9022 0,7365 0,9878
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Regressao XGBoost Random

Logistica Forest
UNDER + OVER ROSE
AUC
10000 0,8742 0,9709 0,8722 0,8111 0,9738
20000 0,8705 0,9820 0,9688 0,8077 0,9978
Precisao
10000 0,7803 0,9210 0,8753 0,7288 0,9283
20000 0,7881 0,9394 0,9024 0,7380 0,9879

A analise comparativa dos cinco modelos (Regressao Logistica, XGBoost, Random Forest,
Bayes e C5.0) revela que o C5.0 destaca-se como o modelo mais eficiente para prever
“Mortes/Feridos Graves” neste conjunto de dados, especialmente com 20000
observagOes. Este modelo apresenta superioridade na maioria das métricas avaliadas,
incluindo accuracy, Kappa, F1-score e AUC, indicando uma excelente capacidade de
identificacdo de casos positivos e na discriminacdo entre as categorias.

Modelos como o XGBoost e Random Forest também apresentam um desempenho
competitivo, sendo op¢des secundarias vidveis. Ja a Regressdo Logistica e o modelo de
Bayes apresentam limita¢des significativas, ficando aquém dos modelos de machine
learning.

Dessa forma, o cenario com 20000 observagdes utilizando o C5.0, destaca-se como a
melhor configuragdo para prever sinistros com “Mortes/Feridos Graves”, oferecendo

maior robustez e capacidade de generalizagao.
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Apéndice B - SMOTENC

Para lidar com o desequilibrio entre as categorias no conjunto de dados, foi aplicada a
técnica SMOTENC, uma extensdao do SMOTE tradicional, que permite o balanceamento
de conjuntos de dados com variaveis continuas e categdricas. O SMOTENC gera amostras
sintéticas para a categoria minoritaria, preservando a integridade das variaveis

categoricas, o que evita distor¢ées que poderiam ocorrer com o SMOTE tradicional.

Dados equilibrados

Com o objetivo de equilibrar a distribuicdo das categorias, tal como realizado
anteriormente, aplicou-se a técnica SMOTENC. O processo resultou num conjunto de

dados equilibrados com um total de 85000 observacdes, como detalhado na Tabela B1.

Tabela B 1 - SMOTENC: Modelo de regressdo logistica com e sem oversampling.

Oversampling Regressao Logistica — 85000 Observagées

Feridos Leves Mortes / Feridos Graves
Modelo Simples 42317 995
Modelo com 42317 42317
Oversampling

2) Divisdo dos dados em treino e teste

O conjunto de dados foi dividido em treino e teste, com uma propor¢ao de 70% para
treino e 30% para teste. A divisdo, Tabela B2, resultou nos seguintes subconjuntos:

e Conjunto de treino: 59374 observacoes

e Conjunto de teste: 25260 observacdes

o

Tabela B 2 - Divisdo dos dados do modelo de regresséo logistica (85000 observagdes) em dois subconjuntos: treino e

teste e respetivo numero de observagbes por categoria em cada subconjunto.

Regressao Logistica — 85000 Observagoes

Treino Teste
Feridos Leves 29817 12500
Mortes/Feridos Graves 29557 12760

—— ——

59374 25260 171




2) Ajustamento do modelo

O proximo passo foi ajustar um modelo de Regressdo Logistica. Foram testados
diferentes valores de over ratio, sendo o valor utilizado over ratio =1 e K = 5. Os

resultados encontram-se na Tabela B3.

Tabela B 3 - SMOTENC: Modelo multiplo de regresséo logistica ajustado para a existéncia de “Mortes/Feridos Graves”

nos sinistros com vitimas.

Variavel Coeficiente Std. Error

Intercept -1,9980 0,1693 <0,001

Concelho2AGSSP
(ALCOCHETE, GRANDOLA, 0,1100 0,1077 0,3068
SEIXAL, SINES e PALMELA)

Concelho2ABMMS
(ALMADA, BARREIRO, MOITA, -0,2050 0,1088 0,0595
MONTIJO e SESIMBRA)

Concelho2SS

(SANTIAGO}DO CACEM e -0,8017 0,1213 <0,001
SETUBAL)
tipoacidColisao -1,3081 0,1086 <0,001
tipoacidDespiste -0,5936 0,1123 <0,001
tipolocal2Fora das localidades 0,5707 0,0406 <0,001
tipovia2EM - Estrada Municipal -0,6070 0,1439 <0,001

tipovia2EN/IC/ER
(Estrada Nacional, Itinerario

1,0692 0,0586 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h -0,2612 0,1374 0,0574
horaacidlnew8h-13h -0,4225 0,0390 <0,001
fugaSim -5,7327 0,5372 <0,001
PercCondMCat2[75,100] 0,3383 0,0378 <0,001
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Variavel Coeficiente Std. Error

HaVeicPesadoSim 0,7339 0,0657 <0,001
HaVeicLigSim 0,4145 0,0722 <0,001
HaVeicMotoSim 2,7477 0,0597 <0,001
HoraLaboralSim -0,2976 0,0362 <0,001
MedianaldadeVeic 0,0544 0,0029 <0,001
ig_ponderado 0,1139 0,0070 <0,001

tipovia2EM - Estrada

-0,14 1 417
Municipal: HaVeicMotoSim 0,1463 0,1803 0,4170
tipovia2EN/IC/ER:
HaVeicMotoSim 0,5750 0,0836 <0,001
Concelho2AGSSP: -0,0431 0,0061 <0,001
ig_ponderado
Concelho2ABMMS: -0,0668 0,0061 <0,001
ig_ponderado
Concelho2SS: ig_ponderado -0,0023 0,0069 0,7428
tipoacidColisdo: ig_ponderado -0,0380 0,0036 <0,001
tipoacidDespiste: -0,0268 0,0039 <0,001
ig_ponderado
tipoviaZEM - Estrada 0,0550 0,0069 <0,001
Municipal: ig_ponderado
tipovia2EN/IC/ER: -0,0033 0,0014 0,0215

ig_ponderado

Neste modelo de regressao logistica, as varidveis que se destacam com mais e menos
impacto na gravidade dos sinistros rodoviarios sdo as mesmas observadas no modelo

com a técnica ROSE. O modelo confirma as tendéncias identificadas anteriormente.

