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Évora 2025



Agradecimentos

Em primeiro lugar, agradeço a Deus, pela vida, pela força e pela sabedoria conce-
didas ao longo deste percurso académico e pessoal. Sem a Sua presença e bênção
nada disto teria sido possível.

Expresso a minha sincera gratidão às minhas orientadoras, Doutora Dulce
Gomes e Doutora Lígia Henriques, pela orientação científica, pela constante
disponibilidade, pelas valiosas sugestões e pela dedicação em cada etapa deste tra-
balho. O rigor, a paciência e o incentivo de ambas foram determinantes para a
concretização deste estudo.
Agradeço igualmente a todos os professores do Mestrado, pelo conhecimento trans-
mitido, pelo apoio e pelas contribuições que enriqueceram a minha formação acadé-
mica.

Deixo também o meu reconhecimento à Fundação Calouste Gulbenkian,
pelo apoio concedido através da bolsa que possibilitou a realização e concretização
desta grande etapa da minha vida.

Agradeço profundamente à minha família e amigos, pelo apoio incondicional,
pela compreensão nos momentos mais exigentes e pela motivação ao longo desta
caminhada.

A todos, o meu mais sentido obrigado.

i



Resumo

Detecção de mudanças de estruturas em séries
temporais

O estudo das séries temporais é essencial para compreender e prever fenómenos em
diversas áreas, mas a presença de mudanças estruturais compromete os pressupos-
tos de estacionariedade e a fiabilidade das previsões. O estudo dedica-se à análise e
comparação dos métodos estatísticos e computacionais de deteção de mudanças de
estrutura, nomeadamente em média, tendência e forma da distribuição, incluindo o
comportamento das caudas. São analisadas as limitações dos métodos clássicos de
segmentação da série, em contextos com dependência serial e falha de normalidade.
Através de simulações de Monte Carlo com séries de diferentes propriedades —dis-
tribuição, autocorrelação, dimensão e presença de outliers — avalia-se a eficácia e
robustez dos métodos. Procura-se ainda estudar a deteção de mudanças na distri-
buição GEV em contexto de dependência serial, usando a estatística de teste CUSUM
adaptada aos métodos PWM e GPWM.

Palavras Chaves: Séries temporais, mudanças de estrutura, distribuição gene-
ralizada de valores extremos, simulação de Monte Carlo.
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Abstract

Structural change detection in time series

Time series analysis plays a key role in understanding and forecasting phenomena
across many fields. However, structural changes can violate the assumption of sta-
tionarity, reducing model reliability and forecast accuracy. This study focuses on
the analysis and comparison of statistical and computational methods for detec-
ting structural changes, including shifts in mean, trend, and distribution shape,
with particular attention to tail behavior. The limitations of classical segmentation
methods are examined in contexts characterized by serial dependence and deviations
from normality. Through Monte Carlo simulations of series with different proper-
ties—distribution, autocorrelation, sample size, and the presence of outliers—the
effectiveness and robustness of the methods are assessed. Furthermore, the study
investigates the detection of changes in the Generalized Extreme Value (GEV) dis-
tribution under serial dependence, using a CUSUM-type test statistic adapted to the
PWM and GPWM methods.

Keywords: Time series, structural change, Generalized Extreme Value distri-
bution, Monte Carlo simulation.
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Capítulo 1

Introdução

O estudo das séries temporais tem vindo a ganhar crescente relevância nos últimos
anos, devido à necessidade de compreender e prever a evolução de determinados
fenómenos em áreas como a economia, as finanças, a climatologia, a saúde, a en-
genharia e as ciências sociais. No entanto, estes fenómenos estão muitas das vezes
sujeitos a mudanças que podem afetar a estrutura subjacente dos dados ao longo do
tempo.
Este problema pode representar um grande obstáculo na modelação e previsão de
séries temporais, sobretudo na modelação de séries através de modelos do tipo Au-
toregressivo de Média Móvel (ARMA) (ou Autoregressivo Integrado de Média Móvel
(ARIMA)), que partem do pressuposto que está estacionária (ou que pode tornar-se
estacionária através de diferenciações). As quebras estruturais quebram este pres-
suposto de estacionariedade ao introduzir mudanças abruptas na média, tendência
e/ou variância da série.
Pelo que basta a existência de uma única mudança de estrutura na série para afetar
a modelação e a consequentemente a previsão de valores futuros. A existência de
múltiplas mudanças de estrutura agravam ainda mais o problema, sobretudo quando
o número destas mudanças é desconhecido, bem como em que tempo ocorreram.

A análise de mudanças de estrutura requer, em primeiro lugar, a avaliação da
significância estatística das eventuais mudanças e, em caso afirmativo, a estimação
do número de mudanças e as suas possíveis localizações (Chen et al. (2000)). Um dos
primeiros métodos para deteção de mudança de estrutura é o CUSUM (cumulative
sum control chart), inicialmente proposto por Page (1954), para deteção de mu-
dança na média em processos contínuos. Este método na sua formulação clássica
(paramétrica) assume geralmente condições fortes, como normalidade e variância
constante, dado que poderá ter melhor desempenho em séries estacionárias, ou seja
em processos que não mudam ao longo do tempo exceto pelas mudanças que se
querem detetar.
Conforme discutido em Aue and Horváth (2013), a versão não paramétrica do pro-
cesso CUSUM procura relaxar algumas condições iniciais do método, como a inde-
pendência e a normalidade. O artigo aborda a aplicação do método em situações
em que existe dependência serial, heterocedasticidade ou variância não constante, e
examina de que forma os métodos clássicos devem ser adaptados e quais condições
adicionais são necessárias para garantir a validade estatística.
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Embora tenham sido realizados alguns avanços nesta área, como a implementação
de métodos computacionais, estatisticamente eficientes (Zeileis et al. (2002a), Killick
and Eckley (2014)), incluindo métodos modernos baseados em aprendizagem auto-
mática, os desafios continuam, principalmente em séries com mudanças subtis ou
pouco visíveis (Salman et al. (2024)), séries autocorelacionadas, valores
atípicos-outliers-(Fearnhead and Rigaill (2019)) ou ainda em cenários onde há
falha de normalidade — já que a maioria dos métodos clássicos de deteção requer
a normalidade ou pelo menos uma aproximação à normalidade — o que constitui
uma limitação adicional, pois em numerosos contextos práticos os dados não se-
guem essa distribuição. O presente trabalho valoriza-se precisamente por considerar
cenários que não verificam essas condições. Estes métodos clássicos, com maior
aplicação atual podem ser encontrados em Killick et al. (2010), onde apresentam
métodos de segmentação, que usam funções de custo, para identificar segmentos
da série que contêm mudanças, nomeadamente mudanças na média, variância e am-
bas simultaneamente, fornecendo ainda uma explicação completa com código aberto.

Para além destas, é igualmente importante considerar mudanças na tendência
da série. Identificar corretamente este tipo de mudança é crucial, pois a presença de
diferentes regimes de crescimento ou de declínio pode afetar de forma significativa a
modelação e a previsão. Trabalhos clássicos nesta área podem ser encontrados em
Zeileis et al. (2002a), onde são apresentados métodos para detetar quebras de estru-
tura em modelos de regressão linear, incluindo mudanças na média e na tendência
da série temporal.
Por vezes o nosso interesse não está unicamente na deteção de mudanças de nível
ou na tendência da série, mas sim de mudanças na própria forma da distribuição,
em particular no comportamento das caudas. Com recurso a teoria de valores extre-
mos, alguns autores como Kojadinovic and Naveau (2017) propuseram um método
inovador para detetar mudanças nos parâmetros da distribuição generalizada dos
valores extremos (GEV), baseando-se no método dos momentos ponderados. Este
é um resultado útil, especialmente na análise de mudanças no parâmetro de forma,
embora possa apresentar limitações em contextos com autocorrelação.

O interesse nesta área de investigação está na crescente necessidade de compreen-
der os mecanismos que governam uma série temporal, de forma a tornar a inferência
mais precisa e a ajustar modelos que melhor se adequem aos dados, fornecendo as-
sim contribuições mais eficazes para os decisores que lidam com estes fenómenos no
seu dia a dia.
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1.1 Objetivos

O principal objetivo deste trabalho é comparar e avaliar métodos estatísticos compu-
tacionais, usados para detetar mudanças de estrutura em séries temporais, e avaliar
a robustez em cenários mais desafiantes.

Com o intuito de alcançar este propósito, estabelecemos os seguintes objetivos
específicos:

• Comparar e avaliar os principais métodos estatísticos computacionais de de-
teção de mudanças de estrutura, nomeadamente de mudanças de nível, de
tendência e na forma da distribuição.

• Simular séries com diferentes propriedades: com distribuição normal, aproxi-
madamente normal e não-normal; diferentes graus de autocorrelação; em pre-
sença de outliers; diferentes dimensões e diferentes magnitudes na mudança.

• Investigar a deteção de mudanças na forma da distribuição generalizada de
valores extremos, em cenários autocorrelacionados.

1.2 Organização da investigação

Com o intuito de assegurar uma leitura fluída e uma compreensão lógica, a estru-
tura do trabalho foi organizada em cinco capítulos principais, cada um abordando
diferentes dimensões do problema em estudo.

O Capítulo 1 corresponde à Introdução. Neste capítulo, são apresentados o
enquadramento geral do tema, a motivação para o desenvolvimento deste trabalho,
os objetivos da investigação e uma breve visão global da estrutura da tese. Este
capítulo estabelece o ponto de partida para a compreensão do problema e a sua
relevância para a análise de séries temporais.

No Capítulo 2 são discutidos os conceitos fundamentais de séries temporais e
eventos extremos. É também feita uma exposição dos principais tipos de quebras
de estrutura que podem ocorrer em séries temporais.

O Capítulo 3 aborda a Metodologia. Este capítulo descreve, detalhadamente, os
métodos utilizados ao longo do trabalho. Inicia-se com a apresentação dos métodos
de segmentação e de programação dinâmica, aplicado na deteção de mudanças de
nível e de tendência. Introduz-se ainda o processo CUSUM clássico e recursivo, bem
como outros testes aplicados à deteção de mudanças. Abordamos a metodologia
proposta por Kojadinovic and Naveau (2017), que visa a deteção de mudanças nos
parâmetros da distribuição generalizada de valores extremos, com foco particular na
mudança do parâmetro de forma, utilizando os métodos dos momentos ponderados
(PWM) e dos momentos ponderados generalizados (GPWM).

O Capítulo 4 é reservado à Análise Computacional. Neste capítulo são avaliadas,
através de simulações de Monte Carlo com recurso do software R Cran, a eficácia e
a robustez dos diferentes métodos (clássicos e recentes) na deteção de mudanças de
estrutura. São considerados diversos cenários: variações na magnitude das mudanças
de nível, séries simuladas com diferentes níveis de dependência temporal, presença
de outliers e aproximação à distribuição onde a suposição de normalidade não é
atendida. A análise inclui a avaliação do desempenho na deteção de mudanças
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na tendência. É explorada a aplicação de métodos baseados na Teoria de Valores
Extremos para detetar mudanças no parâmetro de forma ξ .

Por fim, o Capítulo 5 apresenta as Conclusões. São sintetizadas as principais
contribuições da investigação em função dos cenários propostos, discutidas as limi-
tações do estudo e sugeridas direções para trabalhos futuros. Este capítulo visa
refletir criticamente sobre os resultados obtidos e consolidar o conhecimento produ-
zido ao longo do trabalho.

4



Capítulo 2

Séries temporais

2.1 Conceitos gerais de séries temporais

Uma série temporal é um conjunto de observações quantitativas que evoluem ao
longo do tempo. Os modelos que iremos abordar, modelos do tipo ARMA/ARIMA,
são modelos matemáticos construídos com base na relação de dependência (auto-
correlação) entre os valores no tempo, isto é, no facto das observações anteriores
poderem influenciar as subsequentes. Pelo que, neste contexto, considera-se ainda
que as observações serem igualmente espaçadas é um aspecto fundamental.

Para sermos mais rigorosos, uma série temporal é uma realização de um processo
estocástico. A fim de compreender melhor o conceito de processo estocástico vamos
abordar o conceito de variável aleatória.

Seja (Ω,A, P ) um espaço de probabilidades. Define-se como variável aleatória
uma função mensurável de Ω em S, a que se chama usualmente espaço de estados
do processo estocástico. De um modo geral, chama-se variável aleatória, a qualquer
aplicação X de Ω em S, ou seja

X : Ω → S

Fazemos agora intervir o tempo (designado abreviadamente pela letra t), que
se supõe tomar valores em T , a que usualmente se chama espaço do parâmetro do
processo estocástico. O modelo matemático que surge para o processo estocástico
será, portanto, uma aplicação X de T × Ω em S

X : T × Ω → S

Quando o tempo é fixo

ω → Xt(ω) ≡ X(ω) ≡ X

temos uma v.a. sobre (Ω, A, P ) com valores em S.
Quando o “acaso” é fixo

t→ Xω(t) ≡ X(t) (ou Xt)

temos uma trajetória do processo estocástico, ou seja, uma série temporal.
No âmbito da modelação, as propriedades desejáveis dos estimadores são geral-

mente asseguradas quando se trabalha com séries fracamente estacionárias (ou es-
tacionárias de segunda ordem), ou ainda com séries estritamente estacionárias (esta
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definição é de difícil verificação na prática). Estas propriedades são tipicamente
verificadas na estabilidade de alguns parâmetros fundamentais da série, como, por
exemplo, a média e a variância.

Formalmente, uma série {Xt}t∈T diz-se estacionária de segunda ordem se, para
todo o t, E[X2

t ] < +∞, tal que:

• E(Xt) = µt = µ (não depende de t)

• V ar(Xt) = E(Xt − µt)
2 = σ2 (não depende de t)

• Cov(Xt, Xs) = γ(|t− s|), ∀t, s ∈ T

nesta última, a covariância entre duas variáveis observadas nos tempos t e s toma
sempre o mesmo valor para todo o t e s, dependendo apenas da diferença de tempo
entre as variáveis, |t− s|.

Usualmente escreve-se esta última condição como Cov(Xt, Xt+k) = Cov(Xt, Xt−k) =
γ(k), ∀k, t ∈ T . À quantidade k chama-se usualmente espaçamento ou lag.

Um processo é estritamente estacionário se todas as suas propriedades probabilís-
ticas são invariantes no tempo, ou seja, para qualquer n, k e instantes t1, t2, . . . , tn, a
distribuição conjunta de (Xt1 , Xt2 , . . . , Xtn) é idêntica à de (Xt1+k, Xt2+k, . . . , Xtn+k).
Tal como referido, dado que a verificação da estacionariedade estrita é, na prática,
frequentemente inviável de verificar, ao longo deste trabalho será considerada a hipó-
tese de que os processos serem fracamente estacionários. Esta abordagem revela-se
particularmente pertinente na análise de mudanças de estrutura, contexto em que se
admite, por vezes, a estacionariedade por partes (piecewise), em virtude de possíveis
mudanças de nível em segmento específicos da série temporal, ver Figura 2.1.

Figura 2.1: Processo estacionário vs estacionário por níveis

As séries que apresentam a componente de tendência e/ou variância não cons-
tante não são estacionárias. Na figura 2.2,temos dois processos simulado com ten-
dência (I) e com variância não constante (II).

Para séries com tendência e/ou variância não constante, pode ser útil estabilizar
uma delas para ter uma melhor compreensão do comportamento temporal da outra
(Nelson and Plosser (1982)). As transformações propostas por Box and Cox (1964) e
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Figura 2.2: Processos não estacionários

mais recentemente de Weisberg (2001) continuam a ser válidas, sendo λ, o parâmetro
dessa transformação de Box-Cox que permite estabilizar a variância, um parâmetro
a ser estimado. Computacionalmente, pode-se estimar o parâmetro λ pelo método
da máxima verosimilhança, obtendo-se assim, a transformação adequada aos dados.1

Na modelação de séries temporais, é comum utilizar a metodologia de Box e Jen-
kins, conforme proposta em Jenkins and Box (1976). Para séries não estacionárias,
pode recorrer-se à abordagem de diferenciação da série temporal como um método
para remover a tendência linear e/ou a sazonalidade. Tomando como operador de
atraso B, tal que BnXt = Xt−n, a primeira diferença, dita simples, é definida por

∇Xt = (1−B)Xt = Xt −Xt−1.

A segunda diferença simples é definida por

∇2Xt = (1−B)2Xt = (1− 2B +B2)Xt = Xt − 2Xt−1 +Xt−2,

e é utilizada quando a primeira diferença simples não é suficiente para tornar a série
estacionária em tendência. Na maioria dos casos, a estacionariedade é alcançada
com apenas uma diferenciação. No entanto, é importante salientar que este processo
pode ser repetido para diferenciações de ordem superior, ou seja, para diferenciações
de ordem n. Pode-se aplicar a mesma abordagem de diferenciação (designada por
diferenciação sazonal) ∇sXt = (1−Bs)Xt = Xt−Xt−s, para remover a sazonalidade
de uma série temporal, onde s representa o seu período sazonal (ou seja, um período
de tempo fixo em que esse padrão de sazonalidade se repete ao longo do tempo).

A classe de modelos de séries temporais usada na modelação e previsão de sé-
ries temporais (estacionárias e não estacionárias) que iremos usar neste trabalho é a
classe de modelos tradicionais (que tiveram origem nos finais dos anos 20 do século
20 com o trabalho de Yule, e que depois foram evoluindo com a contribuição de
vários outros Matemáticos) - mas que continua a ser uma das mais utilizadas, dada
a sua enorme flexibilidade e qualidade das previsões - é a classe dos modelos do tipo
ARIMA(p, d, q), em que p corresponde à ordem do processo autoregressivo AR(p),
d o número de diferenciações simples necessárias para se obter uma série estacio-
nária, caso esta não o seja, e q à ordem do processo de médias móveis MA(q). Se

1A transformação de Box-Cox (Box e Cox, 1964) é dada por:

y(λ) =


yλ − 1

λ
, λ ̸= 0,

ln(y), λ = 0, y > 0,

7



d=0 estamos, portanto, perante um caso particular deste modelo, nomeadamente,
perante um modelo do tipo ARMA(p, q), apropriado para modelar e prever séries
estacionárias.

AR(p)
Seja Xt, t ∈ z, um processo estocástico, tal que :

Xt = c+ ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + εt.

Xt representa processo autoregressivo de ordem p, abreviadamente AR(p) se:

• existirem números reais ϕ1, ϕ2, . . . , ϕp,

• ϕp ̸= 0,

• existir uma constante c ∈ R,

• existir um processo de ruído branco {εt}t∈Z. Ou seja, um processo de média
nula, variância σ2

ε > 0, constante, e não correlacionado.

A título de exemplo, consideremos o processo autorregressivo mais simples, de
ordem 1, AR(1) definido por:

Xt = c+ ϕXt−1 + εt, (2.1)

O processo AR(1) é estacionário se, e somente se, |ϕ| < 1. Para |ϕ| ≥ 1, o processo
não é estacionário: no caso ϕ = 1 resulta num passeio aleatório, e para |ϕ| > 1 a
variância diverge.

Sob a condição de estacionaridade |ϕ| < 1, prova-se facilmente que:

E(Xt) =
c

1− ϕ
, (2.2)

Var(Xt) =
σ2
ε

1− ϕ2
. (2.3)

De forma geral, a autocovariância no atraso k é:

γk = Cov(Xt, Xt−k) =
σ2
ε

1− ϕ2
ϕk, k ≥ 0. (2.4)

Assim, e dado γ0 = Var(Xt), a função de autocorrelação (FAC)2 de um AR(1)
toma a forma:

ρ(k) =
γk
γ0

= ϕk, k ≥ 0. (2.5)

A sucessão das FAC de um processo AR(1) estacionário tende exponencialmente,
e/ou de modo sinusoidal, para zero à medida que o valor de k aumenta.

lim
k→∞

ρ(k) = lim
k→∞

ϕk = 0, para |ϕ| < 1.

2Em inglês, função de autocorrelação é denominada autocorrelation function (ACF).
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Prova-se, recorrendo à regra de Crámer, que a sucessão de funções de autocor-
relação parcial de um processo AR(1) estacionário anula-se a partir da ordem 2
(decaimento brusco), ver Cryer (1986) e Cryer and Chan (2008):ϕ1,1 = ϕ,

ϕk,k = 0, k ≥ 2.

Na Figura 2.3 ilustra-se um exemplo do comportamento das ACF e PACF3 de um
AR(1) simulado.

Figura 2.3: ACF e PACF de um processo AR(1): Xt = 3 + 0.6Xt−1 + εt, εt ∼
N(0, 4)

Conforme demostrado em (Montgomery et al., 2008, pp. 246–250) a FAC, ρ(k),
do processo geral, de ordem p, AR(p), satisfaz as equações de Yule-Walker:

ρ(k) = ϕ1ρ(k − 1) + ϕ2ρ(k − 2) + · · ·+ ϕpρ(k − p), k ≥ 1.

Esta é uma equação de diferenças lineares de ordem p. A solução geral depende
das raízes zi do polinómio autoregressivo Φ(z):

Φ(z) = 1− ϕ1z − ϕ2z
2 − · · · − ϕpz

p.

Se o polinómio autoregressivo não possuir raízes no círculo unitário então o pro-
cesso é estacionário pelo que ρ(k) decai exponencialmente e/ou de forma sinusoidal
para zero à medida que k → ∞.

A PACF é obtida resolvendo o sistema de Yule-Walker de ordem k:
1 ρ(1) . . . ρ(k − 1)
ρ(1) 1 . . . ρ(k − 2)

...
... . . . ...

ρ(k − 1) ρ(k − 2) . . . 1



ϕk1

ϕk2
...
ϕkk

 =


ρ(1)
ρ(2)

...
ρ(k)


e pode ser igualmente usada para identificar a ordem de um processo AR(p) dado

que para k > p, os coeficientes ϕkk = 0, porque os termos adicionais Xt−k já estão
3Em inglês, função de autocorrelação Parcial é denominada Partial autocorrelation function (PACF).
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completamente explicados pelos p primeiros lags. A sucessão de funções de autocor-
relação parcial de um processo AR(p) estacionário anulam-se a partir da ordem p+1.

Note ainda que o processo AR(p) estacionário é sempre invertível porque pode
ser escrito como um processo MA(q) de ordem infinita. Ou seja, apenas à custa
dos erros, sempre que este processo seja estacionário ele é causal, uma propriedade
fundamental para se poder fazer previsões. Pois permite prever valores futuros
através de valores passados.

Apesar de não trabalharmos com os modelos de médias móveis (MA), iremos de
seguida apresentá-los, de modo bastante abreviado.

