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Resumo

Deteccao de mudancas de estruturas em séries
temporais

O estudo das séries temporais é essencial para compreender e prever fendémenos em
diversas areas, mas a presenca de mudancas estruturais compromete os pressupos-
tos de estacionariedade e a fiabilidade das previsoes. O estudo dedica-se a analise e
comparacao dos métodos estatisticos e computacionais de detecao de mudancas de
estrutura, nomeadamente em média, tendéncia e forma da distribuigao, incluindo o
comportamento das caudas. Sao analisadas as limitacoes dos métodos classicos de
segmentacao da série, em contextos com dependéncia serial e falha de normalidade.
Através de simulacoes de Monte Carlo com séries de diferentes propriedades —dis-
tribuicao, autocorrelagao, dimensao e presenca de outliers — avalia-se a eficicia e
robustez dos métodos. Procura-se ainda estudar a detecao de mudancas na distri-
buicao GEV em contexto de dependéncia serial, usando a estatistica de teste CUSUM
adaptada aos métodos PWM e GPWM.

Palavras Chaves: Séries temporais, mudangas de estrutura, distribuicao gene-
ralizada de valores extremos, simulagao de Monte Carlo.
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Abstract

Structural change detection in time series

Time series analysis plays a key role in understanding and forecasting phenomena
across many fields. However, structural changes can violate the assumption of sta-
tionarity, reducing model reliability and forecast accuracy. This study focuses on
the analysis and comparison of statistical and computational methods for detec-
ting structural changes, including shifts in mean, trend, and distribution shape,
with particular attention to tail behavior. The limitations of classical segmentation
methods are examined in contexts characterized by serial dependence and deviations
from normality. Through Monte Carlo simulations of series with different proper-
ties—distribution, autocorrelation, sample size, and the presence of outliers—the
effectiveness and robustness of the methods are assessed. Furthermore, the study
investigates the detection of changes in the Generalized Extreme Value (GEV) dis-
tribution under serial dependence, using a CUSUM-type test statistic adapted to the
PWM and GPWM methods.

Keywords: Time series, structural change, Generalized Extreme Value distri-
bution, Monte Carlo simulation.
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Capitulo 1

Introducao

O estudo das séries temporais tem vindo a ganhar crescente relevancia nos tltimos
anos, devido & necessidade de compreender e prever a evolucao de determinados
fendbmenos em areas como a economia, as financas, a climatologia, a satude, a en-
genharia e as ciéncias sociais. No entanto, estes fenémenos estao muitas das vezes
sujeitos a mudancas que podem afetar a estrutura subjacente dos dados ao longo do
tempo.

Este problema pode representar um grande obstaculo na modelagao e previsao de
séries temporais, sobretudo na modelagao de séries através de modelos do tipo Au-
toregressivo de Média Movel (ARMA) (ou Autoregressivo Integrado de Média Movel
(ARIMA)), que partem do pressuposto que esté estacionaria (ou que pode tornar-se
estacionaria através de diferenciagoes). As quebras estruturais quebram este pres-
suposto de estacionariedade ao introduzir mudancas abruptas na média, tendéncia
e/ou variancia da série.

Pelo que basta a existéncia de uma tinica mudanca de estrutura na série para afetar
a modelacao e a consequentemente a previsao de valores futuros. A existéncia de
miultiplas mudancas de estrutura agravam ainda mais o problema, sobretudo quando
o nimero destas mudancas é desconhecido, bem como em que tempo ocorreram.

A analise de mudancgas de estrutura requer, em primeiro lugar, a avaliacao da

significancia estatistica das eventuais mudancas e, em caso afirmativo, a estimagao
do niimero de mudangas e as suas possiveis localizagdes (Chen et al. (2000)). Um dos
primeiros métodos para dete¢ao de mudanga de estrutura ¢ o CUSUM (cumulative
sum control chart), inicialmente proposto por Page (1954), para detegao de mu-
danca na média em processos continuos. Este método na sua formulagao classica
(paramétrica) assume geralmente condigoes fortes, como normalidade e variancia
constante, dado que podera ter melhor desempenho em séries estacionarias, ou seja
em processos que nao mudam ao longo do tempo exceto pelas mudancas que se
querem detetar.
Conforme discutido em Aue and Horvath (2013), a versdo nao paramétrica do pro-
cesso CUSUM procura relaxar algumas condigoes iniciais do método, como a inde-
pendéncia e a normalidade. O artigo aborda a aplicagdo do método em situagoes
em que existe dependéncia serial, heterocedasticidade ou varidncia nao constante, e
examina de que forma os métodos classicos devem ser adaptados e quais condigoes
adicionais sao necessarias para garantir a validade estatistica.



Embora tenham sido realizados alguns avangos nesta area, como a implementacao
de métodos computacionais, estatisticamente eficientes (Zeileis et al. (2002a), Killick
and Eckley (2014)), incluindo métodos modernos baseados em aprendizagem auto-
matica, os desafios continuam, principalmente em séries com mudangas subtis ou
pouco visiveis (Salman et al. (2024)), séries autocorelacionadas, valores
atipicos-outliers-(Fearnhead and Rigaill (2019)) ou ainda em cenérios onde ha
falha de normalidade — ja que a maioria dos métodos classicos de detegao requer
a normalidade ou pelo menos uma aproximagao a normalidade — o que constitui
uma limitagao adicional, pois em numerosos contextos praticos os dados nao se-
guem essa distribuicao. O presente trabalho valoriza-se precisamente por considerar
cenarios que nao verificam essas condigoes. Estes métodos classicos, com maior
aplicagao atual podem ser encontrados em Killick et al. (2010), onde apresentam
métodos de segmentagdo, que usam fungoes de custo, para identificar segmentos
da série que contém mudancas, nomeadamente mudangas na média, variancia e am-
bas simultaneamente, fornecendo ainda uma explicagao completa com codigo aberto.

Para além destas, é igualmente importante considerar mudancas na tendéncia

da série. Identificar corretamente este tipo de mudancga é crucial, pois a presenca de
diferentes regimes de crescimento ou de declinio pode afetar de forma significativa a
modelacao e a previsao. Trabalhos classicos nesta area podem ser encontrados em
Zeileis et al. (2002a), onde sao apresentados métodos para detetar quebras de estru-
tura em modelos de regressao linear, incluindo mudancas na média e na tendéncia
da série temporal.
Por vezes o nosso interesse nao esta unicamente na detecao de mudangas de nivel
ou na tendéncia da série, mas sim de mudancas na prépria forma da distribuigao,
em particular no comportamento das caudas. Com recurso a teoria de valores extre-
mos, alguns autores como Kojadinovic and Naveau (2017) propuseram um método
inovador para detetar mudancas nos parametros da distribuicao generalizada dos
valores extremos (GEV), baseando-se no método dos momentos ponderados. Este
é um resultado 1til, especialmente na anélise de mudancgas no parametro de forma,
embora possa apresentar limitagoes em contextos com autocorrelagao.

O interesse nesta area de investigacao esta na crescente necessidade de compreen-
der os mecanismos que governam uma série temporal, de forma a tornar a inferéncia
mais precisa e a ajustar modelos que melhor se adequem aos dados, fornecendo as-
sim contribui¢oes mais eficazes para os decisores que lidam com estes fendémenos no
seu dia a dia.



1.1 Objetivos

O principal objetivo deste trabalho é comparar e avaliar métodos estatisticos compu-
tacionais, usados para detetar mudancas de estrutura em séries temporais, e avaliar
a robustez em cenérios mais desafiantes.

Com o intuito de alcancar este proposito, estabelecemos os seguintes objetivos
especificos:

e Comparar e avaliar os principais métodos estatisticos computacionais de de-
tecao de mudancas de estrutura, nomeadamente de mudancas de nivel, de
tendéncia e na forma da distribuicao.

e Simular séries com diferentes propriedades: com distribui¢cao normal, aproxi-
madamente normal e nao-normal; diferentes graus de autocorrelagao; em pre-
senca de outliers; diferentes dimensoes e diferentes magnitudes na mudanca.

e Investigar a detecao de mudancas na forma da distribuicao generalizada de
valores extremos, em cenarios autocorrelacionados.

1.2 Organizacao da investigacao

Com o intuito de assegurar uma leitura fluida e uma compreensao logica, a estru-
tura do trabalho foi organizada em cinco capitulos principais, cada um abordando
diferentes dimensoes do problema em estudo.

O Capitulo 1 corresponde a Introducao. Neste capitulo, sao apresentados o
enquadramento geral do tema, a motivacao para o desenvolvimento deste trabalho,
os objetivos da investigacao e uma breve visao global da estrutura da tese. Este
capitulo estabelece o ponto de partida para a compreensao do problema e a sua
relevancia para a anélise de séries temporais.

No Capitulo 2 sao discutidos os conceitos fundamentais de séries temporais e
eventos extremos. E também feita uma exposicdo dos principais tipos de quebras
de estrutura que podem ocorrer em séries temporais.

O Capitulo 3 aborda a Metodologia. Este capitulo descreve, detalhadamente, os
métodos utilizados ao longo do trabalho. Inicia-se com a apresentacao dos métodos
de segmentacao e de programacao dinamica, aplicado na detecao de mudancgas de
nivel e de tendéncia. Introduz-se ainda o processo CUSUM classico e recursivo, bem
como outros testes aplicados a detegdo de mudangas. Abordamos a metodologia
proposta por Kojadinovic and Naveau (2017), que visa a detegdo de mudangas nos
parametros da distribuicao generalizada de valores extremos, com foco particular na
mudanca do parametro de forma, utilizando os métodos dos momentos ponderados
(PWM) e dos momentos ponderados generalizados (GPWM).

O Capitulo 4 é reservado a Andlise Computacional. Neste capitulo sao avaliadas,
através de simulacoes de Monte Carlo com recurso do software R Cran, a eficacia e
a robustez dos diferentes métodos (classicos e recentes) na detegdo de mudangas de
estrutura. Sao considerados diversos cenarios: variagoes na magnitude das mudancgas
de nivel, séries simuladas com diferentes niveis de dependéncia temporal, presenca
de outliers e aproximagao a distribuicao onde a suposicao de normalidade nao é
atendida. A analise inclui a avaliacao do desempenho na detecao de mudancas



na tendéncia. E explorada a aplicacdo de métodos baseados na Teoria de Valores
Extremos para detetar mudancas no parametro de forma & .

Por fim, o Capitulo 5 apresenta as Conclusdes. Sao sintetizadas as principais
contribui¢oes da investigagao em funcao dos cenérios propostos, discutidas as limi-
tagoes do estudo e sugeridas direcoes para trabalhos futuros. Este capitulo visa
refletir criticamente sobre os resultados obtidos e consolidar o conhecimento produ-
zido ao longo do trabalho.



Capitulo 2

Séries temporais

2.1 Conceitos gerais de séries temporais

Uma série temporal ¢ um conjunto de observacoes quantitativas que evoluem ao
longo do tempo. Os modelos que iremos abordar, modelos do tipo ARMA/ARIMA,
sao modelos mateméticos construidos com base na relagdo de dependéncia (auto-
correlagao) entre os valores no tempo, isto é, no facto das observagoes anteriores
poderem influenciar as subsequentes. Pelo que, neste contexto, considera-se ainda
que as observagoes serem igualmente espacadas é um aspecto fundamental.

Para sermos mais rigorosos, uma série temporal é uma realizagao de um processo
estocéastico. A fim de compreender melhor o conceito de processo estocéstico vamos
abordar o conceito de variavel aleatoria.

Seja (€2, A, P) um espago de probabilidades. Define-se como variavel aleatoria
uma funcao mensuravel de €2 em S, a que se chama usualmente espaco de estados
do processo estocéstico. De um modo geral, chama-se variavel aleatoria, a qualquer
aplicacao X de 2 em S, ou seja

X: Q00— S

Fazemos agora intervir o tempo (designado abreviadamente pela letra t), que
se supoe tomar valores em 7', a que usualmente se chama espaco do parametro do
processo estocastico. O modelo matematico que surge para o processo estocastico
sera, portanto, uma aplicagao X de T'x 2 em S

X:TxQ— 8
Quando o tempo é fixo

w— Xi(w)=X(w)=X

temos uma v.a. sobre (2, A, P) com valores em S.
Quando o “acaso” é fixo

t— X,(t) = X(t) (ou Xy)

temos uma trajetoria do processo estocéstico, ou seja, uma série temporal.

No ambito da modelacao, as propriedades desejaveis dos estimadores sao geral-
mente asseguradas quando se trabalha com séries fracamente estacionarias (ou es-
tacionarias de segunda ordem), ou ainda com séries estritamente estacionérias (esta
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defini¢ao é de dificil verificagdo na préatica). Estas propriedades sao tipicamente
verificadas na estabilidade de alguns parametros fundamentais da série, como, por
exemplo, a média e a variancia.

Formalmente, uma série { X, };er diz-se estacionéria de segunda ordem se, para
todo o t, E[X?] < +oo, tal que:

e E(X;) = = p (ndo depende de t)
e Var(X;) = E(X; — u;)? = 0% (nao depende de t)
o Cov(Xy, Xs) =7(t—s|), Vt,s €T

nesta tltima, a covariancia entre duas variaveis observadas nos tempos ¢t e s toma
sempre o mesmo valor para todo o t e s, dependendo apenas da diferenca de tempo
entre as variaveis, |t — s|.

Usualmente escreve-se esta tltima condi¢ao como Cov( Xy, Xiix) = Cov( Xy, X)) =
~v(k), Yk, t € T. A quantidade k chama-se usualmente espacamento ou lag.

Um processo é estritamente estacionario se todas as suas propriedades probabilis-
ticas sao invariantes no tempo, ou seja, para qualquer n, k e instantes t1,ts,...,t,, a
distribuigao conjunta de (Xy,, X4, ..., Xy,) € idéntica a de (X, 41y Xtgihs - -« » Xtpik)-
Tal como referido, dado que a verificacao da estacionariedade estrita é, na pratica,
frequentemente inviavel de verificar, ao longo deste trabalho sera considerada a hipo-
tese de que os processos serem fracamente estacionarios. Esta abordagem revela-se
particularmente pertinente na analise de mudancas de estrutura, contexto em que se
admite, por vezes, a estacionariedade por partes (piecewise), em virtude de possiveis
mudangas de nivel em segmento especificos da série temporal, ver Figura 2.1.

0 200 400 600 0 200 400 600
t t

Figura 2.1: Processo estacionario vs estacionéario por niveis

As séries que apresentam a componente de tendéncia e/ou varidncia nao cons-
tante nao sao estacionarias. Na figura 2.2,temos dois processos simulado com ten-
déncia (I) e com variancia nao constante (II).

Para séries com tendéncia e/ou variancia nao constante, pode ser util estabilizar
uma delas para ter uma melhor compreensao do comportamento temporal da outra
(Nelson and Plosser (1982)). As transformagoes propostas por Box and Cox (1964) e
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Figura 2.2: Processos nao estacionarios

mais recentemente de Weisberg (2001) continuam a ser validas, sendo A, o parametro
dessa transformacao de Box-Cox que permite estabilizar a variancia, um parametro
a ser estimado. Computacionalmente, pode-se estimar o parametro A pelo método
da maxima verosimilhanca, obtendo-se assim, a transformacao adequada aos dados.!
Na modelacao de séries temporais, é comum utilizar a metodologia de Box e Jen-
kins, conforme proposta em Jenkins and Box (1976). Para séries nao estacionarias,
pode recorrer-se a abordagem de diferenciagao da série temporal como um método
para remover a tendéncia linear e/ou a sazonalidade. Tomando como operador de
atraso B, tal que B"X,; = X,_,, a primeira diferenca, dita simples, é definida por

VXt - (1 — B)Xt — Xt - Xt71~
A segunda diferenca simples é definida por
VX, =(1-B)?*X;=(1-2B+B)X; = X; —2X; 1 + X; o,

e é utilizada quando a primeira diferenca simples nao é suficiente para tornar a série
estacionaria em tendéncia. Na maioria dos casos, a estacionariedade ¢é alcangada
com apenas uma diferenciacao. No entanto, é importante salientar que este processo
pode ser repetido para diferenciagoes de ordem superior, ou seja, para diferenciagoes
de ordem n. Pode-se aplicar a mesma abordagem de diferenciagao (designada por
diferenciagao sazonal) V,X; = (1—B*)X; = X; — X,_, para remover a sazonalidade
de uma série temporal, onde s representa o seu periodo sazonal (ou seja, um periodo
de tempo fixo em que esse padrao de sazonalidade se repete ao longo do tempo).
A classe de modelos de séries temporais usada na modelagao e previsao de sé-
ries temporais (estacionarias e ndo estacionarias) que iremos usar neste trabalho ¢ a
classe de modelos tradicionais (que tiveram origem nos finais dos anos 20 do século
20 com o trabalho de Yule, e que depois foram evoluindo com a contribuicao de
varios outros Mateméticos) - mas que continua a ser uma das mais utilizadas, dada
a sua enorme flexibilidade e qualidade das previsoes - é a classe dos modelos do tipo
ARIMA((p,d, q), em que p corresponde & ordem do processo autoregressivo AR(p),
d o nimero de diferenciacoes simples necessarias para se obter uma série estacio-
naria, caso esta nao o seja, e ¢ a ordem do processo de médias moveis MA(q). Se

B\ transformacgdo de Box-Cox (Box e Cox, 1964) é dada por:

A
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In(y), A=0,y>0,




d=0 estamos, portanto, perante um caso particular deste modelo, nomeadamente,
perante um modelo do tipo ARMA((p, ¢), apropriado para modelar e prever séries
estacionarias.