3) Comparagao do desempenho entre os modelos de classificagdo
O processo de analise comparativa serd realizado para o modelo SMOTENC, seguindo a
mesma abordagem adotada no modelo anterior, a comparacdo entre os modelos serd
feita com base nas métricas de desempenho, como accuracy, sensibilidade,

especificidade, entre outras, cujos resultados estdao na Tabela B4.
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Tabela B 4 - SMOTENC: Métricas de classificagdo para 85000 observagdes.

Regressao Random

Métrica XGBoost

Logistica

OVERSAMPLING SMOTENC — 85000

Ponto de Corte 0,510 0,541 0,584 0,931 0,525
Accuracy 0,7839 0,946 0,8901 0,7586 0,9817
iC (95%) (0,7788; (0,9432; (0,8861; (0,7532; (0,98;
° 0,7890) 0,9488) 0,8939) 0,7638) 0,9834)
Kappa 0,5677 0,8921 0,7801 0,5171 0,9635
Menemar’s Test 0,5697 0,7452 0,7327 0,6633 0,9258
P-Value
Sensibilidade 0,7844 0,9461 0,8904 0,7596 0,9818
Especificidade 0,7834 0,9460 0,8897 0,7574 0,9817
Valor Preditivo 0,7871 0,9470 0,8918 0,7617 0,9820
Positivo
Valor Preditivo 0,7807 0,9450 0,8883 0,7553 0,9814
Negativo
Fl-score 0,7820 0,9455 0,8890 0,7564 0,9816
AUC 0,8670 0,9891 0,9517 0,8237 0,9978
Precis3o 0,7871 0,9470 0,8918 0,7617 0,9819

Os resultados evidenciam diferengas significativas no desempenho dos modelos
avaliados.

e Desempenho geral
O C5.0 destaca-se como o algoritmo mais robusto na maioria das métricas analisadas,
alcangando desempenho ideal em métricas como accuracy (98,17%), sensibilidade

(98,18%), especificidade (98,17%) e AUC (0,9978). Esses valores refletem uma

174



capacidade preditiva ideal, com equilibrio absoluto entre a dete¢cdo de verdadeiros
positivos e a exclusdo de falsos positivos.

Modelos baseados em arvores, como XGBoost e Random Forest, também apresentam
desempenhos notaveis. O XGBoost, com accuracy de 94,6% e AUC de 0,9891, destacou-
se como o segundo melhor modelo. J& o Random Forest apresentou um accuracy de
89,01% e AUC de 0,9517. Ambos os modelos apresentaram F1-scores elevados,
indicando um bom equilibrio entre a sensibilidade e o valor preditivo positivo.

Em contraste, os modelos de Regressdo Logistica e Naive Bayes apresentaram
desempenhos mais modestos. O accuracy da Regressao Logistica foi de 78,39%, com AUC
de 0,870, enquanto o Bayes apresentou menores valores em vdarias métricas, incluindo
um accuracy de 75,86% e AUC de 0,8237. Esses resultados sugerem que ambos os
modelos podem ndo ser adequados para conjuntos de dados complexos ou com alta

variabilidade.

o Teste de McNemar
O Teste de McNemar avalia a significancia estatistica das diferencas entre os erros de
classificacdo dos modelos. Nenhum dos valores de p-value (p > 0,05) indicou diferencas
estatisticamente significativas nos erros cometidos pelos modelos. Isso implica que,
apesar das métricas sugerirem variacdes de desempenho, ndo ha evidencias estatisticas

de que os modelos diferem substancialmente na classificacdo de casos discordantes.

e Sensibilidade e Especificidade
Os valores ideias alcancados pelo C5.0 em sensibilidade e especificidade refletem a sua
capacidade de identificar casos positivos sem gerar falsos. O XGBoost e o Random Forest
também apresentaram equilibrio entre as métricas, com valores acima de 89% para
ambos. Ja a Regressao Logistica e o Bayes apresentaram menor equilibrio, evidenciando

limitagdes na separagdo das categorias.

e F,-score e AUC

O Fl1-score de C5.0 confirma o seu excelente desempenho, enquanto o XGBoost e o

Random Forest mostraram forte capacidade preditiva, com valores de 0,9455 e 0,8890,

175



respetivamente. Por outro lado, os modelos probabilisticos que tiveram F;-scores
inferiores, refletiram maior dificuldade em equilibrar a sensibilidade e precis3o.
Com base nos resultados, o C5.0 é a melhor escolha, destacando-se em todas as métricas

com um desempenho superior.

Diferentes graus de desequilibrio

1) Ajuste e selecdo do modelo

Para identificar o melhor modelo, foram testados diferentes parametros do valor de “K”
(nimero de vizinhos mais préximos) e do “over-ratio” (proporgao entre categorias). Na
abordagem anterior, a técnica ROSE foi utilizada para realizar o oversampling em quatro
cenarios distintos (5000, 15000, 25000 e 35000 observacdes). Com o objetivo de
comparar essa abordagem com o SMOTENC, foi necessdrio ajustar os valores de
over_ratio e K de forma a atingir um nimero de observac¢des idéntico. Na tabela que se

segue, Tabela B5, encontram-se os valores alcancados nesta nova abordagem.

Tabela B 5 - SMOTENC: Alteragdo do nimero de observagdes de "Mortes/Feridos Graves" conforme o oversampling

aumenta e o numero de “Feridos Leves” se mantém constante.

Oversampling com diferentes graus de desequilibrio
Feridos Leves Mortes/Feridos Graves
Moiifosoig;ples 42317 995
m?ﬂiﬂfﬁfg r;ooo 42317 6178
Over:;rizllfngcyolngooo 42317 16165
0ve?g;r:;e;|/?ngc;02n;ooo 42317 26194
0ve|r\:;r:2|/?n;o3n;ooo 42317 36181

Na Tabela B6 sdo apresentados os diversos valores obtidos nos diferentes cenarios,

evidenciando as variacdes de desempenho dos modelos analisados.
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Tabela B 6 - SMOTENC: Desempenho do Modelo de Regresséo Logistica com diferentes graus de desequilibrio.