MA(q)
Um processo {Xt}t∈Z , admite uma representação de médias móveis de ordem q,

abreviadamente MA(q), se verifica a seguinte equação estocástica:

Xt = c+ εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q,

onde (θ1, θ2, . . . , θq), θq ̸= 0, são igualmente números reais εt é um ruído branco. Por
ser uma combinação linear finita de processos de ruído branco, Xt admite sempre
estacionariedade fraca.
Prova-se em que MA(q) é invertível caso o polinómio de médias móveis de ordem q
não possua raízes no círculo unitário, ver Hamilton (2020).

Considere novamente o caso mais simples, o modelo MA(1);

Xt = c+ ϵt − θϵt−1,

onde a função de autocovariância do modelo é dada por:

γx(0) = σ2(1 + θ2)

γx(1) = −θσ2

γx(k) = 0, k > 1

Similarmente, temos a função de autocorrelação como

ρx(1) =
−θ

1 + θ2
(2.6)

ρx(k) = 0, k > 1 (2.7)

A partir da equação 2.6 , podemos ver que a primeira autocorrelação de defasa-
gem em MA(1) é limitada como

|ρy(1)| =
|θ|

1 + θ2
≤ 1

2

e a função de autocorrelação corta após a defasagem 1. O proceso MA(1) pode ser
representado como um processo AR(∞), ou seja:

Xt = −θXt−1 + θ2Xt−2 − θ3Xt−3 + · · ·+ εt.

Essa expansão só converge se |θ| < 1. Assim:{
|θ| < 1 =⇒ processo MA(1) invertível,
|θ| ≥ 1 =⇒ processo MA(1) não invertível.
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Figura 2.4: ACF dos modelos MA(1): Xt = 3+εt+0.7 εt−1, εt ∼ N(0, 4) e MA(3):
Xt = 5 + εt + 0.5 εt−1 − 0.3 εt−2 + 0.4 εt−3, εt ∼ N(0, 4)

Para ilustrar o comportamento da função de autocorrelação, considere os pro-
cessos M(1) e MA(3) da Figura 2.4.

De igual modo, iremos introduzir o caso geral do modelo do tipo autoregressivo
de médias móveis de ordem, compostos, como o nome indica, por ambas as compo-
nentes, autoregressivas e de médias móveis.

ARMA(p, q)
Se juntarmos os dois processos AR(p) e MA(q), obtemos o processo autore-

gressivo de médias móveis de ordem (p, q), abreviadamente ARMA(p, q), dado pela
equação :

Xt = c+

p∑
i=1

ϕiXt−i +

q∑
i=0

θiεt−i

ou
Φ(B)Xt = c+Θ(B)εt

onde

Φ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p,

Θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q

são, respetivamente, os polinómios autoregressivos e de médias móveis.

Caso estes polinómios Φ(B) e Θ(B) não tenham raízes comuns, o processo admite
uma solução estacionária e única e é invertível se estes não possuírem raízes no círculo
unitário.

A FAC de um modelo ARMA(p, q) satisfaz a seguinte equação:

ρ(k)− ϕ1ρ(k − 1)− · · · − ϕpρ(k − p) = 0, k ≥ q + 1

1. Para um processo ARMA(p, q) estacionário, as funções de autocorrelação ρ(k)
tendem exponencialmente e/ou de forma sinusoidal para zero à medida que k
aumenta (Hamilton, 2020, p. 255-256).

2. De forma semelhante, as funções de autocorrelação parcial de um processo
ARMA(p, q) estacionário também tendem exponencialmente e/ou de forma
sinusoidal para zero à medida que k aumenta (Hamilton, 2020, p. 255-256).
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Este comportamento pode ser visto na Figura 2.5, onde apresenta-se dois exem-
plos simulados de séries do tipo ARMA(1,1) e ARMA(2,2), com as respetivas funções
de autocorrelação e autocorrelação parcial.

Figura 2.5: ACF e PACF de processos ARMA(1,1):Xt = 4 + 0.6Xt−1 + 0.5εt−1 +
+εt, εt ∼ N(0, 4) e ARMA(2,2):Xt = 2 + 0.5Xt−1 − 0.3Xt−2 + 0.4εt−1 + 0.2εt−2 +
εt, εt ∼ N(0, 4)

ARIMA(p, d, q)
Vimos que, para séries não estacionárias — na maioria dos casos, séries que

possuem tendência e/ou variância não constante —, pode-se obter a estacionariedade
aplicando-se transformações às séries, como a transformação de Box-Cox e/ou o
operador da diferenciação simples da série (um número d de vezes necessário até
obter a estacionariedade), ou seja,

∇dXt = (1−B)dXt.

Feito isto, passamos a obter um processo autorregressivo integrado de média
móvel (ARIMA) de ordens p, d, q.

Um ARIMA(p, d, q) admite, assim, a seguinte representação:

Φ(B)(1−B)dXt = c+Θ(B)εt.

O gráfico da Figura 2.6 mostra o processo (1− 0.7B)(1− B)Xt = εt + 0.5εt−1 .
Observa-se que a FAC apresenta decaimento lento devido à diferenciação, enquanto
a PACF corta após o lag p+ 1.
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Figura 2.6: ACF e PACF de processos ARMA(1,1,1)

2.2 Séries temporais em extremos

A análise estatística de extremos em séries temporais é uma componente tradicio-
nal na Hidrologia e no setor de Seguros, com aplicações cada vez mais fortes em
Finanças. A dependência temporal é comum em extremos univariados, podendo ser
originada por autocorrelação, efeitos de outras variáveis ou por ambos, o que exige
um tratamento teórico adequado.

A dependência de curto alcance, que resulta em aglomerados de extremos, é
frequentemente observada em séries financeiras devido à aglomeração de volatilidade.
Da mesma forma, máximos de fluxos de rios geralmente ocorrem logo após uma
tempestade. Variações em grande escala, decorrentes de tendências, sazonalidades
ou mudanças de regimes são tipicamente abordadas com modelos adequados, com
intuito de estudar o impacto da autocorrelação sob condições de mistura que limitam
a influência da dependência nos extremos (Bücher and Zhou (2021)).

2.2.1 Distribuições exata e assintótica do máximo

Considere uma amostra aleatória X1, X2, . . . , Xn de variáveis aleatórias indepen-
dentes e identicamente distribuídas com função de distribuição acumulada (CDF)
F (x). Seja Mn = max(X1, . . . , Xn), a variável aleatória que representa o máximo
da coleção de variáveis aleatórias {Xi}ni=1. A CDF de Mn é dada por

FMn(x) = P (Mn ≤ x) = P (X1 ≤ x, . . . , Xn ≤ x) =
n∏

i=1

P (Xi ≤ x) = [F (x)]n.

De forma análoga, considerando, mn = min(X1, . . . , Xn), a variável aleatória que
representa o mínimo da coleção de variáveis aleatórias {Xi}ni=1, a CDF de mn é

Fmn(x) = P (mn ≤ x) = 1− P (X1 > x, . . . , Xn > x) = 1− [1− F (x)]n.

Note que mn = −max(−X1, . . . ,−Xn), assim o problema do mínimo é dual ao
do máximo e portanto, qualquer resultado para o mínimo pode ser traduzido para
o máximo aplicando a transformação Xi 7→ −Xi. Por esta razão, neste trabalho
analisaremos apenas mudanças de estrutura influenciadas por valores máximos.
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O nosso interesse estará no comportamento de Mn, para n muito grande, ou seja,
na distribuição de Mn quando n→ ∞,

lim
n→∞

P (Mn ≤ x) = lim
n→∞

[F (x)]n{
Se 0 ≤ F (x) < 1, então limn→∞ [F (x)]n = 0.
Se F (x) = 1, então limn→∞ [F (x)]n = 1.

Portanto, a distribuição limite de Mn é uma distribuição degenerada, que assume
o valor 0 quando 0 ≤ F (x) < 1 e 1 quando F (x) = 1, o que não é muito útil para
a análise de valores extremos. De forma a obter uma distribuição limite não dege-
nerada para Mn é necessário considerar sequências de constantes de normalização
an > 0 e bn ∈ R, à semelhança do que ocorre no teorema do limite central,

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= lim

n→∞
P (Mn ≤ bn + anx) = lim

n→∞
[F (bn + anx)]

n .

Este limite é descrito pelo Teorema de Tipos Extremais, que fornece a distribuição
limite do máximo. Assim, se existem sucessões de constantes normalizadoras an > 0
e bn ∈ R tais que:

[F (bn + anx)]
n d−→ G(x), quando n→ ∞,

para alguma CDF não degenerada G(x), e onde d−→, representa a convergência
em distribuição, então G(x) só pode ser do mesmo tipo que uma das seguintes
distribuições:

G(x) :=



exp {−e−x} , x ∈ R (Gumbel){
0, x ≤ 0,

exp {−x−α} , x > 0,
(Fréchet, α > 0)

{
exp {−(−x)α} , x ≤ 0,

1, x > 0,
(máx-Weibull, α > 0).

Estas três distribuições limite foram unificadas por Von Mises (1936) e Jenkinson
(1955) numa única distribuição, designada de distribuição Generalizada de Valores
Extremos (GEV).

Uma variável aleatóriaX segue a distribuição GEV, e escreve-seX ∼ GEV(µ, σ, ξ),
onde ξ ∈ R é o parâmetro de forma, µ ∈ R o parâmetro de localização e σ ∈ R+ o
parâmetro de escala, se a sua CDF for dada por:

FGEV(x) :=

{
exp

[
−
(
1 + ξ · x−µ

σ

)− 1
ξ

]
, para 1 + ξ · x−µ

σ
> 0

exp
{
− exp

[
−x−µ

σ

]}
, x ∈ R

(2.8)

O parâmetro ξ é conhecido como índice de valores extremos (ou extreme
value index (EVI)) e desempenha um papel fundamental, pois controla o comporta-
mento da cauda da distribuição GEV. As distribuições limite para máximos, Gumbel,
Fréchet e máx-Weibull, podem ser obtidas como casos particulares da GEV, como
ilustrado abaixo:

14



(i) Se ξ < 0, a CDF de X, em (2.8), pode ser escrita como;

FGEV(x) = exp

{
−
(
1− ξµ

σ
+
ξx

σ

)− 1
ξ

}

= exp

{
−
(
−
(
ξµ

σ
− 1 +

−ξ
σ

· x
))− 1

ξ

}
.

Definindo convenientemente b = ξµ
σ
− 1, e a = −ξ

σ
, obtemos

FGEV(x) = exp
{
− (−(b+ a · x))−

1
ξ

}
.

Como ξ < 0, temos que α := −1
ξ
> 0, e portanto

FGEV(x) = exp {− (−(ax+ b))α} = exp {−(−y)α} ,

Com y = ax+ b, temos que

FGEV(x) = exp {−(−y)α} ,

y<0(2.9) correspondendo à CDF da distribuição máx-Weibull, que é um caso
particular da distribuição GEV para ξ < 0. As distribuições dizem-se de cauda
curta ou leve e possuem limite superior do suporte finito.

(ii) Para ξ > 0,

FGEV(x) = exp

{
−
(
1− ξµ

σ
+
ξx

σ

)− 1
ξ

}
.

Definindo,

b = 1− ξµ

σ
, a =

ξ

σ
,

a função G(x) é reescrita por

FGEV(x) = exp
{
− (ax+ b)−

1
ξ

}
,

ou seja
FGEV(y) = exp

{
−y−α

}
, y > 0, (2.10)

onde α = 1
ξ

e y = ax+b, correspondendo à CDF da distribuição Fréchet, que é
um caso particular da distribuição GEV para ξ > 0. As distribuições dizem-se
de cauda pesada ou com cauda de tipo Pareto e possuem limite superior do
suporte infinito.

(iii) Para ξ = 0, a CDF da distribuição Gumbel é obtida como sendo o limite,
quando ξ → 0, da CDF da distribuição GEV,

FGEV(x) = exp

{
− exp

[
−x− µ

σ

]}
, x ∈ R

e considerando y = x−µ
σ

, temos

FGEV(x) = exp {− exp (−y)} , y ∈ R, (2.11)

correspondendo à CDF da distribuição Gumbel, que é um caso particular da
distribuição GEV para ξ = 0.
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O interesse em optar por uma distribuição específica ou por uma distribuição
unificada está frequentemente relacionado com as características do fenómeno em
análise. Associado ao índice de valores extremos, ξ, existem outros parâmetros,
usualmente designados de parâmetros de acontecimentos extremos que permitem
descrever de forma mais precisa a frequência e a magnitude dos eventos raros, como
o quantil extremal e o nível de retorno a T anos.

Quantil da distribuição GEV: O quantil xp é o valor tal que a probabilidade
acumulada P(X ≤ xp) = FGEV(xp) = p. Para determinar a função quantil, basta
resolver a equação abaixo em ordem a xp:

exp

{
−
(
1 +

ξ(xp − µ)

σ

)− 1
ξ

}
= p ⇐⇒ 1 +

ξ(xp − µ)

σ
= (− log p)−ξ

obtendo-se o quantil

xp = µ+ σ
[
(− log p)−ξ − 1

]
/ξ.

Para encontrar a mediana x1/2, substituímos p = 1/2 na fórmula geral do quantil:

x1/2 = µ+ σ
[
(log 2)−ξ − 1

]
/ξ.

Os quantis extremais caracterizam-se por terem uma probabilidade de excedência
muito pequena, que é, em geral, da ordem de 0.01 (quantil x0.99), 0.001 (quantil
x0.999) e 0.0001 (quantil x0.9999).

Nível de retorno da distribuição GEV: Um nível de retorno T (unidades
de tempo) é o nível que se espera ser ultrapassado, em média, uma vez a cada T .
Seja xT o nível de retorno com período T . Então, temos:

P (X > xT ) =
1

T
⇐⇒ P (X ≤ xT ) = 1− 1

T

Como FGEV(xT ) = P (X ≤ xT ), segue que:

FGEV(xT ) = 1− 1

T
⇐⇒ exp

[
−
(
1 +

ξ(xT − µ)

σ

)− 1
ξ

]
= 1− 1

T

xT = µ+
σ

ξ

[
(− log(1− 1

T
))−ξ − 1

]
. (2.13)

2.2.2 Método dos momentos ponderados de probabilidade e
extensões

No âmbito da estatística clássica existem diversos métodos usados para estimar parâ-
metros estatísticos de interesse, entre os quais se destacam o método dos momentos,
o método da máxima verosimilhança (MV) e ainda métodos derivados ou inspirados
nestes. O método da MV é amplamente utilizado pela sua eficiência assintótica e
pelas suas boas propriedades estatísticas, mas pode revelar-se exigente do ponto de
vista computacional, sobretudo quando aplicado a distribuições mais complexas ou
em situações em que a função de verosimilhança é de difícil manipulação. Neste tra-
balho, optamos por detalhar o método dos Momentos Ponderados de Probabilidade
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(MPP) (ou PWM, do inglês Probability Weighted Moments), uma generalização do
método dos momentos, que apresenta vantagens práticas em termos de simplicidade
e robustez, sendo também o método utilizado na deteção de mudança no parâmetro
de forma ξ, de particular interesse para este trabalho.

Os PWM de ordem (p, r, s), para uma variável aleatória X com CDF F foram
introduzidos por Greenwood et al. (1979) e são definidos por:

Mp,r,s = E{Xp[F (X)]r[1− F (X)]s}, p, r, s ∈ R. (2.14)

O caso específico da estimação PWM dos parâmetros da distribuição GEV foi
desenvolvido por Hosking et al. (1985). Para o caso em que ξ ̸= 0, em particular
com ξ < 1, tem-se para p = 1, r = 0, 1, 2, . . . e s = 0 que o PWM de ordem (1,r,0),
M1,r,0, assume a forma:

M1,r,0 = E{X[F (X)]r} =
1

r + 1

{
µ− σ

ξ
[1− (r + 1)ξΓ(1− ξ)]

}
,

onde Γ(·) é a função gama dada por Γ(t) =
∫ +∞
0

xt−1e−xdx, t ≥ 0. Os estimadores
PWM (ξ̂, µ̂, σ̂) para (ξ, µ, σ) são a solução do sistema de equações:

M1,0,0 = µ− σ

ξ
[1− Γ(1− ξ)]

2M1,1,0 −M1,0,0 =
σ

ξ
Γ(1− ξ)(2ξ − 1)

3M1,2,0 −M1,0,0

2M1,1,0 −M1,0,0

=
3ξ − 1

2ξ − 1
.

Substituindo em seguida M1,r,0, com r = 0, 1, 2, pelo estimador centrado dado
por Landwehr et al. (1979):

M̂1,r,0 =
1

n

n∑
j=1

(
r∏

l=1

(j − l)

(n− l)

)
·Xj,n, (2.15)

onde (X1,n, . . . , Xn,n) representam as estatísticas de ordem de uma amostra prove-
niente de uma distribuição com CDF F . Reescrevendo as duas primeiras equações,
em ordem a µ e a σ, respetivamente, obtém-se os estimadores PWM (ξ̂, µ̂, σ̂):

µ̂ = M̂1,0,0 +
σ̂

ξ̂
[1− Γ(1− ξ̂)]

σ̂ =
ξ̂ (2M̂1,1,0 − M̂1,0,0)

Γ(1− ξ̂)(2ξ̂ − 1)

3M̂1,2,0 − M̂1,0,0

2M̂1,1,0 − M̂1,0,0

=
3ξ̂ − 1

2ξ̂ − 1
.

Note-se que, para se obter uma estimativa de ξ̂ terá de se recorrer a métodos
numéricos. Já na situação em que ξ = 0, ou seja, o caso da distribuição Gumbel,
tem-se para p = 1, r = 0, 1, 2, . . . e s = 0, que o PWM de ordem (1,r,0) é dado por

M1,r,0 = E{X[F (X)]r} =
1

r + 1
[µ+ σ(−ψ(1) + log(1 + r))] , (2.16)
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em que, ψ(x) = d
dx

log Γ(x) é a função digama e −ψ(1) ≃ 0.5772156649 é a constante
de Euler-Mascheroni. Neste caso, apenas os parâmetros de localização e escala (µ, σ)
precisam de ser estimados. Assim, substituindo em (2.16) a variável r por 0 e 1 e,
resolvendo as equações obtidas em ordem aos dois parâmetros, obtém-se{

µ =M1,0,0 + σψ(1)

σ = 2M1,1,0−M1,0,0

log 2
.

Novamente usando o estimador paraM1,r,0, apresentado em (2.15), e substituindo
em (2.16), obtém-se os estimadores PWM para a localização e escala do modelo
GEV, com ξ = 0:

µ̂ = M̂1,0,0 + σψ(1)

σ̂ =
2M̂1,1,0 − M̂1,0,0

log 2
.

Para estes estimadores baseados nos PWM, para ξ < 1 e quando a dimensão da
amostra de máximos em estudo, n→ ∞, verifica-se que

√
n
(
(ξ̂, µ̂, σ̂)− (ξ, µ, σ)

)
é assintoticamente Normal. Mais detalhes poderão ser vistos em Beirlant et al.
(2006).

Em cenários onde se exige mais flexibilidade e robustez para estimar os pa-
râmetros da distribuição GEV, é comum a utilização dos método dos Momentos
Ponderados de Probabilidade Generalizados (GPWM). É uma extensão do método
clássico PWM que se baseia no cálculo de momentos da forma:

νω = E[Xω(FGEV)] =

∫ ∞

−∞
xω(FGEV(x)) dFGEV(x), (2.17)

onde ω é uma função contínua adequada. Fazendo uma mudança de variáveis, este
momento pode ser reescrito como

νω =

∫ 1

0

F−1
GEV(u)ω(u) du.

Definindo a função W (t) =
∫ t

0
ω(u) du, com W (0) = 0, um estimador natural

para νω é dado por

ν̂ω,n =

∫ 1

0

F−1
n (u)ω(u) du,

onde Fn denota a função de distribuição empírica baseada na amostra (X1, . . . , Xn).
As propriedades assintóticas de ν̂ω,n para a distribuição GEV podem ser consultadas
em Diebolt et al. (2007).

2.2.3 Modelos para séries temporais em extremos

A análise de valores extremos em séries temporais constitui uma área em cresci-
mento, motivada pela necessidade de compreender fenómenos raros e de grande
impacto, como tempestades, vagas de calor ou flutuações financeiras intensas. Ao
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contrário do caso independente, os extremos em processos temporais revelam fre-
quentemente dependência serial e agrupamento de excedências, o que torna neces-
sária a adaptação das metodologias clássicas da Teoria dos Valores Extremos.

Entre as abordagens disponíveis, continuam a ser fundamentais os métodos que
recorrem a máximos de blocos e às excedências acima de limiares elevados. No
entanto, a sua utilização em séries temporais exige que se verifique a chamada con-
dição de mistura (Leadbetter et al. (1983)), que garante a validade dos resultados
assintóticos mesmo na presença de dependência.

A presença de agrupamentos ou clusters de excedências pode ser quantificada
através do índice extremal θ ∈ (0, 1]:

θ = lim
n→∞

P(Mn ≤ un)

[P(X1 ≤ un)]
n .

O índice extremal pode ser visto como o recíproco do limite do tamanho médio dos
grupos de excedências e por isso, quando θ < 1 há evidência de clusters de extremos,
e o caso θ = 1 corresponde a um cenário de sucessões i.i.d.

Na área financeira, modelos GARCH são aplicados com frequência por conse-
guirem capturar a heteroscedasticidade e períodos de forte volatilidade associados a
valores extremos (Embrechts et al. (1997)). Versões destes modelos têm sido adap-
tadas para séries de contagem no contexto do estudo de sequências periódicas com
dependência extremal Scotto et al. (2015).

Abordagens computacionais e utilização de técnicas de reamostragem como o
bootstrap foram também utilizadas para aumentar a precisão das previsões e a ro-
bustez dos intervalos de previsão em séries com caudas pesadas (Cordeiro and Neves
(2014, 2019)).

A metodologia proposta em Kojadinovic and Naveau (2017), para deteção de
mudanças nos parâmetros (µ, σ, ξ) da distribuição GEV foi desenvolvida no contexto
de séries i.i.d., sendo ainda válida em condições de dependência fraca. Neste trabalho
propomos avaliar, via simulação de Monte Carlo, a robustez e o desempenho da
metodologia na presença de níveis de dependência mais acentuados.