AR(p)

Seja X, t € z, um processo estocéstico, tal que :
Xi=c+ o Xi g+ Xy o+ -+ 0pXip + 64
X, representa processo autoregressivo de ordem p, abreviadamente AR(p) se:
e cxistirem numeros reais ¢, @2, ..., @p,
° ¢, #0,
e existir uma constante ¢ € R,

e existir um processo de ruido branco {e;}cz. Ou seja, um processo de média
nula, variancia o2 > 0, constante, e nao correlacionado.

A titulo de exemplo, consideremos o processo autorregressivo mais simples, de
ordem 1, AR(1) definido por:

Xt =c+ ¢Xt71 + Et, (21)

O processo AR(1) ¢é estacionario se, e somente se, |¢| < 1. Para |¢| > 1, o processo
nao é estacionéario: no caso ¢ = 1 resulta num passeio aleatorio, e para |¢| > 1 a
variancia diverge.

Sob a condigao de estacionaridade |¢| < 1, prova-se facilmente que:

B(X) = 22)
o2
Var(X;) = 1_—6& (2.3)
De forma geral, a autocovariancia no atraso k é:
o2
Y = Cov(Xy, Xy_p) = : _€¢2 o, k> 0. (2.4)

Assim, e dado vy = Var(X}), a fungao de autocorrelagao (FAC)? de um AR(1)
toma a forma:

pw—%—w7ka» (2.5)
0

A sucessao das FAC de um processo AR(1) estacionario tende exponencialmente,
e/ou de modo sinusoidal, para zero a medida que o valor de k aumenta.

lim p(k) = lim ¢* = 0, para |¢| < 1.
k—o0 k—ro0

2Em inglés, fungdo de autocorrelagdo é denominada autocorrelation function (ACF).



Prova-se, recorrendo a regra de Cramer, que a sucessao de fungoes de autocor-
relagdo parcial de um processo AR(1) estacionario anula-se a partir da ordem 2
(decaimento brusco), ver Cryer (1986) e Cryer and Chan (2008):

gbl,l - ¢7
orp =0, k>2.

Na Figura 2.3 ilustra-se um exemplo do comportamento das ACF e PACF? de um
AR(1) simulado.

ACF
PACF
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Figura 2.3: ACF e PACF de um processo AR(1): X; = 34+ 0.6X,1 + &, & ~
N(0,4)

Conforme demostrado em (Montgomery et al., 2008, pp. 246-250) a FAC, p(k),
do processo geral, de ordem p, AR(p), satisfaz as equagoes de Yule-Walker:

p(k) = d1p(k — 1) + ¢ap(k — 2) + -+ @pp(k —p), k= 1.

Esta é uma equagao de diferencas lineares de ordem p. A solugao geral depende
das raizes z; do polinémio autoregressivo ®(z):

D(2) =1— 12— po2® — -+ — Pp2F.

Se o polinémio autoregressivo nao possuir raizes no circulo unitario entao o pro-
cesso é estacionario pelo que p(k) decai exponencialmente e/ou de forma sinusoidal
para zero a medida que k — oo.

A PACF é obtida resolvendo o sistema de Yule-Walker de ordem k:

1 p(1) .. plk=1)| |dm p(1)
p(1) 1 oo p(k=2)| | Pre _ p(2)
pk—1) k=2 .. 1| |ow] e

e pode ser igualmente usada para identificar a ordem de um processo AR(p) dado
que para k > p, os coeficientes ¢ = 0, porque os termos adicionais X;_; ja estao

3Em inglés, fungdo de autocorrelagdo Parcial é denominada Partial autocorrelation function (PACF).



completamente explicados pelos p primeiros lags. A sucessao de fung¢oes de autocor-
relagao parcial de um processo AR(p) estacionério anulam-se a partir da ordem p+1.

Note ainda que o processo AR(p) estacionario é sempre invertivel porque pode
ser escrito como um processo MA(g) de ordem infinita. Ou seja, apenas & custa
dos erros, sempre que este processo seja estacionario ele é causal, uma propriedade
fundamental para se poder fazer previsoes. Pois permite prever valores futuros
através de valores passados.

Apesar de nao trabalharmos com os modelos de médias moéveis (MA), iremos de
seguida apresenta-los, de modo bastante abreviado.

MA (q)
Um processo {X;}iez, admite uma representacao de médias moveis de ordem g,
abreviadamente MA(q), se verifica a seguinte equagao estocastica:

Xy =c+e —Oie1 —bOrgpo — - — 041,

onde (64, 6s,....6,), 8, # 0, sdo igualmente nimeros reais ¢; ¢ um ruido branco. Por
ser uma combinacao linear finita de processos de ruido branco, X; admite sempre
estacionariedade fraca.

Prova-se em que MA(q) é invertivel caso o polinomio de médias moveis de ordem q
nao possua raizes no circulo unitario, ver Hamilton (2020).

Considere novamente o caso mais simples, o modelo MA(1);
Xy =c+e — ey,
onde a funcao de autocovariancia do modelo ¢ dada por:

12(0) = 031+ 62)
72(1) = —05?
v.(k) =0, k>1

Similarmente, temos a funcao de autocorrelacao como

pll) = 105 26)
pa() =0, k>1 (2.7)

A partir da equacao 2.6 , podemos ver que a primeira autocorrelagao de defasa-
gem em MA(1) é limitada como

e a fungao de autocorrela¢ao corta apos a defasagem 1. O proceso MA(1) pode ser
representado como um processo AR(00), ou seja:

Xt = —QXt_l + 92Xt—2 — 93Xt—3 + -4
Essa expansao so6 converge se |0| < 1. Assim:

0] <1 == processo MA(1) invertivel,
0] >1 == processo MA(1) nao invertivel.
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Figura 2.4: ACF dos modelos MA(1): X; =3+, +0.7¢,_1, & ~ N(0,4) e MA(3):
Xt =5+ &t + 0.5 Et—1 — 0.3 Et_o + 0.4 Et—3, &t~ N(O, 4)

Para ilustrar o comportamento da funcao de autocorrelagao, considere os pro-
cessos M(1) e MA(3) da Figura 2.4.

De igual modo, iremos introduzir o caso geral do modelo do tipo autoregressivo
de médias madveis de ordem, compostos, como o nome indica, por ambas as compo-
nentes, autoregressivas e de médias moveis.

ARMA (p, q)

Se juntarmos os dois processos AR(p) e MA(q), obtemos o processo autore-
gressivo de médias moveis de ordem (p, ¢), abreviadamente ARMA(p, ¢), dado pela
equacao :

P q
X =c+ Z OiXi—i + Z Oici—i
i=1 i=0

ou
(I)(B)Xt =c+ @(B)Et

onde

O(B)=1-¢1B—¢B* —--- — ¢, B,
OB)=1+60,B+60,B*+---+0,B

sao, respetivamente, os polinébmios autoregressivos e de médias moveis.

Caso estes polinomios ®(B) e O(B) nao tenham raizes comuns, o processo admite
uma solucao estacionaria e nica e € invertivel se estes nao possuirem raizes no circulo
unitario.

A FAC de um modelo ARMA(p, q) satisfaz a seguinte equagao:

plk) = dip(k —1) — -+ = pp(k —p) =0, k=>q+1

1. Para um processo ARMA(p, q) estacionario, as fungoes de autocorrelagao p(k)
tendem exponencialmente e/ou de forma sinusoidal para zero & medida que k
aumenta (Hamilton, 2020, p. 255-256).

2. De forma semelhante, as fungoes de autocorrelagao parcial de um processo
ARMA (p, q) estacionario também tendem exponencialmente e/ou de forma
sinusoidal para zero & medida que k aumenta (Hamilton, 2020, p. 255-256).
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Este comportamento pode ser visto na Figura 2.5, onde apresenta-se dois exem-
plos simulados de séries do tipo ARMA(1,1) e ARMA(2,2), com as respetivas fungoes
de autocorrelagao e autocorrelacao parcial.

ACF - ARMA(1,1) ACF - ARMA(2,2)

ACF

Lag Lag

PACF - ARMA(1,1) PACF - ARMA(2,2)
078 g

5 o2 5

€ e <

o 0.00 I T 1 ] 1 ] o
0.25 |

Log 1 20 0 10 Log

Figura 2.5: ACF e PACF de processos ARMA(1,1):X; = 4+ 0.6X, 1 + 0.55,_1 +
+€t7 Et ~ N(07 4) (§ ARMA(?,Q)Xt =24 O.5Xt_1 — 0'3Xt—2 + 0.451;_1 + O'2€t—2 +
Et, Et ~~ N(O, 4)

ARIMA (p,d, q)

Vimos que, para séries nao estacionarias — na maioria dos casos, séries que
possuem tendéncia e/ou variancia nao constante —, pode-se obter a estacionariedade
aplicando-se transformagoes as séries, como a transformagao de Box-Cox e/ou o
operador da diferenciagdo simples da série (um nimero d de vezes necessario até
obter a estacionariedade), ou seja,

ViX, = (1- B)'X,.

Feito isto, passamos a obter um processo autorregressivo integrado de média
movel (ARIMA) de ordens p, d, q.

Um ARIMA(p, d, q) admite, assim, a seguinte representagao:

®(B)(1 - B)'X, = ¢+ O(B)e,.

O grafico da Figura 2.6 mostra o processo (1 — 0.7B)(1 — B)X; = ¢, + 0.5e;_1 .
Observa-se que a FAC apresenta decaimento lento devido a diferenciagao, enquanto
a PACF corta ap6s o lag p + 1.

12
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Figura 2.6: ACF e PACF de processos ARMA(1,1,1)

2.2 Séries temporais em extremos

A anélise estatistica de extremos em séries temporais é uma componente tradicio-
nal na Hidrologia e no setor de Seguros, com aplicacoes cada vez mais fortes em
Finangas. A dependéncia temporal é comum em extremos univariados, podendo ser
originada por autocorrelagao, efeitos de outras variaveis ou por ambos, o que exige
um tratamento teoérico adequado.

A dependéncia de curto alcance, que resulta em aglomerados de extremos, é
frequentemente observada em séries financeiras devido a aglomeracao de volatilidade.
Da mesma forma, maximos de fluxos de rios geralmente ocorrem logo apds uma
tempestade. Variagoes em grande escala, decorrentes de tendéncias, sazonalidades
ou mudancas de regimes sao tipicamente abordadas com modelos adequados, com
intuito de estudar o impacto da autocorrelagao sob condig¢oes de mistura que limitam
a influéncia da dependéncia nos extremos (Biicher and Zhou (2021)).

2.2.1 Distribuicoes exata e assintética do maximo

Considere uma amostra aleatéria X, Xy, ..., X,, de variaveis aleatorias indepen-
dentes e identicamente distribuidas com funcao de distribui¢ao acumulada (CDF)
F(z). Seja M,, = max(Xy,...,X,), a variavel aleatoria que representa o maximo
da colegao de variaveis aleatorias {X;}? ;. A CDF de M, ¢ dada por

Fy,(z) =P(M, <2)=P(X; <z,.... X, <z) = [[P(X; <z) = [F(x)]".
i=1
De forma anéloga, considerando, m,, = min(Xj, ..., X,,), a variavel aleatoria que
representa o minimo da colegao de variaveis aleatorias {X;}!" ,, a CDF de m,, é

Fo.(x)=Pm,<z)=1-P(X;>z,....X,, >x)=1—[1 - F(x)]".

Note que m,, = —max(—Xj, ..., —X,), assim o problema do minimo é dual ao
do méaximo e portanto, qualquer resultado para o minimo pode ser traduzido para
o maximo aplicando a transformacao X; — —X;. Por esta razao, neste trabalho
analisaremos apenas mudancas de estrutura influenciadas por valores maximos.
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O nosso interesse estara no comportamento de M,,, para n muito grande, ou seja,
na distribuicao de M,, quando n — oo,
lim P(M, <z)= lim [F(z)]"
n— o0 n—o0
Se 0 < F(z) < 1, entdo lim, . [F(z)]" = 0.
Se F(x) =1, entao lim, . [F(z)]" = 1.

Portanto, a distribuicao limite de M,, ¢ uma distribuicao degenerada, que assume
o valor 0 quando 0 < F(z) < 1 e 1 quando F(z) = 1, o que ndo é muito util para
a analise de valores extremos. De forma a obter uma distribuicao limite nao dege-
nerada para M, é necessario considerar sequéncias de constantes de normalizagao
a, > 0e b, € R, a semelhanca do que ocorre no teorema do limite central,

M, —b
lim P (u < x) = lim P (M, <b,+a,z) = lim [F(b, + a,z)]".
n—o00 A, n—o00 n—o0

Este limite é descrito pelo Teorema de Tipos Extremais, que fornece a distribuicao
limite do maximo. Assim, se existem sucessoes de constantes normalizadoras a,, > 0
e b, € R tais que:

[F(by + a,2)]" - G(z), quando n — oo,

para alguma CDF nao degenerada G(zx), e onde i>, representa a convergéncia
em distribui¢ao, entdo G(x) s6 pode ser do mesmo tipo que uma das seguintes
distribuicoes:

(exp{—e "}, 2R (Gumbel)
<
0 z=0, (Fréchet, a > 0)
G(z) =« |exp{—27°}, z>0,

(méax-Weibull, a > 0).

1, x>0,

{exp{—(—l‘)a}, r <0,

Estas trés distribui¢oes limite foram unificadas por Von Mises (1936) e Jenkinson
(1955) numa tunica distribuigao, designada de distribuigdo Generalizada de Valores
Extremos (GEV).

Uma variavel aleatoria X segue a distribuicdo GEV, e escreve-se X ~ GEV(u, 0, ¢),
onde £ € R ¢é o parametro de forma, p € R o parametro de localizacao e 0 € Rt o
parametro de escala, se a sua CDF for dada por:

Fapv(z) == exp | = (1+&-58) %} o para 148558 >0 (2.8)
exp —exp[—%]}, reR

O parametro ¢ ¢ conhecido como indice de valores extremos (ou eztreme
value indez (EVI)) e desempenha um papel fundamental, pois controla o comporta-
mento da cauda da distribuicao GEV. As distribuic¢oes limite para maximos, Gumobel,
Fréchet e mdz- Weibull, podem ser obtidas como casos particulares da GEV, como
ilustrado abaixo:
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(i)

(i)

(i)

Se £ < 0, a CDF de X, em (2.8), pode ser escrita como;

o) = e {-(1-%48)
_ exp{_(_@_lg.x))*}.

Definindo convenientemente b = %’” —1l,ea= %5, obtemos

Fopv(z) = exp {— (—(b+a- x))_%} :
Como £ < 0, temos que a := —% > 0, e portanto
Fapy(r) = exp{— (—(az +1))"} = exp {=(-y)"},
Com y = ax + b, temos que
Fopv(w) = exp {—(-y)"},

y<0(2.9) correspondendo a CDF da distribui¢ao mda- Weibull, que é um caso
particular da distribuigao GEV para £ < 0. As distribui¢oes dizem-se de cauda
curta ou leve e possuem limite superior do suporte finito.

Para £ > 0,
e
Fapv(z) = exp {— (1 _ + f_x) } -
o o
Definindo,
b=1-— 5—”, a= é,
o o

a fun¢do G(x) é reescrita por

Feoev(z) = exp {— (azx + b)_%} :

ou seja
Fepv(y) =exp{—y*}, y>0, (2.10)

onde a = % ey = ax+b, correspondendo & CDF da distribuicao Fréchet, que ¢é
um caso particular da distribuicao GEV para & > 0. As distribui¢oes dizem-se
de cauda pesada ou com cauda de tipo Pareto e possuem limite superior do
suporte infinito.