Métrica OVERSAMPLING SMOTENC
5000 15000 25000 35000
Ponto de Corte 0,136 0,290 0,391 0,474
Accuracy 0,7929 0,7982 0,7983 0,7971
(0,7862; (0,7921; (0,7927; (0,7919;
IC (95%)
0,7995) 0,8041) 0,8037) 0,8022)
Kappa 0,3898 0,5449 0,5839 0,5930
Mcnemar’s Test <0,001 <0,001 <0,001 <0,001
P-Value
Sensibilidade 0,7941 0,7991 0,7984 0,7971
Especificidade 0,7927 0,7978 0,7982 0,7970
Valor Preditivo 0,3631 0,6081 0,7143 0,7737
Positivo
Valor Preditivo 0,9628 0,9100 0,8623 0,8187
Negativo
F1-score 0,8695 0,8502 0,8290 0,8077
AUC 0,8772 0,8802 0,8772 0,8806
Precisdo 0,3631 0,6081 0,7143 0,7736

Com base na analise das métricas, observa-se que ndao ha diferencgas significativas do
valor de accuracy ou AUC entre os cendrios de oversampling. O cendrio com 35000
observagGes apresentou o maior Kappa (0,5930) e a maior precisao (0,7736), o que
indica uma reducdo de falsos positivos e maior confiabilidade na previsdao de casos
positivos. No entanto, esse ganho foi acompanhado por uma queda no F;-score (0,8077)
e no Valor Preditivo Negativo (81,87%), sugerindo perda de equilibrio entre as categorias.
Por outro lado, o cendrio com 5000 observac¢des destacou-se pelo maior F1-score (0,8695)
e pelo melhor Valor Preditivo Negativo (96,28%), mostrando melhor equilibrio entre a
sensibilidade e precisdo, embora com baixa capacidade preditiva para positivos

(precisao = 0,3631).
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A Tabela B7 apresenta os resultados do desempenho do “modelo base” da regressao

logistica em diferentes cenarios.

Tabela B 7 - SMOTENC: Desempenho do Modelo de Regresséo Logistica com diferentes graus de desequilibrio.

le) ii‘:;fao XGBoost R::fez:n Bayes C5.0
Ponto de Corte
5000 0,135 0,159 0,064 0,346 0,294
15000 0,294 0,341 0,271 0,761 0,471
25000 0,399 0,44 0,402 0,863 0,512
35000 0,474 0,52 0,548 0,918 0,51
Accuracy
5000 0,7917 0,9121 0,8579 0,7502 0,9313
15000 0,7989 09396 | 10,8726 0,7606 0,9689
25000 0,7976 0,9382 0,8747 0,755 0,9751
35000 0,7975 0,9446 0,8891 0,7604 0,9801
Kappa
5000 0,3874 0,679 0,5323 0,3113 0,7393
15000 0,5464 0,8549 0,7032 0,4687 0,9242
25000 0,5827 0,8707 | 10,7395 0,4972 0,9478
35000 0,5939 0,8888 0,7774 0,5196 0,96
McNemar’s
Tes P-Value

5000 <0,001 <0,001 <0,001 <0,001 <0,001
15000 <0,001 <0,001 <0,001 <0,001 <0,001
25000 <0,001 <0,001 <0,001 <0,001 <0,001
35000 <0,001 0,0083 0,0024 <0,001 0,1149
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OVERSAMPLING SMOTENC

RI: ggr;:scﬁao XGBoost R::iz:n Bayes C5.0

Sensibilidade

5000 0,7925 0,9124 0,8591 0,7505 0,9323

15000 0,7995 0,9397 0,8728 0,7612 0,9694

25000 0,7979 0,9385 0,8753 0,7563 0,9752

35000 0,7978 0,9449 0,8895 0,7614 0,9802
Especificidade

5000 0,7916 0,9121 0,8578 0,7502 0,9312

15000 0,7987 0,9395 0,8726 0,7604 0,9686

25000 0,7974 0,9381 0,8742 0,7542 0,9751

35000 0,7973 0,9444 0,8888 0,7595 0,9800
Valor Preditivo

Positivo

5000 0,3614 0,6069 0,4733 0,3089 0,6685

15000 0,6093 0,8591 0,7289 0,5550 0,9239

25000 0,7135 0,9055 0,8148 0,6604 0,9612

35000 0,7740 0,9367 0,8744 0,7337 0,9771
Valor Preditivo

Negativo

5000 0,9625 0,9859 0,9761 0,9529 0,9893

15000 0,9103 0,9754 0,9459 0,8902 0,9878

25000 0,8619 0,9602 0,9173 0,8304 0,9842

35000 0,8192 0,9517 0,9024 0,7853 0,9828
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OVERSAMPLING SMOTENC

Regressao Random
XGB B .
Logistica GBoost Forest ayes cs.0
F1-Score
5000 0,8687 0,9476 0,9131 0,8394 0,9594
15000 0,8509 0,9571 0,9077 0,8202 0,9781
25000 0,8284 0,9490 0,8953 0,7904 0,9796
35000 0,8081 0,9480 0,8955 0,7722 0,9814
AUC
5000 0,8765 0,9723 0,9396 0,8142 0,9801
15000 0,8813 0,9856 0,9458 0,8263 0,9939
25000 0,8779 0,9862 0,9464 0,8195 0,9963
35000 0,8812 0,9884 0,9522 0,8232 0,9974
Precisao
5000
- 0,3614 0,6069 0,4733 0,3089 0,6685
o 0,6093 0,8591 0,7289 0,5550 0,9239
07135 0,9055 0,8148 0,6604 0,9612
35000
0,7740 0,9367 0,8744 0,7337 0,9771

Os resultados mostram que o algoritmo C5.0 novamente se destaca como o mais
eficiente em praticamente todas as métricas e cenarios analisados com a aplica¢do da
técnica SMOTENC. No que diz respeito ao accuracy, o C5.0 atinge valores que variam de
0,9313 no cendrio de 5000 observagdes a 0,9801 com 35000 observacdes. O Kappa,
também reforca o desempenho superior do C5.0, especialmente nos cenarios com
25000 e 35000 observacbes, onde atinge valores elevados como 0,9478 e 0,9600,
respetivamente.