2.3 Tipo de mudanças de estruturas

O estudo das mudanças de estrutura em séries temporais assume uma importância
central em diversas áreas do conhecimento. A identificação e compreensão dessas
mudanças são fundamentais para interpretar fenómenos complexos e dar resposta a
problemas com especial relevância na atualidade. Em numerosos contextos práticos,
torna-se necessário recorrer a metodologias estatísticas robustas que permitam de-
tetar, localizar e analisar alterações no comportamento estrutural das séries. Estas
técnicas são particularmente relevantes quando ocorrem mudanças nas proprieda-
des estatísticas da série, como mudanças na média, na variância, na tendência ou
noutros parâmetros que indiquem transições significativas.

Considera-se que uma série temporal apresenta mudanças de estrutura quando
há uma alteração nas suas propriedades ao longo do tempo. A deteção de mudanças
na média da série foi inicialmente proposta por Page (1954, 1955), tendo sido poste-
riormente aprofundada pelos trabalhos de Hinkley (1970), Bai (1997) e Killick et al.
(2010). No campo da econometria, o foco do estudo das mudanças na tendência
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da série está na análise da instabilidade dos coeficientes nos modelos de regressão
— veja-se, por exemplo, Andrews (1993) Bai and Perron (2003b) e Zeileis et al.
(2002a).

Outros tipos de mudanças, como mudanças na variância, têm sido explorados,
conforme demonstrado em Killick and Eckley (2014), Chen and Gupta (1997) e
Horváth (1993). Adicionalmente, modificações na estrutura de dependência (ou
correlação) também têm sido alvo de investigação (Hamilton (2020) e Barry and
Hartigan (1993), entre outros).

Até à data, já se encontram disponíveis diversos resultados teóricos — e alguns
com aplicação prática — para lidar com os variados tipos de mudanças de estrutura
que os dados podem apresentar, com o objetivo de possibilitar inferências mais fiá-
veis (veja-se, por exemplo, Shao and Zhang (2010),Kojadinovic and Naveau (2017)
e Casini and Perron (2018)).

Neste trabalho, em particular, propomos-nos estudar as mudanças na média da
série, na tendência e mudanças na forma, mais concretamente, no comportamento
da cauda da distribuição generalizada de valores extremos.

2.3.1 Mudanças na média

Considere-se uma série temporal univariada {Xt, t = 1, . . . , n} com variância cons-
tante.

Vamos supor, por simplicidade, que se pretende testar a existência de uma única
mudança de média num ponto temporal desconhecido k, tal que k ∈ [1, n− 1[.

Então, o que se pretende testar são as seguintes hipóteses{
H0 : E[X1] = E[X2] = · · · = E[Xn] = µ

H1 : E[X1] = E[X2] = · · · = E[Xk] ̸= E[Xk+1] = · · · = E[Xn]

Ou seja, não existe mudança de média versus existe mudança de média no ponto
t = k.

Na Figura 2.7, apresentamos uma série temporal com uma mudança de média
no ponto k = 100.

Figura 2.7: Uma mudança de nível
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2.3.2 Mudanças na tendência

Considere-se uma série temporal univariada {Xt, t = 1, . . . , n} com tendência, que
pode ser descrita, numa forma simplificada, pelo modelo de regressão linear:

Xt = β0 + β1 t+ εt, t = 1, . . . , n, (2.18)

onde β0 representa a ordenada na origem, β1 o coeficiente de tendência e εt ∼
WN(0, σ2

ε).
Admitindo a existência de um ponto de mudança k ∈ {1, . . . , n− 1}, podem ser

consideradas duas situações distintas.
No primeiro caso, assume-se que a série temporal é contínua no ponto de mu-

dança, ocorrendo apenas uma alteração no declive após t = k. O modelo pode ser
escrito como:

Xt =

β0 + β1 t+ εt, t ≤ k,

β0 + β2 t+ εt, t > k,
(2.19)

garantindo continuidade em t = k.
As hipóteses a testar são então:{

H0 : β1 = β2,

H1 : β1 ̸= β2,

ou seja, a ausência de mudança na tendência versus a existência de uma mudança
no declive no ponto t = k.

Pode ser de igual modo relevante estudar casos em que ocorrem uma alteração
conjunta da ordenada na origem e da inclinação da tendência. Neste caso, o modelo
é dado por:

Xt =

β01 + β1 t+ εt, t ≤ k,

β02 + β2 t+ εt, t > k,
k = 1, . . . , n− 1. (2.20)

As hipóteses de interesse passam a ser:{
H0 : β01 = β02 e β1 = β2,

H1 : pelo menos um dos parâmetros difere.

Na Figura 2.8 apresenta-se uma série temporal simulada que ilustra uma mu-
dança simultânea no ponto k=50.
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Figura 2.8: Uma mudança na tendência

2.3.3 Mudanças no parâmetro forma da distribuição GEV

Na Secção 2.2, foi apresentado o enquadramento teórico da teoria dos valores ex-
tremos. Nesta secção, analisamos possíveis mudanças no parâmetro de forma (ξ)
da distribuição GEV, uma vez que este parâmetro controla a natureza das caudas
da distribuição. Mudanças em ξ permitem distinguir entre diferentes regimes de
comportamento extremo.

Seja Xt a variável aleatória que representa o valor extremo observado no instante
t ∈ {1, 2, . . . , T}. Admitimos que os dados seguem uma distribuição GEV,

Xt ∼ GEV(µt, σt, ξt),

em que:

• µt ∈ R é o parâmetro de localização no instante t;

• σt > 0 é o parâmetro de escala no instante t;

• ξt ∈ R é o parâmetro de forma no instante t, associado ao regime de cauda.

O problema de interesse consiste na deteção de mudanças no parâmetro de forma
da distribuição GEV ao longo do tempo, isto é, pretende-se testar:

H0 : ξ1 = ξ2 = · · · = ξT = ξ versus H1 : ∃ t, s ∈ {1, . . . , T} tais que ξt ̸= ξs.

Os gráficos apresentados mostram séries temporais de valores extremos simu-
lados a partir de uma distribuição GEV em dois cenários distintos. Consideramos
observações i.i.d. (independentes e identicamente distribuídas), com parâmetros
de localização µ = 0 e escala σ = 1, constantes ao longo do tempo. O gráfico I
representa os valores simulados com ξ = 0.2 constante, enquanto que o gráfico II
apresenta os valores simulados de dois modelos GEV(0, 1, ξt) em que o parâmetro
de forma muda no instante t = 50, passando de ξ = 0.2 para ξ = 0.5.

22



Figura 2.9: Simulação de dois modelos GEV sem (I) e com (II) mudança no parâ-
metro de forma

23



Capítulo 3

Metodologias de deteção de
mudanças de estrutura

A metodologia adotada nesta investigação assenta, numa primeira fase, na aplicação
de técnicas clássicas amplamente utilizadas para a deteção de mudanças de estru-
tura em séries temporais, nomeadamente para análise de mudanças de média, de
tendência e mudanças na forma da distribuição, com especial atenção a mudança
no parâmetro de forma, ξ, da distribuição generalizada de valores extremos, GEV. O
enfoque principal é a análise do desempenho dos algoritmos de deteção existentes,
com recurso a estudos de simulação de Monte Carlo. Para a realização dos estudos
empíricos, geraram-se m séries temporais, construídas com base em diferentes estru-
turas estatísticas, de modo a testar a robustez dos métodos disponíveis na literatura.

Focamo-nos na abordagem segmentária, como o principal método de análise
deste trabalho, com foco no algoritmo de segmentação binária, inicialmente pro-
posto por Scott and Knott (1974) e mais recentemente aprofundado em Killick et al.
(2010), o algoritmo Pruned Exact Linear Time (PELT), os testes F e das somas cu-
mulativas (CUSUM), propostos em Zeileis et al. (2002b) baseados em algoritimos
de programação dinâmica para avaliar a estabilidade dos parâmetros da série ao
longo do tempo, em especial mudanças de média e de tendência. Para mudanças
no parâmetro forma da distribuição GEV foram feitas simulações usando o método
proposto em Fearnhead and Rigaill (2019), nomeadamente em contextos de depen-
dência. As principais bibliotecas do software R CRAN utilizadas foram changepoint,
strucchange e NPCP.

Para análise das mudanças de média e de tendência, exploramos o desempenho
dos métodos em quatro cenários:

• Mudanças fracas ou pouco visíveis;

• Séries com dependência fraca, moderada e forte;

• Falha da suposição de normalidade;

• Séries com presença de outliers.

Quanto à análise de mudanças na forma da distribuição, analisamos:
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• Mudanças no parâmetro de forma, ξ, da distribuição GEV, para distribuições
de cauda pesada, ou seja, quando ξ > 0.

De acordo com metodologias usuais para estudos de simulação com séries tem-
porais, e de forma a acomodar a variabilidade intrínseca que existe no processo de
simulação das séries temporais, definimos uma metodologia para a seleção de uma
janela de tolerância γ em torno do verdadeiro ponto de mudança k. Ou seja, sempre
que o modelo deteta um ponto dentro do intervalo k− γ, k+ γ, aceitamos como um
ponto de mudança. Para tal, simulou-se um conjunto de séries com uma mudança de
nível acentuada, um cenário onde se espera que os métodos acertem 100% das vezes.
Avaliamos a taxa de acerto do algoritmo de segmentação para diferentes valores de
γ. O valor de γ foi escolhido como aquele que proporcionou uma taxa de acerto
próxima de 90%, sendo este posteriormente utilizado como referência nas análises
subsequentes. Nas secções seguintes apresentamos a teoria estatística subjacente
aos algoritmos de deteção usados neste trabalho.

3.1 Métodos de estimação de mudança de média

Um dos primeiros métodos originalmente proposto para detetar uma única mudança
na série temporal estacionária é o CUSUM clássico Page (1955). Este método con-
siste num teste de hipóteses onde se testa a instabilidade na média de uma série
temporal {Xt, t = 1, . . . , n}. Ou seja,

H0 : µ1 = µ2 = · · · = µn

contra a hipótese alternativa,

H1 : ∃ k ∈ {1, . . . , n− 1} tal que µ1 = µ2 = · · · = µk ̸= µk+1 = · · · = µn,

onde E[Xt] = µt.

Dada a estatística de teste

Ck =

√
k(n− k)

n

∣∣x̄1:k − x̄(k+1):n

∣∣ ,
onde x̄1:k e x̄(k+1):n são as médias empíricas de cada segmento, calculadas por: x̄l:u =

1
u−l+1

∑u
t=l xt, a estatística CUSUM compara, para um k ∈ {1, . . . , n − 1} fixo, a

média empírica antes de k com a média empírica depois de k.
Sob a hipótese de independência e/ou dependência fraca e assumindo que Xt ∼

N (µ, σ2), então sob H0, a estatística de teste Ck

σ
segue uma normal padrão com

média 0 e variância 1, e C2
k

σ2 ∼ χ2
1. Existe uma mudança em k se:

C2
k

σ2
> c,

onde c ∈ R+ é um valor de limiar escolhido. A validade assintótica é garantida
também pelo Teorema Central do Limite (TCL), ver Yao and Davis (1986).
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Agora precisamos considerar todas as possíveis localizações de pontos de mu-
dança e escolher aquela que maximiza a estatística de teste. Assim, consideramos a
extensão do teste CUSUM:

C2
max = max

k∈{1,...,n−1}

C2
k

σ2
.

Se detetarmos um ponto de mudança (ou seja, se C2
max > c), podemos estimar a sua

localização da seguinte forma:

k̂ = arg max
k∈{1,...,n−1}

C2
k , (3.1)

onde k̂ é o valor de k que maximiza a estatística CUSUM.

Uma estimativa simples da magnitude do salto é dada por:

∆µ̃ = x̄(k̂+1):n − x̄1:k̂. (3.2)

Figura 3.1: Estimação de k̂ com Estatística CUSUM

A operação de máximo introduz complexidade adicional devido à dependência
entre as estatísticas para diferentes k, por outro lado, a natureza não regular do
problema afeta a distribuição assintótica da estatística de teste e estas são diferenças
fundamentais entre testar um ponto de mudança conhecido versus desconhecido.

Em Yao and Davis (1986) prova-se que (C1, . . . , Cn−1)/σ converge para um pro-
cesso Gaussiano com média 0 e covariância conhecida e que o máximo de um con-
junto de variáveis aleatórias Gaussianas converge para uma distribuição de Gumbel,
conforme a equação:

lim
n→∞

Pr

{
a−1
n

(
max

k

Ck

σ
− bn

)
≤ uα

}
= exp

{
−(2π)−1/2 exp(−uα)

}
,

onde an = (2 log log n)−1/2 (constante de escala) e bn = a−1
n + 0.5an log log log n

(constante de localização).

Estas constantes de normalização são necessárias para evitar que o máximo se
torne degenerado à medida que n → ∞. Como já mencionado na secção 2.2.1,
a distribuição normal está no domínio de atração da Gumbel, ou seja, o máximo
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de variáveis normais, devidamente normalizado, converge para uma distribuição
Gumbel.

Para determinar o limiar c que controla a taxa de falsos positivos, igualamos
CDF da distribuição Gumbel a 1− α e resolvemos em ordem a uα obtendo:

uα = − log

(
− log(1− α)

(2π)−1/2

)
.

Deste modo, o valor crítico é dado por c̃ = anuα + bn e para obter o limiar cα,
como maxk(C

2
k/σ

2) > c, basta elevar c̃ ao quadrado: c = c̃2.
Este resultado assintótico indica que o limiar c para C2

k

σ2 cresce com n a uma taxa
de O(2 log log n). É um resultado assintótico útil quando o tamanho da amostra é
suficientemente grande.

Para amostras pequenas, é recomendável utilizar o método de Monte Carlo
(MMC), que se baseia na distribuição empírica dos dados originais, sob a hipótese
nula H0, geralmente é mais conservador. Para M séries {x(m)

t }nt=1, m = 1, . . . ,M ,
sob a hipótese nula H0 (sem ponto de mudança), o limiar MMC começa por simular:

C(m)
max = max

k∈{1,...,n−1}

(
C

(m)
k

)2
σ2

.

Com base nos M valores simulados obtém-se a distribuição empírica de C2
max e

define-se o limiar como:

c(MMC) = Quantil1−α

({
C(m)

max

}M
m=1

)
.

A decisão a tomar é a de Rejeitar H0 se C2
max > c(MMC). Note que o teste assume

que sob H0, não existe um ponto de mudança na série.
O problema da deteção de mudanças na média adquire uma complexidade signi-

ficativamente maior quando a análise incide sobre séries temporais muito instáveis
ao longo do tempo ou seja quando apresenta múltiplas mudanças. O teste CUSUM
clássico já enunciado, fora inicialmente proposto para identificar uma única mu-
dança de estrutura na média da série; contudo, a sua aplicação torna-se inadequada
em contextos com mais do que uma mudança. Os métodos de segmentação, re-
solvem este problema ao dividir recursivamente a série em segmentos, aplicando a
estatística de mudança em cada segmento e permitindo a identificação eficiente de
múltiplos pontos de mudança na série temporal.

3.1.1 Métodos de segmentação

Os processos para análise de mudanças de estrutura, nomeadamente, mudanças
de média, mais utilizado é provavelmente, o processo de segmentação da série, cuja
origem remonta aos trabalhos de Scott and Knott (1974) e Sen and Srivastava (1975)
e posteriormente implementado em bibliotecas do software R CRAN por Killick
et al. (2010). De forma sucinta, este tipo de processo aplica primeiro um teste de
ponto de mudança único a toda a série. Se for identificado um ponto de mudança, a
série é dividida nesse ponto. Em seguida, o procedimento é repetido nos dois novos
subconjuntos de dados — antes e depois da mudança. Se forem detetadas novas
mudanças em qualquer um desses subconjuntos, eles são novamente divididos. Este
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processo continua até que já não sejam encontrados pontos de mudança em nenhuma
das partes, sendo usualmente denominado métodos recursivos de deteção.

Por exemplo, métodos de segmentação como o BinSeg (Binary Segmentation)
oferecem uma aproximação eficiente para a deteção de mudanças, com complexi-
dade O(n log n), ao considerar apenas um subconjunto das 2n − 1 segmentações
possíveis. Em contraste, algoritmos como o PELT procuram a segmentação ótima
global, mantendo elevada eficiência computacional graças ao corte inteligente, en-
quanto abordagens exatas completas testam todas as segmentações possíveis, com
custo computacional muito elevado. Uma variação relevante é o algoritmo WBS (Wild
Binary Segmentation) Fryzlewicz (2014), que melhora a abordagem do BinSeg ao
aplicar a segmentação em múltiplos intervalos aleatórios, tornando a deteção de mu-
danças múltiplas mais eficaz, sobretudo quando estas ocorrem em posições próximas.
Esses métodos clássicos geralmente pressupõem que os dados sejam independentes
ou apresentem dependência fraca dentro de cada segmento e tendem a funcionar me-
lhor em dados normais ou aproximadamente normais, ver Basseville et al. (1993),
Truong et al. (2020) e (Horváth and Rice, 2024, pp. 49–50).

Para compreendermos a noção do processo de segmentação, vamos assumir que
Xt é um processo particionado (em segmentos), com distribuição Gaussiana (ou
normal de parâmetro θ, onde θ é o vetor que contém µ e σ. Nestas condições,
define-se o custo associado a um segmento, dado por:

L(xs+1:t) = min
θ

t∑
i=s+1

−2 log f(xi; θ) (3.3)

onde f(xi; θ) é a função densidade de probabilidade da normal.
Aplicando o logaritmo à função densidade de probabilidade e somando para

i = s+ 1 até t, obtém-se:

t∑
i=s+1

−2 log f(xi; θ) = (t− s) log(2πσ2) +
1

σ2

t∑
i=s+1

(xi − µ)2.

Para minimizar a expressão relativamente a µ, derivamos:

d

dµ

(
t∑

i=s+1

(xi − µ)2

)
= 2(t− s)µ− 2

t∑
i=s+1

xi,

⇒ µ =
1

t− s

t∑
i=s+1

xi = x̄s+1:t.

Substituindo µ = x̄s+1:t:

L(xs+1:t) =
1

σ2

t∑
i=s+1

(xi − x̄s+1:t)
2.

O custo da segmentação completa será dado por:

M∑
m=0

L(xkm+1:km+1)
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, onde M é o número total de pontos de mudanças. No caso em que M = 1 e k1 = k,
temos dois segmentos, x1:k e xk+1:n, cujo custo de segmentação é dado por:

L(x1:k) + L(xk+1:n) =
1

σ2

[
k∑

i=1

(xi − x̄1:k)
2 +

n∑
i=k+1

(xi − x̄k+1:n)
2

]
.

Contudo, como não temos um critério de paragem, podemos incorrer no risco
de aumentar significativamente o erro do tipo I (ou seja, detetar uma mudança
quando não houve nenhuma de facto) e enfrentar problemas de sobreajustamento.
Um dos métodos usados para lidar com este problema é o algoritmo de segmentação
binária, que começa por verificar se o custo de uma segmentação satisfaz a seguinte
condição:

L(x1:n)−
(
L(x1:k) + L(xk+1:n)

)
> β (3.4)

onde L(·) está definido em (3.3), e β ∈ R representa uma penalização ou critério de
paragem.

Se esta condição for satisfeita para algum k ∈ {1, . . . , n}, considera-se que o
custo foi reduzido, e o teste é repetido recursivamente nos dois segmentos gerados
por essa divisão. O processo continua até já não haver nenhuma divisão que reduza
o custo (isto é, quando, para todos os k, não se verifica a condição em 3.4).

No caso em que haja proximidade entre as mudanças, o algoritmo Wild Binary
Segmentation (WBS), um procedimento recursivo que melhora em alguns cenários
as estimativa dos pontos de mudança ao considerar múltiplos subintervalos alea-
tórios da sequência, para uma melhor discussão sobre este método ver Fryzlewicz
(2014).

A noção de custo associada à segmentação ótima é dada por:

Qn,β = min
M∈N

[
min

k1,...,kM

M∑
m=0

L(xkm+1:km+1) + βM

]
, (3.5)

onde Qn,β representa o custo ótimo de segmentar os dados até ao instante n, com
uma penalização β que aumenta com um novo ponto de mudança. A equação (3.5)
corresponde precisamente à formulação de Optimal Partitioning (OP), isto é, o pro-
blema de encontrar a segmentação globalmente ótima através da minimização do
custo penalizado.

Neste problema, podemos reduzir o número de verificações a serem realizadas em
cada iteração, diminuindo a complexidade. Esta operação é chamada de pruning.
Especificamente, dada uma função de custo L(·), sob a condição de que existe uma
constante C tal que, para todo l < C < u:

L(xl+1:k) + L(xk+1:u) + C ≤ L(xl+1:u) (3.6)

é possível realizar a poda sem recorrer a uma aproximação. Para muitas funções de
custo, como a função de custo Gaussiana, tal constante C existe.

Então, para qualquer k < t, se
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Qk,β + L(xk+1:t) ≥ Qt,β − C (3.7)

for verdadeiro, então para qualquer T > t, k nunca poderá ser o ponto de mu-
dança ótimo antes do tempo T .

Usando a condição da Equação 3.7, o algoritmo PELT –Killick et al. (2012)
resolve exatamente a minimização penalizada da Equação 3.5 com um custo compu-
tacional esperado que pode ser linear em (O(n) – mantendo, no entanto, comple-
xidade O(n2) no pior caso, particularmente quando a condição de poda raramente
é satisfeita.

Ou seja, ao definir κ = 0, se

Qk,β + L(xk+1:t) ≥ Qt,β,

então podemos efetuar o corte com segurança no custo do segmento relacionado
com k, já que k nunca será o ponto de mudança ótimo até qualquer tempo T > t
no futuro. Substituindo o custo anterior no lado direito:

Qk,β + L(xk+1:t) ≥ min
0≤k<t

[
Qk,β + L(xk+1:t) + β

]
,

vemos como o β desempenha novamente um papel central, já que está ausente no
lado esquerdo. A intuição é que, uma vez introduzido um novo ponto de mudança
candidato, é então possível realizar o corte.

A seleção de β pode ser fixa, ou escolhida com base em critérios estatísticos.
AS penalizações mais usadas nos softweres, correspondem aos critérios AIC, BIC e
MBIC.

A penalização AIC assume o valor de 2p, onde p é o número de parâmetros adi-
cionados ao modelo. Embora seja simples de aplicar, o AIC é conhecido por ser
assintoticamente inconsistente e tende a sobrestimar o número de pontos de mu-
dança à medida que o tamanho da amostra aumenta. Intuitivamente, isto ocorre
porque o AIC é projetado para minimizar o erro de previsão, e não necessariamente
para identificar a estrutura verdadeira do modelo. Favorece modelos que se ajustam
bem aos dados, o que frequentemente leva à inclusão de mais pontos de mudança do
que o necessário. O BIC (Critério de Informação Bayesiano) tem como penalização
p log(n). Nas nossas abordagens, isto traduz-se em β = 2 log(n), sendo adicionada
para cada ponto de mudança adicional. O BIC é geralmente mais conservador que
o AIC e é consistente, ou seja, não sobrestima o número de pontos de mudança à
medida que o tamanho da amostra cresce.