Para £ = 0, a CDF da distribuicao Gumbel é obtida como sendo o limite,
quando ¢ — 0, da CDF da distribuicao GEV,

Feoev(z) = exp {—exp {—:E — M} } , TR
o
e considerando y = *=£, temos

Fepv(z) = exp{—exp(—y)}, yeER, (2.11)

correspondendo & CDF da distribuicao Gumbel, que é um caso particular da
distribuigao GEV para ¢ = 0.

15



O interesse em optar por uma distribuigao especifica ou por uma distribui¢ao
unificada esta frequentemente relacionado com as caracteristicas do fenémeno em
analise. Associado ao indice de valores extremos, £, existem outros parametros,
usualmente designados de parametros de acontecimentos extremos que permitem
descrever de forma mais precisa a frequéncia e a magnitude dos eventos raros, como
o quantil extremal e o nivel de retorno a T" anos.

Quantil da distribuicao GEV: O quantil z, é o valor tal que a probabilidade
acumulada P(X < z,) = Fgrv(z,) = p. Para determinar a fun¢do quantil, basta
resolver a equacao abaixo em ordem a z,:

emp{—-<t+§93:fﬁ)§}=49¢=>]=+§@3:f2:=6—bngf

o o
obtendo-se o quantil

Tp=p+0 [(—10g10)_E — 1] /€.

Para encontrar a mediana 1 /2, substituimos p = 1/2 na féormula geral do quantil:

Tipp=p+0o [(IOgQ)_g - 1} /€.

Os quantis extremais caracterizam-se por terem uma probabilidade de excedéncia
muito pequena, que é, em geral, da ordem de 0.01 (quantil zgg9), 0.001 (quantil
To.999) € 0.0001 (quantil xg.9999)-

Nivel de retorno da distribuicao GEV: Um nivel de retorno T (unidades
de tempo) é o nivel que se espera ser ultrapassado, em média, uma vez a cada 7.
Seja xr o nivel de retorno com periodo 7. Entao, temos:
1

1
P(X>xT):T = P(XSxT):l_T

Como Fggy(zr) = P(X < zr), segue que:

FGEV(JUT):l—% = exp [— (1+M)_2] :1_1

o 1.
xT:u+EV—bgL—T»E—q. (2.13)

2.2.2 Meétodo dos momentos ponderados de probabilidade e
extensoes

No ambito da estatistica classica existem diversos métodos usados para estimar para-
metros estatisticos de interesse, entre os quais se destacam o método dos momentos,
o método da méxima verosimilhanga (MV) e ainda métodos derivados ou inspirados
nestes. O método da MV ¢é amplamente utilizado pela sua eficiéncia assintotica e
pelas suas boas propriedades estatisticas, mas pode revelar-se exigente do ponto de
vista computacional, sobretudo quando aplicado a distribuicoes mais complexas ou
em situacoes em que a funcao de verosimilhanca é de dificil manipulagao. Neste tra-
balho, optamos por detalhar o método dos Momentos Ponderados de Probabilidade
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(MPP) (ou PWM, do inglés Probability Weighted Moments), uma generalizagao do
método dos momentos, que apresenta vantagens praticas em termos de simplicidade
e robustez, sendo também o método utilizado na dete¢ao de mudanca no parametro
de forma &, de particular interesse para este trabalho.

Os PWM de ordem (p,r,s), para uma variavel aleatéria X com CDF F foram
introduzidos por Greenwood et al. (1979) e s@o definidos por:

M,,, = E{X?[F(X)][1 - F(X)]*}, p,rseR. (2.14)

O caso especifico da estimacao PWM dos parametros da distribuicao GEV foi
desenvolvido por Hosking et al. (1985). Para o caso em que £ # 0, em particular
com ¢ < 1, tem-se parap=1,r=0,1,2,... e s = 0 que o PWM de ordem (1,r,0),
M, ,0, assume a forma:

Miva = BIXIFOOTY = {n= S - 0+ 0T - 1),

onde I'(+) é a funcdo gama dada por I'(t) = f0+°° ' le™®dz, t > 0. Os estimadores
PWM (é, i, o) para (&, u, 0) sao a solucdo do sistema de equagoes:

( M1,0,0 =Hn— %[1_F(1—§)]
oM, 10— Migo = gm — 626 1)

3Mio0— Mipo 3*—1
(2My10— Migo 26—1

Substituindo em seguida M ,, com 7 = 0, 1,2, pelo estimador centrado dado
por Landwehr et al. (1979):

n T

Mm,o = %Z (H ((i:ll))) 'Xj,na (2-15)

j=1 =1

onde (X, ..., X, ) representam as estatisticas de ordem de uma amostra prove-
niente de uma distribuicao com CDF F. Reescrevendo as duas primeiras equagoes,
em ordem a 4 e a o, respetivamente, obtém-se os estimadores PWM (&, i, 5):

o

fL = Ml,o,o + E[l -1 - f)]

€(2M1,1,0 - MI,O,O)
T(1-¢)(25—1)
3M1,2,o — Ml,O,O B 3 -1
My — Mgy 26—1

o=

Note-se que, para se obter uma estimativa de é tera de se recorrer a métodos
numéricos. Ja na situacao em que £ = 0, ou seja, o caso da distribuicao Gumbel,
tem-se parap=1,r=0,1,2,... e s =0, que o PWM de ordem (1,r,0) é dado por

1

Mo = EAX[P(X)]"} = — [+ o(=y(1) + log(1 +7))], (2.16)
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em que, ¥(z) = - logI'(z) é a fungdo digama e —¢)(1) ~ 0.5772156649 ¢ a constante
de Euler-Mascheroni. Neste caso, apenas os parametros de localizagao e escala (u, o)
precisam de ser estimados. Assim, substituindo em (2.16) a variavel r por 0 e 1 e,
resolvendo as equagoes obtidas em ordem aos dois parametros, obtém-se

p= Mg+ op(1)
2M1,1,0—M1,0,0

0= log 2

Novamente usando o estimador para Mj .o, apresentado em (2.15), e substituindo
em (2.16), obtém-se os estimadores PWM para a localizagao e escala do modelo
GEV, com £ = 0: )

fi = Mo+ o(1)
2Mi 10— Mo
log 2 '

o=

Para estes estimadores baseados nos PWM, para £ < 1 e quando a dimensao da
amostra de maximos em estudo, n — oo, verifica-se que

\/ﬁ«éa I[:L’ 5’) - (6, 1, 0))

¢ assintoticamente Normal. Mais detalhes poderao ser vistos em Beirlant et al.
(2006).

Em cenérios onde se exige mais flexibilidade e robustez para estimar os pa-
rametros da distribuicao GEV, é comum a utilizagao dos método dos Momentos

Ponderados de Probabilidade Generalizados (GPWM). E uma extensdo do método
classico PWM que se baseia no calculo de momentos da forma:

o0

v, = E[Xw(Fgev)| = / rw(Fgpyv(z)) dFgeyv(x), (2.17)

—00

onde w é uma funcao continua adequada. Fazendo uma mudanga de variaveis, este
momento pode ser reescrito como

Vy = /01 Fipy(u) w(u) du.

Definindo a funcao W (t) = fotw(u) du, com W(0) = 0, um estimador natural
para v, ¢ dado por

1
ﬁwm:/ F;l(u)w(u) du,
0

onde F,, denota a fungao de distribuigao empirica baseada na amostra (X7, ..., X,,).
As propriedades assintoticas de 7, , para a distribuigdo GEV podem ser consultadas
em Diebolt et al. (2007).

2.2.3 Modelos para séries temporais em extremos

A analise de valores extremos em séries temporais constitui uma area em cresci-
mento, motivada pela necessidade de compreender fenémenos raros e de grande
impacto, como tempestades, vagas de calor ou flutuagdes financeiras intensas. Ao
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contrario do caso independente, os extremos em processos temporais revelam fre-
quentemente dependéncia serial e agrupamento de excedéncias, o que torna neces-
saria a adaptacao das metodologias classicas da Teoria dos Valores Extremos.

Entre as abordagens disponiveis, continuam a ser fundamentais os métodos que
recorrem a maximos de blocos e as excedéncias acima de limiares elevados. No
entanto, a sua utilizacado em séries temporais exige que se verifique a chamada con-
digdo de mistura (Leadbetter et al. (1983)), que garante a validade dos resultados
assintoticos mesmo na presenca de dependéncia.

A presenca de agrupamentos ou clusters de excedéncias pode ser quantificada
através do indice extremal 6 € (0, 1]:

. P(M, <uy)
=1 - = 7
o= BB <))

O indice extremal pode ser visto como o reciproco do limite do tamanho médio dos
grupos de excedéncias e por isso, quando 6 < 1 ha evidéncia de clusters de extremos,
e o caso 6 = 1 corresponde a um cenario de sucessoes i.i.d.

Na area financeira, modelos GARCH sao aplicados com frequéncia por conse-
guirem capturar a heteroscedasticidade e periodos de forte volatilidade associados a
valores extremos (Embrechts et al. (1997)). Versoes destes modelos tém sido adap-
tadas para séries de contagem no contexto do estudo de sequéncias periddicas com
dependéncia extremal Scotto et al. (2015).

Abordagens computacionais e utilizacao de técnicas de reamostragem como o
bootstrap foram também utilizadas para aumentar a precisao das previsoes e a ro-
bustez dos intervalos de previsao em séries com caudas pesadas (Cordeiro and Neves
(2014, 2019)).

A metodologia proposta em Kojadinovic and Naveau (2017), para detegao de
mudangas nos parametros (u, o, ) da distribuigao GEV foi desenvolvida no contexto
de séries i.i.d., sendo ainda valida em condi¢oes de dependéncia fraca. Neste trabalho
propomos avaliar, via simulacao de Monte Carlo, a robustez e o desempenho da
metodologia na presenca de niveis de dependéncia mais acentuados.

2.3 Tipo de mudancas de estruturas

O estudo das mudangas de estrutura em séries temporais assume uma importancia
central em diversas areas do conhecimento. A identificacdo e compreensao dessas
mudangas sao fundamentais para interpretar fenémenos complexos e dar resposta a
problemas com especial relevancia na atualidade. Em numerosos contextos praticos,
torna-se necessario recorrer a metodologias estatisticas robustas que permitam de-
tetar, localizar e analisar alteragoes no comportamento estrutural das séries. Estas
técnicas sao particularmente relevantes quando ocorrem mudangas nas proprieda-
des estatisticas da série, como mudanc¢as na média, na variancia, na tendéncia ou
noutros parametros que indiquem transicoes significativas.

Considera-se que uma série temporal apresenta mudancas de estrutura quando
ha uma alteragao nas suas propriedades ao longo do tempo. A detecao de mudancgas
na média da série foi inicialmente proposta por Page (1954, 1955), tendo sido poste-
riormente aprofundada pelos trabalhos de Hinkley (1970), Bai (1997) e Killick et al.
(2010). No campo da econometria, o foco do estudo das mudangas na tendéncia
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da série estd na anéalise da instabilidade dos coeficientes nos modelos de regressao
— veja-se, por exemplo, Andrews (1993) Bai and Perron (2003b) e Zeileis et al.
(2002a).

Outros tipos de mudancas, como mudancas na variancia, tém sido explorados,
conforme demonstrado em Killick and Eckley (2014), Chen and Gupta (1997) e
Horvath (1993). Adicionalmente, modificagdes na estrutura de dependéncia (ou
correlagdo) também tém sido alvo de investigagdo (Hamilton (2020) e Barry and
Hartigan (1993), entre outros).

Até a data, ja se encontram disponiveis diversos resultados tedricos — e alguns
com aplicagao pratica — para lidar com os variados tipos de mudancas de estrutura
que os dados podem apresentar, com o objetivo de possibilitar inferéncias mais fia-
veis (veja-se, por exemplo, Shao and Zhang (2010),Kojadinovic and Naveau (2017)
e Casini and Perron (2018)).

Neste trabalho, em particular, propomos-nos estudar as mudancas na média da
série, na tendéncia e mudancas na forma, mais concretamente, no comportamento
da cauda da distribuicao generalizada de valores extremos.

2.3.1 Mudancas na média

Considere-se uma série temporal univariada {X;, t = 1,...,n} com variancia cons-
tante.

Vamos supor, por simplicidade, que se pretende testar a existéncia de uma tinica
mudanga de média num ponto temporal desconhecido k, tal que k € [1,n — 1].

Entao, o que se pretende testar sao as seguintes hipoteses

E[Xo] == E[X\] = p

{HO . E[X)]
E[X,) = = E[X)] # B[Xpn] = - = E[X,]

H1 . E[Xl]

Ou seja, nao existe mudanga de média versus existe mudanga de média no ponto

t=k.

Na Figura 2.7, apresentamos uma série temporal com uma mudanca de média
no ponto k = 100.

10

1
|
1
t

Figura 2.7: Uma mudanca de nivel
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2.3.2 Mudancas na tendéncia

Considere-se uma série temporal univariada {X;, t = 1,...,n} com tendéncia, que
pode ser descrita, numa forma simplificada, pelo modelo de regressao linear:

Xt:ﬁO+ﬁlt+€ta tzl,...,n, (218)
onde [, representa a ordenada na origem, ; o coeficiente de tendéncia e & ~
WN(0, o2).

Admitindo a existéncia de um ponto de mudanca k € {1,...,n — 1}, podem ser

consideradas duas situacoes distintas.

No primeiro caso, assume-se que a série temporal é continua no ponto de mu-
danca, ocorrendo apenas uma alteragao no declive apés ¢t = k. O modelo pode ser
escrito como:

Bo+Prit+e, t<k,
X, = (2.19)
ﬁo‘i‘ﬁgt—i‘&, t>k‘,

garantindo continuidade em t = k.
As hipoteses a testar sao entao:

Hy: By =B,
Hy: By # B,

ou seja, a auséncia de mudanca na tendéncia versus a existéncia de uma mudanca
no declive no ponto t = k.

Pode ser de igual modo relevante estudar casos em que ocorrem uma alteracao
conjunta da ordenada na origem e da inclinagao da tendéncia. Neste caso, o modelo
é dado por:

Bor+ it +e, t<k,
X, = k=1,...n—1. (2.20)
Boz + Bot + e, t >k,

As hipoteses de interesse passam a ser:

Hi: pelo menos um dos parametros difere.

{Ho : Bor = Poz e Br = Po,

Na Figura 2.8 apresenta-se uma série temporal simulada que ilustra uma mu-
danca simultanea no ponto k=>50.
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Figura 2.8: Uma mudanca na tendéncia

2.3.3 Mudancas no parametro forma da distribuicao GEV

Na Seccao 2.2, foi apresentado o enquadramento tedrico da teoria dos valores ex-
tremos. Nesta secgdo, analisamos possiveis mudangas no parametro de forma (&)
da distribuicao GEV, uma vez que este parametro controla a natureza das caudas
da distribuicao. Mudancgas em ¢ permitem distinguir entre diferentes regimes de
comportamento extremo.

Seja X; a variavel aleatoria que representa o valor extremo observado no instante
te{1,2,...,T}. Admitimos que os dados seguem uma distribui¢do GEV,

Xy ~ GEV(uy, 04, &),
em que:
e 1, € R é o parametro de localizagao no instante ¢;
e 0, > (0 é o parametro de escala no instante ¢;
e & € R é o parametro de forma no instante ¢, associado ao regime de cauda.

O problema de interesse consiste na dete¢ao de mudancgas no parametro de forma
da distribuicao GEV ao longo do tempo, isto é, pretende-se testar:

Hy: 6 =6=--=& =& versus Hy:3t,se{l,..., T} tais que & # &;.