Outro ponto relevante é a sensibilidade, onde o C5.0 novamente apresenta os melhores
resultados, variando de 0,9323 a 0,9802. Esses valores mostram a boa capacidade que o
modelo tem em identificar corretamente os casos positivos. A especificidade, segue a

mesma tendéncia, com valores que vao de 0,9312 a 0,9800.
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A métrica AUC também aponto o C5.0 como a melhor escolha. A mesma apresenta
valores extremamente elevados, chegando a 0,9974 no cenarios com 35000 observacdes.
Outras métricas como F; -score e os valores preditivos positivos e negativos, corroboram
a superioridade do C5.0. O F;-score atinge um valor de 0,9814 no cendrio de 35000
observagdes e o valor preditivo positivo cresce significativamente, passando de 0,6685
para 0,9771. Porém, o valor preditivo negativo decresce ligeiramente com o aumento de
observacgoes, variando de 0,9893 a 0,9828.

Ao analisar os diferentes cendarios, observa-se uma clara tendéncia de melhoria de
desempenho do modelo C5.0 com o aumento do numero de observacdes. No cenario
com 5000 observacgdes, os resultados sdo satisfatdrios, mas inferiores em comparacao
com os cenarios maiores, com métricas como accuracy (0,9313), F;-score (0,9594) e AUC
(0,9801) abaixo dos valores obtidos nos cenarios subsequentes. J& os cenarios com
15000 e 25000 observacdes, o desempenho do C5.0 atinge niveis muito elevados, com
métricas muito préximas dos valores ideias (accuracy de 0,9689 e 0,9751; F1-score de
0,9781 e 0,9796; AUC de 0,9939 e 0,9963, respetivamente), refletindo excelente
capacidade de previsdao. No cendrio com 35000 observacdes, o modelo mantém
resultados muito bons (accuracy de 0,9801, F;-score de 0,9814 e AUC de 0,9974). Estes
ganhos adicionais sdo minimos em comparagao com o cendrio de 25000, sugerindo um
possivel ponto de saturacdo no desempenho do modelo.

Dessa forma, os resultados indicam que o algoritmo C5.0, especialmente nos cenarios
de 15000 e 25000 observagdes, é a melhor opgao para a previsdao de sinistros com

“Mortes/Feridos Graves”.

Undersampling e Oversampling

No presente capitulo, foi adotada a metodologia SMOTENC para lidar com o
desequilibrio das categorias.

Posto isto, foi inicialmente criado um modelo com 42000 observag¢des, onde 21000
correspondem a categoria minoritaria e 21000 a categoria maioritaria. Sdo ainda criados
outros dois modelos, um com 10000 observacdes ( 5000 categoria minoritdria + 5000
categoria maioritaria) e outro modelo com 20000 observagées (1000 categoria

minoritaria + 1000 categoria maioritaria), ambos com categorias equilibradas.
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A abordagem seguiu os mesmos passos da metodologia anterior, iniciando com a
aplicacdo do undersampling a categoria maioritaria, removendo parte das observagoes
dos sinistros “Feridos Leves”. Posteriormente, foi aplicado o oversampling a categoria
minoritdria utilizando a técnica SMOTENC. Desta forma, assegura-se que ambas as
categorias estdo balanceadas nos modelos gerados, possibilitando que os algoritmos de

machine learning trabalhem com dados mais equilibrados.

Modelo com 42000 observacoes

1) Undersampling

A técnica de undersampling foi aplicada para equilibrar a base de dados, ajustando o
numero de observacdes da categoria maioritdria para aproxima-lo ao da categoria
minoritaria. Esse processo envolveu a reducdo aleatodria de observacGes da categoria
predominante, sendo:
e Categoria minoritaria (“Mortes/Feridos Graves”): todos os 995 sinistros com
“Mortes/Feridos Graves” foram mantidos na base de dados sem alteragdes.
e Categoria maioritaria (“Feridos Leves”): foi realizada uma amostragem
aleatdria simples, sem reposicao, dos 42317 sinistros com “Feridos Leves”.
O procedimento foi repetido de forma idéntica na aplicagdo do SMOTENC. Em ambas as
metodologias, manteve a propor¢do controlada entre as categorias: a categoria
maioritaria com 21,11 vezes o nimero de observacoes da categoria minoritdria. O ajuste
resultou no mesmo total de 21999 observagdes, sendo 21004 da categoria maioritaria e
995 observacGes da categoria minoritaria. Essa repeticdo assegura a consisténcia nos

modelos e a comparabilidade entre os resultados das duas abordagens.

2) Oversampling
De forma a equilibrar a base de dados, aplicou-se o undersampling na categoria

minoritaria. Os valores finais estdo na Tabela BS.
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Tabela B 8 - Composi¢Go do modelo com e sem undersampling e com undersampling+oversampling de 42000

SMOTENC - UNDER + OVER 42000

observagdes (SMOTENC).

Feridos Leves

Mortes / Feridos Graves

Modelo Simples 42317 995
Modelo com 21004 995
Undersampling
Modelo com Under 21004 20982

+ Over Sampling

1) Divisao dos dados em treino e teste

O conjunto de dados foi dividido em dois subconjuntos: 70% para treino e 30% para
teste. O resultado desta divisdo, Tabela B9, encontra-se da seguinte forma:
- Conjunto de treino: contém 29587 observagoes.

- Conjunto de teste: contém 12399 observacgdes.

Tabela B 9 - SMOTENC: Divisdo dos dados do modelo de regressdo logistica (42000 observagées) em dois subconjuntos:

treino e teste e respetivo numero de observagdes por categoria em cada subconjunto.

SMOTENC UNDER + OVER 42000 ‘

Treino Teste

Feridos Leves 14764 6240

Mortes/Feridos Graves 14823 6159
29587 12399

2) Ajustamento do Modelo

Utilizando os dados pré-processados, ajustou-se um modelo de Regressao Logistica para
prever a probabilidade do evento de interesse. Os coeficientes estimados e as medidas

de ajuste do modelo estao sumarizadas na Tabela B10.
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Tabela B 10 - SMOTENC: Modelo multiplo de regressédo logistica ajustado para a existéncia de “Mortes/Feridos Graves”

nos sinistros com vitimas com 42000 observagoes.