O MBIC (BIC Modificado) foi proposto por Zhang and Siegmund (2007), como
uma extensão do BIC que inclui um termo extra para considerar o espaçamento entre
os pontos de mudança. Na prática, esta penalização pode ser aproximada por: β =
3 log(n). É ainda mais conservadora que o BIC. Em termos práticos, estas escolhas
de penalização representam um compromisso fundamental entre sobreajustamento
(detetar pontos de mudança em excesso) e subajustamento (não detetar mudanças
que de facto existem).
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3.2 Métodos de estimação de mudanças na tendên-
cia

No contexto da deteção de mudanças na tendência de uma série temporal, recorre-
mos às metodologias propostas em Zeileis et al. (2002b), baseadas na regressão linear.

Considere-se, assim, a equação linear:

yi = x⊤i βi + εi (i = 1, . . . , n), (3.8)

onde, onde, no tempo i, yi representa a variável dependente observada, xi = (1, xi2, . . . , xip)
⊤

é um vetor p × 1 de variáveis independentes (com o primeiro termo constante), βi
é o vetor (p × 1) dos coeficientes de regressão, assumido constante dentro de cada
segmento e podendo variar entre segmentos, e εi são os erros i.i.d. de média nula e
variância constante σ2.

Os testes de mudança de estrutura têm como objetivo testar a hipótese nula:

H0 : β1 = β2 = · · · = βn,

contra a hipótese alternativa de que existe pelo menos um instante em que os coe-
ficientes diferem:

H1 : ∃ i, j ∈ {1, . . . , n} tal que βi ̸= βj.

Assume-se que os regressores são não estocásticos, com ∥xi∥ = O(1), e que:

1

n

n∑
i=1

xix
⊤
i → Q (3.9)

para alguma matriz Q finita e não singular.
Seja β̂(n) o estimador dos Mínimos Quadrados Ordinários (MQO) dos coeficien-

tes de regressão baseado em todas as observações até ao instante n. Os resíduos são
então dados por

ε̂i = yi − x⊤i β̂(n),

e a variância dos resíduos é estimada pela forma usual:

σ̂2 =
1

n− p

n∑
i=1

ε̂2i .

Nos testes de mudança de tendência são frequentemente utilizados resíduos re-
cursivos. Denotando por β̂(i, j) os MQO dos coeficientes de regressão, com base nas
observações de i+1 até i+ j, e por β̂(i) = β̂(0, i) os estimadores baseados em todas
as observações até o tempo i, os resíduos recursivos são definidos como:

ŵi =
yi − x⊤i β̂(i− 1)√

1 + x⊤i (X(i−1)⊤X(i−1))
−1
xi

, i = p+ 1, . . . , n,

onde X(i) é a matriz dos regressores até à observação i.
Os autores Zeileis et al. (2002b) demonstram que, sob a hipótese nula, estes

resíduos recursivos têm média nula e variância σ2, sendo esta última estimada como:

σ̂2 =
1

n− p

n∑
i=p+1

(ŵi − ¯̂w)2. (3.10)
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, onde
Ainda em Zeileis et al. (2002b), salienta-se que as suposições de que os resíduos

são i.i.d., de que os regressores xi são não estocásticos e de que a condição

1

n

n∑
i=1

xix
⊤
i → Q (3.11)

converge para uma matriz finita e não singular podem não ser válidas em certos mo-
delos dinâmicos. Nestes casos, são necessárias adaptações metodológicas adequadas.
Propomos, portanto, avaliar estes métodos também em condições para as quais ori-
ginalmente não foram concebidos, de modo a testar a sua robustez e aplicabilidade
fora dos pressupostos standard.

De forma geral, os testes de deteção de mudanças de estrutura podem ser dividi-
dos em duas grandes classes: testes baseados nos parâmetros e testes basea-
dos nos resíduos. Os primeiros avaliam diretamente a estabilidade dos coeficientes
de regressão ao longo do tempo, enquanto os segundos analisam as flutuações dos
resíduos para detetar eventuais quebras na estrutura do modelo.

O teste mais simples e clássico para a deteção de mudanças de estrutura é o teste
de Chow Chow (1960), baseado na estatística F , no qual se testa a significância de
um ponto de mudança conhecido, denotado por t0. Este teste baseia-se na hipótese
nula de que os coeficientes de regressão permanecem constantes ao longo do tempo.

A ideia consiste em ajustar duas regressões lineares com p variáveis explicativas
às subamostras antes e depois de t0 (designadas por amostras A e B) e comparar
estas com o modelo restrito ajustado a toda a amostra. A estatística de teste é dada
por

Ft0 =
SMQOp − (SMQOA + SMQOB)

SMQOA + SMQOB

nA + nB − 2p

p
, (3.12)

onde SMQOp representa a soma dos quadrados dos erros do modelo ajustado à
amostra total, e SMQOA e SMQOB representam, respetivamente, as somas dos
quadrados dos erros dos modelos ajustados às amostras A e B. Em Chow (1960)
prova-se que Ft0 segue uma distribuição F com p e nA+nB − 2p graus de liberdade.

Quando o ponto de mudança é desconhecido, conforme discutido em Andrews
(1993) e Andrews and Ploberger (1994), constroem-se extensões da estatística Ft0

ao longo do intervalo t0 ∈ {p + 1, . . . , n − p}, combinando-se as evidências através
das seguintes estatísticas:

supF = sup
t0∈{p+1,...,n−p}

Ft0 ,

aveF =
1

n− 2p+ 1

n−p∑
t0=p+1

Ft0 ,

expF = log

(
1

n− 2p+ 1

n−p∑
t0=p+1

exp

(
1

2
Ft0

))
.

Estas estatísticas resumem a evidência de mudança estrutural ao longo do tempo,
sendo os testes aveF e expF particularmente relevantes por apresentarem propri-
edades de otimalidade em certos contextos, conforme discutido em Andrews and
Ploberger (1994).

Os testes baseados nos resíduos avaliam a estabilidade do modelo através da
análise das flutuações dos resíduos ou das estimativas dos parâmetros. Um exemplo
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clássico são os testes de flutuação, que englobam os processos CUSUM e MOSUM
Kleiber (2002). A ideia central consiste em ajustar o modelo aos dados e derivar um
processo empírico que capture a flutuação das quantidades de interesse ao longo do
tempo.

Para estes processos empíricos, são conhecidos os processos-limite, permitindo o
cálculo de limites críticos cuja probabilidade de serem ultrapassados sob H0 é α. Se
o caminho do processo empírico ultrapassar esses limites, considera-se a flutuação
improvavelmente grande, levando à rejeição da hipótese nula ao nível de significância
α. Na biblioteca strucchange, estes testes são implementados através da função
efp (empirical fluctuation process).

Quando as observações não são independentes — como é comum em séries tem-
porais —, os processos de flutuação podem ser ajustados utilizando estimativas
consistentes da matriz de covariância, como os estimadores HAC (heteroskedasti-
city and autocorrelation consistent) Andrews (1991); Lumley and Heagerty (1999),
garantindo validade assintótica mesmo na presença de autocorrelação ou heteroce-
dasticidade.

O processo Rec-CUSUM, proposto por Brown et al. (1975), é definido por

Wn(t) =
1

σ̃
√
η

p+⌊tη⌋∑
i=p+1

ε̃i, 0 ≤ t ≤ 1, (3.13)

onde η = n − p é o número de resíduos recursivos. Sob H0, o processo limite de
Wn(t) é um processo de WienerW (t), de acordo com o Teorema do Limite Central
Funcional (FCLT)1. Sob a hipótese alternativa, caso exista um ponto de mudança
estrutural t0, o processo tende a desviar-se da média zero após esse ponto.

O teste OLS-CUSUM baseia-se nas somas cumulativas dos resíduos obtidos
por MQO, sendo definido por

W 0
n(t) =

1

σ̂
√
n

⌊nt⌋∑
i=1

ε̂i, 0 ≤ t ≤ 1. (3.14)

O processo limite correspondente é a ponte browniana2, definida por W 0(t) =
W (t)− tW (1). Este processo inicia e termina em zero, apresentando desvios locais
quando ocorre uma quebra estrutural. Ambos os processos estão disponíveis na
função efp, especificando o argumento type como "Rec-CUSUM" ou "OLS-CUSUM",
respetivamente. As propriedades teóricas destes processos são detalhadas em Chu
et al. (1995).

Para a análise de mudanças na média e, em particular, mudanças na tendência,
recorre-se ao método de programação dinâmica proposto por Bai e Perron Bai and
Perron (2003a), que permite estimar simultaneamente múltiplos pontos de quebra
i1, . . . , im através da minimização da soma dos quadrados dos resíduos segmentados:

RSS(i1, . . . , im) =
m+1∑
j=1

rss(ij−1 + 1, ij), (3.15)

1O Teorema do Limite Central Funcional (FCLT) estabelece que as somas parciais de variáveis
aleatórias centradas e normalizadas convergem, em distribuição, para um processo de Wiener
(movimento browniano).

2Uma ponte browniana é um processo estocástico obtido a partir de um movimento browniano
W (t), condicionado a começar e terminar em zero, sendo definido por W 0(t) = W (t)− tW (1).
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onde rss representa a soma dos quadrados dos resíduos em cada segmento e RSS a
soma total, com i0 = 0 e im+1 = n. Os pontos de quebra estimados são dados por

(̂i1, . . . , îm) = arg min
i1,...,im

RSS(i1, . . . , im), (3.16)

sujeito à restrição ij−ij−1 ≥ nh, onde nh representa o número mínimo de observações
em cada segmento.

Para mais de duas quebras, uma busca exaustiva seria computacionalmente in-
viável, com complexidade O(nm). No entanto, o uso de programação dinâmica
reduz a complexidade para O(n2), recorrendo à recursão baseada no princípio de
Bellman Bellman (1957):

RSS(Im, n) = min
mnh≤i≤n−nh

[RSS(Im−1, i) + rss(i+ 1, n)] . (3.17)

Este algoritmo encontra-se implementado na função breakpoints do pacote strucchange,
permitindo a estimação eficiente de múltiplas quebras estruturais.

3.3 Método de deteção de mudanças nos parâme-
tros da distribuição GEV

A abordagem utilizada neste trabalho é baseada em Kojadinovic and Naveau (2017),
que propõem o uso dos estimadores PWM e GPWM para deteção de mudanças nos
parâmetros da GEV. A metodologia proposta no artigo permite testar a existência
de mudanças na localização, na escala e na forma da distribuição GEV e assenta
no pressuposto de que a amostra de máximos é composta por variáveis aleatórias
independentes.

A principal inovação deste trabalho consiste em incorporar dependência serial nos
dados simulados, de modo a avaliar a robustez dos métodos PWM e GPWM sob
diferentes cenários: dependência fraca (ϕ1 = 0.2) onde se prevê que a metodologia
proposta em Kojadinovic and Naveau (2017) ainda seja válida, moderada (ϕ1 = 0.5)
e dependência forte (ϕ1 = 0.8), onde poderá haver mais dificuldade do método
em detetar mudança, uma vez que esta metodologia não foi projetada para estes
cenários.

Estatísticas de teste

A deteção de mudanças no parâmetro de forma ξ pode ser efetuada através de testes
baseados em estatísticas do tipo CUSUM desenvolvidas na secção 3.1 e aplicadas
aos estimadores de ξ. A ideia central consiste em avaliar, ao longo da amostra, pos-
síveis quebras na homogeneidade da distribuição dos máximos por bloco, recorrendo
a comparações sistemáticas entre subconjuntos de dados.

No caso do método PWM, a estatística de teste para ξ é definida por:

Sgξ,n = max
1≤k≤n−1

k(n− k)

n3/2
1(β̂1:k ∈ Dξ, β̂k+1:n ∈ Dξ)

∣∣∣gξ(β̂1:k)− gξ(β̂k+1:n)
∣∣∣, (3.18)

onde:
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• 1(a ∈ A) representa a função indicatriz;

• β̂1:k e β̂k+1:n são, respetivamente, os vetores de estimadores PWM calculados
a partir das observações anteriores e posteriores ao ponto de corte k;

• gξ(·) é a função que estabelece a relação entre os momentos ponderados e o
parâmetro ξ;

• Dξ representa o domínio admissível dos estimadores.

De forma análoga, para o método GPWM, a estatística de teste assume a forma:

Shξ,n = max
1≤k≤n−1

k(n− k)

n3/2
1(β̂1:k ∈ Dh, β̂k+1:n ∈ Dh)

∣∣∣hξ(β̂1:k)− hξ(β̂k+1:n)
∣∣∣, (3.19)

em que hξ(·) corresponde à função de ligação definida no contexto GPWM e Dh ao
respetivo domínio.

Em ambos os casos, as estatísticas são de natureza não paramétrica, no sentido
em que não exigem explicitamente que os dados seguem uma distribuição GEV.
Contudo, nos estudos de simulação, as amostras são geradas de acordo com uma
distribuição GEV. Esta formulação permite que os testes sejam particularmente
sensíveis a mudanças no parâmetro ξ, sendo o método PWM mais simples e clássico,
enquanto o GPWM, pela sua generalização funcional, oferece maior flexibilidade e,
em certos cenários, melhor desempenho em termos de poder estatístico (ver secção
3 de Kojadinovic and Naveau (2017)).

Procedimento de simulação

A distribuição GEV não é fechada para soma (convolução), ou seja, se
X ∼ GEV(µX , σX , ξX) e Y ∼ GEV(µY , σY , ξY ), em geral

Z = aX + bY ̸∼ GEV.

Deste modo, a solução encontrada para gerar processos GEV com dependência tem-
poral modelada por processos de tipo AR(1), consiste em:

1º) Gerar um processo, por exemplo AR(1):

Zt = ϕt−1 + ϵt, ϵt ∼ N(0, 1) (3.20)

2º) Transformar a série via Transformação Uniformizante:

Ut = Φ(Zt),

onde Ut ∼ U(0, 1) com a estrutura de dependência AR(1).
3º) Utilizar a função inversa da GEV para transformar Ut:

Xt = F−1
GEV(Ut, ξ). (3.21)

Deste modo, Xt mantém a dependência temporal da série original. Esta depen-
dência é usualmente denominada de dependência de cópula.
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Capítulo 4

Estudo computacional

Tal como definido no início do trabalho, o principal objetivo deste estudo consiste
numa análise crítica dos métodos1 clássicos de deteção de mudanças de estrutura
em séries temporais, com especial atenção aos métodos de segmentação, com vista à
sua melhoria ou, eventualmente, ao desenvolvimento de uma nova abordagem. Esta
análise assume particular relevância, dado que os métodos discutidos na Secção 3
foram concebidos para observações independentes e/ou com dependência fraca, e
tendem a funcionar melhor sob a suposição de normalidade dos dados. Nesta análise
computacional, avaliamos o desempenho destes métodos clássicos em cenários que
violam tais suposições, nomeadamente na presença de falhas de normalidade e de
diferentes graus de autocorrelação. Adicionalmente, analisamos o seu desempenho
na presença de outliers, considerando diferentes dimensões da série temporal, bem
como diferentes magnitudes de mudança.

4.1 Escolha da janela de tolerância

A estimação de pontos de mudança em séries temporais, mesmo em cenários simula-
dos e controlados, está sujeita a variabilidade estatística. Tal variabilidade decorre
principalmente da aleatoriedade intrínseca dos dados e da fraca capacidade dos mé-
todos em detetar mudanças de pequena magnitude. Alguns autores recorrem, por
esse motivo, à utilização de janelas de tolerância Ma et al. (2020), classificando como
verdadeiros pontos de mudança aqueles que se encontram dentro de um determinado
raio em torno do ponto de mudança real.

Neste trabalho, validamos empiricamente a metodologia do raio ótimo através
de resultados de simulação. Para esse efeito, simulámos 2000 séries temporais com
estrutura do tipo AR(1), com parâmetro ϕ = 0.2, em que os resíduos do modelo
seguem uma distribuição normal com média zero e variância unitária. Considerou-se
um tamanho amostral n = 200 e uma única mudança estrutural acentuada (µ1 = 1
e µ2 = 4), ver secção 4.2.1, localizada nos instantes k = 50, k = 100 e k = 150,
correspondentes, respetivamente, a mudanças situadas em 25%, 50% e 75% do total
da série.

Para cada cenário, estudámos o erro na estimação do ponto de mudança k, deno-
tado por k̂. Nos casos em que os algoritmos detetam múltiplas quebras, registámos
o número dessas ocorrências, representado por L. O erro de localização do ponto de

1Para simplificar a apresentação das tabelas, adotamos as seguintes abreviações: PELT = PL,
BinSeg = BS e o algoritmo de Bai–Perron = BP.
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mudança é definido como:
ei =

∣∣∣k̂i − k
∣∣∣ , (4.1)

onde k̂i, i = 1, . . . , 2000, representa o ponto de mudança estimado na i-ésima simu-
lação.

Admitindo que γ = 1, . . . , n representa o raio da janela de tolerância, a taxa de
acertos (denotada por Hk) associada a cada valor de γ é definida por:

Hk =
# {i : ei ≤ γ}

m
, (4.2)

onde m = 2000−L corresponde ao número de simulações em que foi detetada apenas
uma quebra estrutural.

As Tabelas 4.1 e 4.2 ilustram a construção do raio ótimo γ, com base nas taxas
de acerto associadas aos pontos de mudança k = 50, k = 100 e k = 150, sendo este
critério posteriormente utilizado no desenvolvimento do estudo de simulação para
mudanças de nível (média) e de tendência.

Tabela 4.1: Definição de raio ótimo-Mudança na média

Tolerância γ
n = 200, ϕ = 0.2 BS PL

k = 50 k = 100 k = 150 k = 50 k = 100 k = 150
0 65.53% 65.31% 64.08% 65.65% 66.17% 65.26%
1 83.85% 84.63% 82.94% 83.07% 85.44% 83.71%
2 91.43% 92.52% 91.59% 91.33% 93.13% 91.89%
3 95.30% 96.17% 95.74% 95.38% 96.61% 95.62%
4 97.53% 97.97% 97.66% 97.52% 97.93% 97.68%
5 98.65% 98.90% 98.71% 98.84% 98.76% 98.59%

Tabela 4.2: Definição de raio ótimo-Mudança na média e tendência

Tolerância γ
n = 200, ϕ = 0.2 BP

k = 50 k = 100 k = 150
0 59.85% 60.25% 59.20%
1 77.00% 77.60% 75.45%
2 84.65% 85.45% 83.50%
3 89.30% 90.15% 88.55%
4 92.80% 93.10% 91.10%
5 94.75% 95.20% 93.25%

Estabelecemos como janela de tolerância o menor raio γ que assegura uma taxa
de acerto próximo de 90%, o que nos levou a adotar tolerâncias de ±3 para as análises
principais, embora os algoritmos de segmentação, como o PL e BS chegam aos 90%
com ±2, ver figura 4.1. Outro fator importante constatado é que, a posição do ponto
de quebra não tem muita influencia nas estimativas dos métodos. Ressaltamos ainda
que esse é um cenário ideal, adotado unicamente para definir uma regra empírica
na escolha da janela de tolerância, outros contextos — como mudanças mais subtis
e condições de dependência mais forte — também são considerados neste estudo,
especialmente na avaliação do comportamento dos métodos frente a esses desafios.
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Figura 4.1: Proporção acumulada de taxas de acerto até o raio γ

4.2 Mudanças na média da série

Como já referido na secção 2.3.1, uma mudança na média da série temporal ocorre
quando se verifica uma alteração — de pequena magnitude ou de magnitude mais
elevada — no valor médio da série. Nesta secção, propomos estudar estes cenários
em três contextos distintos: séries com resíduos normalmente distribuídos, séries
com resíduos t-Student e séries afetadas pela presença de outliers.

4.2.1 Resíduos com distribuição normal

Antes de avançarmos para a análise de testes em séries temporais com estrutura
de dependência, iniciamos com simulações de processos simples, gerados a partir de
uma distribuição normal. Esse é exatamente o ambiente inicial projetado para os
métodos clássicos, já que a maioria deles assumem independência ou dependência
fraca, e tende a apresentar melhor desempenho em séries normais ou aproximada-
mente normais .

Consideremos o processo

Xt = µi + εt, t ∈ T, (4.3)

em que µi denota a média no i-ésimo segmento e ϵt é um ruído branco normalmente
distribuído, εt ∼ N (0, 1).

Consideramos processos com uma mudança na média de µ1 para µ2, onde a
magnitude de salto será dado por δ. Simulamos 2000 séries sem autocorrelação,
de dimensões n = {200, 500, 1000}, com mudanças fracas, δ = |µ2 − µ1| ≤ 1σ,
moderadas, 1.5σ ≤ δ ≥ 2σ, e fortes, δ ≥ 3σ, no ponto de mudança k = 50, onde σ
é desvio padrão de εt
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Tabela 4.3: Taxa de acertos do algoritmo de segmentação binária em cenários IID
por penalizações AIC, BIC e MBIC.

n = 200 n = 500 n = 1000

δ AIC BIC MBIC AIC BIC MBIC AIC BIC MBIC

0.5σ 36.95 21.55 6.55 36.20 23.60 5.35 36.30 20.45 4.70
1σ 73.10 70.55 70.00 73.65 72.30 69.55 73.25 69.90 71.25
1.5σ 98.30 97.25 96.50 97.65 96.90 97.65 97.55 96.80 97.20
2σ 99.60 99.25 99.40 99.70 99.35 99.55 99.75 99.40 99.45
3σ 99.85 99.85 99.80 100.00 99.85 99.75 99.95 99.85 99.80
4σ 100.00 100.00 99.95 100.00 100.00 100.00 100.00 100.00 100.00

Os resultados da Tabela 4.3, obtidos com o algoritmo BS mostram que, no caso
em que não existe autocorrelação (resíduos IID), a taxa de deteção é bastante con-
siderável em mudanças de magnitude mais elevadas, com valores acima de 95%,
cenário este que muda em mudanças de pequena magnitude, onde apresenta-se ta-
xas mais baixas. De salientar ainda que o tamanho da amostra (n = 200, 500, 1000)
não altera substancialmente os resultados neste cenário IID.

A tabela 4.44.5 , mostram os resultados das simulações para outros métodos.