Os graficos apresentados mostram séries temporais de valores extremos simu-
lados a partir de uma distribuicao GEV em dois cenéarios distintos. Consideramos
observagoes i.i.d. (independentes e identicamente distribuidas), com parametros
de localizacao u = 0 e escala ¢ = 1, constantes ao longo do tempo. O grafico I
representa os valores simulados com & = 0.2 constante, enquanto que o grafico II
apresenta os valores simulados de dois modelos GEV(0, 1, &) em que o parametro
de forma muda no instante ¢ = 50, passando de £ = 0.2 para £ = 0.5.
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Figura 2.9: Simulagao de dois modelos GEV sem (I) e com (II) mudanga no para-
metro de forma
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Capitulo 3

Metodologias de detecao de
mudancas de estrutura

A metodologia adotada nesta investigacao assenta, numa primeira fase, na aplicagao
de técnicas classicas amplamente utilizadas para a detecao de mudancas de estru-
tura em séries temporais, nomeadamente para andlise de mudancas de média, de
tendéncia e mudancas na forma da distribuicao, com especial atencao a mudanca
no parametro de forma, £, da distribuicao generalizada de valores extremos, GEV. O
enfoque principal é a analise do desempenho dos algoritmos de detegao existentes,
com recurso a estudos de simulagao de Monte Carlo. Para a realizagao dos estudos
empiricos, geraram-se m séries temporais, construidas com base em diferentes estru-
turas estatisticas, de modo a testar a robustez dos métodos disponiveis na literatura.

Focamo-nos na abordagem segmentaria, como o principal método de analise
deste trabalho, com foco no algoritmo de segmentacao binéria, inicialmente pro-
posto por Scott and Knott (1974) e mais recentemente aprofundado em Killick et al.
(2010), o algoritmo Pruned Ezact Linear Time (PELT), os testes F e das somas cu-
mulativas (CUSUM), propostos em Zeileis et al. (2002b) baseados em algoritimos
de programacao dindmica para avaliar a estabilidade dos parametros da série ao
longo do tempo, em especial mudancas de média e de tendéncia. Para mudancas
no parametro forma da distribuiggo GEV foram feitas simulagoes usando o método
proposto em Fearnhead and Rigaill (2019), nomeadamente em contextos de depen-
déncia. As principais bibliotecas do software R CRAN utilizadas foram changepoint,
strucchange e NPCP.

Para anéalise das mudancas de média e de tendéncia, exploramos o desempenho
dos métodos em quatro cenérios:

e Mudangas fracas ou pouco visiveis;
e Séries com dependéncia fraca, moderada e forte;
e Falha da suposicao de normalidade;

e Séries com presencga de outliers.

Quanto a analise de mudangas na forma da distribuicao, analisamos:
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¢ Mudangas no parametro de forma, £, da distribuicao GEV, para distribuicoes
de cauda pesada, ou seja, quando & > 0.

De acordo com metodologias usuais para estudos de simulacao com séries tem-
porais, e de forma a acomodar a variabilidade intrinseca que existe no processo de
simulagao das séries temporais, definimos uma metodologia para a selecao de uma
janela de tolerancia v em torno do verdadeiro ponto de mudanca k. Ou seja, sempre
que o modelo deteta um ponto dentro do intervalo k — v, k + 7, aceitamos como um
ponto de mudancga. Para tal, simulou-se um conjunto de séries com uma mudanca de
nivel acentuada, um cenario onde se espera que os métodos acertem 100% das vezes.
Avaliamos a taxa de acerto do algoritmo de segmentacao para diferentes valores de
~v. O valor de v foi escolhido como aquele que proporcionou uma taxa de acerto
proxima de 90%, sendo este posteriormente utilizado como referéncia nas andlises
subsequentes. Nas secgoes seguintes apresentamos a teoria estatistica subjacente
aos algoritmos de detegao usados neste trabalho.

3.1 Meétodos de estimacao de mudanca de média

Um dos primeiros métodos originalmente proposto para detetar uma tnica mudanca
na série temporal estacionaria é o CUSUM classico Page (1955). Este método con-
siste num teste de hipoteses onde se testa a instabilidade na média de uma série
temporal {X;, t =1,...,n}. Ou seja,

Ho: pn=pa="--=p,

contra a hipotese alternativa,

Hi: 3ke{l,...on—1}talque y = po =+ = px # g1 =+ = [in,

onde E[X;] = .

Dada a estatistica de teste

Ck = M ‘jl:k - f(k+1):n| )
n
onde Ty € T(r4+1):m sa0 as médias empiricas de cada segmento, calculadas por: Z;., =
u+H1 > i ¢, a estatistica CUSUM compara, para um k € {1,...,n — 1} fixo, a
média empirica antes de k com a média empirica depois de k.
Sob a hipotese de independéncia e/ou dependéncia fraca e assumindo que X; ~

N (u,0%), entao sob Hy, a estatistica de teste % segue uma normal padrao com

L o c2 .
média 0 e variancia 1, e —§ ~ X3. Existe uma mudanga em k se:

onde ¢ € R™ é um valor de limiar escolhido. A validade assintotica ¢ garantida
também pelo Teorema Central do Limite (TCL), ver Yao and Davis (1986).
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Agora precisamos considerar todas as possiveis localiza¢oes de pontos de mu-
danca e escolher aquela que maximiza a estatistica de teste. Assim, consideramos a
extensao do teste CUSUM:

02
2 = max —k

maX T pell,m—1} 02

Se detetarmos um ponto de mudanga (ou seja, se C2._ > c¢), podemos estimar a sua
localizacao da seguinte forma:

l;? = arg max C 3.1
ke{l,...,n—1} ke ( )
onde ];’ é o valor de k que maximiza a estatistica CUSUM.

Uma estimativa simples da magnitude do salto ¢ dada por:

Aﬂ = j(.’;:—‘y-l):n - jl:fc' (32)

Série temporal Estatistica CUSUM

0 25 50 75 100 0 25 50 75 100
X A

Figura 3.1: Estimacao de k com Estatistica CUSUM

A operacao de maximo introduz complexidade adicional devido a dependéncia
entre as estatisticas para diferentes k, por outro lado, a natureza nao regular do
problema afeta a distribuicao assintotica da estatistica de teste e estas sao diferencas
fundamentais entre testar um ponto de mudancga conhecido versus desconhecido.

Em Yao and Davis (1986) prova-se que (C,...,C,_1)/o converge para um pro-
cesso Gaussiano com média 0 e covariancia conhecida e que o maximo de um con-
junto de variaveis aleatérias Gaussianas converge para uma distribuicao de Gumbel,
conforme a equacao:

n— 00 o

lim Pr {anl <m§x% - bn> < ua} = exp {—(27r)’1/2 exp(—uaq)},

onde a, = (2loglogn)~'/? (constante de escala) e b, = a' + 0.5a, logloglogn
(constante de localizagao).

Estas constantes de normalizacao sao necessarias para evitar que o maximo se

torne degenerado a medida que n — oo. Como ji mencionado na sec¢ao 2.2.1,
a distribuicao normal estda no dominio de atracao da Gumbel, ou seja, o méximo
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de variaveis normais, devidamente normalizado, converge para uma distribuigao
Gumbel.

Para determinar o limiar ¢ que controla a taxa de falsos positivos, igualamos
CDF da distribuigao Gumbel a 1 — « e resolvemos em ordem a u, obtendo:

Deste modo, o valor critico é dado por ¢ = a,u, + b, e para obter o limiar c,,

como maxy(C?/0?) > ¢, basta elevar ¢ ao quadrado: ¢ = ¢2.
NPV o c?
Este resultado assintotico indica que o limiar ¢ para —§ cresce com n a uma taxa

de O(2loglogn). E um resultado assintético ttil quando o tamanho da amostra é
suficientemente grande.

Para amostras pequenas, é recomendavel utilizar o método de Monte Carlo
(MMC), que se baseia na distribuigdo empirica dos dados originais, sob a hipdtese

nula Hy, geralmente é mais conservador. Para M séries {xim)}?zl, m=1,..., M,
sob a hipotese nula Hy (sem ponto de mudanga), o limiar MMC comega por simular:
()
cm —  max ~—2

WX pe{l,..n-1}y 02
Com base nos M valores simulados obtém-se a distribuigao empirica de C2, e
define-se o limiar como:

cMMC) — Quantil, ({C(’”) }i::l) :

max

A decisdo a tomar ¢ a de Rejeitar Hy se C2,. > cMMC) Note que o teste assume
que sob Hj, nao existe um ponto de mudanca na série.

O problema da dete¢ao de mudancgas na média adquire uma complexidade signi-
ficativamente maior quando a anéalise incide sobre séries temporais muito instaveis
ao longo do tempo ou seja quando apresenta miltiplas mudancas. O teste CUSUM
classico ja enunciado, fora inicialmente proposto para identificar uma tnica mu-
danca de estrutura na média da série; contudo, a sua aplicacao torna-se inadequada
em contextos com mais do que uma mudanga. Os métodos de segmentacao, re-
solvem este problema ao dividir recursivamente a série em segmentos, aplicando a
estatistica de mudanca em cada segmento e permitindo a identificagao eficiente de

miultiplos pontos de mudanca na série temporal.

3.1.1 Meétodos de segmentacao

Os processos para analise de mudangas de estrutura, nomeadamente, mudancas
de média, mais utilizado é provavelmente, o processo de segmentacgao da série, cuja
origem remonta aos trabalhos de Scott and Knott (1974) e Sen and Srivastava (1975)
e posteriormente implementado em bibliotecas do software R CRAN por Killick
et al. (2010). De forma sucinta, este tipo de processo aplica primeiro um teste de
ponto de mudanca tinico a toda a série. Se for identificado um ponto de mudanca, a
série é dividida nesse ponto. Em seguida, o procedimento é repetido nos dois novos
subconjuntos de dados — antes e depois da mudanca. Se forem detetadas novas
mudancas em qualquer um desses subconjuntos, eles sao novamente divididos. Este

27



processo continua até que ja nao sejam encontrados pontos de mudanca em nenhuma
das partes, sendo usualmente denominado métodos recursivos de detecao.

Por exemplo, métodos de segmentacdo como o BinSeg (Binary Segmentation)
oferecem uma aproximacao eficiente para a detecao de mudancas, com complexi-
dade O(nlogn), ao considerar apenas um subconjunto das 2" — 1 segmentagoes
possiveis. Em contraste, algoritmos como o PELT procuram a segmentagao 6tima
global, mantendo elevada eficiéncia computacional gragas ao corte inteligente, en-
quanto abordagens exatas completas testam todas as segmentagoes possiveis, com
custo computacional muito elevado. Uma variacao relevante é o algoritmo WBS ( Wild
Binary Segmentation) Fryzlewicz (2014), que melhora a abordagem do BinSeg ao
aplicar a segmentacao em multiplos intervalos aleatorios, tornando a detecao de mu-
dancas miltiplas mais eficaz, sobretudo quando estas ocorrem em posi¢oes proximas.
Esses métodos classicos geralmente pressupoem que os dados sejam independentes
ou apresentem dependéncia fraca dentro de cada segmento e tendem a funcionar me-
lhor em dados normais ou aproximadamente normais, ver Basseville et al. (1993),
Truong et al. (2020) e (Horvath and Rice, 2024, pp. 49-50).

Para compreendermos a nogao do processo de segmentagdo, vamos assumir que
X, é um processo particionado (em segmentos), com distribuicdo Gaussiana (ou
normal de parametro 6, onde 6 é o vetor que contém p e o. Nestas condigoes,
define-se o custo associado a um segmento, dado por:

L(wsi14) =min Y | —2log f(z;;6) (33)

i=s+1

onde f(x;;0) é a fungao densidade de probabilidade da normal.
Aplicando o logaritmo a funcao densidade de probabilidade e somando para
1 =5+ 1 até t, obtém-se:

t t

S ~2log f(ri0) = (¢ — ) log(2m0®) + 5 S (5~ o)

i=s+1 i=s+1

Para minimizar a expressao relativamente a p, derivamos:

%(Z(mi—uf) =2(t—s)u—2 Z x,

K 1=s+1 i=s+1

t
1 _
= u= E Ti = Ts41:it-

t—s
1=s+1

Substituindo p = Zgyq14:

t

1
'C(xs—&—l:t) = ; Z (xz - j5—1—1:15)2~

i=s+1

O custo da segmentagao completa sera dado por:

M
D L@k s1k )
m=0
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, onde M é o nimero total de pontos de mudangas. No caso em que M = 1e k| = k,
temos dois segmentos, T1.x € Tki1.0, Cujo custo de segmentagao é dado por:

k
L(x1) + L(Tpi1m) = % [Z( — T1p)t + Z — Tptim 2] )

i=1 i=k+1

Contudo, como nao temos um critério de paragem, podemos incorrer no risco
de aumentar significativamente o erro do tipo I (ou seja, detetar uma mudanga
quando nao houve nenhuma de facto) e enfrentar problemas de sobreajustamento.
Um dos métodos usados para lidar com este problema ¢ o algoritmo de segmentag&o
binaria, que comega por verificar se o custo de uma segmentagao satisfaz a seguinte
condicao:

L(x10) — (E(mm) + E(xk+1m)> > 3 (3.4)

onde L(-) esta definido em (3.3), e 8 € R representa uma penalizagao ou critério de
paragern.

Se esta condigao for satisfeita para algum k € {1,...,n}, considera-se que o
custo foi reduzido, e o teste é repetido recursivamente nos dois segmentos gerados
por essa divisao. O processo continua até ja nao haver nenhuma divisao que reduza
o custo (isto é, quando, para todos os k, ndo se verifica a condi¢ao em 3.4).

No caso em que haja proximidade entre as mudancas, o algoritmo Wild Binary
Segmentation (WBS), um procedimento recursivo que melhora em alguns cenarios
as estimativa dos pontos de mudancga ao considerar miultiplos subintervalos alea-
torios da sequéncia, para uma melhor discussao sobre este método ver Fryzlewicz
(2014).

A nogao de custo associada & segmentagdo 6tima é dada por:

M

O = Bl [ 20, 2 Ehwt) P >
onde @), g representa o custo 6timo de segmentar os dados até ao instante n, com
uma penaliza¢do [ que aumenta com um novo ponto de mudanca. A equagao (3.5)
corresponde precisamente & formulac¢ao de Optimal Partitioning (OP), isto é, o pro-
blema de encontrar a segmentagao globalmente 6tima através da minimizacao do
custo penalizado.

Neste problema, podemos reduzir o nimero de verificagoes a serem realizadas em
cada iteracao, diminuindo a complexidade. Esta operagao é chamada de pruning.
Especificamente, dada uma funcdo de custo L(-), sob a condigao de que existe uma
constante C' tal que, para todo [ < C' < u:

L(x111:6) + L(@pg1:0) + C < L(X141:0) (3.6)

é possivel realizar a poda sem recorrer a uma aproximacao. Para muitas funcoes de
custo, como a funcao de custo Gaussiana, tal constante C' existe.
Entao, para qualquer k < t, se
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Qi+ L(Tpg1:) = Qup—C (3.7)

for verdadeiro, entao para qualquer 1" > ¢, £k nunca podera ser o ponto de mu-
danca 6timo antes do tempo 7.

Usando a condi¢ao da Equagao 3.7, o algoritmo PELT —Killick et al. (2012)
resolve exatamente a minimizacao penalizada da Equagao 3.5 com um custo compu-
tacional esperado que pode ser linear em (O(n) — mantendo, no entanto, comple-
xidade O(n?) no pior caso, particularmente quando a condigdo de poda raramente
é satisfeita.

Ou seja, ao definir k = 0, se

Qrp+ L(Tpi14) > Qs

entao podemos efetuar o corte com seguranga no custo do segmento relacionado
com k, ja que k nunca serd o ponto de mudanga 6timo até qualquer tempo T" > ¢t
no futuro. Substituindo o custo anterior no lado direito:

Qk,,B + £(37k+1:t> > Olgligt [Qk,ﬁ + £($k+1;t) -+ ﬂ],

vemos como o [ desempenha novamente um papel central, ja que esta ausente no
lado esquerdo. A intuicao é que, uma vez introduzido um novo ponto de mudanca
candidato, é entao possivel realizar o corte.

A selecao de S pode ser fixa, ou escolhida com base em critérios estatisticos.
AS penalizac¢oes mais usadas nos softweres, correspondem aos critérios AIC, BIC e
MBIC.

A penalizacao AIC assume o valor de 2p, onde p é o nimero de parametros adi-
cionados ao modelo. Embora seja simples de aplicar, o AIC é conhecido por ser
assintoticamente inconsistente e tende a sobrestimar o nimero de pontos de mu-
danca a medida que o tamanho da amostra aumenta. Intuitivamente, isto ocorre
porque o AIC é projetado para minimizar o erro de previsao, e nao necessariamente
para identificar a estrutura verdadeira do modelo. Favorece modelos que se ajustam
bem aos dados, o que frequentemente leva a inclusao de mais pontos de mudanca do
que o necessario. O BIC (Critério de Informagao Bayesiano) tem como penalizacao
plog(n). Nas nossas abordagens, isto traduz-se em 5 = 2log(n), sendo adicionada
para cada ponto de mudanca adicional. O BIC é geralmente mais conservador que
o AIC e é consistente, ou seja, nao sobrestima o nimero de pontos de mudancga a
medida que o tamanho da amostra cresce.