Variavel Coeficiente Std. Error
Intercept -1,9515 0,1575 <0,001
Concelho2AGSSP
(ALCOCHETE, GRANDOLA, 0,1865 0,0999 0,0619
SEIXAL, SINES e PALMELA)
Concelho2ABMMS
(ALMADA, BARREIRO, MOITA, -0,0100 0,1012 0,9213
MONTIJO e SESIMBRA)
Concelho2SS
(SANTIAGO DO CACEM e -0,4522 0,1118 <0,001
SETUBAL)
tipoacidColisdo -1,4312 0,1005 <0,001
tipoacidDespiste -0,7407 0,1046 <0,001
tipolocal2Fora das localidades 0,5641 0,0376 <0,001
tipovia2EM - Estrada Municipal -0,4977 0,1332 0,0002
tipovia2EN/IC/ER
(Estrada Nacional, Itinerdrio 1,0683 0,0544 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h -0,3069 0,1228 0,0124
horaacidlnew8h-13h -0,4524 0,0359 <0,001
fugaSim -3,7486 0,2132 <0,001
PercCondMCat2[75,100] 0,3500 0,0346 <0,001
HaVeicPesadoSim 0,7361 0,0601 <0,001
HaVeicLigSim 0,3457 0,0676 <0,001
HaVeicMotoSim 2,6787 0,0545 <0,001
HoralLaboralSim -0,3052 0,0332 <0,001
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Variavel Coeficiente Std. Error

MedianaldadeVeic 0,0566 0,0026 <0,001
ig_ponderado 0,1066 0,0063 <0,001
tipovia2EM - Estrada -0,0491 0,1670 0,7686
Municipal: HaVeicMotoSim
tipovia2EN/IC/ER: -0,5464 0,0780 <0,001
HaVeicMotoSim
Concelho2AGSSP: -0,0417 0,0056 <0,001
ig_ponderado
Concelho2ABMMS: -0,0680 0,0056 <0,001
ig_ponderado
Concelho2SS: ig_ponderado -0,0139 0,0063 0,0261
tipoacidColisdo: ig_ponderado -0,0303 0,0031 <0,001
tipoacidDespiste: -0,0187 0,0034 <0,001
ig_ponderado
tipovia2EM — Estrada 0,0476 0,0066 <0,001

Municipal: ig_ponderado

tipovia2EN/IC/ER: -0,0018 0,0014 0,1791
ig_ponderado

Os sinistros envolvendo motociclos (“HaVeicMotoSim”) , veiculos pesados
(“HaVeicPesadoSim”) e os Sinistros em Estradas Nacionais, Itinerdrios Complementares
ou Estrada Regional (“tipovia2EN/IC/ER”) sdo fatores intrinsecos ligados a eventos mais
graves. Por outro lado, variaveis como a ocorréncia de ColisGes (“tipoacidColisdo”),
sinistros em que ha fuga (“fugaSim”) e sinistros durante o periodo da manha

(“horaacidlnew8h-13h”) tendem a estar associadas a sinistros menos graves.

3) Comparacdo do desempenho entre os modelos de classificacdo

Por fim, é comparado detalhadamente o desempenho dos modelos de classificacao,

utilizando as métricas da Tabela B11.
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Tabela B 11 - SMOTENC: Métricas de classificagdo para 42000 observagdes - Undersampling + Oversampling.

Métrica Regr’e s?ao XGBoost L 1
Logistica
UNDER + OVER — SMOTENC 42000
Ponto de Corte 0,502 0,553 0,600 0,837 0,528
Accuracy 0,7998 0,9340 0,8806 0,7546 0,9656
iC (95%) (0,7927; (0,9295; (0,8748; (0,7469; (0,9623;
° 0,8068) 0,9383) 0,8863) 0,7621) 0,9688)
Kappa 0,5996 0,8680 0,7613 0,5091 0,9313
Menemar’s Test 0,7029 0,7530 0,8150 0,6117 0,8844
P-Value
Sensibilidade 0,8001 0,9344 0,8807 0,7553 0,9657
Especificidade 0,7995 0,9337 0,8806 0,7538 0,9655
Valor Preditivo 0,7975 0,9329 0,8792 0,7518 0,9651
Positivo
Valor Preditivo 0,8021 0,9352 0,8820 0,7574 0,9662
Negativo
Fl-score 0,8008 0,9344 0,8813 0,7556 0,9659
AUC 0,8816 0,9848 0,9459 0,8258 0,9946
Precis3o 0,7975 0,9329 0,8792 0,7518 0,9651

Os resultados indicam que o modelo C5.0 obteve o melhor desempenho geral, com alto
valor de accuracy (0,9656), Kappa (0,9313), sensibilidade (0,9657), especificidade
(0,9655), F;-score (0,9659) e AUC (0,9946). Esses resultados sugerem que o C5.0

apresenta uma boa capacidade de discriminacdo entre casos positivos e negativos, além
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de manter o equilibrio muito bom entre sensibilidade e precisao. O alto valor de Kappa
indica que a concordancia entre previsdes e observagdes reais é substancialmente
superior ao que seria esperado.

O modelo XGBoost também apresentou um bom desempenho, especialmente em
termos de AUC (0,9848). Embora os seus valores de accuracy, F;-score e Kappa serem
ligeiramente inferiores aos de C5.0, o XGBoost permanece como uma alternativa
robusta.

O modelo de Regressao Logistica apresentou resultados intermédios, com métricas mais
modestas, indicando que, embora seja Util para previsdes gerais, pode ndo ser tdo eficaz
guanto aos modelos baseados em arvores.

Os modelos Random Forest e Bayes tiveram desempenhos ligeiramente inferiores,
sugerindo limitagBes na capacidade de generalizagdo frente a complexidade e
desequilibrio dos dados.

Adicionalmente, todos os modelos apresentaram valores de p-value superiores a 0,05
no Mcnemar’s Test, indicando que ndo ha diferencgas estatisticamente significativas nos
erros de classificacdo entre eles.

Em termos praticos, a analise evidencia que o C5.0 é a melhor escolha para a previsao
de sinistros graves neste conjunto de dados, oferecendo ndo apenas alta precisdao, mas
também confiabilidade na classificacdo de casos criticos. O XGBoost pode ser
considerado uma alternativa viavel, especialmente em contextos onde se prioriza
discriminagdo entre categorias, enquanto modelos probabilisticos como Bayes ou
Regressao Logistica podem ser mais limitados quando se lida com dados altamente

desequilibrados ou com carateristicas complexas.