Tabela 4.4: PL

n = 200 n = 500 n = 1000

δ AIC BIC MBIC AIC BIC MBIC AIC BIC MBIC

0.5σ 39.50 27.35 10.90 38.80 33.15 13.75 40.20 31.65 14.80
1.5σ 87.95 90.00 89.75 88.75 90.45 91.30 88.55 89.15 90.50
3σ 99.90 99.80 99.80 100.00 99.95 99.75 99.80 99.95 99.80

Tabela 4.5: BP

δ n = 200 n = 500 n = 1000

0.5σ 29.5 33.5 30.1
1.5σ 90.5 92.5 93.1
3σ 100.0 100.0 100.0

Os resultados tanto para o método PL, como para BP, são parecidos com os ob-
tidos pelo método BS, com taxas altas próximos dos 90% já em δ = 1.5, embora
a dificuldade continua em situação de mudanças fracas com taxas muito baixas de
acerto.

Vamos considerar agora, cenários autocorelacionados, em que os εt da equação
4.3 seguem uma estrutura autoregressiva AR(1) de média nula e σ = 1.

A tabela 4.6, mostra os resultados para 2000 séries simuladas, de tamanho n =
100 e fixamos o ponto de mudança k = 50, mas fazendo variar o coeficiente do
modelo AR(1), de um dependência fraca para uma forte.
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Tabela 4.6: Taxas de acerto para ϕ = 0.2,ϕ = 0.5 e ϕ = 0.8, usando os métodos BS,
BP e PL

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8

δ BS PL BP BS PL BP BS PL BP

0.5σ 17.60 18.30 17.5 10.75 22.05 10.0 6.10 48.05 11.5
1.5σ 83.85 81.05 82.0 59.75 62.10 64.5 23.20 58.60 26.0
3σ 99.50 99.00 98.5 93.60 93.00 94.0 58.90 78.40 64.5

Conforme se pode observar na tabela 4.6 autocorrelação em níveis de dependên-
cias mais forte (ϕ = 0.8) diminui a taxa de acerto dos métodos e agrava-se quando
comparado com cenário IID.

O gráfico da figura 4.2 mostra o desempenho do algoritmo à medida que alte-
ramos o valor do parâmetro ϕ, mantendo a série com a mesma estrutura, e para
diferentes magnitudes de mudanças.

Figura 4.2: Variação da taxa de acertos em função do parâmetro ϕ, para os métodos
BS, BP, e PL, considerando mudanças de pequenas magnitudes a maguinitudes mais
elevadas

Observa-se que, à medida que o valor de ϕ aumenta, a taxa de acerto diminui em
todos os cenários. A autocorrelação introduz uma estrutura de dependência que di-
ficulta a deteção da mudança de nível, reduzindo a eficácia do algoritmo. O método
PL, no caso das mudanças fraca e autocorrelação forte a taxa tende a aumentar, um
comportamento não visto nos métodos BS e BP. A razão pode estar relacionada com
o fato do método PL ser um método de otmizacão global, o que o torna potencial-
mente menos sensível a deteção de quebras espúrias2 que aumentam na presença de
autocorrelação e mudanças de pequena magnitude, ao contrário dos métodos BS e BP
que com divisões sucessivas amplia efeito da dependência dos resíduos, ver 3.1.1 e 3.2.

2No contexto de deteção, uma quebra espúria refere-se a quando o método identifica uma mu-
dança que não corresponde a uma alteração real. Ou seja, o método “julga” que houve uma quebra,
mas esta aparente quebra resulta apenas de flutuações do ruído, da presença de autocorrelação ou
de sobreajustamento do modelo.
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As Tabelas 4.7, 4.8 e 4.9 apresentam as análises do sobreajustamento3 dos mé-
todos BS, PL, considerando diferentes escolhas de penalização: AIC, BIC e MBIC.

Tabela 4.7: Estimativa de Sobreajustamento (AIC)

BS PL

ϕ δ = 0.5σ δ = 1.5σ δ = 3σ δ = 0.5σ δ = 1.5σ δ = 3σ

0.2 0.7335 0.1850 0.0050 11.1500 10.8800 11.1135
0.5 0.8760 0.4200 0.0675 16.7665 16.6725 16.4700
0.8 0.9400 0.7930 0.4070 21.0820 20.9985 21.1880

Tabela 4.8: Estimativa de Sobreajustamento (BIC)

BS PL

ϕ δ = 0.5σ δ = 1.5σ δ = 3σ δ = 0.5σ δ = 1.5σ δ = 3σ

0.2 0.4755 0.1850 0.0050 0.8375 0.5885 0.4495
0.5 0.7445 0.4195 0.0675 4.1775 4.0675 3.9315
0.8 0.9390 0.7920 0.4070 10.4385 10.4960 10.4130

Tabela 4.9: Estimativa de Sobreajustamento (MBIC)

BS PL

ϕ δ = 0.5σ δ = 1.5σ δ = 3σ δ = 0.5σ δ = 1.5σ δ = 3σ

0.2 0.1695 0.1860 0.0050 0.1980 0.2015 0.0245
0.5 0.4815 0.4180 0.0675 1.1785 1.2720 0.9910
0.8 0.9180 0.7920 0.4080 6.7635 6.7750 6.7045

A análise das tabelas mostra que o AIC é a penalização que piora mais os re-
sultados dos métodos, particularmente no método PL, onde, em cada uma de 2000
simulações, observa-se uma média de quase 21 pontos fora do raio ótimo em ce-
nários extremos. Em contraste, com a penalização MBIC, essa média reduz-se para
aproximadamente 7 pontos. Já o método BS, cujo comportamento é semelhante ao
do BP na tabela (4.6), apresenta em média cerca de 1 ponto fora do raio ótimo,
comportamento consistente em quase todas as penalizações consideradas.

4.2.2 Resíduos com distribuição t− Student

Até ao momento, as análises basearam-se em situações em que os resíduos seguem
uma distribuição normal. As tabelas seguintes apresentam cenários que se afastam
das hipóteses clássicas de normalidade dos dados, considerando, em particular, a
distribuição t-Student, que possui caudas mais pesadas do que a normal. SeX ∼ t(ν),
então ξ = ν−1 representa o peso da cauda da distribuição t. A Figura 4.3 ilustra a

3O sobreajustamento ocorre quando o método identifica mais pontos de mudança do que real-
mente existem.
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variação do peso da cauda direita da distribuição t− student em função do número
de graus de liberdade. À medida que ν → 0, ou para valores pequenos, a cauda da
distribuição t, é mais pesada do que a normal.

Figura 4.3: Variação de ν da distribuição t vs a normal

A tabela 4.11, contém dados de 2000 séries simuladas, com resíduos tν com
ν = {1.5, 2.5, 5}, k = 50 e n = 200.

Tabela 4.10: Taxa de acertos em cenários IID, considerando graus de liberdades 1.5,
2.5 e 5 da distribuição t

ν = 1.5 ν = 2.5 ν = 5

δ BS PL BP BS PL BP BS PL BP

0.5σ 4.35 41.55 1 8.30 18.35 6 9.50 8.90 9
1.5σ 23.45 63.85 10 61.40 64.40 66 80.40 78.50 80
3σ 56.70 94.00 54 91.85 96.15 92 98.80 98.90 98

Note que, quanto menor o número de graus de liberdade ν, mais pesadas se tor-
nam as caudas da distribuição e menor é o poder de deteção dos métodos BS e BP.
Já o método PL apresenta taxas mais elevadas em cenários de mudanças de pequena
magnitude e caudas mais pesadas, aproximando-se, contudo, do comportamento dos
restantes métodos à medida que aumenta o número de graus de liberdade e a mag-
nitude das mudanças. À medida que ν aumenta, os resultados convergem para os
obtidos no caso de resíduos normais.
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Os gráficos da figura4.4 apresentam o desempenho dos algoritmos para valores
de ν no intervalo [1, 10].

Figura 4.4: Variação do peso da Cauda

As tabelas 4.11, 4.12,4.13, mostram o comportamento dos métodos em cenários
autocorrelacionados.

Tabela 4.11: Taxa de acertos-Distribuição t (ϕ = 0.2)

ν = 1.5 ν = 2.5 ν = 5

δ BS PL BP BS PL BP BS PL BP

0.5σ 3.9 48.0 1 10.5 25.7 12 14.2 17.6 16
1.5σ 22.4 71.4 16 61.9 69.4 68 80.3 79.6 82
3σ 60.1 93.3 55 90.7 96.0 92 98.3 98.9 98

Tabela 4.12: Taxa de acertos-Distribuição t (ϕ = 0.5)

ν = 1.5 ν = 2.5 ν = 5

δ BS PL BP BS PL BP BS PL BP

0.5σ 5.6 61.1 5 12.7 38.4 17 20.7 32.5 24
1.5σ 23.6 79.4 26 61.8 75.7 69 78.2 79.3 82
3σ 58.3 95.3 54 89.2 97.0 92 98.0 98.7 98

Tabela 4.13: Taxa de acertos-Distribuição t (ϕ = 0.8)

ν = 1.5 ν = 2.5 ν = 5

δ BS PL BP BS PL BP BS PL BP

0.5σ 8.5 78.3 9 15.7 61.2 23 23.7 52.5 24
1.5σ 23.5 88.5 24 47.7 83.0 55 57.6 83.4 68
3σ 47.3 97.5 43 67.6 97.5 72 76.6 99.5 78

Tal como no caso da distribuição normal, o aumento da autocorrelação reduz o
poder de deteção, mas esse impacto é agravado quando há falha da normalidade. O
método PL tende a apresentar melhor desempenho em cenários mais extremos, mas
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é o método que apresenta mais estimativas de mudanças fora do raio ótimo definido
na secção 4.1, sobretudo na penalização AIC.

4.2.3 Efeito dos Outliers

Nesta secção, analisamos o impacto da presença de outliers na deteção de mudanças
de estrutura em séries temporais, com ênfase nas mudanças na média. O objetivo é
avaliar como a posição e a intensidade dos outliers afetam a deteção correta do
ponto de mudança.

A categorização definida na Tabela 4.14 baseia-se na proximidade temporal dos
outliers relativamente ao ponto real de mudança k. Assim, consideram-se outliers
próximos aqueles que ocorrem na vizinhança imediata do ponto de mudança (±10
unidades em torno de k). Os outliers intermédios correspondem a ocorrências si-
tuadas a uma distância moderada, entre 50 e 100 unidades antes ou depois de k.
Finalmente, os outliers distantes referem-se a valores posicionados nas extremidades
da série, isto é, nos primeiros 10% ou nos últimos 10% das observações.

Tabela 4.14: Categorias de posicionamento dos outliers em relação ao ponto real de
mudança k.

Categoria Posição

Próximos toutlier ∈ [k − 10, k + 10]
Intermédios toutlier ∈ [k − 100, k − 50] ∪ [k + 50, k + 100]
Distantes toutlier ∈ [1, 0.1n] ∪ [0.9n, n]

Além da posição, a intensidade dos outliers também é um fator crucial. Para
quantificar esta intensidade, utilizamos o desvio padrão (σ) da série, expressando a
magnitude dos outliers como múltiplos de σ, dada pela expressão .

xoutlier = µ± c.σ, c ∈ N+,

sendo µ a média da série e σ o desvio padrão.
Usando o cenário descrito na Secção 4.2, simulámos 2000 séries temporais e,

através de um teste estatístico para a significância dos outliers, avaliámos para quais
valores de c o ponto foi classificado como outlier, conforme descrito na tabela 4.15.
Esses resultados serviram de base para a construção da Tabela 4.16, que apresenta
o impacto da posição e da intensidade dos outliers na taxa de falsos positivos do
algoritmo de segmentação.

44



Tabela 4.15: Valores-p do teste de Grubbs baseados em 2000 replicas, para diversos
valores de c

c Teste de Grubbs (valor-p)

1 0.98080
2 0.97844
3 0.71459
4 0.01868
5 0.00021
6 0.00000
7 0.00000
8 0.00000
9 0.00000
10 0.00000

Para a nossa metodologia, e de acordo com o teste de Grubbs Grubbs (1950), um
ponto é considerado outlier quando c ≥ 4, valor a partir do qual o valor-p do teste é
estatisticamente significativo. Com base nesse critério, calculámos as taxas de falsos
positivos (FP), definidas como o número de vezes que o algoritmo identifica outliers
como pontos de mudança.

A Tabela 4.16 apresenta os resultados obtidos para diferentes posições e intensi-
dades dos outliers, obtidos através de algoritmos de segmentação binária

Tabela 4.16: Taxas de FP (%) em 2000 réplicas (BS)

Posição X̄ + 4σ X̄ + 6σ X̄ + 8σ X̄ + 10σ X̄ + 12σ

Próximos 22.30 28.60 30.55 58.90 82.90
Intermédios 0.10 0.65 3.80 8.55 19.85
Distantes 8.70 33.15 65.20 81.25 91.00

Tabela 4.17: Taxas de FP (%) em 2000 réplicas (PL)

Posição X̄ + 4σ X̄ + 6σ X̄ + 8σ X̄ + 10σ X̄ + 12σ

Próximos 100 100 100 100 100
Intermédios 100 100 100 100 100
Distantes 100 100 100 100 100
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Estas simulações foram realizadas em contextos bastante favoráveis, considera-
mos n = 500, k = 250, ϕ = 0.2 e δ = 4σ, uma mudança elevada e uma estrutura
de dependência fraca (ϕ = 0.2), situações nas quais se espera que os métodos não
apresentem dificuldades e que a taxa de falsos positivos (FP) seja nula.

Para o método BS a proximidade dos outliers ao ponto de mudança aumenta de
forma significativa as taxas de FP é ainda superior com o aumento da intensidade,
onde chega a alcançar aproximadamente 83% para c = 12. Os outliers distantes,
embora não próximos de k, podem induzir elevadas taxas de FP, chega a alcançar
aproximadamente 65% ainda em c = 8 e 91% em c = 12. Os intermédios são os
menos problemáticos, de acordo com os resultados do algoritmo, mas ainda assim
tendem a distorcer a segmentação para intensidades elevadas, com aproximadamente
20% para c = 12.

Na presença de outliers, o método PL perde totalmente a sua eficiência, apresen-
tando uma taxa de falsos positivos (FP) de 100%. Como era de esperar, os outliers
tendem a distorcer a capacidade de deteção correta do ponto de mudança. Observa-
se ainda que os métodos de divisão sucessiva (BS e BP) podem apresentar vantagens
face aos métodos de otimização global, como o PL, neste tipo de cenário.

4.3 Mudanças na tendência da série

Ao contrário das mudanças na média, que afetam apenas o valor médio da série, as
mudanças de tendência envolvem variações no padrão de crescimento ou decresci-
mento ao longo do tempo, conforme o modelo inicial proposto na secção 2.3.2.

Inicialmente, consideramos o cenário IID, sem autocorrelação, onde se espera um
desempenho eficiente do método. Os resultados para séries de dimensão n = 200,
2000 réplicas e ordenadas na origem fixos em todos os cenários, estão apresentados
na Tabela 4.18.

Tabela 4.18: Mudanças na tendência–Cenário IID

Cenário de inclinação Taxa de acerto (%)

β1 = −0.3 e β2 = 0.1 99.00
β1 = 0 e β2 = 0.1 91.00
β1 = 0 e β2 = 0.3 99.00
β1 = 0 e β2 = 0.5 99.00
β1 = 0.1 e β2 = −0.1 98.00

O nosso interesse é avaliar se o método BP consegue detetar mudanças graduais
no comportamento tendencial da série, mesmo na presença de autocorrelação nos
resíduos, neste contexto simulamos um processo AR(1) com tendência em que os os
εt ∼ N(0, 1).

Os resultados apresentados na Tabela 4.19 foram obtidos com base em 2000 ré-
plicas de séries de dimensão n = 200, onde, os pontos de mudança na tendência
da série temporal foram estimados utilizando o método de mínimos quadrados seg-
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Tabela 4.19: Mudanças na tendência–Cenário dependentes

β0,1 = 0 e β0,2 = 1
Taxa de acerto (%) por ϕ

ϕ = 0.2 ϕ = 0.5 ϕ = 0.8

β1 = 0 e β2 = 0.1 95.0 62.0 7.5
β1 = 0 e β2 = 0.3 96.0 68.5 14.5
β1 = 0 e β2 = 0.5 98.0 62.0 13.5
β1 = 0.1 e β2 = −0.1 95.0 68.0 15.5

mentados, implementado pela função breakpoints()4 da biblioteca strucchange
e fixamos os valores dos β0,1 e β0,2 e variamos os coeficientes de inclinação β1 e β2,
para diferentes valores do coeficiente de autocorrelação ϕ.

O método apresenta um bom desempenho em cenários sem autocorrelação ou
com dependência fraca, com uma média de 96% de acerto nos diferentes cenários de
variação dos coeficientes β, conforme a tabela 4.19. Contudo, a sua eficácia diminui
rapidamente à medida que a autocorrelação aumenta, mesmo quando a mudança na
inclinação é significativa, registando-se uma taxa média de acerto em apenas 12,75%
para ϕ = 0, 8.

4.4 Mudanças na forma da distribuição

Nesta secção, avaliamos a capacidade do método proposto em Kojadinovic and Na-
veau (2017) para identificar mudanças no parâmetro de forma (ξ) da distribuição
GEV. Inicialmente, foram feitas um conjunto de simulações para se ter uma ideia da
janela de tolerância (γ), conforme descrito na Secção 4.1.

Para esta análise, consideramos em contexto i.i.d, um cenário que evidencia uma
clara mudança no peso da cauda, caracterizado por uma mudança de ξ = −0.2 para
ξ = 0.2, o que representa a passagem de uma distribuição com cauda leve para
outra com cauda pesada. Neste contexto, espera-se uma taxa de deteção do ponto
exato onde ocorre a mudança no parâmetro de forma seja próxima de 100%, a qual
corresponderia a um valor de γ = 0. A Tabela 4.20 apresenta os resultados obtidos
nas 2000 simulações, considerando n = 200 e k = n/2 = 100.

Note-se que, mesmo em contexto i.i.d. e em condições em que a mudança é cla-
ramente visível, a taxa de deteção do ponto exato da mudança é praticamente nula
e, mesmo para γ = 10, que corresponde ao intervalo [90, 110], a taxa mantém-se
abaixo de 50%.

Esta metodologia revela-se mais eficiente na simples identificação de que ocorreu
uma mudança na distribuição, apresentando dificuldades na deteção exata do local

4A função breakpoints da biblioteca strucchange implementa o algoritmo de Bai e Perron,
discutido na secção 3.2. Esta técnica, baseada em programação dinâmica, minimiza a Soma dos
Quadrados dos Resíduos (RSS) para encontrar o conjunto de quebras ideal, utilizando o critério
Bayesian Information Criterion (BIC) para selecionar o número de quebras. Anteriormente, apli-
cámos o método a mudanças na média, usando a terminologia BP-(Bai e Perron), mas, a seguir,
focar-nos-emos na mudança de tendência, que constitui uma das principais funcionalidades deste
algoritmo.
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Tabela 4.20: Definição de raio ótimo — mudança no parâmetro forma.

γ PMW GPMW
0 0.0140 0.0115
1 0.0450 0.0455
2 0.0760 0.0770
3 0.1025 0.1115
4 0.1320 0.1445
5 0.1780 0.1835
6 0.2190 0.2260
7 0.2740 0.2735
8 0.3405 0.3325
9 0.4135 0.3915
10 0.4635 0.4395

da alteração. Por este motivo, no contexto autocorrelacionado, abordou-se apenas
o nível empírico e a potência do teste, com o objetivo de avaliar o comportamento
dos métodos PWM e GPWM dentro da estatística CUSUM na deteção de mudanças no
parâmetro de forma ξ, considerando diferentes intensidades de dependência serial.

Foram consideradas séries temporais de tamanho n = 200, com três níveis de
dependência serial: fraca, ϕ = 0.2, moderada, ϕ = 0.5 e forte, ϕ = 0.8. Foi também
considerando o caso ϕ = 0, que corresponde a assumir independência, e para o qual
esta metodologia foi desenvolvida.

Tal como apresentado na Secção 2.3.3, e considerando apenas o caso em que
temos uma mudança no parâmetro de forma. Para cada configuração, foram reali-
zadas 2000 repetições de Monte Carlo. A Tabela 4.21 apresenta o nível empírico dos
testes PWM e GPWM para os diferentes cenários de dependência, i.e., a proporção
de rejeições de H0 quando não há mudança de ξ.

Tabela 4.21: Nível empírico dos testes PWM e GPWM para diferentes níveis de
dependência, ao nível de significância de 5%.

ϕ ξ = −0.2 ξ = 0 ξ = 0.2

PWM GPWM PWM GPWM PWM GPWM

0.0 0.0485 0.0175 0.0345 0.0280 0.0260 0.0355
0.2 0.0430 0.0145 0.0380 0.0210 0.0330 0.0290
0.5 0.0850 0.0345 0.0720 0.0440 0.0660 0.0625
0.8 0.3630 0.2005 0.3310 0.2650 0.3700 0.3240

De acordo com os resultados da Tabela 4.21, o método parece não funcionar bem
a 5%, já que não se observa padrões de valores perto de 0.05 mesmo em condições de
dependência fraca e à medida que aumenta o peso da cauda e a dependência serial,
os métodos tendem a distorcer os resultados, resultando na perda de controlo sobre
o nível de significância empírico. Ou seja o teste relata mudança como estatistica-
mente significativas, mesmo na ausência de uma alteração real.
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Para análise da potência do teste que corresponde à proporção de rejeições de
H0 quando há mudança de ξ, consideramos os cenários descritos na Tabela 4.22 .

Tabela 4.22: Potência dos testes PWM e GPWM para diferentes níveis de depen-
dência com mudança de ξ, ao nível de significância de 5%.