O MBIC (BIC Modificado) foi proposto por Zhang and Siegmund (2007), como
uma extensao do BIC que inclui um termo extra para considerar o espagamento entre
os pontos de mudanca. Na pratica, esta penalizacao pode ser aproximada por: § =
3log(n). E ainda mais conservadora que o BIC. Em termos praticos, estas escolhas
de penalizagao representam um compromisso fundamental entre sobreajustamento
(detetar pontos de mudanga em excesso) e subajustamento (ndo detetar mudangas
que de facto existem).
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3.2 Meétodos de estimacao de mudancas na tendén-
cia

No contexto da dete¢ao de mudancas na tendéncia de uma série temporal, recorre-
mos as metodologias propostas em Zeileis et al. (2002b), baseadas na regressao linear.

Considere-se, assim, a equacao linear:

yi=x; Bi+e (i=1,...,n), (3.8)

onde, onde, no tempo i, y; representa a variavel dependente observada, x; = (1, z;2, . . .

é um vetor p x 1 de variaveis independentes (com o primeiro termo constante), [3;
é o vetor (p x 1) dos coeficientes de regressao, assumido constante dentro de cada
segmento e podendo variar entre segmentos, e €; sao os erros i.i.d. de média nula e
variancia constante o2,

Os testes de mudanga de estrutura tém como objetivo testar a hipotese nula:

Hy: B =P03y="- =y,

contra a hipotese alternativa de que existe pelo menos um instante em que os coe-
ficientes diferem:

Hy: 3i,je{l,...,n} tal que 5; # 5;.

Assume-se que os regressores sdo nao estocasticos, com ||z;]] = O(1), e que:

1 n
— E xZ:cZT - @ (3.9)
n

i=1

para alguma matriz () finita e nao singular.

Seja 3(n) o estimador dos Minimos Quadrados Ordinérios (MQO) dos coeficien-
tes de regressao baseado em todas as observagoes até ao instante n. Os residuos sao
entao dados por )

€ =Yi— 37;5(”),
e a variancia dos residuos é estimada pela forma usual:

n
1
~2 ~2
g = 61.
n —
p =1

Nos testes de mudanca de tendéncia sao frequentemente utilizados residuos re-
cursivos. Denotando por (i, 7) os MQO dos coeficientes de regressao, com base nas

observagoes de i+ 1 até i+ 7, e por 5(i) = 5(0,17) os estimadores baseados em todas
as observacoes até o tempo 7, os residuos recursivos sao definidos como:

N Yi — %TB@ —1)
w; = 3
V1+a] (XEDTX6ED) g,

t=p+1,...,n,

onde X & a matriz dos regressores até a observacao i.
Os autores Zeileis et al. (2002b) demonstram que, sob a hipotese nula, estes
residuos recursivos tém média nula e variancia o2, sendo esta tltima estimada como:

1 - _
52— by — )% 3.10
o n_pZ(w W) (3.10)

i=p+1
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, onde
Ainda em Zeileis et al. (2002b), salienta-se que as suposi¢oes de que os residuos
sao i.i.d., de que os regressores z; sao nao estocasticos e de que a condigao

1 n
=zl - Q (3.11)
n

=1

converge para uma matriz finita e nao singular podem nao ser validas em certos mo-
delos dinamicos. Nestes casos, sao necessarias adaptagoes metodologicas adequadas.
Propomos, portanto, avaliar estes métodos também em condigoes para as quais ori-
ginalmente nao foram concebidos, de modo a testar a sua robustez e aplicabilidade
fora dos pressupostos standard.

De forma geral, os testes de dete¢ao de mudangas de estrutura podem ser dividi-
dos em duas grandes classes: testes baseados nos parametros e testes basea-
dos nos residuos. Os primeiros avaliam diretamente a estabilidade dos coeficientes
de regressao ao longo do tempo, enquanto os segundos analisam as flutuacoes dos
residuos para detetar eventuais quebras na estrutura do modelo.

O teste mais simples e classico para a detecao de mudancas de estrutura é o teste
de Chow Chow (1960), baseado na estatistica F', no qual se testa a significancia de
um ponto de mudanca conhecido, denotado por ty. Este teste baseia-se na hipotese
nula de que os coeficientes de regressao permanecem constantes ao longo do tempo.

A ideia consiste em ajustar duas regressoes lineares com p variaveis explicativas
as subamostras antes e depois de ty (designadas por amostras A e B) e comparar
estas com o modelo restrito ajustado a toda a amostra. A estatistica de teste é dada
por
 SMQO, — (SMQOA+ SMQOp) ng +np —2p
N SM QO A+ SM QO B P ’

onde SMQO, representa a soma dos quadrados dos erros do modelo ajustado a
amostra total, e SMQO, e SMQOpg representam, respetivamente, as somas dos
quadrados dos erros dos modelos ajustados as amostras A e B. Em Chow (1960)
prova-se que Fy, segue uma distribuicao F' com p e ng +np — 2p graus de liberdade.

Quando o ponto de mudanca é desconhecido, conforme discutido em Andrews
(1993) e Andrews and Ploberger (1994), constroem-se extensoes da estatistica Fj,
ao longo do intervalo ¢ty € {p+1,...,n — p}, combinando-se as evidéncias através
das seguintes estatisticas:

g

(3.12)

supF' = sup Fi,
toe{p+1,....n—p}
1 —
avefl = ——— Ei,
n—2p—i—1tozzp;rl fo
1 ~— 1
expF = log (— Z exp (— to)) .
n—2p+1 Wi 2

Estas estatisticas resumem a evidéncia de mudanca estrutural ao longo do tempo,
sendo os testes aveF e expF particularmente relevantes por apresentarem propri-
edades de otimalidade em certos contextos, conforme discutido em Andrews and
Ploberger (1994).

Os testes baseados nos residuos avaliam a estabilidade do modelo através da
analise das flutuacoes dos residuos ou das estimativas dos parametros. Um exemplo
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classico sao os testes de flutuacao, que englobam os processos CUSUM e MOSUM
Kleiber (2002). A ideia central consiste em ajustar o modelo aos dados e derivar um
processo empirico que capture a flutuacao das quantidades de interesse ao longo do
tempo.

Para estes processos empiricos, sao conhecidos os processos-limite, permitindo o
calculo de limites criticos cuja probabilidade de serem ultrapassados sob Hy é a. Se
o caminho do processo empirico ultrapassar esses limites, considera-se a flutuagao
improvavelmente grande, levando a rejeicao da hipétese nula ao nivel de significancia
a. Na biblioteca strucchange, estes testes sao implementados através da fungao
efp (empirical fluctuation process).

Quando as observacoes nao sao independentes — como é comum em séries tem-
porais —, os processos de flutuacao podem ser ajustados utilizando estimativas
consistentes da matriz de covaridncia, como os estimadores HAC (heteroskedasti-
city and autocorrelation consistent) Andrews (1991); Lumley and Heagerty (1999),
garantindo validade assintética mesmo na presenca de autocorrelacao ou heteroce-
dasticidade.

O processo Rec-CUSUM, proposto por Brown et al. (1975), é definido por

ptl|in)

1
IM@)ZEVEE:é“ 0<t<1, (3.13)

1=p+1

onde n = n — p é o ntmero de residuos recursivos. Sob Hj, o processo limite de
W, (t) € um processo de Wiener W (t), de acordo com o Teorema do Limite Central
Funcional (FCLT)!. Sob a hipotese alternativa, caso exista um ponto de mudanga
estrutural ¢y, o processo tende a desviar-se da média zero apos esse ponto.

O teste OLS-CUSUM baseia-se nas somas cumulativas dos residuos obtidos
por MQO, sendo definido por

[nt]

1
2 0<t<1. 3.14

O processo limite correspondente é a ponte browniana?, definida por W°(t) =
W (t) — tW(1). Este processo inicia e termina em zero, apresentando desvios locais
quando ocorre uma quebra estrutural. Ambos os processos estao disponiveis na
fungao efp, especificando o argumento type como "Rec-CUSUM" ou "OLS-CUSUM",
respetivamente. As propriedades teéricas destes processos sao detalhadas em Chu
et al. (1995).

Para a analise de mudancas na média e, em particular, mudancas na tendéncia,
recorre-se ao método de programagao dinamica proposto por Bai e Perron Bai and
Perron (2003a), que permite estimar simultaneamente multiplos pontos de quebra

W) =

i1, ..., 1, através da minimizacao da soma dos quadrados dos residuos segmentados:
m+1

RSS(ir, ... im) = Y _rss(ij_1 + 1,4;), (3.15)
j=1

YO Teorema do Limite Central Funcional (FCLT) estabelece que as somas parciais de variaveis
aleatorias centradas e normalizadas convergem, em distribui¢ao, para um processo de Wiener
(movimento browniano).

2Uma ponte browniana é um processo estocastico obtido a partir de um movimento browniano
W (t), condicionado a comegar e terminar em zero, sendo definido por WO(t) = W (t) — tW(1).
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onde rss representa a soma dos quadrados dos residuos em cada segmento e RSS a
soma total, com ig = 0 e i,,.1 = n. Os pontos de quebra estimados sao dados por

(11, ..., tm) = arg min RSS(i1,...,0im), (3.16)
B1yeeeylm
sujeito a restrigao i;—¢;_; > ny, onde ny, representa o nimero minimo de observacoes
em cada segmento.
Para mais de duas quebras, uma busca exaustiva seria computacionalmente in-
viavel, com complexidade O(n™). No entanto, o uso de programagao dinamica

reduz a complexidade para O(n?), recorrendo a recursao baseada no principio de
Bellman Bellman (1957):

RSS(IL,,n)=  min  [RSS([y_1,1) +rss(i+1,n)]. (3.17)
mnp<i<n—mnp
Este algoritmo encontra-se implementado na funcao breakpoints do pacote strucchange,
permitindo a estimacao eficiente de miltiplas quebras estruturais.

3.3 Meétodo de detecao de mudancas nos parame-
tros da distribuicao GEV

A abordagem utilizada neste trabalho é baseada em Kojadinovic and Naveau (2017),
que propoem o uso dos estimadores PWM e GPWM para detecao de mudangas nos
parametros da GEV. A metodologia proposta no artigo permite testar a existéncia
de mudancas na localizacao, na escala e na forma da distribuicao GEV e assenta
no pressuposto de que a amostra de méaximos é composta por variaveis aleatorias
independentes.

A principal inovagao deste trabalho consiste em incorporar dependéncia serial nos
dados simulados, de modo a avaliar a robustez dos métodos PWM e GPWM sob
diferentes cenarios: dependéncia fraca (¢; = 0.2) onde se prevé que a metodologia
proposta em Kojadinovic and Naveau (2017) ainda seja vélida, moderada (¢; = 0.5)
e dependéncia forte (¢; = 0.8), onde poderd haver mais dificuldade do método
em detetar mudanca, uma vez que esta metodologia nao foi projetada para estes
cenarios.

Estatisticas de teste

A dete¢ao de mudancas no parametro de forma & pode ser efetuada através de testes
baseados em estatisticas do tipo CUSUM desenvolvidas na seccao 3.1 e aplicadas
aos estimadores de . A ideia central consiste em avaliar, ao longo da amostra, pos-
siveis quebras na homogeneidade da distribui¢ao dos maximos por bloco, recorrendo
a comparacoes sisteméticas entre subconjuntos de dados.

No caso do método PWM, a estatistica de teste para £ é definida por:

kin—k A - . R
Sgg,n =  Inax % ]-(ﬁlzk € D£> ﬂk+1:n € Dﬁ) gﬁ(ﬁlk) - gﬁ(ﬁk+1:n) ’ (318>

1<k<n—1

onde:
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1(a € A) representa a fungao indicatriz;

b1k € Bri1n S20, respetivamente, os vetores de estimadores PWM calculados
a partir das observagoes anteriores e posteriores ao ponto de corte k;

ge(+) € a funcdo que estabelece a relagdo entre os momentos ponderados e o
parametro &;

e D, representa o dominio admissivel dos estimadores.

De forma analoga, para o método GPWM, a estatistica de teste assume a forma:

% 1(Brk € D, Bryin € Di) |he(Brr) — he(Brrim)|,  (3.19)

Shen = Max
1<k<n—1

em que he(-) corresponde & fungao de ligacao definida no contexto GPWM e Dy, ao
respetivo dominio.

Em ambos os casos, as estatisticas sao de natureza nao paramétrica, no sentido
em que nao exigem explicitamente que os dados seguem uma distribuicao GEV.
Contudo, nos estudos de simulagao, as amostras sao geradas de acordo com uma
distribuicao GEV. Esta formulacao permite que os testes sejam particularmente
sensiveis a mudancas no parametro &, sendo o método PWM mais simples e classico,
enquanto o GPWM, pela sua generalizacao funcional, oferece maior flexibilidade e,
em certos cenarios, melhor desempenho em termos de poder estatistico (ver sec¢ao
3 de Kojadinovic and Naveau (2017)).

Procedimento de simulacao

A distribuicao GEV nao é fechada para soma (convolugao), ou seja, se
X ~GEV(ux,0x,¢x) e Y ~ GEV(uy, o0y, &), em geral

Z =aX +bY + GEV,

Deste modo, a solugao encontrada para gerar processos GEV com dependéncia tem-
poral modelada por processos de tipo AR(1), consiste em:

19) Gerar um processo, por exemplo AR(1):
Zy=¢r 1+ €, €~ N(0,1) (3.20)
29) Transformar a série via Transformagao Uniformizante:
U = O(Zy),

onde U; ~ U(0,1) com a estrutura de dependéncia AR(1).
39) Utilizar a funcao inversa da GEV para transformar Uy:

X, = Fay (UL, €). (3.21)

Deste modo, X; mantém a dependéncia temporal da série original. Esta depen-
déncia é usualmente denominada de dependéncia de copula.
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Capitulo 4

Estudo computacional

Tal como definido no inicio do trabalho, o principal objetivo deste estudo consiste
numa analise critica dos métodos! classicos de detecao de mudancas de estrutura
em séries temporais, com especial atencao aos métodos de segmentacao, com vista a
sua melhoria ou, eventualmente, ao desenvolvimento de uma nova abordagem. Esta
analise assume particular relevancia, dado que os métodos discutidos na Sec¢ao 3
foram concebidos para observagoes independentes e/ou com dependéncia fraca, e
tendem a funcionar melhor sob a suposigao de normalidade dos dados. Nesta anélise
computacional, avaliamos o desempenho destes métodos classicos em cenérios que
violam tais suposi¢oes, nomeadamente na presenca de falhas de normalidade e de
diferentes graus de autocorrelacao. Adicionalmente, analisamos o seu desempenho
na presenca de outliers, considerando diferentes dimensoes da série temporal, bem
como diferentes magnitudes de mudanca.

4.1 Escolha da janela de tolerancia

A estimacao de pontos de mudanca em séries temporais, mesmo em cenérios simula-
dos e controlados, esté sujeita a variabilidade estatistica. Tal variabilidade decorre
principalmente da aleatoriedade intrinseca dos dados e da fraca capacidade dos mé-
todos em detetar mudancas de pequena magnitude. Alguns autores recorrem, por
esse motivo, a utilizagao de janelas de tolerancia Ma et al. (2020), classificando como
verdadeiros pontos de mudancga aqueles que se encontram dentro de um determinado
raio em torno do ponto de mudanca real.

Neste trabalho, validamos empiricamente a metodologia do raio 6timo através
de resultados de simulagao. Para esse efeito, simuldmos 2000 séries temporais com
estrutura do tipo AR(1), com pardmetro ¢ = 0.2, em que os residuos do modelo
seguem uma distribui¢ao normal com média zero e variancia unitaria. Considerou-se
um tamanho amostral n = 200 e uma tnica mudanga estrutural acentuada (y; = 1
e g = 4), ver sec¢ao 4.2.1, localizada nos instantes k = 50, k = 100 e k = 150,
correspondentes, respetivamente, a mudangas situadas em 25%, 50% e 75% do total
da série.