Modelos com 10000 e 20000 observacoes

1) Undersampling

Procedeu-se ao pré-processamento dos dados utilizando novamente a técnica de
undersampling, seguindo um procedimento semelhante ao realizado anteriormente
para as 42000 observag¢des, mas desta vez considerando um menor numero de

observagoes:
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e Categoria minoritaria (“Mortes/Feridos Graves”): todos os 995 sinistros com
“Mortes/Feridos Graves” foram mantidos na base de dados sem alteragGes.
e Categoria maioritaria (“Feridos Leves”): foi realizada uma amostragem
aleatdria simples, sem reposicao, dos 42317 sinistros com “Feridos Leves”.
Posto isto, foram criados dois conjuntos com base na categoria maioritaria, mantendo
proporg¢does controladas em relacdo a categoria minoritaria:
e Conjunto 1: inclui um ndmero de sinistros selecionados aleatoriamente
equivalente a 5,03 vezes o total de observagdes da categoria minoritaria.
e Conjunto 2: foi composto de maneira similar, também considerando sinistros
correspondentes a 10,05 vezes o numero de observacdes da categoria

minoritaria.

2) Oversampling

A Tabela B12 apresenta a comparacdo de desempenho entre diferentes modelos de
machine learning para a classificagdo de dados relacionados a “Feridos Leves” e
“Mortes/Feridos Graves” em dois cenarios de volume de dados (10000 e 20000

observacées).

Tabela B 12 -  SMOTENC: Valores das categorias do modelo simples, com undersampling e com

undersampling+oversampling.

10000

20000

Feridos Leves

Mortes /
Feridos Graves

Feridos Leves

Mortes /
Feridos Graves

Modelo Simples 42317 995 42317 995

Modelo com 5004 995 9999 995
Undersampling

Modelo com Under 5004 5004 9999 9999

+ Over Sampling
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3) Divisdao dos dados em treino e teste

A fim de realizar a modelagdo, os conjuntos de dados foram divididos em dois

subconjuntos: 70% dos dados foram alocados para treino e 30% para teste. A divisdo

com 10000 observacdes, Tabela B13, contém:

- Conjunto de treino: 7053 observagodes.

- Conjunto de teste: 2955 observacoes.

Tabela B 13 - SMOTENC: DivisGo dos dados do modelo de regressdo logistica (10000 observagbes) em dois

subconjuntos: treino e teste e respetivo numero de observagées por categoria em cada subconjunto.

SMOTENC UNDER + OVER 10000

Treino Teste

Feridos Leves 3509 1495
Mortes/Feridos Graves 3544 1460
7053 2955

A divisdao com 20000 observacdes, Tabela B14, contém:

- Conjunto de treino: 14078 observagodes.

- Conjunto de teste: 5920 observacoes.

Tabela B 14 - SMOTENC: DivisGo dos dados do modelo de regressdo logistica (20000 observagbes) em dois

subconjuntos: treino e teste e respetivo numero de observagées por categoria em cada subconjunto.

SMOTENC UNDER + OVER 20000 ‘

Treino Teste

Feridos Leves 7042 2957

Mortes/Feridos Graves 7036 2963
14078 5920

4) Ajustamento do Modelo

Foram ajustados os dois modelos de Regressao Logistica, onde a Tabela B15 apresenta

os resultados do primeiro modelo (10000 observagées), enquanto a Tabela B16

189



apresenta os resultados do segundo modelo (20000 observacoes).

Tabela B 15 - SMOTENC: Modelo multiplo de regressédo logistica ajustado para a existéncia de Mortes/Feridos Graves

nos sinistros com vitimas, com 10000 observagades.

Variavel

Coeficiente

SMOTENC 10000

Std. Error

P-value

Intercept -1,1824 0,4830 0,0144
Concelho2AGSSP
(ALCOCHETE, GRANDOLA, -0,2014 0,3282 0,5395
SEIXAL, SINES e PALMELA)
Concelho2ABMMS (ALMADA,
BARREIRO, MOITA, MONTIO e -0,2481 0,3284 0,4498
SESIMBRA)
Concelho2SS
(SANTIAGO DO CACEM e SETUBAL) -0,3799 0,3529 0,2817
tipoacidColisao -1,5789 0,2808 <0,001
tipoacidDespiste -1,0550 0,2963 0,0004
tipolocal2Fora das localidades 0,4590 0,1180 0,0001
tipovia2EM — Estrada Municipal -0,7522 0,4426 0,0893
tipovia2EN/IC/ER (Estrada
Nacional, Itinerario 11425 0,1654 <0,001
Complementar e Estrada
Regional)
horaacidlnew6h -0,0307 0,3889 0,9370
horaacidlnew8h-13h -0,4432 0,1123 <0,001
fugaSim -3,0009 0,4893 <0,001
PercCondMCat2[75,100] 0.3034 0,1076 0,0048
HaVeicPesadoSim 0,7547 0,1925 <0,001
HaVeicLigSim 0,2979 0,2120 0,1600
HaVeicMotoSim 2,6418 0,1772 <0,001
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Coeficiente
Variavel

Std. Error

SMOTENC 10000
HoraLaboralSim -0,5080 0,1037 <0,001
MedianaldadeVeic 0,0451 0,0079 <0,001
ig_ponderado 0,0968 0,0203 <0,001
tipovia2EM —.Estrada !VIumupaI: 0,5205 0,6059 0,3903
HaVeicMotoSim
tipovia2EN/IC/ER:
HaVeicMotoSim -0,8328 0,2334 0,0004
Concelho2AGSSP: ig_ponderado -0,0421 0,0191 0,0272
Concelho2ABMMS: -0,0721 0,0188 0,0001
ig_ponderado
Concelho2SS: ig_ponderado -0,0253 0,0205 0,2175
tipoacidColisao: ig_ponderado -0,0191 0,0079 0,0157
tipoacidDespiste: ig_ponderado -0,0002 0,0089 0,9846
t|p0V|a2E!\n — Estrada Municipal: 0,0717 0,0237 0,0025
ig_ponderado
tipovia2EN/IC/ER: ig_ponderado -0,0047 0,0040 0,2409

Tabela B 16 - SMOTENC: Modelo multiplo de regresséo logistica ajustado para a existéncia de Mortes/Feridos graves

nos sinistros com vitimas, com 20000 observagdes.