ϕ ξantes ξdepois PWM GPWM

0.0 0 0.2 0.1520 0.1510
0.2 0 0.2 0.1575 0.1500
0.5 0 0.2 0.2140 0.1935
0.8 0 0.2 0.5355 0.4552

0.0 0.2 0.6 0.3125 0.478
0.2 0.2 0.6 0.3180 0.500
0.5 0.2 0.6 0.4410 0.527
0.8 0.2 0.6 0.7770 0.650

0.0 -0.3 0 0.2375 0.240
0.2 -0.3 0 0.2370 0.243
0.5 -0.3 0 0.3390 0.328
0.8 -0.3 0 0.7115 0.674

0.0 -0.2 0.2 0.5905 0.4950
0.2 -0.2 0.2 0.6210 0.5155
0.5 -0.2 0.2 0.7060 0.6270
0.8 -0.2 0.2 0.9100 0.8565

0.0 -0.1 -0.3 0.2585 0.0930
0.2 -0.1 -0.3 0.2740 0.0805
0.5 -0.1 -0.3 0.4060 0.1580
0.8 -0.1 -0.3 0.7320 0.4405

Pela Tabela 4.22, constata-se que à medida que ϕ aumenta (mais dependência
serial), os testes tornam-se mais potentes, sobretudo o PWM, que responde de forma
mais acentuada à estrutura de dependência. Com dados independentes, os testes
têm comportamento semelhante e potência limitada, mas sob dependência moderada
ou forte, o PWM é claramente o mais eficaz para detetar mudanças no parâmetro
de forma ξ da GEV. Por outro lado, observamos que o teste PWM é sensível ao
“engrossar” da cauda mesmo com o aumento de dependência serial. As mudanças
estruturais de cauda leve (limitada) para cauda pesada são as mais fáceis de detetar
pelos testes. No caso em que as caudas ficam mais leves (ξantes = −0.1; ξdepois =
−0.3), os métodos têm mais dificuldade em detetar estas mudanças, com especial
destaque para o GPWM, com potências de teste bastante inferiores às do PWM.

49



Capítulo 5

Conclusões e trabalho futuro

A presente dissertação analisou de forma crítica os métodos clássicos de deteção de
mudanças de estrutura em séries temporais, avaliando o desempenho destes face à
violação dos seus pressupostos. As simulações de Monte Carlo validaram as abor-
dagens propostas e destacaram os limites de aplicabilidade das mesmas em cenários
mais complexos.

Os resultados indicam que a forte dependência entre as observações reduz a ca-
pacidade de deteção, fazendo com que alguns métodos detetem pontos de mudança
onde não existem. Entre os métodos de divisão sucessiva, como a segmentação
binária (BS) e o algoritmo de Bai Perron BP, apresentam bom desempenho em ce-
nários i.i.d., mas perdem potência em contextos autocorrelacionados, especialmente
na análise de mudanças na tendência. O algoritmo de otimização global PELT (PL)
tende a acertar nos pontos de quebra na média , mas apresenta muitas quebras
espúrias e é extremamente sensível a valores atípicos (outliers). As taxas de acerto
nas mudança de nível são relativamente baixas quando a magnitude da variação é
pequena, independentemente do método utilizado. Resultados semelhantes são ob-
tidos em dados não normais, sendo que quanto maior o afastamento da normalidade,
menor é a taxa de acerto.

Por fim, o tamanho da amostra não se mostra um fator determinante para a
eficiência dos métodos; nas situações analisadas, as diferenças de desempenho entre
tamanhos amostrais foram pequenas.

No âmbito dos testes CUSUM, adaptados ao contexto de mudança no parâme-
tro de forma, ξ, da distribuição GEV, o método Probability-Weighted Moments PWM
mostrou-se mais potente para detetar mudanças no parâmetro ξ, especialmente para
caudas pesadas, enquanto que Generalized Probability Weighted Moments GPWM apre-
senta menor potência, sobretudo em mudanças para caudas leves. Contudo, ambos
revelam limitações na determinação precisa do instante da mudança e tendem a
detetar falsos alarmes sob forte dependência serial ou em distribuições com caudas
mais pesadas.

A obtenção de previsões precisas em séries temporais que contêm mudanças
de estruturas requer a integração de técnicas de estimação robusta e metodologias
adaptativas à cauda, capazes de lidar com dependência serial e outliers, bem como a
deteção de mudanças de estrutura (que podem ser por vezes pouco percetíveis). Com
base nos resultados do teste PWM na deteção de alterações no parâmetro de forma
da distribuição GEV, pretende-se generalizar o teste a cenários com dependência
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serial e desenvolver medidas que permitam estimar com maior precisão o ponto de
quebra. Os resultados empíricos obtidos reforçam esta necessidade e motiva linhas
futuras de investigação que devem focar o estudo e desenvolvimento de métodos
mais recentes e robustos para lidar com todos estes desafios.
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Anexo

Script Software R Cram

Bibliotecas Principais
packages <- c("changepoint","evd", "gridExtra", "CPAT","nortest","

robseg",
"dplyr", "MLmetrics", "strucchange", "ggplot2", "

fUnitRoots",
"tidyverse", "lubridate", "pROC", "forecast", "

tseries", "stR","bcpa","FinTS","npcp", "urca","
npcp")

lapply(packages , library , character.only = TRUE)

# A n l i s e s preliminares
set.seed (125)
phi1 <-0.4
n=50
innov <-rt(n,1.5)
innov1 <- rexp(n, rate = 1)

# Simular a s r i e
yt<-arima.sim(n = n, model = list(ar = phi1))
ts.plot(yt)
shapiro.test(yt) # normal
lillie.test(yt)
qqnorm(yt, xlab="QuantisTeoricos", ylab="QuantisEmpricos")
qqline(yt, col=2)

yt<-arima.sim(n = n, model = list(ar = phi1), innov = innov) # Yt ~
t, 2 graus de liberdade

ts.plot(yt)
hist(yt)
shapiro.test(yt) # t
lillie.test(yt)
qqnorm(yt, xlab="QuantisTeoricos", ylab="QuantisEmpricos")
qqline(yt, col=2)

yt<-arima.sim(n = n, model = list(ar = phi1), innov = innov1) # Yt
~ Exp (1)

ts.plot(yt)
hist(yt)
shapiro.test(yt) # exponencial
lillie.test(yt)
qqnorm(yt, xlab="QuantisTeoricos", ylab="QuantisEmpricos")
qqline(yt, col=2)

################################################################
data("Nile")
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df <- data.frame(
year = time(Nile),
flow = as.numeric(Nile)

)

ggplot(df, aes(x = year , y = flow)) +
geom_line(color = "blue", size = 1) +
labs(title = " S r i e Temporal do Rio Nilo",

x = "Ano",
y = "Fluxo") +

theme_minimal () +
theme(panel.grid = element_blank ())

length(Nile)
result <- cpt.mean(Nile , method = "BinSeg", penalty = "BIC", Q=1)

cpts(result)
plot(result , main = "")
#########################################################
# G r f i c o s
set.seed (42)

n <- 500
time <- 1:n

# --------- 1) AR(1) e s t a c i o n r i o (phi = 0.6) ----------
phi1 <- 0.6
eps <- rnorm(n)
x <- numeric(n)

for (t in 2:n) {
x[t] <- phi1 * x[t-1] + eps[t]

}

# Criar data frame
df <- data.frame(time = time , value = x)

# Plot com ggplot2 sem grade e com eixos
g1<-ggplot(df , aes(x = time , y = value)) +

geom_line(size=1, col="red") +
geom_hline(yintercept = 0, color = "black", linetype = "dashed",

size =1) +
labs(

title = "Processo AR(1) e s t a c i o n r i o ( = 0.6)",
x = "t",
y = "y"

) +
theme_classic () + # remove grade e m a n t m eixos
theme(

axis.line = element_line(), # enfatiza os eixos
panel.grid = element_blank() # garante que n o h grid

)

########################################

set.seed (123)

n <- 600
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time <- 1:n
eps <- rnorm(n)

y <- numeric(n)

# Definir os segmentos
seg1 <- 1:(n/3)
seg2 <- (n/3 + 1):(2*n/3)
seg3 <- (2*n/3 + 1):n

# P a r m e t r o s para cada segmento
phi1 <- 0.3; mu1 <- 0
phi2 <- 0.3; mu2 <- 1
phi3 <- 0.3; mu3 <- -1

# Simular segmento 1
for (t in seg1 [-1]) {

y[t] <- mu1 + phi1 * (y[t-1] - mu1) + eps[t]
}

# Simular segmento 2
y[seg2 [1]] <- mu2
for (t in seg2 [-1]) {

y[t] <- mu2 + phi2 * (y[t-1] - mu2) + eps[t]
}

# Simular segmento 3
y[seg3 [1]] <- mu3
for (t in seg3 [-1]) {

y[t] <- mu3 + phi3 * (y[t-1] - mu3) + eps[t]
}

# Criar dataframe para ggplot
df <- data.frame(time = time , value = y)

# Plot com ggplot2
g2<-ggplot(df , aes(x = time , y = value)) +

geom_line(size=1,col="blue") +
# linhas verticais marcando os regimes
geom_vline(xintercept = c(n/3, 2*n/3), linetype = "dashed") +
# linhas horizontais dos n v e i s m d i o s
geom_hline(yintercept = mu1 , color = "orange", linetype = "dashed

",size =1) +
geom_hline(yintercept = mu2 , color = "green", linetype = "dashed"

,size =1) +
geom_hline(yintercept = mu3 , color = "black", linetype = "dashed"

,size =1) +
labs(

title = "",
x = "t",
y = "y"

) +
theme_classic () +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)
#juntar os dois g r f i c o s
library(patchwork)
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g1+g2

set.seed (123)

n <- 500
time <- 1:n

# --------- AR(1) com v a r i n c i a n o constante ----------
phi1 <- 0.6
beta <- 0.02 # pequena t e n d n c i a linear
eps <- rnorm(n)
x_het <- numeric(n)

for (t in 2:n) {
# R u d o com v a r i n c i a crescente
sigma_t <- 0.5 + 0.005 * t # v a r i n c i a aumenta com o tempo
x_het[t] <- phi1 * x_het[t-1] + beta + eps[t] * sigma_t

}

# Criar data frame
df_het <- data.frame(time = time , value = x_het)

# Plot com ggplot2
g5 <- ggplot(df_het , aes(x = time , y = value)) +

geom_line(size = 1, col = "purple") +
geom_hline(yintercept = 0, color = "red", linetype = "dashed",

size = 1) +
labs(

title = "Processo AR(1) com v a r i n c i a n o constante",
x = "Tempo",
y = "Valor"

) +
theme_classic () +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)

# Mostrar g r f i c o
print(g5)

###############33
library(ggplot2)

set.seed (42)

n <- 500
time <- 1:n

# --------- AR(1) com t e n d n c i a ----------
phi1 <- 0.6
beta <- 0.05 # i n c l i n a o da t e n d n c i a linear
eps <- rnorm(n, mean = 0, sd = 5)
x_trend <- numeric(n)

for (t in 2:n) {
x_trend[t] <- phi1 * x_trend[t-1] + beta * t + eps[t]

}
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# Criar data frame
df_trend <- data.frame(time = time , value = x_trend)

# Plot com ggplot2
g4 <- ggplot(df_trend , aes(x = time , y = value)) +

geom_line(size = 1, col = "red") +
labs(

title = "I",
x = "t",
y = "y"

) +
theme_classic () +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)

# Mostrar g r f i c o
print(g4)
#############333
library(ggplot2)

set.seed (42)

n <- 500
time <- 1:n

# --------- AR(1) com v a r i n c i a n o constante ----------
phi1 <- 0.6
beta <- 0.02 # pequena t e n d n c i a linear
eps <- rnorm(n)
x_het <- numeric(n)

for (t in 2:n) {
# R u d o com v a r i n c i a crescente
sigma_t <- 0.5 + 0.005 * t # v a r i n c i a aumenta com o tempo
x_het[t] <- phi1 * x_het[t-1] + beta + eps[t] * sigma_t

}

# Criar data frame
df_het <- data.frame(time = time , value = x_het)

# Plot com ggplot2
g5 <- ggplot(df_het , aes(x = time , y = value)) +

geom_line(size = 1, col = "blue") +

labs(
title = "II",
x = "t",
y = "y"

) +
theme_classic () +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)

# Mostrar g r f i c o
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print(g5)
library(patchwork)
g4+g5

###########################################3
library(ggplot2)

set.seed (123)

n <- 200
change_point <- 100

# ---- AR(1) ----
phi <- 0.7
ar1 <- arima.sim(n = n, list(ar = phi))
ar1[change_point:n] <- ar1[change_point:n] + 3
df_ar <- data.frame(time = 1:n, value = ar1 , tipo = "AR(1)")

# ---- ARMA (1,1) ----
phi <- 0.7
theta <- 0.5
arma11 <- arima.sim(n = n, list(ar = phi , ma = theta))
arma11[change_point:n] <- arma11[change_point:n] + 3
df_arma <- data.frame(time = 1:n, value = arma11 , tipo = "ARMA (1,1)

")

# ---- ARIMA (1,1,1) ----
phi <- 0.7
theta <- 0.5
arima111 <- arima.sim(n = n, list(order = c(1,1,1), ar = phi , ma =

theta))
arima111[change_point:n] <- arima111[change_point:n] + 3
df_arima <- data.frame(time = 1:n, value = arima111 , tipo = "ARIMA

(1,1,1)")

# ---- Combinar e plotar ----
df <- rbind(df_ar , df_arma , df_arima)

ggplot(df, aes(x = time , y = value , color = tipo)) +
geom_line(size = 1) +
geom_vline(xintercept = change_point , linetype = "dashed", color

= "red") +
labs(

title = " C o m p a r a o da d e t e c o de m u d a n a de m d i a : AR
(1), ARMA (1,1), ARIMA (1,1,1)",

x = "Tempo",
y = "Valor",
color = "Processo"

) +
theme_classic ()

########################################3
# D e f i n i o dos p a r m e t r o s do AR(1)
library(forecast) # para autoplot
library(ggplot2)

# P a r m e t r o s do AR(1)
phi <- 0.6
n <- 500
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# S i m u l a o
set.seed (42)
x <- arima.sim(model = list(ar = phi), n = n,sd=2)+3

# FAC com autoplot
g1<-autoplot(acf(x, plot = FALSE),lwd=1,col="blue") +

ggtitle(" F u n o de A u t o c o r r e l a o (FAC) - AR(1) simulado")+
theme_minimal () +
theme(panel.grid = element_blank ()) +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)
# FACP com autoplot
g2<-autoplot(pacf(x, plot = FALSE),lwd=1.5,col="orange")+

ggtitle(" F u n o de A u t o c o r r e l a o Parcial (FACP) - AR(1)
simulado")+

theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)
library(patchwork)
g1+g2

# Simular MA(1)
set.seed (42)
ma1 <- arima.sim(n = n, list(ma = 0.7), sd=2)+3

# Simular MA(3)
set.seed (42)
ma3 <- arima.sim(n = n, list(ma = c(0.5, -0.3, 0.4)),sd=2)+5

# Plot das s r i e s temporais
g1<-autoplot(acf(ma1 , plot = FALSE),lwd=1.5,col="blue")+

ggtitle("ACF - MA(1)")+
theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)
# FACP com autoplot
g2<-autoplot(acf(ma3 , plot = FALSE),lwd=1.5,col="orange")+

ggtitle("ACF - MA(3)")+
theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(

axis.line = element_line(),
panel.grid = element_blank()

)
g1+g2

####################3333
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library(forecast)
library(ggplot2)
library(patchwork) # para juntar os g r f i c o s

n <- 200

# Simular ARMA (1,1) com AR=0.6, MA=0.5
set.seed (42)
arma11 <- arima.sim(n = n, list(ar = 0.6, ma = 0.5),sd=2)+4

# Simular ARMA (2,2) com AR=c(0.5 , -0.3), MA=c(0.4 ,0.2)
set.seed (42)
arma22 <- arima.sim(n = n, list(ar = c(0.5, -0.3), ma = c(0.4, 0.2)

),sd=2)+2

# FAC ARMA (1,1)
g1 <- autoplot(acf(arma11 , plot = FALSE), lwd=1.5, col="blue") +

ggtitle("ACF - ARMA (1,1)") +
theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(axis.line = element_line(), panel.grid = element_blank())

# FAC ARMA (2,2)
g2 <- autoplot(acf(arma22 , plot = FALSE), lwd=1.5, col="orange") +

ggtitle("ACF - ARMA (2,2)") +
theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(axis.line = element_line(), panel.grid = element_blank())

# Juntar g r f i c o s
g1 + g2

#####################################3333
library(forecast)
library(ggplot2)
library(patchwork) # para juntar os g r f i c o s

n <- 200

# Simular ARMA (1,1) com AR=0.6, MA=0.5
set.seed (42)
arma11 <- arima.sim(n = n, list(ar = 0.6, ma = 0.5),sd=2)+2

# Simular ARMA (2,2) com AR=c(0.5 , -0.3), MA=c(0.4 ,0.2)
set.seed (42)
arma22 <- arima.sim(n = n, list(ar = c(0.5, -0.3), ma = c(0.4, 0.2)

),sd=2)+3

# FAC ARMA (1,1)
g3 <- autoplot(pacf(arma11 , plot = FALSE), lwd=1.5, col="blue") +

ggtitle("PACF - ARMA (1,1)") +
theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(axis.line = element_line(), panel.grid = element_blank())
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# FAC ARMA (2,2)
g4 <- autoplot(pacf(arma22 , plot = FALSE), lwd=1.5, col="orange") +

ggtitle("PACF - ARMA (2,2)") +
theme_minimal () +
theme(panel.grid = element_blank ()) +
geom_segment(aes(xend = lag , yend = 0), size = 3) +
theme(axis.line = element_line(), panel.grid = element_blank())

# Juntar g r f i c o s
par(mfrow=c(2,2))
g1+g2+g3+g4

###################333333
# p a r m e t r o s
n <- 100
lambda <- 50

# gera s r i e temporal
t <- 1:n
y <- c(rnorm(lambda , mean = 10, sd = 1), # antes da m u d a n a

rnorm(n - lambda , mean = 13, sd = 1)) # depois da m u d a n a

# cria dataframe
df <- data.frame(

tempo = t,
valor = y

)

# plota
ggplot(df, aes(x = tempo , y = valor)) +

geom_line(color = "black", linewidth = 1.5) +
geom_vline(xintercept = lambda , linetype = "dashed", color = "red

",size =1) +
labs(

title = " k = 50",
x = "t",
y = "y"

) +
theme_minimal ()+
theme(

panel.grid = element_blank(), # remove a grelha
axis.line = element_line(color = "black", linewidth = 0.8), #

adiciona linhas dos eixos
axis.ticks = element_line(color = "black") #

adiciona ticks
)

# s e c c o : 2.3
#

########################################################################################################

set.seed (123)

# p a r m e t r o s
n <- 100
lambda <- 50

# gera s r i e temporal com m u d a n a de t e n d n c i a
t <- 1:n
y <- c( 2 + 0.3 * (1: lambda) + rnorm(lambda , sd = 5),
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7 + 0.6 * (1:(n - lambda)) + rnorm(n - lambda , sd = 5) )

# cria dataframe
df <- data.frame(

tempo = t,
valor = y

)

# estima breakpoints
bp <- breakpoints(y ~ t)
fitted_vals <- fitted(bp)

df$fitted <- fitted_vals
library(ggplot2)
ggplot(df, aes(x = tempo)) +

geom_line(aes(y = valor), color = "black", linewidth = 1.2) +
geom_line(aes(y = fitted), color = "blue", linewidth = 1.2) +
geom_vline(xintercept = bp$breakpoints , linetype = "dashed",

color = "red",size =1) +
labs(

title = "k=50",
x = "t",
y = "y"

) +
theme_minimal ()+
theme(

panel.grid = element_blank(), # remove a grelha
axis.line = element_line(color = "black", linewidth = 0.8), #

adiciona linhas dos eixos
axis.ticks = element_line(color = "black") #

adiciona ticks
)

#
###############################################################################################################

library(evd)

set.seed (123)
n <- 100

# --- C e n r i o I: xi constante = 0.2 ---
x1 <- rgev(n, loc = 0, scale = 1, shape = 0.2)
df1 <- data.frame(

t = 1:n,
valor = x1

)

# --- C e n r i o II: xi muda em t = 50 ---
x2 <- c(

rgev(50, loc = 0, scale = 1, shape = 0.2),
rgev(50, loc = 0, scale = 1, shape = 0.5)

)
df2 <- data.frame(

t = 1:n,
valor = x2

)
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# --- G r f i c o 1: C e n r i o I ---
g1 <- ggplot(df1 , aes(x = t, y = valor)) +

geom_line(color = "black",size =1) +
labs(

title = "I",
x = "t",
y = "y"

) +
theme_minimal(base_size = 13) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

# --- G r f i c o 2: C e n r i o II ---
g2 <- ggplot(df2 , aes(x = t, y = valor)) +

geom_line(color = "blue",size =1) +
geom_vline(xintercept = 50, color = "red", linetype = "dashed",

linewidth = 1) +
labs(

title = "II",
x = "t",
y = "y"

) +
theme_minimal(base_size = 13) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
# --- Exibe g r f i c o s lado ao lado
library(gridExtra)
grid.arrange(g1 , g2 , ncol = 2)

####################3

library(patchwork) # para combinar g r f i c o s

# --- F u n o CUSUM ---
cusum_stat <- function(y) {

n <- length(y)
stats <- numeric(n - 1)
for (lambda in 1:(n - 1)) {

mean1 <- mean(y[1: lambda ])
mean2 <- mean(y[( lambda + 1):n])
stats[lambda] <- sqrt(( lambda * (n - lambda)) / n) * abs(mean1

- mean2)
}
return(stats)

}

# --- S i m u l a o de dados ---
set.seed (123)
y <- c(rnorm (50, mean = 0), rnorm(50, mean = 3))
cusum_vals <- cusum_stat(y)

df_y <- data.frame(t = 1: length(y), valor = y)
df_cusum <- data.frame(lambda = 1:( length(y) -1), C = cusum_vals)
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# --- G r f i c o 1: S r i e temporal ---
g1 <- ggplot(df_y, aes(x = t, y = valor)) +

geom_line(color = "blue", linewidth = 1) +

labs(title = " S r i e temporal", x = "X", y = "y") +
theme_minimal(base_size = 13) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

# --- G r f i c o 2: E s t a t s t i c a CUSUM ---
g2 <- ggplot(df_cusum , aes(x = lambda , y = C)) +

geom_line(color = "darkred", linewidth = 1) +
geom_vline(xintercept = which.max(cusum_vals), color = "red",

linetype = "dashed") +
labs(title = " E s t a t s t i c a CUSUM", x = " ", y = expression(C[

lambda ])) +
theme_minimal(base_size = 13) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

# --- Lado a lado ---
g1 + g2
#

####################################################################################################

set.seed (123)
# P a r m e t r o s
n <- 200 # Tamanho da s r i e
n_series <- 2000 # N m e r o de s r i e s
phi1 <- 0.2 # Coeficiente AR(1)
mu1 <- 1; mu2 <- 4 # M d i a s antes/depois
sd1 <- 1; sd2 <- 1 # Desvios p a d r o antes/depois
m_real <- 50 # Ponto verdadeiro de m u d a n a
penalt_val <- "BIC"
method1 <- "BinSeg"

#Armazenar vectores
matrx <- matrix(NA, nrow = n_series , ncol = n)
cpt.vet <- vector("list", n_series)
epsilon <- numeric(n_series)
num_detectados <- numeric(n_series)