Para cada cenario, estudamos o erro na estimacao do ponto de mudanca k, deno-
tado por k. Nos casos em que os algoritmos detetam multiplas quebras, registamos
o numero dessas ocorréncias, representado por L. O erro de localizagao do ponto de

!Para simplificar a apresentacio das tabelas, adotamos as seguintes abreviacoes: PELT = PL,
BinSeg = BS e o algoritmo de Bai—Perron = BP.
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mudanga é definido como:

onde ki, i=1,... , 2000, representa o ponto de mudanca estimado na i-ésima simu-
lacao.
Admitindo que v = 1,...,n representa o raio da janela de tolerancia, a taxa de
acertos (denotada por Hj) associada a cada valor de «y é definida por:
7 €; <
Hy = e =) (4.2)
m

onde m = 2000— L corresponde ao niimero de simulacoes em que foi detetada apenas

uma quebra estrutural.
As Tabelas 4.1 e 4.2 ilustram a construgao do raio 6timo =, com base nas taxas

de acerto associadas aos pontos de mudanca k = 50, k = 100 e k = 150, sendo este
critério posteriormente utilizado no desenvolvimento do estudo de simulacao para
mudangas de nivel (média) e de tendéncia.

Tabela 4.1: Definicao de raio 6timo-Mudanca na média

Tolerancia v
n =200, ¢ =0.2 BS PL
k=50 k=100 k=150 | k=50 k=100 k=150
65.53% 65.31% 64.08% | 65.65% 66.17%  65.26%
83.85% 84.63% 82.94% | 83.07% 85.44% 83.71%
91.43% 92.52% 91.59% | 91.33% 93.13%  91.89%
95.30% 96.17%  95.74% | 95.38% 96.61%  95.62%
97.53% 97.97% 97.66% | 97.52% 97.93%  97.68%
98.65% 98.90%  98.71% | 98.84% 98.76%  98.59%

Tk W N~ O

Tabela 4.2: Defini¢ao de raio 6timo-Mudanca na média e tendéncia

Tolerancia v
n = 200, ¢ = 0.2 BP
k=250 | k=100 = 150
59.85% | 60.25% | 59.20%
77.00% | 77.60% | 75.45%
84.65% | 85.45% | 83.50%
89.30% | 90.15% | 88.55%
92.80% | 93.10% | 91.10%
94.75% | 95.20% | 93.25%

QL= W N = O

Estabelecemos como janela de tolerancia o menor raio 7y que assegura uma taxa
de acerto proximo de 90%, o que nos levou a adotar tolerancias de +3 para as analises
principais, embora os algoritmos de segmentacao, como o PL e BS chegam aos 90%
com +2, ver figura 4.1. Outro fator importante constatado é que, a posi¢cao do ponto
de quebra nao tem muita influencia nas estimativas dos métodos. Ressaltamos ainda
que esse é um cenario ideal, adotado unicamente para definir uma regra empirica
na escolha da janela de tolerancia, outros contextos — como mudangas mais subtis
e condicoes de dependéncia mais forte — também sao considerados neste estudo,
especialmente na avaliacao do comportamento dos métodos frente a esses desafios.
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Figura 4.1: Proporgao acumulada de taxas de acerto até o raio

4.2 Mudancas na média da série

Como ja referido na seccao 2.3.1, uma mudanc¢a na média da série temporal ocorre
quando se verifica uma alteracdo — de pequena magnitude ou de magnitude mais
elevada — no valor médio da série. Nesta seccao, propomos estudar estes cenarios
em trés contextos distintos: séries com residuos normalmente distribuidos, séries
com residuos t-Student e séries afetadas pela presenca de outliers.

4.2.1 Residuos com distribuicao normal

Antes de avangarmos para a anélise de testes em séries temporais com estrutura
de dependéncia, iniciamos com simulac¢oes de processos simples, gerados a partir de
uma distribuicao normal. Esse é exatamente o ambiente inicial projetado para os
métodos classicos, ja que a maioria deles assumem independéncia ou dependéncia
fraca, e tende a apresentar melhor desempenho em séries normais ou aproximada-
mente normais .

Consideremos o processo
Xt = Wi + &, le Tv (43)

em que f; denota a média no i-ésimo segmento e ¢; ¢ um ruido branco normalmente
distribuido, &, ~ N(0, 1).

Consideramos processos com uma mudanc¢a na média de u; para s, onde a
magnitude de salto sera dado por 9. Simulamos 2000 séries sem autocorrelagao,
de dimensoes n = {200,500,1000}, com mudancas fracas, 6 = |us — p1| < 1o,
moderadas, 1.50 < § > 20, e fortes, § > 30, no ponto de mudanca k = 50, onde o
é desvio padrao de &,
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Tabela 4.3: Taxa de acertos do algoritmo de segmentacao binaria em cenarios 11D
por penalizacoes AIC, BIC e MBIC.

n = 200 n = 500 n = 1000
0 AlIC BIC MBIC AIC BIC MBIC AIC BIC  MBIC

0.50 36.95 2155  6.55 36.20 23.60 535 36.30 2045  4.70

lo 73.10  70.55 70.00 73.65 7230 69.55 73.25 69.90 71.25
1.50 98.30  97.25 96.50 97.65 96.90 97.65 97.55 96.80 97.20
20 99.60 99.25 9940 99.70 99.35 99.55 99.75  99.40 99.45
30 99.85 99.85 99.80 100.00 99.85 99.75 99.95 99.85  99.80
4o 100.00 100.00 99.95 100.00 100.00 100.00 100.00 100.00 100.00

Os resultados da Tabela 4.3, obtidos com o algoritmo BS mostram que, no caso
em que nao existe autocorrelagao (residuos IID), a taxa de detegao é bastante con-
sideravel em mudancas de magnitude mais elevadas, com valores acima de 95%,
cenario este que muda em mudancas de pequena magnitude, onde apresenta-se ta-
xas mais baixas. De salientar ainda que o tamanho da amostra (n = 200, 500, 1000)
nao altera substancialmente os resultados neste cenario IID.

A tabela 4.44.5 , mostram os resultados das simulag¢oes para outros métodos.

Tabela 4.4: PL

n = 200 n = 500 n = 1000
) AIC BIC MBIC AIC BIC MBIC AIC BIC MBIC

0.50 39.50 27.35 1090 3880 33.15 13.75 40.20 31.65 14.80
1.50 87.95 90.00 89.75 8375 90.45 91.30 88.55 89.15 90.50
30 99.90 99.80 99.80 100.00 99.95 99.75 99.80 99.95 99.80

Tabela 4.5: BP

0 mn=200 n=>500 n=1000

0.50 29.5 33.5 30.1
1.50 90.5 92.5 93.1
30 100.0 100.0 100.0

Os resultados tanto para o método PL, como para BP, sao parecidos com os ob-
tidos pelo método BS, com taxas altas proximos dos 90% ja em 6 = 1.5, embora
a dificuldade continua em situac¢ao de mudancas fracas com taxas muito baixas de
acerto.

Vamos considerar agora, cenérios autocorelacionados, em que os ; da equacao
4.3 seguem uma estrutura autoregressiva AR(1) de média nula e o = 1.

A tabela 4.6, mostra os resultados para 2000 séries simuladas, de tamanho n =
100 e fixamos o ponto de mudanca k = 50, mas fazendo variar o coeficiente do
modelo AR(1), de um dependéncia fraca para uma forte.
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Tabela 4.6: Taxas de acerto para ¢ = 0.2,¢ = 0.5 e ¢ = 0.8, usando os métodos BS,
BP e PL

¢=0.2 ¢ =0.5 ¢ =08
5 BS PL BP BS ©PL BP BS PL BP

0.50 17.60 18.30 17.5 10.75 22.05 10.0 6.10 48.05 11.5
1.50 83.85 81.05 82.0 59.75 62.10 64.5 23.20 58.60 26.0
30 99.50 99.00 98.5 93.60 93.00 94.0 58.90 7840 64.5

Conforme se pode observar na tabela 4.6 autocorrelagao em niveis de dependén-
cias mais forte (¢ = 0.8) diminui a taxa de acerto dos métodos e agrava-se quando
comparado com cenario IID.

O grafico da figura 4.2 mostra o desempenho do algoritmo & medida que alte-
ramos o valor do parametro ¢, mantendo a série com a mesma estrutura, e para
diferentes magnitudes de mudancas.

1.00 1.00 1.00
. —\a—\_\\
S ors BS 075 PL 0.75 BP
Q
< - . )
- 5=05 - 5=05 - 5=05
© 0.50
© 050 s-15 050 5=15 5-15
% — 5-3 — 5-3 — 5-3
=025 \F\J"\/\/\,.. 0.25 —\/,/ 0.25
N~
— o.00 M 2
0.000.250.500.75 0.000.250.500.75 0.000.250.500.75
¢ b o

Figura 4.2: Variacao da taxa de acertos em fun¢ao do parametro ¢, para os métodos
BS, BP, e PL, considerando mudancas de pequenas magnitudes a maguinitudes mais
elevadas

Observa-se que, a medida que o valor de ¢ aumenta, a taxa de acerto diminui em
todos os cenarios. A autocorrelagao introduz uma estrutura de dependéncia que di-
ficulta a detecao da mudanga de nivel, reduzindo a eficacia do algoritmo. O método
PL, no caso das mudancas fraca e autocorrelacao forte a taxa tende a aumentar, um
comportamento nao visto nos métodos BS e BP. A razao pode estar relacionada com
o fato do método PL ser um método de otmizacao global, o que o torna potencial-
mente menos sensivel a detecao de quebras espirias? que aumentam na presenca de
autocorrelagao e mudancas de pequena magnitude, ao contrario dos métodos BS e BP
que com divisoes sucessivas amplia efeito da dependéncia dos residuos, ver 3.1.1 e 3.2.

2No contexto de detecdo, uma quebra espiria refere-se a quando o método identifica uma mu-
danca que nao corresponde a uma alteragao real. Ou seja, o método “julga” que houve uma quebra,
mas esta aparente quebra resulta apenas de flutuaces do ruido, da presenca de autocorrelagao ou
de sobreajustamento do modelo.
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As Tabelas 4.7, 4.8 e 4.9 apresentam as anéalises do sobreajustamento® dos mé-
todos BS, PL, considerando diferentes escolhas de penalizacao: AIC, BIC e MBIC.

Tabela 4.7: Estimativa de Sobreajustamento (AIC)

BS PL
¢ 0=05c 6=15b0c §d=30c §=050 =15 0=30

0.2 0.7335 0.1850  0.0050  11.1500  10.8800 11.1135
0.5 0.8760 0.4200 0.0675 16.7665 16.6725 16.4700
0.8  0.9400 0.7930  0.4070 21.0820  20.9985 21.1880

Tabela 4.8: Estimativa de Sobreajustamento (BIC)

BS PL
¢ 0=0>5c =150 6=30 0=05bc 6d=150 6=30

0.2 0.4755 0.1850  0.0050  0.8375 0.5885  0.4495
0.5 0.7445 0.4195  0.0675  4.1775 4.0675  3.9315
0.8  0.9390 0.7920  0.4070 10.4385 10.4960 10.4130

Tabela 4.9: Estimativa de Sobreajustamento (MBIC)

BS PL
o 0=050 0=150 0=30 6=050 d=15c =30

0.2  0.1695 0.1860  0.0050  0.1980 0.2015  0.0245
0.5 0.4815 0.4180  0.0675  1.1785 1.2720  0.9910
0.8 0.9180 0.7920  0.4080  6.7635 6.7750  6.7045

A anélise das tabelas mostra que o AIC é a penalizacdo que piora mais os re-
sultados dos métodos, particularmente no método PL, onde, em cada uma de 2000
simulagoes, observa-se uma média de quase 21 pontos fora do raio 6timo em ce-
narios extremos. Em contraste, com a penalizacao MBIC, essa média reduz-se para
aproximadamente 7 pontos. Ja o método BS, cujo comportamento é semelhante ao
do BP na tabela (4.6), apresenta em média cerca de 1 ponto fora do raio 6timo,
comportamento consistente em quase todas as penalizacoes consideradas.

4.2.2 Residuos com distribuicao t — Student

Até ao momento, as anélises basearam-se em situagoes em que os residuos seguem
uma distribuicao normal. As tabelas seguintes apresentam cendrios que se afastam
das hipodteses classicas de normalidade dos dados, considerando, em particular, a
distribuigao t-Student, que possui caudas mais pesadas do que a normal. Se X ~ #,),
entao ¢ = v~ ! representa o peso da cauda da distribuicao ¢t. A Figura 4.3 ilustra a

30 sobreajustamento ocorre quando o método identifica mais pontos de mudanca do que real-
mente existem.
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variacao do peso da cauda direita da distribuicao t — student em fun¢ao do numero
de graus de liberdade. A medida que v — 0, ou para valores pequenos, a cauda da
distribuicao t, é mais pesada do que a normal.

0.4

o
w

= Normal padréo
= H{v=05)
t(v=1)
= tv=10)
W(v=15)
= Hv=3)

Densidade
o
(%]

o
-

0.0

Figura 4.3: Variacao de v da distribuicao ¢ vs a normal

A tabela 4.11, contém dados de 2000 séries simuladas, com residuos ¢, com
v={15, 2.5, 5}, k =50 e n = 200.

Tabela 4.10: Taxa de acertos em cenérios 11D, considerando graus de liberdades 1.5,
2.5 e b da distribuicao ¢

v=15 v=25 v=>5
1) BS PL BP BS PL BP BS PL BP

0.50 435 4155 1 830 1835 6 950 890 9
1.50 2345 63.85 10 6140 64.40 66 80.40 78.50 &0
30 596.70 94.00 54 91.85 96.15 92 9880 98.90 98

Note que, quanto menor o niimero de graus de liberdade v, mais pesadas se tor-
nam as caudas da distribuicao e menor é o poder de detecao dos métodos BS e BP.
J& o método PL apresenta taxas mais elevadas em cenarios de mudancgas de pequena
magnitude e caudas mais pesadas, aproximando-se, contudo, do comportamento dos
restantes métodos a medida que aumenta o ntimero de graus de liberdade e a mag-
nitude das mudancas. A medida que v aumenta, os resultados convergem para os
obtidos no caso de residuos normais.
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Os gréficos da figura4.4 apresentam o desempenho dos algoritmos para valores
de v no intervalo [1, 10].

1.00 1.00

075 075 0.75

BS PL BP

= Fraca(5=05) = Fraca(5=0.5) 0.50 = Fraca(6=05)
0.50 Moderada (5=1.5) 0.50 Moderada (5=1.5) Moderada (5=1.5)
— Forte (6=3) = Forte (6=3) — Forte (6=3)

Taxa de acerto

0.25

M- e P Vaad

- . " L
25 50 75 100 25 50 7.5 100 25 50 7.5 100
df df df

0.25

Figura 4.4: Variagao do peso da Cauda

As tabelas 4.11, 4.12,4.13, mostram o comportamento dos métodos em cenéarios
autocorrelacionados.

Tabela 4.11: Taxa de acertos-Distribuigao ¢ (¢ = 0.2)

v=1.5 v=25 v=2>5
) BS PL BP BS PL BP BS PL BP

0.50 3.9 480 1 105 25.7 12 142 176 16
1.50 224 714 16 619 694 68 803 79.6 82
3o 60.1 93.3 55 90.7 96.0 92 983 989 98

Tabela 4.12: Taxa de acertos-Distribuigao t (¢ = 0.5)

v=1.5 v=25 v=2>5
) BS PL BP BS PL BP BS PL BP

0.50 56 61.1 5 12.7 384 17 20.7 325 24
1.50 236 794 26 61.8 757 69 782 79.3 82
3o 58.3 953 54 89.2 97.0 92 98.0 98.7 98

Tabela 4.13: Taxa de acertos-Distribuigao ¢ (¢ = 0.8)

v=15 v=25 v=2>5
) BS PL BP BS PL BP BS PL BP

0.50 85 783 9 157 612 23 23.7 525 24
1.50 235 885 24 477 83.0 55 576 834 68
30 473 975 43 676 975 T2 T76.6 99.5 T8

Tal como no caso da distribui¢ao normal, o aumento da autocorrelacao reduz o
poder de detecao, mas esse impacto é agravado quando ha falha da normalidade. O
método PL tende a apresentar melhor desempenho em cenarios mais extremos, mas
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¢ o método que apresenta mais estimativas de mudancas fora do raio 6timo definido
na seccao 4.1, sobretudo na penalizacao AIC.

4.2.3 Efeito dos Outliers

Nesta seccao, analisamos o impacto da presenca de outliers na detecao de mudancas
de estrutura em séries temporais, com énfase nas mudancas na média. O objetivo é
avaliar como a posicao e a intensidade dos outliers afetam a detecao correta do
ponto de mudanca.