Coeficiente
Variavel

Std. Error

SMOTENC 20000
Intercept -2,0417 0,3570 <0,001
Concelho2AGSSP
(ALCOCHETE, GRANDOLA, 0,2200 0,2286 0,3358
SEIXAL, SINES e PALMELA)
Concelho2ABMMS (ALMADA,
BARREIRO, MOITA, MONTIJO e -0,1465 0,2292 0,5228
SESIMBRA)
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Variavel

Coeficiente

Std. Error

SMOTENC 20000

P-value

Concelho2SS

ig_ponderado

(SANTIAGO DO CACEM e SETUBAL) -0,8335 0,2559 0,0011
tipoacidColisao -1,4199 0,2207 <0,001
tipoacidDespiste -0,8428 0,2321 0,0003
tipolocal2Fora das localidades 0.6549 0,0832 <0,001
tipovia2EM - Estrada Municipal -0,3086 0,3050 0,3117
tipovia2EN/IC/ER (Estrada
Nacional, Itinerario
Complementar e Estrada 1,3286 01154 <0001
Regional)
horaacidlnew6h 0,1898 0,2585 0,4628
horaacidlnew8h-13h -0,3977 0,0799 <0,001
fugaSim -3,9213 0,5259 <0,001
PercCondMCat2[75,100] 0.1918 0.0767 0,0124
HaVeicPesadoSim 0,7324 0,1317 <0,001
HaVeicLigSim 0,4722 0,1508 0,0017
HaVeicMotoSim 2,8414 0,1246 <0,001
HoralaboralSim -0,4091 0,0744 <0,001
MedianaldadeVeic 0,0560 0,0058 <0,001
ig_ponderado 0,1207 0,0157 <0,001
tipovia2EM — Estrada Municipal: 01621 0.3912 0.6786
HaVeicMotoSim ’ ' '
tipovia2EN/IC/ER:
HaVeicMotoSim -0,6255 0,1676 0,0002
Concelho2AGSSP: ig_ponderado -0,0578 0,0144 <0,001
Concelho2ABMMS: 20,0800 0,0143 <0,001

192



Coeficiente Std. Error P-value

Variavel e
SMOTENC 20000

Concelho2SS: ig_ponderado -0,0214 0,0158 0,1742
tipoacidColisdo: ig_ponderado -0,0297 0,0066 <0,001
tipoacidDespiste: ig_ponderado -0,0122 0,0073 0,0960

tipovia2EM - Estrada Municipal:

. 0,0422 0,0144 0,0034
ig_ponderado

tipovia2EN/IC/ER: ig_ponderado -0,0108 0,0028 0,0001

Ao compararmos estes dois modelos, com o modelo anterior (modelo de oversampling
com 85000 observagdes), nota-se que, em grande parte, as mesmas varidveis continuam
a destacar-se em termos de impacto significativo sobre a ocorréncia de sinistros com
mortes/feridos graves. No entanto algumas nuances devem ser ressaltadas:

e Varidveis com maior impacto positivo: semelhante ao modelo anterior, as
varidveis relacionadas a existéncia de motociclos e veiculos pesados
continuam a exercer um papel crucial. Sinistros ocorridos em Estradas
Nacionais, Itinerarios Complementares e Estradas Regionais novamente
apresentam maior probabilidade de resultar em sinistros onde resultam

“Mortes/Feridos Graves”.

5) Comparacdo do desempenho entre os modelos de classificacdo

Na etapa final, realizar-se-4 uma andlise comparativa dos modelos de classificacao

desenvolvidos, com base nas métricas de desempenho apresentadas na Tabela B17.
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Tabela B 17 - SMOTENC: Métricas de classificagdo para 10000 e 20000 observagdes - Undersampling + Oversampling.

UNDER + OVER SMOTENC
Ponto de Corte
10000 0,505 0,553 0,576 0,750 0,558
20000 0,510 0,565 0,604 0,845 0,540
Accuracy
10000 0,7885 0,8772 0,8470 0,7387 0,8579
20000 0,8000 0,9105 0,8561 0,7505 0,9172
IC (95%)
(0,7733; (0,8648; (0,8335; (0,7225; (0,8448;
10000 0,8031) 0,8888) 0,8598) 0,7545) 0,8703)
20000 (0,7896; (0,9029; (0,84609; (0,7393; (0,9099;
0,8101) 0,9176) 0,8649) 0,7615) 0,9241)
Kappa
10000 0,5770 0,7543 0,6941 0,4775 0,7157
20000 0,6000 0,8209 0,7122 0,5010 0,8345
McNemar’s Test
P-Value
10000 0,7490 0,8337 0,7420 0,7460 0,9611
20000 0,9305 0,9654 1 0,9585 1
Sensibilidade
10000 0,7890 0,8774 0,8479 0,7390 0,8568
20000 0,8009 0,9109 0,8562 0,7513 0,9173

194



Regressao

Logistica XGBoost
UNDER + OVER SMOTENC
Especificidade
10000 0,7880 0,8769 0,8462 0,7385 0,8589
20000 0,7991 0,9100 0,8559 0,7497 0,9171
Valor Preditivo
Positivo
10000 0,7842 0,8744 0,8433 0,7340 0,8557
20000 0,7998 0,9103 0,8562 0,7505 0,9173
Valor Preditivo
Negativo
10000 0,7927 0,8799 0,8507 0,7434 0,8600
20000 0,8002 0,9107 0,8559 0,7505 0,9171
F1-Score
10000 0,7903 0,8784 0,8484 0,7409 0,8594
20000 0,7997 0,9104 0,8559 0,7501 0,9171
AUC
10000 0,8719 0,9515 0,9217 0,8124 0,9294
20000 0,8795 0,9737 0,9339 0,8191 0,9753
Precisao
10000 0,7842 0,8744 0,8433 0,7340 0,8557
20000 0,7998 0,9103 0,8562 0,7505 0,9173

A analise dos resultados evidéncia que o desempenho dos modelos melhora
significativamente com o aumento do numero de observagbes. Isso é notdvel em
métricas como accuracy, sensibilidade, especificidade e F;-score, onde os valores se

tornam mais elevados e consistentes com um maior numero de observacgoes.
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Os modelos XGBoost e C5.0 destacaram-se como os mais eficazes. O XGBoost
apresentou um accuracy de 0,9044 e uma AUC de 0,972 com 20000 observagoes,
enquanto o C5.0 alcancou o maior accuracy (0,9177) e uma AUC de 0,9753 no mesmo
cenario. Além disso, o C5.0 apresentou maios Kappa (0,8355), indicando uma alta
concordancia entre as previsdes e os valores reais.