# S i m u l a o com m u d a n a na m d i a e na v a r i n c i a
for (i in 1:n_series) {

x1 <- arima.sim(n = m_real , model = list(ar = phi1), sd = sd1) +
mu1

x2 <- arima.sim(n = n - m_real , model = list(ar = phi1), sd = sd2
) + mu2

y <- c(x1, x2)
matrx[i, ] <- y

# D e t e c o de m u d a n a com BinSeg
change_t <- cpt.meanvar(y, method = method1 , penalty = penalt_val

)
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detectados <- cpts(change_t)
cpt.vet[[i]] <- detectados
num_detectados[i] <- length(detectados)

if (length(detectados) == 1) {
epsilon[i] <- detectados - m_real

} else {
epsilon[i] <- NA

}
}

epsilon_validos <- na.omit(epsilon)
n_validos <- length(epsilon_validos)

# taxa de acerto para janelas 0 a 5
Hs <- sapply (0:5, function(k) {

sum(abs(epsilon_validos) <= k) / n_validos
})
Hs

# --- G r f i c o 1: BinSeg ---
df <- data.frame(erro = sort(abs(epsilon_validos)))
df$proporcao <- ecdf(abs(epsilon_validos))(df$erro)

g1 <- ggplot(df , aes(x = erro , y = proporcao)) +
geom_line(color = "blue", size = 1) +
geom_vline(xintercept = 2, linetype = "dashed", color = "red",

size = 1.5) +
annotate("text", x = 4.5, y = 0.3,

label = "",
hjust = 0, vjust = 0,
size = 4.2, fontface = "italic", color = "black") +

labs(
title = " S e g m e n t a o B i n r i a ",
x = "| |",
y = " P r o p o r o acumulada"

) +
scale_x_continuous(breaks = seq(0, 10, 2), limits = c(0, 10)) +

theme_minimal(base_size = 13) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

# --- F u n o CUSUM ---
cusum_stat <- function(y) {

n <- length(y)
stats <- numeric(n - 1)
for (lambda in 1:(n - 1)) {

mean1 <- mean(y[1: lambda ])
mean2 <- mean(y[( lambda + 1):n])
stats[lambda] <- sqrt(( lambda * (n - lambda)) / n) * abs(mean1

- mean2)
}
return(stats)

}

# --- D E T E C O COM CUSUM ---
epsilon_cusum <- numeric(n_series)
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for (i in 1:n_series) {
y <- matrx[i, ]
stats <- cusum_stat(y)
lambda_est <- which.max(stats) # ponto estimado de m u d a n a

if (length(lambda_est) == 1) {
epsilon_cusum[i] <- lambda_est - m_real

} else {
epsilon_cusum[i] <- NA

}
}

epsilon_cusum_validos <- na.omit(epsilon_cusum)
n_validos_cusum <- length(epsilon_cusum_validos)

# taxa de acerto para janelas 0 a 5
Hs_cusum <- sapply (0:5, function(k) {

sum(abs(epsilon_cusum_validos) <= k) / n_validos_cusum
})
Hs_cusum

# --- G r f i c o 2: CUSUM ---
df_cusum <- data.frame(erro = sort(abs(epsilon_cusum_validos)))
df_cusum$proporcao <- ecdf(abs(epsilon_cusum_validos))(df_cusum$

erro)

g2 <- ggplot(df_cusum , aes(x = erro , y = proporcao)) +
geom_line(color = "darkgreen", size = 1) +
geom_vline(xintercept = 3, linetype = "dashed", color = "red",

size = 1.5) +
annotate("text", x = 4.5, y = 0.3,

label = "",
hjust = 0, vjust = 0,
size = 4.2, fontface = "italic", color = "black") +

labs(
title = "CUSUM",
x = "| |",
y = " P r o p o r o acumulada"

) +
scale_x_continuous(breaks = seq(0, 10, 2), limits = c(0, 10)) +
theme_minimal(base_size = 13) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

# --- C o m p a r a o Lado a Lado ---
g1 + g2 + plot_annotation(title = " C o m p a r a o BinSeg vs CUSUM")

#
####################################################################################################

# P a r m e t r o s da s i m u l a o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 2000
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penalty1 <- "MBIC"
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("PELT")
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com
rotulos_delta <- c(expression(delta == 0.5),

expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame()
set.seed (123)

for (d in 1: length(deltas)) {
delta <- deltas[d]
for (phi in phis) {

for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {

x1 <- arima.sim(n = m_real , model = list(ar = phi))
x2 <- arima.sim(n = n - m_real , model = list(ar = phi)) +

delta
y <- c(x1, x2)
cpt <- cpt.mean(y, penalty = penalty1 , method = met , test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = factor(

deltas[d]), phi = phi , metodo = met , taxa_acerto = taxa))
}

}
}

# G r f i c o com na legenda
ggplot(resultados , aes(x = phi , y = taxa_acerto , color = delta)) +

geom_line(size = 1.2) +
labs(title = "",

x = expression(phi),
y = "Taxa de Acerto",
color = "PL") +

scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +

theme_minimal(base_size = 14)+
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

###########

library(dplyr)
library(tidyr)
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# Criar data frame com os valores
x <- seq(0, 5, length =1000)
df <- data.frame(

x = x,
t_05 = dt(x, df=0.5),
t_1 = dt(x, df=1),
t_15 = dt(x, df=1.5),
t_3 = dt(x, df=3),
t_10 = dt(x, df=10),
normal = dnorm(x)

)

# Transformar para formato longo
df_long <- df %>%

pivot_longer(cols = -x, names_to = "Distribuicao", values_to = "
densidade")

# Mapear nomes para legendas com e x p r e s s o
labels_expr <- c(

t_05 = expression(t(nu ==0.5)),
t_1 = expression(t(nu==1)),
t_15 = expression(t(nu ==1.5)),
t_3 = expression(t(nu==3)),
t_10 = expression(t(nu ==10)),
normal = "Normal p a d r o "

)

# Criar g r f i c o
ggplot(df_long , aes(x = x, y = densidade , color = Distribuicao ,

linetype = Distribuicao)) +
geom_line(size = 1.3) +
scale_color_manual(values = c("purple", "red", "orange", "blue",

"green", "black"),
labels = labels_expr) +

scale_linetype_manual(values = c(1,1,1,1,1,3),
labels = labels_expr) +

labs(
title = " D i s t r i b u i e s t-Student vs Normal p a d r o (x >= 0)",
x = "x",
y = "Densidade",
color = NULL ,
linetype = NULL

) +
theme_minimal(base_size = 14) +
theme(

legend.position = "right", # Colocar a legenda direita
legend.direction = "vertical", # Vertical
legend.title = element_text(size = 12),
legend.text = element_text(size = 10)

)+
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

#################3
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# P a r m e t r o s
m_real <- 50
n <- 200
n_serie <- 2000
phi <- 0.4
deltas <- c(0.5, 1.5, 3) # fraca , moderada , forte
dfs <- seq(1, 10, by = 0.5)
tolerancia <- 3
methods <- "BinSeg"
names(methods) <- c("BinSeg")

set.seed (123)

# Resultados
resultados <- data.frame()

# S i m u l a o
for (delta in deltas) {

for (df in dfs) {
for (met_nome in names(methods)) {

metodo <- methods[met_nome]
penalty <- "BIC"
acertos <- 0

for (i in 1:n_serie) {
# I n o v a e s t-Student
innov1 <- rt(m_real , df = df)
innov2 <- rt(n - m_real , df = df)

# S r i e AR(1) com m u d a n a de n v e l delta
x1 <- arima.sim(n = m_real , model = list(ar = phi), innov =

innov1)
x2 <- arima.sim(n = n - m_real , model = list(ar = phi),

innov = innov2) + delta
y <- c(x1, x2)

# D e t e c o de m u d a n a de m d i a
cpt <- cpt.mean(y, penalty = penalty , method = metodo)
cps <- cpts(cpt)

if (any(cps %in% (m_real - tolerancia):(m_real + tolerancia
))) {

acertos <- acertos + 1
}

}

taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = delta , df

= df , taxa_acerto = taxa))
}

}
}

# Transformar delta em fator para legendas
resultados$delta <- factor(resultados$delta , levels = deltas)

# Labels para legenda com e intensidade
labels_delta <- c(expression("Fraca ("~delta ==0.5~")"),

expression("Moderada ("~delta ==1.5~")"),
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expression("Forte ("~delta ==3~")"))

# Plot
g1<-ggplot(resultados , aes(x = df , y = taxa_acerto , color = delta ,

group = delta)) +
geom_line(size = 1.2) +

scale_color_manual(
values = c("purple", "orange", "red"),
labels = labels_delta

) +
labs(

title = "",
x = "df",
y = "Taxa de acerto",
color = "BS"

) +
theme_minimal(base_size = 14) +
theme(

legend.position = "right",
legend.direction = "vertical",
panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

#################3

# P a r m e t r o s
m_real <- 50
n <- 200
n_serie <- 2000
phi <- 0.4
deltas <- c(0.5, 1.5, 3) # fraca , moderada , forte
dfs <- seq(1, 10, by = 0.5)
tolerancia <- 3
methods <- "PELT"
names(methods) <- c("BinSeg")

set.seed (123)

# Resultados
resultados <- data.frame()

# S i m u l a o
for (delta in deltas) {

for (df in dfs) {
for (met_nome in names(methods)) {

metodo <- methods[met_nome]
penalty <- "BIC"
acertos <- 0

for (i in 1:n_serie) {
# I n o v a e s t-Student
innov1 <- rt(m_real , df = df)
innov2 <- rt(n - m_real , df = df)

# S r i e AR(1) com m u d a n a de n v e l delta
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x1 <- arima.sim(n = m_real , model = list(ar = phi), innov =
innov1)

x2 <- arima.sim(n = n - m_real , model = list(ar = phi),
innov = innov2) + delta

y <- c(x1, x2)

# D e t e c o de m u d a n a de m d i a
cpt <- cpt.mean(y, penalty = penalty , method = metodo)
cps <- cpts(cpt)

if (any(cps %in% (m_real - tolerancia):(m_real + tolerancia
))) {

acertos <- acertos + 1
}

}

taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = delta , df

= df , taxa_acerto = taxa))
}

}
}

# Transformar delta em fator para legendas
resultados$delta <- factor(resultados$delta , levels = deltas)

# Labels para legenda com e intensidade
labels_delta <- c(expression("Fraca ("~delta ==0.5~")"),

expression("Moderada ("~delta ==1.5~")"),
expression("Forte ("~delta ==3~")"))

# Plot
g2<-ggplot(resultados , aes(x = df , y = taxa_acerto , color = delta ,

group = delta)) +
geom_line(size = 1.2) +

scale_color_manual(
values = c("purple", "orange", "red"),
labels = labels_delta

) +
labs(

title = "",
x = "df",
y = "",
color = " PL"

) +
theme_minimal(base_size = 14) +
theme(

legend.position = "right",
legend.direction = "vertical",
panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
#######################3

# P a r m e t r o s
m_real <- 50
n <- 200
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n_serie <- 200
phi <- 0.4
deltas <- c(0.5, 1.5, 3) # fraca , moderada , forte
dfs <- seq(1, 10, by = 0.5)
tolerancia <- 3

set.seed (123)

# Resultados
resultados <- data.frame()

# S i m u l a o
for (delta in deltas) {

for (df in dfs) {
acertos <- 0

for (i in 1:n_serie) {
# I n o v a e s t-Student
innov1 <- rt(m_real , df = df)
innov2 <- rt(n - m_real , df = df)

# S r i e AR(1) com m u d a n a de n v e l delta
x1 <- arima.sim(n = m_real , model = list(ar = phi), innov =

innov1)
x2 <- arima.sim(n = n - m_real , model = list(ar = phi), innov

= innov2) + delta
y <- c(x1, x2)

# D e t e c o de m u d a n a ( f o r a n d o 1 quebra)
fm <- breakpoints(y ~ 1, breaks = 1, h = 10)
cps <- fm$breakpoints

if (any(cps %in% (m_real - tolerancia):(m_real + tolerancia))
) {

acertos <- acertos + 1
}

}

taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = delta , df =

df , taxa_acerto = taxa))
}

}

# Transformar delta em fator para legendas
resultados$delta <- factor(resultados$delta , levels = deltas)

# Labels para legenda com e intensidade
labels_delta <- c(expression("Fraca ("~delta ==0.5~")"),

expression("Moderada ("~delta ==1.5~")"),
expression("Forte ("~delta ==3~")"))

# Plot
g3 <- ggplot(resultados , aes(x = df, y = taxa_acerto , color = delta

, group = delta)) +
geom_line(size = 1.2) +
scale_color_manual(values = c("purple", "orange", "red"),

labels = labels_delta) +
labs(
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title = "",
x = "df",
y = "",
color = "BP"

) +
theme_minimal(base_size = 14) +
theme(

legend.position = "right",
legend.direction = "vertical",
panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
g1+ g2 + g3
###################################################################
library(changepoint)
library(ggplot2)

# P a r m e t r o s da s i m u l a o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 2000
penalty1 <- "MBIC"
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("BinSeg")
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com
rotulos_delta <- c(expression(delta == 0.5),

expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame()
set.seed (123)

for (d in 1: length(deltas)) {
delta <- deltas[d]
for (phi in phis) {

for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {

x1 <- arima.sim(n = m_real , model = list(ar = phi))
x2 <- arima.sim(n = n - m_real , model = list(ar = phi)) +

delta
y <- c(x1, x2)
cpt <- cpt.mean(y, penalty = penalty1 , method = met , test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = factor(

deltas[d]), phi = phi , metodo = met , taxa_acerto = taxa))
}
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}
}

# G r f i c o com na legenda
g1<-ggplot(resultados , aes(x = phi , y = taxa_acerto , color = delta)

) +
geom_line(size = 1.2) +
labs(title = "",

x = expression(phi),
y = "Taxa de Acerto",
color = "BS") +

scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +

theme_minimal(base_size = 14)+
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
#################
# P a r m e t r o s da s i m u l a o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 200
penalty1 <- "MBIC"
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("PELT")
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com
rotulos_delta <- c(expression(delta == 0.5),

expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame()
set.seed (123)

for (d in 1: length(deltas)) {
delta <- deltas[d]
for (phi in phis) {

for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {

x1 <- arima.sim(n = m_real , model = list(ar = phi))
x2 <- arima.sim(n = n - m_real , model = list(ar = phi)) +

delta
y <- c(x1, x2)
cpt <- cpt.mean(y, penalty = penalty1 , method = met , test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
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resultados <- rbind(resultados , data.frame(delta = factor(
deltas[d]), phi = phi , metodo = met , taxa_acerto = taxa))

}
}

}

# G r f i c o com na legenda
g2<-ggplot(resultados , aes(x = phi , y = taxa_acerto , color = delta)

) +
geom_line(size = 1.2) +
labs(title = "",

x = expression(phi),
y = "",
color = "PL") +

scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +

theme_minimal(base_size = 14)+
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
########### library(changepoint)

# P a r m e t r o s da s i m u l a o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 2000
penalty1 <- "MBIC"
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("AMOC")
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com
rotulos_delta <- c(expression(delta == 0.5),

expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame()
set.seed (123)

for (d in 1: length(deltas)) {
delta <- deltas[d]
for (phi in phis) {

for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {

x1 <- arima.sim(n = m_real , model = list(ar = phi))
x2 <- arima.sim(n = n - m_real , model = list(ar = phi)) +

delta
y <- c(x1, x2)
cpt <- cpt.mean(y, penalty = penalty1 , method = met , test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1
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}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = factor(

deltas[d]), phi = phi , metodo = met , taxa_acerto = taxa))
}

}
}

# G r f i c o com na legenda
g3<-ggplot(resultados , aes(x = phi , y = taxa_acerto , color = delta)

) +
geom_line(size = 1.2) +
labs(title = "",

x = expression(phi),
y = "Taxa de Acerto",
color = "AMOC") +

scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +

theme_minimal(base_size = 14)+
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
#####################

# P a r m e t r o s da s i m u l a o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 2000
penalty1 <- "BIC"
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("SegNeigh")
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com
rotulos_delta <- c(expression(delta == 0.5),

expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame()
set.seed (123)

for (d in 1: length(deltas)) {
delta <- deltas[d]
for (phi in phis) {

for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {

x1 <- arima.sim(n = m_real , model = list(ar = phi))
x2 <- arima.sim(n = n - m_real , model = list(ar = phi)) +

delta
y <- c(x1, x2)
cpt <- cpt.mean(y, penalty = penalty1 , method = met , test.

stat = "Normal")
cps <- cpts(cpt)
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if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +
intervalo_tolerancia))) {

acertos <- acertos + 1
}

}
taxa <- acertos / n_serie
resultados <- rbind(resultados , data.frame(delta = factor(

deltas[d]), phi = phi , metodo = met , taxa_acerto = taxa))
}

}
}

# G r f i c o com na legenda
g5<-ggplot(resultados , aes(x = phi , y = taxa_acerto , color = delta)

) +
geom_line(size = 1.2) +
labs(title = "",

x = expression(phi),
y = "Taxa de Acerto",
color = "SegNeigh") +

scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +

theme_minimal(base_size = 14)+
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

##########3

# P a r m e t r o s da s i m u l a o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 2000
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("breakpoints") # s ilustrativo , pois breakpoints

a f u n o usada
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com
rotulos_delta <- c(expression(delta == 0.5),

expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame()

for (d in 1: length(deltas)) {
delta <- deltas[d]
for (phi in phis) {

acertos <- 0
for (i in 1:n_serie) {

# duas partes AR(1) com shift na m d i a
x1 <- arima.sim(n = m_real , model = list(ar = phi))
x2 <- arima.sim(n = n - m_real , model = list(ar = phi)) +

delta
y <- c(x1, x2)
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# Ajuste de breakpoints (1 quebra)
bp <- breakpoints(y ~ 1, breaks = 1)
cps <- bp$breakpoints

# Contagem de acertos (dentro do intervalo de t o l e r n c i a )
if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados ,

data.frame(delta = factor(deltas[d]),
phi = phi ,
metodo = "breakpoints",
taxa_acerto = taxa))

}
}

# G r f i c o com na legenda
g6 <- ggplot(resultados , aes(x = phi , y = taxa_acerto , color =

delta)) +
geom_line(size = 1.2) +
labs(title = "",

x = expression(phi),
y = "",
color = "BP") +

scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +

theme_minimal(base_size = 14) +
theme(

panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

g1+g2+g6
##############################333
#dependencia
m_real <- 50
n <- 200
n_serie <- 2000
df <- 5 # graus de liberdade da t-student

penalties <- c("AIC", "BIC", "MBIC")
mu2_vec <- c(0.5, 1.5, 3)
phi_vec <- c(0.2, 0.5, 0.8) # valores do phi a testar
mean1 <- 0 # m d i a antes da m u d a n a
tol <- 3 # t o l e r n c i a para considerar acerto

set.seed (123)

# Array 3D para armazenar taxa de acerto: phi x mu2 x penalty
taxas_acerto <- array(NA ,

dim = c(length(phi_vec), length(mu2_vec),
length(penalties)),

dimnames = list(paste0("phi=", phi_vec),
paste0("mu2=", mu2_vec),
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penalties))

for (f in seq_along(phi_vec)) {
phi <- phi_vec[f]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m] + mean1 # m d i a a p s m u d a n a

for (p in seq_along(penalties)) {
penalty1 <- penalties[p]
cp_detected <- vector("list", n_serie)

for (i in 1:n_serie) {
innov1 <- rt(m_real , df = df)
innov2 <- rt(n - m_real , df = df)

x1 <- arima.sim(n = m_real , model = list(ar = phi), innov =
innov1) + mean1

x2 <- arima.sim(n = n - m_real , model = list(ar = phi),
innov = innov2) + mean2

y <- c(x1, x2)

cpt <- cpt.mean(y, penalty = penalty1 , method = "BinSeg")
cp_detected [[i]] <- cpts(cpt)

}

acertos <- sum(sapply(cp_detected , function(x) any(x %in% (m_
real - tol):(m_real + tol))))

taxas_acerto[f, m, p] <- acertos / n_serie
}

}
}

print(round(taxas_acerto * 100, 2))
##############################################################

## R e s d u o s normais e independentes
# Processos e st aci on r io s em segmentos
library(changepoint)

n <- 200 # tamanho total da s r i e
breakp <- 50 # ponto real da m u d a n a
mean1 <- 0
mean2 <- 1
penalty1 <- "AIC"
n_sim <- 2000
tol <- 3

detected_cpts <- vector("list", n_sim)

set.seed (123)

for (i in 1:n_sim) {
yt <- c(

rnorm(breakp , mean = mean1 , sd = 1),
rnorm(n - breakp , mean = mean2 , sd = 1)

)
y <- ts(yt)
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cp <- cpt.mean(y, method = "PELT", penalty = penalty1)
detected_cpts[[i]] <- cpts(cp)

}

acertos <- sum(sapply(detected_cpts , function(x) any(x %in% 47:53))
)

tax_acert <- acertos / n_sim
print(paste("Taxa de acerto:", round(tax_acert , 4)*100, "%"))

set.seed (123)

# P a r m e t r o s
n <- 200
n_series <- 2000
phi1 <- 0.2
mu1 <- 1
mu2 <- 4
sd1 <- 1
sd2 <- 2
m_real <- 50
method1 <- "BinSeg"
penalties <- c("AIC", "BIC", "MBIC")
tol_max <- 5 # janelas 0 a 5

# Matriz para armazenar taxas de acerto
taxas_acerto <- matrix(NA , nrow = tol_max + 1, ncol = length(

penalties),
dimnames = list(paste0(" ", 0:tol_max),

penalties))

for (p in seq_along(penalties)) {
pen <- penalties[p]
epsilon <- numeric(n_series)

for (i in 1:n_series) {
# S i m u l a o da s r i e com m u d a n a de m d i a e v a r i n c i a
x1 <- arima.sim(n = m_real , model = list(ar = phi1), sd = sd1)

+ mu1
x2 <- arima.sim(n = n - m_real , model = list(ar = phi1), sd =

sd2) + mu2
y <- c(x1, x2)

# D e t e c o de m u d a n a
cp <- cpt.meanvar(y, method = method1 , penalty = pen)
detectados <- cpts(cp)

if (length(detectados) == 1) {
epsilon[i] <- detectados - m_real

} else {
epsilon[i] <- NA

}
}

epsilon_validos <- na.omit(epsilon)
n_validos <- length(epsilon_validos)
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# Calcular taxas de acerto para janelas 0 a 5
taxas_acerto[, p] <- sapply (0: tol_max , function(k) {

sum(abs(epsilon_validos) <= k) / n_validos * 100
})