A categorizacao definida na Tabela 4.14 baseia-se na proximidade temporal dos
outliers relativamente ao ponto real de mudanca k. Assim, consideram-se outliers
prozimos aqueles que ocorrem na vizinhanga imediata do ponto de mudanga (£10
unidades em torno de k). Os outliers intermédios correspondem a ocorréncias si-
tuadas a uma distancia moderada, entre 50 e 100 unidades antes ou depois de k.
Finalmente, os outliers distantes referem-se a valores posicionados nas extremidades
da série, isto €, nos primeiros 10% ou nos tltimos 10% das observagoes.

Tabela 4.14: Categorias de posicionamento dos outliers em relacao ao ponto real de
mudanca k.

Categoria Posicao

Proéximos touttier € [k — 10,k + 10]
Intermédios  touter € [k — 100,k — 50] U [k + 50, k + 100]
Distantes touttier € [1, 0.1m] U [0.9n, n

Além da posicao, a intensidade dos outliers também é um fator crucial. Para
quantificar esta intensidade, utilizamos o desvio padrao (o) da série, expressando a
magnitude dos outliers como miltiplos de o, dada pela expressao .

_ +
ZToutlier = 4 £ c.o, c€NT,

sendo p a média da série e o o desvio padrao.

Usando o cenério descrito na Seccao 4.2, simuldmos 2000 séries temporais e,
através de um teste estatistico para a significancia dos outliers, avalidmos para quais
valores de ¢ o ponto foi classificado como outlier, conforme descrito na tabela 4.15.
Esses resultados serviram de base para a construgao da Tabela 4.16, que apresenta
o impacto da posi¢ao e da intensidade dos outliers na taxa de falsos positivos do
algoritmo de segmentacao.
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Tabela 4.15: Valores-p do teste de Grubbs baseados em 2000 replicas, para diversos
valores de ¢

Teste de Grubbs (valor-p)

0.98080
0.97844
0.71459
0.01868
0.00021
0.00000
0.00000
0.00000
0.00000
0.00000

O© 00 O Tl W~ (a6

—_
S

Para a nossa metodologia, e de acordo com o teste de Grubbs Grubbs (1950), um
ponto é considerado outlier quando ¢ > 4, valor a partir do qual o valor-p do teste é
estatisticamente significativo. Com base nesse critério, calculamos as taxas de falsos
positivos (FP), definidas como o ntimero de vezes que o algoritmo identifica outliers
como pontos de mudanga.

A Tabela 4.16 apresenta os resultados obtidos para diferentes posi¢oes e intensi-
dades dos outliers, obtidos através de algoritmos de segmentacao binaria

Tabela 4.16: Taxas de FP (%) em 2000 réplicas (BS)

Posicio X +40 X +60 X+8 X+100 X+ 120

Proéximos 22.30 28.60 30.55 58.90 82.90
Intermédios 0.10 0.65 3.80 8.55 19.85
Distantes 8.70 33.15 65.20 81.25 91.00

Tabela 4.17: Taxas de FP (%) em 2000 réplicas (PL)

Posicito X +40 X +60 X+8 X+100 X+ 120

Proéximos 100 100 100 100 100
Intermédios 100 100 100 100 100
Distantes 100 100 100 100 100
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Estas simulagoes foram realizadas em contextos bastante favoréaveis, considera-
mos n = 500, k = 250, ¢ = 0.2 e 6 = 40, uma mudanga elevada e uma estrutura
de dependéncia fraca (¢ = 0.2), situagoes nas quais se espera que os métodos nao
apresentem dificuldades e que a taxa de falsos positivos (FP) seja nula.

Para o método BS a proximidade dos outliers ao ponto de mudanca aumenta de
forma significativa as taxas de FP ¢é ainda superior com o aumento da intensidade,
onde chega a alcancar aproximadamente 83% para ¢ = 12. Os outliers distantes,
embora nao proximos de k, podem induzir elevadas taxas de FP, chega a alcancar
aproximadamente 65% ainda em ¢ = 8 ¢ 91% em ¢ = 12. Os intermédios sdo os
menos problematicos, de acordo com os resultados do algoritmo, mas ainda assim
tendem a distorcer a segmentacao para intensidades elevadas, com aproximadamente
20% para ¢ = 12.

Na presenca de outliers, o método PL perde totalmente a sua eficiéncia, apresen-
tando uma taxa de falsos positivos (FP) de 100%. Como era de esperar, os outliers
tendem a distorcer a capacidade de detecao correta do ponto de mudanca. Observa-
se ainda que os métodos de divisao sucessiva (BS e BP) podem apresentar vantagens
face aos métodos de otimizagao global, como o PL, neste tipo de cenério.

4.3 Mudancas na tendéncia da série

Ao contrario das mudancas na média, que afetam apenas o valor médio da série, as
mudancas de tendéncia envolvem variagoes no padrao de crescimento ou decresci-
mento ao longo do tempo, conforme o modelo inicial proposto na secgao 2.3.2.
Inicialmente, consideramos o cenério 11D, sem autocorrelagao, onde se espera um
desempenho eficiente do método. Os resultados para séries de dimensao n = 200,

2000 réplicas e ordenadas na origem fixos em todos os cenarios, estao apresentados
na Tabela 4.18.

Tabela 4.18: Mudancas na tendéncia—Cenéario 11D

Cenario de inclinagdo Taxa de acerto (%)

pr=-03 e [Br=01 99.00
Bi=0 e p[a=0.1 91.00
Bi=0 e B=03 99.00
=0 e (=05 99.00

O nosso interesse ¢ avaliar se o método BP consegue detetar mudangas graduais
no comportamento tendencial da série, mesmo na presenca de autocorrelacao nos

residuos, neste contexto simulamos um processo AR(l) com tendéncia em que oS 0s
Et N(O, 1)

Os resultados apresentados na Tabela 4.19 foram obtidos com base em 2000 ré-
plicas de séries de dimensao n = 200, onde, os pontos de mudanca na tendéncia
da série temporal foram estimados utilizando o método de minimos quadrados seg-
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Tabela 4.19: Mudancas na tendéncia—Cenéario dependentes

Taxa de acerto (%) por ¢
6=02 ¢—=05 ¢=08

50,1 =0e 50,2 =1

fi=0 e p[2=0.1 95.0 62.0 7.5
fi=0 e p[2=03 96.0 68.5 14.5
f1=0 e P2=05 98.0 62.0 13.5
b1 =01 e [By=-01 950 68.0 15.5

mentados, implementado pela fungao breakpoints()? da biblioteca strucchange
e fixamos os valores dos By e [y 2 e variamos os coeficientes de inclinacao 3; e B,
para diferentes valores do coeficiente de autocorrelagao ¢.

O método apresenta um bom desempenho em cenarios sem autocorrelagao ou
com dependéncia fraca, com uma média de 96% de acerto nos diferentes cenérios de
variacao dos coeficientes 3, conforme a tabela 4.19. Contudo, a sua eficacia diminui
rapidamente & medida que a autocorrelacao aumenta, mesmo quando a mudanca na
inclinacgao ¢ significativa, registando-se uma taxa média de acerto em apenas 12,75%
para ¢ = 0, 8.

4.4 Mudancas na forma da distribuicao

Nesta secgao, avaliamos a capacidade do método proposto em Kojadinovic and Na-
veau (2017) para identificar mudangas no parametro de forma (§) da distribuigao
GEV. Inicialmente, foram feitas um conjunto de simulagoes para se ter uma ideia da
janela de tolerancia (), conforme descrito na Secgao 4.1.

Para esta analise, consideramos em contexto i.i.d, um cenario que evidencia uma
clara mudanca no peso da cauda, caracterizado por uma mudanca de £ = —0.2 para
¢ = 0.2, o que representa a passagem de uma distribuicao com cauda leve para
outra com cauda pesada. Neste contexto, espera-se uma taxa de detecao do ponto
exato onde ocorre a mudanca no parametro de forma seja proxima de 100%, a qual
corresponderia a um valor de v = 0. A Tabela 4.20 apresenta os resultados obtidos
nas 2000 simulagoes, considerando n = 200 e k = n/2 = 100.

Note-se que, mesmo em contexto i.i.d. e em condigoes em que a mudanca ¢é cla-
ramente visivel, a taxa de detecao do ponto exato da mudanca é praticamente nula
e, mesmo para v = 10, que corresponde ao intervalo [90,110], a taxa mantém-se
abaixo de 50%.

Esta metodologia revela-se mais eficiente na simples identificacao de que ocorreu
uma mudanca na distribuicao, apresentando dificuldades na detecao exata do local

4A fungio breakpoints da biblioteca strucchange implementa o algoritmo de Bai e Perron,
discutido na seccao 3.2. Esta técnica, baseada em programagao dindmica, minimiza a Soma dos
Quadrados dos Residuos (RSS) para encontrar o conjunto de quebras ideal, utilizando o critério
Bayesian Information Criterion (BIC) para selecionar o namero de quebras. Anteriormente, apli-
camos o método a mudancas na média, usando a terminologia BP-(Bai e Perron), mas, a seguir,
focar-nos-emos na mudanca de tendéncia, que constitui uma das principais funcionalidades deste
algoritmo.

47



Tabela 4.20: Definicao de raio 6timo — mudanca no parametro forma.

Y PMW GPMW
0 | 0.0140 0.0115
1 10.0450 0.0455
2 1 0.0760 0.0770
3 10.1025 0.1115
4 10.1320 0.1445
5 | 0.1780 0.1835
6 | 0.2190 0.2260
7 10.2740 0.2735
8 | 0.3405 0.3325
9 104135 0.3915
10 | 0.4635 0.4395

da alteracao. Por este motivo, no contexto autocorrelacionado, abordou-se apenas
o nivel empirico e a poténcia do teste, com o objetivo de avaliar o comportamento
dos métodos PWM e GPWM dentro da estatistica CUSUM na detecao de mudancas no
parametro de forma &, considerando diferentes intensidades de dependéncia serial.

Foram consideradas séries temporais de tamanho n = 200, com trés niveis de
dependéncia serial: fraca, ¢ = 0.2, moderada, ¢ = 0.5 e forte, ¢ = 0.8. Foi também
considerando o caso ¢ = 0, que corresponde a assumir independéncia, e para o qual
esta metodologia foi desenvolvida.

Tal como apresentado na Seccao 2.3.3, e considerando apenas o caso em que
temos uma mudanca no parametro de forma. Para cada configuragao, foram reali-
zadas 2000 repeti¢oes de Monte Carlo. A Tabela 4.21 apresenta o nivel empirico dos
testes PWM e GPWM para os diferentes cenarios de dependéncia, i.e., a propor¢ao
de rejeicoes de Hy quando nao ha mudancga de €.

Tabela 4.21: Nivel empirico dos testes PWM e GPWM para diferentes niveis de
dependéncia, ao nivel de significancia de 5%.

o | £=-02 | £=0 | £=0.2

| PWM  GPWM | PWM GPWM | PWM GPWM
0.0 | 0.0485 0.0175 | 0.0345 0.0280 | 0.0260  0.0355
0.2 1 0.0430 0.0145 | 0.0380 0.0210 | 0.0330  0.0290

0.5 ] 0.0850 0.0345 | 0.0720 0.0440 | 0.0660 0.0625
0.8 1 0.3630 0.2005 | 0.3310 0.2650 | 0.3700  0.3240

De acordo com os resultados da Tabela 4.21, o método parece nao funcionar bem
a 5%, ja que nao se observa padroes de valores perto de 0.05 mesmo em condic¢oes de
dependéncia fraca e a4 medida que aumenta o peso da cauda e a dependéncia serial,
os métodos tendem a distorcer os resultados, resultando na perda de controlo sobre
o nivel de significancia empirico. Ou seja o teste relata mudanga como estatistica-
mente significativas, mesmo na auséncia de uma alteragao real.
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Para analise da poténcia do teste que corresponde & proporcao de rejeicoes de
Hy quando ha mudanca de &, consideramos os cenarios descritos na Tabela 4.22 .

Tabela 4.22: Poténcia dos testes PWM e GPWM para diferentes niveis de depen-
déncia com mudanca de &, ao nivel de significancia de 5%.

¢ Santes gdepois PWM GPWM

0.0 0 0.2  0.1520  0.1510
0.2 0 0.2 0.1575  0.1500
0.5 0 0.2  0.2140  0.1935
0.8 0 0.2  0.5355  0.4552

0.0 0.2 0.6  0.3125 0.478
0.2 0.2 0.6  0.3180 0.500
0.5 0.2 0.6  0.4410 0.527
0.8 0.2 0.6  0.7770 0.650

0.0 -0.3 0 0.2375 0.240
02 -0.3 0 0.2370 0.243
0.5 -0.3 0 0.3390 0.328
0.8 -0.3 0 0.7115 0.674

0.0 -0.2 0.2 0.5905  0.4950
0.2 -0.2 0.2  0.6210  0.5155
05 -0.2 0.2  0.7060  0.6270
0.8 -0.2 0.2  0.9100  0.8565

0.0 -0.1 -0.3 0.2585  0.0930
02 -01 -0.3 0.2740  0.0805
05 -0.1 -0.3 0.4060  0.1580
0.8 -0.1 -0.3 0.7320  0.4405

Pela Tabela 4.22, constata-se que & medida que ¢ aumenta (mais dependéncia
serial), os testes tornam-se mais potentes, sobretudo o PWM, que responde de forma
mais acentuada a estrutura de dependéncia. Com dados independentes, os testes
tém comportamento semelhante e poténcia limitada, mas sob dependéncia moderada
ou forte, o PWM é claramente o mais eficaz para detetar mudancas no parametro
de forma & da GEV. Por outro lado, observamos que o teste PWM ¢é sensivel ao
“engrossar” da cauda mesmo com o aumento de dependéncia serial. As mudancas
estruturais de cauda leve (limitada) para cauda pesada sao as mais faceis de detetar
pelos testes. No caso em que as caudas ficam mais leves (&untes = —0.1; depois =
—0.3), os métodos tém mais dificuldade em detetar estas mudangas, com especial
destaque para o GPWM, com poténcias de teste bastante inferiores as do PWM.
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Capitulo 5

Conclusoes e trabalho futuro

A presente dissertacao analisou de forma critica os métodos classicos de detecao de
mudancas de estrutura em séries temporais, avaliando o desempenho destes face a
violagao dos seus pressupostos. As simulagoes de Monte Carlo validaram as abor-
dagens propostas e destacaram os limites de aplicabilidade das mesmas em cenérios
mais complexos.

Os resultados indicam que a forte dependéncia entre as observagoes reduz a ca-
pacidade de detecao, fazendo com que alguns métodos detetem pontos de mudanca
onde nao existem. Entre os métodos de divisao sucessiva, como a segmentagao
binaria (BS) e o algoritmo de Bai Perron BP, apresentam bom desempenho em ce-
narios i.i.d., mas perdem poténcia em contextos autocorrelacionados, especialmente
na anéalise de mudancas na tendéncia. O algoritmo de otimizagao global PELT (PL)
tende a acertar nos pontos de quebra na média , mas apresenta muitas quebras
espurias e é extremamente sensivel a valores atipicos (outliers). As taxas de acerto
nas mudanga de nivel sao relativamente baixas quando a magnitude da variagao é
pequena, independentemente do método utilizado. Resultados semelhantes sao ob-
tidos em dados nao normais, sendo que quanto maior o afastamento da normalidade,
menor é a taxa de acerto.

Por fim, o tamanho da amostra nao se mostra um fator determinante para a
eficiéncia dos métodos; nas situagoes analisadas, as diferencas de desempenho entre
tamanhos amostrais foram pequenas.

No ambito dos testes CUSUM, adaptados ao contexto de mudanca no parame-
tro de forma, &, da distribuicao GEV, o método Probability- Weighted Moments PWM
mostrou-se mais potente para detetar mudangas no parametro &, especialmente para
caudas pesadas, enquanto que Generalized Probability Weighted Moments GPWM apre-
senta menor poténcia, sobretudo em mudancas para caudas leves. Contudo, ambos
revelam limitacoes na determinacao precisa do instante da mudanca e tendem a
detetar falsos alarmes sob forte dependéncia serial ou em distribuigoes com caudas
mais pesadas.