Em suma, os resultados mostram que os modelos XGBoost e C5.0 sdo os mais adequados

e que o aumento de observacdes contribui para a precisao e a estabilidade das previsdes.
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Anexos

Anexo 1
Categoria Variavel Descricao
Localizagdo concelho Concelho
Quilémetro onde ocorreu o
kmacid o
sinistro
sitacid Local do sinistro
Tipo de Sinistro tipoacid Tipo de sinistro
naturezaacid Natureza do sinistro
fuga Sinistro com fuga
ig_ponderado indice de gravidade
Via e Infraestrutura tipoberma Tipo de berma
tipolocal Localizagdo do sinistro
tipovia Tipo de via
Tracado Tracado da via em planta
tracadoperfil Tracado da via em perfil
marcaspadl Marcas no pavimento
d_n_vias Numero de vias
faixasentido Faixa de rodagem com sentido
Unico ou dois sentidos
estadoconserv Estado de conservacao
intervias Intersegao de vias
tipopiso Tipo de piso
obras Obstaculos ou obras
danosvia Danos na via
Condigdes Ambientais fatoresatmosl Fatores atmosféricos
sensepcentrall Sentido do separador central
sinallum1 Sinalizacdo luminosa
sinais Sinais
luminos Luminosidade
choveu Choveu?
sol Estava sol?
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Categoria

Variavel

ff_med

Descrigao

Intensidade média do vento (m/s)

Fatores Temporais

diasemanaacid

Dia da semana do sinistro

horaacidl

Hora com minutos a zero do
sinistro

Horalaboral

Sinistro ocorreu no horario
laboral

PicoTrafego

Pico de trafego

feriado Sinistro ocorreu num dia feriado
diaacid Dia do més do sinistro

anoacid Ano do sinistro

mesacid Més do sinistro

Tipo de Veiculo

HaVeicPesado

Existéncia de veiculos pesados

HaVeiclig Existéncia de veiculos ligeiros

HaVeicMoto Existéncia de ciclomotores e
motociclos

HaVeicEsp Existéncia de veiculos de

especiais

HaVeicTrator

Existéncia de veiculos tratores

HaVeicMisto

Existéncia de veiculos mistos

HaVeicMerc

Existéncia de veiculos de
mercadorias

HaVeicPassag

Existéncia de veiculos de
passageiros

Carateristicas dos Condutores

condaderl Condi¢des de aderéncia

% de condutores masculinos
PercCondMCat envolvidas no sinistro

(categorizada)

% de condutores femininas
PercCondFCat

envolvidas no sinistro
(categorizada)

MinAnosLicCond

Minimo de anos de licenca/ carta
dos condutores

MaxAnosLicCond

Maéximo de anos de licenca/ carta
dos condutores

MinldadeCond

Minimo das idades dos

condutores

MaxIdadeCond Maximo das idades dos
condutores

MinldadeVeic Minimo da idade da matricula
dos veiculos

MaxIdadeVeic Maximo da idade da matricula

dos veiculos
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Categoria

Fatores Humanos

VELEVE Descrigao

causas2 Causas do sinistro

Medianataxalcool Mediana da taxa de alcoolemia

Contexto Social

Aulas Sinistro ocorreu durante o
periodo de aulas
unsaude Unidade de saude

Anexo 2

Categoria Variaveis

Localizagao

concelho, freguesia

Via / Estrutura

tipoberma, tipolocal2, tipovia, tracadoperfil, tracado,
tracadoperfil, d_n_vias, intervias, faixasentido, estadoconsery,
obras, danosvia

Marcagao e Sinalizagao

marcaspavl, sensepcentrall, sinais, sinallum1

Condigdes Ambientais

fatoresatmos1, luminos, choveu, sol

Tempo

diasemanaacid2, horaacidl, horaacid, HoralLaboral, diaacid,
mesacid, anoacid, feriado, PicoTrafego, Aulas

Caracteristicas do

tipoacid, naturezaacid, sitacid, causas2, fuga

Sinistro
Veiculos HaVeicPesado, HaVeiclig, HaVeicMoto, HaVeicEsp, HaVeicTrator,
HaVeicMisto, HaVeicMerc, HaVeicPassag
Conducgdo / condaderl, PercCondMCat, PercCondFCat, MinAnosLicCond,
Condutores MaxAnosLicCond, MedianaAnosLicCond, IQRAnosLicCond
Alcool Medianataxaalcool, IQRtaxaalcool, Mintaxaalcool, Maxtaxaalcool
Vitimas IQRIdadeVit, MinldadeVit, MaxldadeVit, MedianaldadeVit

Condutores (Idade)

MinldadeCond, MaxldadeCond, MedianaldadeCond,
IQRIdadeCond

Veiculos (Idade)

MinldadeVeic, MaxldadeVeic, MedianaldadeVeic, IQRIdadeVeic

Outros

kmacid, unsaude, numero_de_arvores
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Anexo 3 — Fluxograma metodoldgico

Metodologias Estatisticas

Regressdo Logistica Classica

Regressao Logistica
Penalizada de Firth

Metodologias de Machine Learning

Naive Bayes Random Forest C5.0

XGBoost

Técnicas para Eventos Raros
(aplicadas no treino)

ROSE

SMOTENC

Avaliacdo do Desempenho
(Eventos Raros)

Métricas de Classificagao
- Sensibilidade

- Precisdao

- F>-score

- PR-AUC

- ROC-AUC

- Brier Score

Definigdo do Threshold

- Maximizacao do F;-score
- Analise de sensibilidade
(taxa prevista positiva =3% e 5 %)

Calibragdo das Probabilidades

- Regressao isotdnica

- Curvas de calibragao

- Brier score

- Validagdo por bootstrap
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