}

# Transformar em dat para v i s u a l i z a o
df_taxas <- data.frame(Janela = rownames(taxas_acerto), taxas_

acerto)
print(df_taxas)
#

#################################################################################################

library(changepoint)

# P a r m e t r o s
n <- 200
breakp <- 50
mean1 <- 0
mu2_vec <- c(0.5, 1.5, 3) # magnitude da m u d a n a
penalties <- "MBIC"
n_sim <- 2000
tol <- 3
phi_vec <- c(0, 0.2, 0.5, 0.8) # coeficientes AR(1)
METHOD <- c("BinSeg", "PELT") # m t o d o s a testar

# Array 4D: phi x mu2 x m t o d o x penalty
taxas_acerto <- array(NA ,

dim = c(length(phi_vec), length(mu2_vec),
length(METHOD), length(penalties)),

dimnames = list(
paste0("phi=", phi_vec),
paste0("mu2=", mu2_vec),
METHOD ,
penalties

))

set.seed (123)

for (j in seq_along(phi_vec)) {
phi_val <- phi_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]

for (meth in seq_along(METHOD)) {
method_val <- METHOD[meth]

for (p in seq_along(penalties)) {
penalty1 <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# simula AR(1) normal
Z <- arima.sim(model = list(ar = phi_val), n = n)
yt <- c(Z[1: breakp] + mean1 ,

Z[( breakp +1):n] + mean2)
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cp <- cpt.mean(yt, method = method_val , penalty =
penalty1 , Q = 1)

cpt.vet[[i]] <- cpts(cp)
}

acertos <- sum(sapply(cpt.vet , function(x) any(x %in% (
breakp - tol):( breakp + tol))))

taxas_acerto[j, m, meth , p] <- acertos / n_sim
}

}
}

}

# Visualizar resultados em porcentagem
print(round(taxas_acerto * 100, 2))
#

######################################################################################################

# Overthingt

#
######################################################################################################

library(changepoint)

# P a r m e t r o s
n <- 200
breakp <- 50
mean1 <- 0
mu2_vec <- c(0.5, 1.5, 3) # magnitude da m u d a n a
penalties <- "MBIC"
n_sim <- 2000
tol <- 3
phi <- c(0.2, 0.5, 0.8) # graus de liberdade
METHOD <- c("BinSeg", "PELT") # M t o d o s a testar

set.seed (123)

# Array 4D: df x mu2 x m t o d o x penalty
taxas_acerto <- array(NA ,

dim = c(length(df_vec), length(mu2_vec),
length(METHOD), length(penalties)),

dimnames = list(
paste0("df=", df_vec),
paste0("mu2=", mu2_vec),
METHOD ,
penalties

))

for (j in seq_along(df_vec)) {
df_t <- df_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]
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for (meth in seq_along(METHOD)) {
method_val <- METHOD[meth]

for (p in seq_along(penalties)) {
penalty1 <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
yt <- c(

rt(breakp , df = df_t) + mean1 ,
rt(n - breakp , df = df_t) + mean2

)

cp <- cpt.mean(yt, method = method_val , penalty =
penalty1 , Q = 1)

cpt.vet[[i]] <- cpts(cp)
}

acertos <- sum(sapply(cpt.vet , function(x) any(x %in% (
breakp - tol):( breakp + tol))))

taxas_acerto[j, m, meth , p] <- acertos / n_sim
}

}
}

}

# Visualizar resultados em porcentagem
print(round(taxas_acerto * 100, 2))
#

#####################################################################333

library(strucchange)

# P a r m e t r o s
n <- 200
breakp <- 50
mean1 <- 0
mu2_vec <- c(0.5, 1.5, 3) # magnitude da m u d a n a
n_sim <- 2000
tol <- 3
df_vec <- c(1.5, 2.5, 5) # graus de liberdade
set.seed (123)

# Array 3D: df x mu2 x m t o d o ( s BK aqui)
taxas_acerto <- array(NA ,

dim = c(length(df_vec), length(mu2_vec), 1),
dimnames = list(

paste0("df=", df_vec),
paste0("mu2=", mu2_vec),
"BK"

))

for (j in seq_along(df_vec)) {
df_t <- df_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]
cpt.vet <- vector("list", n_sim)
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for (i in 1:n_sim) {
yt <- c(

rt(breakp , df = df_t) + mean1 ,
rt(n - breakp , df = df_t) + mean2

)

# Modelo de r e g r e s s o simples para detectar m u d a n a na
m d i a

bp <- breakpoints(yt ~ 1, h = 10) # h = tamanho m n i m o do
segmento

cpt.vet[[i]] <- bp$breakpoints
}

acertos <- sum(sapply(cpt.vet , function(x) any(x %in% (breakp -
tol):( breakp + tol))))

taxas_acerto[j, m, "BK"] <- acertos / n_sim
}

}

# Resultados em %
print(round(taxas_acerto * 100, 2))

###############################################################33

library(changepoint)

# P a r m e t r o s
n <- 200
breakp <- 50
mean1 <- 0
mu2_vec <- c(0.5, 1.5, 3)
penalties <- "BIC"
n_sim <- 2000
tol <- 3
df_vec <- c(1.5, 2.5, 5)
METHOD <- c("BinSeg", "PELT")
phi <- 0.8 # a u t o c o r r e l a o AR(1)

set.seed (123)

# Array 4D: df x mu2 x m t o d o x penalty
taxas_acerto <- array(NA ,

dim = c(length(df_vec), length(mu2_vec),
length(METHOD), length(penalties)),

dimnames = list(
paste0("df=", df_vec),
paste0("mu2=", mu2_vec),
METHOD ,
penalties

))

for (j in seq_along(df_vec)) {
df_t <- df_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]

for (meth in seq_along(METHOD)) {
method_val <- METHOD[meth]
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for (p in seq_along(penalties)) {
penalty1 <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# gera i n o v a e s t-student
eps1 <- rt(breakp , df = df_t)
eps2 <- rt(n - breakp , df = df_t)

# gera s r i e AR(1) manualmente
yt1 <- numeric(breakp)
yt2 <- numeric(n - breakp)

yt1 [1] <- eps1 [1] + mean1
for (t in 2: breakp) {

yt1[t] <- phi * yt1[t-1] + eps1[t] + mean1
}

yt2 [1] <- eps2 [1] + mean2
for (t in 2:(n - breakp)) {

yt2[t] <- phi * yt2[t-1] + eps2[t] + mean2
}

yt <- c(yt1 , yt2)

# d e t e c o de m u d a n a
cp <- cpt.mean(yt, method = method_val , penalty =

penalty1 , Q = 1)
cpt.vet[[i]] <- cpts(cp)

}

acertos <- sum(sapply(cpt.vet , function(x) any(x %in% (
breakp - tol):( breakp + tol))))

taxas_acerto[j, m, meth , p] <- acertos / n_sim
}

}
}

}

# Resultados em porcentagem
print(round(taxas_acerto * 100, 2))
############################3
library(strucchange)

# P a r m e t r o s
n <- 200
breakp <- 50
mean1 <- 0
mu2_vec <- c(0.5, 1.5, 3)
n_sim <- 2000
tol <- 3
df_vec <- c(1.5, 2.5, 5)
phi <- 0.8 # a u t o c o r r e l a o AR(1)

set.seed (123)

taxas_acerto <- array(NA ,
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dim = c(length(df_vec), length(mu2_vec)),
dimnames = list(

paste0("df=", df_vec),
paste0("mu2=", mu2_vec)

))

for (j in seq_along(df_vec)) {
df_t <- df_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]

cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# gera i n o v a e s t-student
eps1 <- rt(breakp , df = df_t)
eps2 <- rt(n - breakp , df = df_t)

# gera s r i e AR(1) manualmente
yt1 <- numeric(breakp)
yt2 <- numeric(n - breakp)

yt1 [1] <- eps1 [1] + mean1
for (t in 2: breakp) {

yt1[t] <- phi * yt1[t-1] + eps1[t] + mean1
}

yt2 [1] <- eps2 [1] + mean2
for (t in 2:(n - breakp)) {

yt2[t] <- phi * yt2[t-1] + eps2[t] + mean2
}

yt <- c(yt1 , yt2)

# d e t e c o de m u d a n a usando strucchange
bp <- breakpoints(yt ~ 1, breaks = 1)
cpt.vet[[i]] <- bp$breakpoints

}

acertos <- sum(sapply(cpt.vet , function(x) any(x %in% (breakp -
tol):( breakp + tol))))

taxas_acerto[j, m] <- acertos / n_sim
}

}

# Resultados em porcentagem
print(round(taxas_acerto * 100, 2))

#############################################

# P a r m e t r o s
n <- 200
breakp <- 50
mean1 <- 0
mu2_vec <- c(0.5, 1.5, 3)
penalties <- "BIC"
n_sim <- 2000
tol <- 3
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df_vec <- c(1.5, 2.5, 5)
METHOD <- c("BinSeg", "PELT")
phi <- 0.8 # a u t o c o r r e l a o AR(1)

set.seed (123)

# Array para guardar apenas falsos positivos
taxas_fp <- array(NA ,

dim = c(length(df_vec), length(mu2_vec), length(
METHOD), length(penalties)),

dimnames = list(
paste0("df=", df_vec),
paste0("mu2=", mu2_vec),
METHOD ,
penalties

))

for (j in seq_along(df_vec)) {
df_t <- df_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]

for (meth in seq_along(METHOD)) {
method_val <- METHOD[meth]

for (p in seq_along(penalties)) {
penalty1 <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# gera i n o v a e s t-student
eps1 <- rt(breakp , df = df_t)
eps2 <- rt(n - breakp , df = df_t)

# gera s r i e AR(1) manualmente
yt1 <- numeric(breakp)
yt2 <- numeric(n - breakp)

yt1 [1] <- eps1 [1] + mean1
for (t in 2: breakp) {

yt1[t] <- phi * yt1[t-1] + eps1[t] + mean1
}

yt2 [1] <- eps2 [1] + mean2
for (t in 2:(n - breakp)) {

yt2[t] <- phi * yt2[t-1] + eps2[t] + mean2
}

yt <- c(yt1 , yt2)
cp <- cpt.mean(yt, method = method_val , penalty =

penalty1 , Q = 5)
cpt.vet[[i]] <- cpts(cp)

}

falsos_pos <- sum(sapply(cpt.vet , function(x) any(!(x %in%
(breakp - tol):( breakp + tol)))))

taxas_fp[j, m, meth , p] <- falsos_pos / n_sim
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}
}

}
}

print(round(taxas_fp * 100, 2))
#############################################################

# ---------------------- P a r m e t r o s ----------------------
n <- 200 # comprimento da s r i e
breakp <- 50 # ponto de m u d a n a verdadeiro (k)
mean1 <- 0 # m d i a antes da m u d a n a
mu2_vec <- c(0.5, 1.5, 3) # magnitudes da m u d a n a (mu2)
penalties <- "MBIC" # p e n a l i z a o
n_sim <- 2000 # n m e r o de s i m u l a e s
tol <- 3 # raio de t o l e r n c i a (breakp +/- tol)
phi_vec <- c(0.2, 0.5, 0.8) # coeficientes AR(1)
METHOD <- c("BinSeg", "PELT") # m t o d o s a testar

# ---------------------- Inicializar array ----------------------
# Este array a r m a z e n a r a P R O P O R O de vezes que ocorreu o "

overfit"
overfit <- array(NA ,

dim = c(length(phi_vec), length(mu2_vec), length(
METHOD), length(penalties)),

dimnames = list(
paste0("phi=", phi_vec),
paste0("mu2=", mu2_vec),
METHOD ,
penalties

))

# ---------------------- S i m u l a o (CORRIGIDA)
----------------------

set.seed (123)

for (j in seq_along(phi_vec)) {
phi_val <- phi_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m]

for (meth in seq_along(METHOD)) {
method_val <- METHOD[meth]

for (p in seq_along(penalties)) {
penalty1 <- penalties[p]

# VETOR T E M P O R R I O : Armazena o resultado de cada uma das n
_sim i t e r a e s

overfit_results <- numeric(n_sim)

for (i in 1:n_sim) {
# 1. Simular a s r i e temporal (AR(1) + M u d a n a de

M d i a )
Z <- arima.sim(model = list(ar = phi_val), n = n)
yt <- c(Z[1: breakp] + mean1 ,

Z[( breakp +1):n] + mean2)
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# 2. D e t e c o de ponto de m u d a n a
# Usamos Q = 1 para f o r a r a d e t e c o de um nico

ponto de m u d a n a
cp <- cpt.mean(yt, method = method_val , penalty =

penalty1 , Q = 1)
est_cpts <- cpts(cp)

# 3. Contar o n m e r o de "overfit" na s i m u l a o atual (
deve ser 0 ou 1)

# A c o n d i o de "overfit" : o CP estimado e s t fora
do intervalo [breakp - tol , breakp + tol]

# Tratamento para quando n o h CP detectado (est_cpts
NA):

# sum(..., na.rm=TRUE) g a r a n t i r que ele conte 0 se est_
cpts for NA.

is_overfit <- sum(est_cpts < (breakp - tol) | est_cpts >
(breakp + tol), na.rm = TRUE)

# Armazenar o resultado da i t e r a o ’i’
overfit_results[i] <- is_overfit

}

# 4. C l c u l o final: Armazenar
# n m e r o total de s i m u l a e s )
overfit[j, m, meth , p] <- sum(overfit_results) / n_sim

}
}

}
}

#########################################################
# M u d a n a s na Forma da D i s t r i b u i o

require(evd)
library(npcp)
n <- 100
k <- 50 ## the true change -point
## Change in the shape parameter of a GEV
x <- rgev(k,loc=0,scale=1,shape =0)
y <- rgev(k,loc=0,scale=1,shape =0.8)
cp <- cpBlockMax(c(x,y), r=10, method = "pwm")
cp$pvalues [3]
max(cp$stats.shape)
## Estimated change -point
which(cp$stats.shape == max(cp$stats.shape))
## Change in the scale parameter of a GEV

cpCopula
x <- rgev(k,loc=0,scale =0.5, shape =0)
y <- rgev(k,loc=0,scale=1,shape =0)
cp <- cpBlockMax(c(x,y))
cp
## Estimated change -point
which(cp$stats.scale == max(cp$stats.scale))
## Change in the location parameter of a GEV
x <- rgev(k,loc=0,scale=1,shape =0)
y <- rgev(k,loc=0.5, scale=1,shape =0)
cp <- cpBlockMax(c(x,y))
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cp
## Estimated change -point
which(cp$stats.loc == max(cp$stats.loc))

######## C d i g o simples ################

library(evd)
set.seed (123)
n <- 1000
shape1 <- 0.1
shape2 <- 0.6
phi <- 0.2
k <- 500
z <- numeric(n)
z[1] <- rnorm (1)
for (t in 2:n) {

z[t] <- phi * z[t - 1] + rnorm (1)
}
U <- pnorm(z)

x1 <- qgev(U[1:k], loc = 0, scale = 1, shape = shape1)
x2 <- qgev(U[(k+1):n], loc = 0, scale = 1, shape = shape2)

y <- c(x1, x2)

library(npcp)
which(cp$stats.loc == max(cp$stats.shape))

#
########################################################################33

# ---------- 1. F u n o para simular GEV com d e p e n d n c i a AR(1)
----------

sim_gev_ar1 <- function(n, phi , xi , mu = 0, sigma = 1) {
# Passo 1: simula AR(1) normal p a d r o
Z <- arima.sim(model = list(ar = phi), n = n)
# Passo 2: transforma para uniforme (CDF normal)
U <- pnorm(Z)
# Passo 3: aplica f u n o quantil da GEV
X <- qgev(U, loc = mu , scale = sigma , shape = xi)
return(X)

}

# ---------- 2. Simular c e n r i o com m u d a n a em xi ----------
sim_gev_ar1_change <- function(n, phi , xi1 , xi2 , lambda , mu = 0,

sigma = 1) {
Z <- arima.sim(model = list(ar = phi), n = n)
U <- pnorm(Z)
U1 <- U[1: lambda]
U2 <- U[( lambda +1):n]
X1 <- qgev(U1 , loc = mu , scale = sigma , shape = xi1)
X2 <- qgev(U2 , loc = mu , scale = sigma , shape = xi2)
return(c(X1, X2))

}

# ---------- 3. F u n o para rodar o teste cpBlockMax ----------
rodar_teste <- function(x, metodo = "gpwm", r = 10) {
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x <- as.numeric(x) # garantir que vetor n u m r i c o
res <- cpBlockMax(x, method = metodo , r = r)
return(res$pvalues [3]) # p-valor para m u d a n a no shape

}

# ---------- 4. S i m u l a o para n v e l e m p r i c o e poder
----------

set.seed (123)
n <- 200
Nsim <- 2000
phi_vals <- c(0.2, 0.5, 0.8)
alpha <- 0.05
xi_const <- 0.2

nivel_emp <- numeric(length(phi_vals))
poder <- numeric(length(phi_vals))

for (i in seq_along(phi_vals)) {
# N v e l e m p r i c o (sem m u d a n a )
rejeicoes <- 0
for (j in 1:Nsim) {

X <- sim_gev_ar1(n, phi = phi_vals[i], xi = xi_const)
pval <- rodar_teste(X, metodo = "gpwm", r = 10)
if (pval < alpha) rejeicoes <- rejeicoes + 1

}
nivel_emp[i] <- rejeicoes / Nsim

# Poder (com m u d a n a em xi)
rejeicoes <- 0
for (j in 1:Nsim) {

X <- sim_gev_ar1_change(n, phi = phi_vals[i], xi1 = 0.2, xi2 =
0.4, lambda = n/2)

pval <- rodar_teste(X, metodo = "gpwm", r = 10)
if (pval < alpha) rejeicoes <- rejeicoes + 1

}
poder[i] <- rejeicoes / Nsim

}

# ---------- 5. Resultados ----------
data.frame(phi = phi_vals , NivelEmpirico = nivel_emp , Poder = poder

)
#############################################################
############# Estimar pontos de l o c a l i z a o

##########################################

# ---------- 1. F u n o para simular GEV com d e p e n d n c i a AR(1)
----------

sim_gev_ar1 <- function(n, phi , xi , mu = 0, sigma = 1) {
# Passo 1: simula AR(1) normal p a d r o
Z <- arima.sim(model = list(ar = phi), n = n)
# Passo 2: transforma para uniforme (CDF normal)
U <- pnorm(Z)
# Passo 3: aplica f u n o quantil da GEV
X <- qgev(U, loc = mu , scale = sigma , shape = xi)
return(X)

}

# ---------- 2. Simular c e n r i o com m u d a n a em xi ----------
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sim_gev_ar1_change <- function(n, phi , xi1 , xi2 , lambda , mu = 0,
sigma = 1) {

Z <- arima.sim(model = list(ar = phi), n = n)
U <- pnorm(Z)
lambda <- as.integer(lambda)
if (lambda < 1 || lambda >= n) stop("lambda deve estar entre 1 e

n-1")
U1 <- U[1: lambda]
U2 <- U[( lambda +1):n]
X1 <- qgev(U1 , loc = mu , scale = sigma , shape = xi1)
X2 <- qgev(U2 , loc = mu , scale = sigma , shape = xi2)
return(c(X1, X2))

}

# ---------- 3. F u n o para rodar o teste cpBlockMax (robusta)
----------

rodar_teste <- function(x, metodo = "gpwm", r = 10) {
x <- as.numeric(x) # garantir que vetor n u m r i c o

res <- tryCatch(
cpBlockMax(x, method = metodo , r = r),
error = function(e) return(NULL)

)

if (is.null(res)) {
# em caso de erro , devolve NA
return(list(pval = NA_real_, cpt = NA_integer_))

}

# p-valor para m u d a n a no shape (assumindo que e s t na terceira
p o s i o )

pval <- NA_real_
if (!is.null(res$pvalues) && length(res$pvalues) >= 3) pval <-

res$pvalues [3]

# Estimador do ponto de m u d a n a
cpt <- NA_integer_
if ("stats.shape" %in% names(res) && length(res$stats.shape) > 0)

{
cpt <- as.integer(which.max(res$stats.shape))

} else if ("cpts" %in% names(res) && length(res$cpts) > 0) {
cpt <- as.integer(res$cpts [1])

}

return(list(pval = pval , cpt = cpt))
}

# ---------- 4. S i m u l a o para n v e l e m p r i c o , poder e
p r e c i s o ----------

set.seed (123)
n <- 200
Nsim <- 2000
phi_vals <- c(0.2, 0.5, 0.8)
alpha <- 0.05
xi_const <- 0

# p a r m e t r o s para cpBlockMax em cada parte
r_level <- 1 # para n v e l e m p r i c o
r_power <- 1 # para poder
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nivel_emp <- numeric(length(phi_vals))
poder <- numeric(length(phi_vals))
precisao <- numeric(length(phi_vals))

for (i in seq_along(phi_vals)) {
phi <- phi_vals[i]

# ---------- N v e l e m p r i c o (sem m u d a n a ) ----------
rejeicoes <- 0
for (j in 1:Nsim) {

X <- sim_gev_ar1(n, phi = phi , xi = xi_const)
teste <- rodar_teste(X, metodo = "gpwm", r = r_level)
if (!is.na(teste$pval) && teste$pval < alpha) rejeicoes <-

rejeicoes + 1
}
nivel_emp[i] <- rejeicoes / Nsim

# ---------- Poder e p r e c i s o (com m u d a n a em xi) ----------
rejeicoes <- 0
acertos_localizacao <- 0
lambda <- as.integer(n/2)
raio <- 3 # c r i t r i o 3

for (j in 1:Nsim) {
# m u d a n a de xi: ex.: 0.2 -> 0.4
X <- sim_gev_ar1_change(n, phi = phi , xi1 = -0.2, xi2 = 0.2,

lambda = lambda)
teste <- rodar_teste(X, metodo = "gpwm", r = r_power)

if (!is.na(teste$pval) && teste$pval < alpha) {
rejeicoes <- rejeicoes + 1
if (!is.na(teste$cpt) && abs(teste$cpt - lambda) <= raio) {

acertos_localizacao <- acertos_localizacao + 1
}

}
}

poder[i] <- rejeicoes / Nsim
precisao[i] <- acertos_localizacao / Nsim

}

# ---------- 6. Resultados ----------
res_df <- data.frame(phi = phi_vals ,

NivelEmpirico = nivel_emp ,
Poder = poder ,

Acerto = precisao)

print(res_df)
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