A obtencao de previsoes precisas em séries temporais que contém mudancas
de estruturas requer a integragao de técnicas de estimacao robusta e metodologias
adaptativas a cauda, capazes de lidar com dependéncia serial e outliers, bem como a
detegao de mudangas de estrutura (que podem ser por vezes pouco percetiveis). Com
base nos resultados do teste PWM na detecao de alteragoes no parametro de forma
da distribuicao GEV, pretende-se generalizar o teste a cenarios com dependéncia
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serial e desenvolver medidas que permitam estimar com maior precisao o ponto de
quebra. Os resultados empiricos obtidos reforcam esta necessidade e motiva linhas
futuras de investigacao que devem focar o estudo e desenvolvimento de métodos
mais recentes e robustos para lidar com todos estes desafios.
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Anexo

Script Software R Cram

Bibliotecas Principais

packages <- c("changepoint”,"evd”, "gridExtra", "CPAT","nortest","
robseg",
"dplyr", "MLmetrics", "strucchange", "ggplot2", "
fUnitRoots",
"tidyverse", "lubridate", "pROC", "forecast", "
tseries", "stR","bcpa","FinTS","npcp", "urca","
npcp")

lapply(packages, library, character.only = TRUE)

# An lises preliminares
set.seed (125)

phil<-0.4

n=50

innov<-rt(mn,1.5)

innovl <- rexp(mn, rate = 1)

# Simular a s rie

yt<-arima.sim(n = n, model = list(ar = phil))

ts.plot (yt)

shapiro.test(yt) # normal

lillie.test(yt)

qqnorm(yt, xlab="QuantisTeoricos", ylab="QuantisEmpricos")

qqline (yt, col=2)

yt<-arima.sim(n = n, model = list(ar = phil), innov = innov) # Yt ~
t, 2 graus de liberdade

ts.plot (yt)

hist (yt)

shapiro.test(yt) # ¢t

lillie.test (yt)

qqnorm(yt, xlab="QuantisTeoricos", ylab="QuantisEmpricos")

qqline (yt, col=2)

yt<-arima.sim(n = n, model = list(ar = phil), innov = innovl) # Yt
Exp (1)

ts.plot (yt)

hist (yt)

shapiro.test(yt) # exponencial

lillie.test (yt)

gqqnorm(yt, xlab="QuantisTeoricos", ylab="QuantisEmpricos")

qqline(yt, col=2)

HHHHHAHHH A HH ARG HH UGS HH S HH ARG HH UGS H A S HH S HH UGS H A HH U HH S H AR HH
data("Nile")
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df <- data.frame(
year = time(Nile),

flow = as.numeric(Nile)
)
ggplot (df , aes(x = year, y = flow)) +
geom_line(color = "blue", size = 1) +
labs(title = "S rie Temporal do Rio Nilo",
x = "Ano",
y = "Fluxo") +

theme _minimal () +
theme (panel.grid = element_blank())

length(Nile)
result <- cpt.mean(Nile, method = "BinSeg", penalty = "BIC", Q=1)

cpts(result)

plot(result, main = "")

HHAAHHHARAAHBH A B BB A A AR H A AR B BB A AR HH B AR B HBH AR BB A AR B AR HHS
#Gr ficos

set.seed (42)

n <- 500
time <- 1:n

I 1) AR(1) estacion rio (phi = 0.6) ----------
phil <- 0.6

eps <- rnorm(n)

X <- numeric(n)

for (t in 2:mn) {
x[t] <- phil * x[t-1] + eps[t]
¥

# Criar data frame
df <- data.frame(time = time, value = x)

# Plot com ggplot2 sem grade e com eixos
gl<-ggplot(df, aes(x = time, y = value)) +
geom_line(size=1, col="red") +

geom_hline(yintercept = 0, color = "black", linetype = "dashed",
size=1) +
labs(
title = "Processo AR(1) estacion rio ( = 0.6)",
x = "t",
y = "y"
) o+

theme_classic() + # remove grade e mant m eixos
theme (
axis.line = element_line(), # enfatiza os eixos
panel.grid = element_blank() # garante que n o h grid
)

HHBHAHAHHSHAHAHAH UG HAHAHAH RS H AR AR RS HAHAH

set.seed (123)

n <- 600
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time <- 1:n
eps <- rnorm(n)

y <- numeric(n)

# Definir os segmentos
segl <- 1:(n/3)

seg2 <- (n/3 + 1):(2%*n/3)
seg3 <- (2*n/3 + 1):n

# Par metros para cada segmento
phil <- 0.3; mul <- 0
phi2 <- 0.3; mu2 <- 1
phi3 <- 0.3; mu3d <- -1

# Simular segmento 1
for (t in segi[-1]) {

y[t] <- mul + phil * (y[t-1] - mul) + eps[t]
}

# Simular segmento 2
ylseg2[1]1] <- mu2
for (t in seg2[-1]) {
y[t] <- mu2 + phi2 * (y[t-1] - mu2) + eps[t]
}

# Simular segmento 3
y[seg3[1]] <- mu3
for (t in seg3[-1]1) {
y[t] <- mu3 + phi3 * (y[t-1] - mu3) + eps[t]
}

# Criar dataframe para ggplot
df <- data.frame(time = time, value = y)

# Plot com ggplot2

g2<-ggplot (df, aes(x = time, y = value)) +
geom_line(size=1,col="blue") +
# linhas verticais marcando os regimes

geom_vline(xintercept = c(n/3, 2*n/3), linetype = "dashed") +

# linhas horizontais dos n veis m dios

geom_hline(yintercept = mul, color = "orange", linetype = "dashed
" size=1) +

geom_hline(yintercept = mu2, color = "green", linetype = "dashed"

,size=1) +
geom_hline(yintercept
,size=1) +

mu3, color "black", linetype = "dashed"

labs (
title = "',
x = "t",
y = "y"
) +
theme _classic () +
theme (
axis.line = element_line(),

panel.grid = element_blank()
)
#juntar os dois gr ficos
library (patchwork)
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gl+g2

set.seed (123)

n <- 500
time <- 1:n

# o —-m - AR(1) com vari ncia n o constante ----------
phil <- 0.6
beta <- 0.02 # pequena tend ncia linear

eps <- rnorm(n)
x_het <- numeric(n)

for (t in 2:n) {
# Ru do com vari ncia crescente
sigma_t <- 0.5 + 0.005 * t # vari ncia aumenta com o tempo
x_het[t] <- phil * x_het[t-1] + beta + eps[t] * sigma_t

b

# Criar data frame
df _het <- data.frame(time = time, value = x_het)

# Plot com ggplot2
gb <- ggplot(df_het, aes(x = time, y = value)) +
geom_line(size = 1, col = "purple") +
geom_hline(yintercept = 0, color = "red", linetype = "dashed",
size = 1) +
labs(
title = "Processo AR(1) com vari ncia n o constante",
x = "Tempo",
y = "Valor"
) o+
theme_classic () +
theme (
axis.line = element_line(),
panel.grid = element_blank ()
)

# Mostrar gr fico
print (gh)

HAHBHAHHAHASHAH##I33
library(ggplot2)

set.seed (42)

n <- 500
time <- 1:n

I AR(1) com tend ncia ----------

phil <- 0.6

beta <- 0.05 # inclina o da tend ncia linear
eps <- rnorm(n, mean = 0, sd = 5)

Xx_trend <- numeric(n)
for (t in 2:n) {

x_trend[t] <- phil * x_trend[t-1] + beta * t + eps[t]
}
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# Criar data frame
df _trend <- data.frame(time = time, value = x_trend)

# Plot com ggplot2
g4 <- ggplot(df_trend, aes(x = time, y = value)) +

geom_line(size = 1, col = "red") +
labs(
title = "I",
x = "t",
y = "y"
) o+
theme_classic () +
theme (
axis.line = element_line(),
panel.grid = element_blank ()
)
# Mostrar gr fico
print (g4)
HAHBHAHFHHAH#I33

library (ggplot2)
set.seed (42)

n <- 500
time <- 1:n

I AR(1) com vari ncia n o constante ----------
phil <- 0.6
beta <- 0.02 # pequena tend ncia linear

eps <- rnorm(n)
Xx_het <- numeric(n)

for (t in 2:mn) {
# Ru do com vari ncia crescente
sigma_t <- 0.5 + 0.005 * t # vari ncia aumenta com o tempo
x_het[t] <- phil * x_het[t-1] + beta + eps[t] * sigma_t

}

# Criar data frame
df _het <- data.frame(time = time, value = x_het)

# Plot com ggplot2
gb <- ggplot(df_het, aes(x = time, y = value)) +

geom_line(size = 1, col = "blue") +
labs(
title = "II",
x = "t",
y = llyll
) +
theme_classic () +
theme (
axis.line = element_line(),

panel.grid = element_blank()
)

# Mostrar gr fico
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print (gb)
library (patchwork)
gd+gd

HHEHBHAHAH AR HAHAHAHHHHAHAHBHHHH AR AR AR HSHAHEHHES
library (ggplot2)

set.seed (123)

n <- 200
change_point <- 100

# ---- AR(1) ----
phi <- 0.7
arl <- arima.sim(n = n, list(ar = phi))
arl[change_point:n] <- aril[change_point:n] + 3
df _ar <- data.frame(time = 1:n, value = arl, tipo = "AR(1)")
# ———— ARMA(1,1) ----
phi <- 0.7
theta <- 0.5
armall <- arima.sim(n = n, list(ar = phi, ma = theta))
armall [change_point:n] <- armall[change_point:n] + 3
df _arma <- data.frame(time = 1:n, value = armall, tipo = "ARMA(1,1)
")
# ---- ARIMA(1,1,1) ----
phi <- 0.7
theta <- 0.5
arimalll <- arima.sim(n = n, list(order = c(1,1,1), ar = phi, ma =
theta))
arimalill [change_point:n] <- arimalill[change_point:n] + 3
df _arima <- data.frame(time = 1:n, value = arimalll, tipo = "ARIMA
(1,1,10")
# ---- Combinar e plotar ----
df <- rbind(df_ar, df_arma, df_arima)
ggplot (df, aes(x = time, y = value, color = tipo)) +
geom_line(size = 1) +
geom_vline(xintercept = change_point, linetype = "dashed", color
= "red") +
labs(
title = "Compara o da detec o de mudan a de m dia: AR
(1), ARMA(1,1), ARIMA(1,1,1)",
x = "Tempo",
y = "Valor",
color = "Processo"
) o+

theme_classic ()

HUEAHAHAHBHH AR AR BHBAHARAHBH B AR AR HHBAHAHRAHS
# Defini o dos par metros do AR(1)
library(forecast) # para autoplot
library (ggplot2)

# Par metros do AR(1)

phi <- 0.6
n <- 500
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# Simula o)
set.seed (42)
X <- arima.sim(model = list(ar = phi), n = n,sd=2)+3

# FAC com autoplot
gl<-autoplot(acf(x, plot = FALSE),lwd=1,col="blue") +

ggtitle(" Fun o de Autocorrela o (FAC) - AR(1) simulado")+

theme_minimal () +
theme (panel.grid = element_blank()) +
theme (
axis.line = element_line(),
panel.grid = element_blank()
)
# FACP com autoplot
g2<-autoplot (pacf(x, plot = FALSE),lwd=1.5,col="orange")+
ggtitle(" Fun o de Autocorrela o Parcial (FACP) - AR(1)
simulado")+
theme_minimal () +
theme (panel.grid = element_blank()) +

geom_segment (aes (xend = lag, yend = 0), size = 3) +
theme (
axis.line = element_line(),
panel.grid = element_blank()
)
library (patchwork)
gl+g2

# Simular MA (1)
set.seed (42)
mal <- arima.sim(n

n, list(ma 0.7), sd=2)+3

# Simular MA(3)
set.seed (42)
ma3 <- arima.sim(n = n, list(ma

c(0.5, -0.3, 0.4)),sd=2)+5

# Plot das s ries temporais

gl<-autoplot (acf(mal, plot = FALSE),lwd=1.5,col="blue")+
ggtitle ("ACF- MA(1)")+
theme_minimal () +
theme (panel.grid = element_blank()) +

geom_segment (aes (xend = lag, yend = 0), size = 3) +
theme (
axis.line = element_line(),

panel.grid = element_blank()
)
# FACP com autoplot
g2<-autoplot (acf (ma3, plot = FALSE),lwd=1.5,col="orange")+
ggtitle ("ACF- MA(3)")+
theme _minimal () +
theme (panel.grid = element_blank()) +

geom_segment (aes (xend = lag, yend = 0), size = 3) +
theme (
axis.line = element_line(),
panel.grid = element_blank()
)
gl+g?2

HHAHAHBHHAHAHH S HAHH#H 3333
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library(forecast)
library (ggplot2)

library(patchwork) # para juntar os gr ficos

n <- 200

# Simular ARMA(1,1) com AR=0.6, MA=0.5
set.seed (42)

armall <- arima.sim(n = n, list(ar = 0.6, ma

# Simular ARMA(2,2)
set.seed (42)

com AR=c(0.5,-0.3),

0.5),sd=2)+4

MA=c(0.4,0.2)

arma22 <- arima.sim(n = n, list(ar = c(0.5, -0.3), ma = c(0.4, 0.2)
),sd=2)+2

# FAC ARMA (1,1)

gl <- autoplot(acf(armall, plot = FALSE), lwd=1.5, col="blue") +

ggtitle ("ACF - ARMA(1,1)") +
theme _minimal () +

theme (panel.grid = element_blank()) +
geom_segment (aes (xend = lag, yend = 0),
theme (axis.line = element_1line(),

# FAC ARMA(2,2)

size
panel.grid

3) +
element_blank ())

g2 <- autoplot(acf(arma22, plot = FALSE), lwd=1.5, col="orange") +
ggtitle ("ACF - ARMA(2,2)") +
theme _minimal () +
theme (panel.grid = element_blank()) +
geom_segment (aes (xend = lag, yend = 0), size = 3) +
theme (axis.line = element_line (), panel.grid = element_blank())

# Juntar gr ficos
gl + g2

HHEHBHAHAHBAHAR AR AR B AR AR AR B A B A HAHHH#HAH #3333
library (forecast)
library (ggplot2)

library(patchwork) # para juntar os gr ficos

n <- 200

# Simular ARMA(1,1) com AR=0.6, MA=0.5
set.seed (42)

armall <- arima.sim(n = n, list(ar = 0.6, ma
# Simular ARMA(2,2) com AR=c(0.5,-0.3),

set.seed (42)

0.5),sd=2)+2

MA=c (0.4,0.2)

arma22 <- arima.sim(n = n, list(ar = c(0.5, -0.3), ma = c(0.4, 0.2)
) ,sd=2)+3

# FAC ARMA(1,1)

g3 <- autoplot(pacf(armall, plot = FALSE), 1lwd=1.5, col="blue") +

ggtitle ("PACF - ARMA(1,1)") +
theme _minimal () +

theme (panel.grid = element_blank()) +
geom_segment (aes (xend = lag, yend = 0),
theme (axis.line = element_1line(),
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# FAC ARMA(2,2)
g4 <- autoplot(pacf (arma22, plot = FALSE), lwd=1.5, col="orange") +
ggtitle ("PACF - ARMA(2,2)") +
theme_minimal () +
theme (panel.grid = element_blank()) +
geom_segment (aes(xend = lag, yend = 0), size 3) +
theme (axis.line = element_line (), panel.grid = element_blank())

# Juntar gr ficos
par (mfrow=c(2,2))
gl+g2+g3+g4

HHEHHHHHHHHAAAAH###H#H#333333
# par metros

n <- 100

lambda <- 50

# gera s rie temporal

t <- 1:n

y <- c(rnorm(lambda, mean = 10, sd = 1), # antes da mudan a
rnorm(n - lambda, mean = 13, sd = 1)) # depois da mudan a

# cria dataframe

df <- data.frame(
tempo = t,
valor =y

# plota
ggplot (df, aes(x = tempo, y = valor)) +
geom_line(color = "black", linewidth = 1.5) +
geom_vline(xintercept = lambda, linetype = "dashed", color = "red
" size=1) +
labs (

title = " k = 50",

x = "t",

y = "y"

)+
theme_minimal () +
theme (
panel.grid = element_blank(), # remove a grelha
axis.line = element_line(color = "black", linewidth = 0.8), #
adiciona linhas dos eixos
axis.ticks = element_line(color = "black") #
adiciona ticks
)
#secc o: 2.3

#

HAEHBHAHHHHHHHHHHHHHHHHHHH A AR A AR RS BB HHHHHHHHHHHH AR S HHH

set.seed (123)

# par metros

n <- 100

lambda <- 50

# gera s rie temporal com mudan a de tend ncia

t <- 1:n
y <- c¢c( 2 + 0.3 * (1:lambda) + rnorm(lambda, sd = 5),
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7 + 0.6 * (1:(n - lambda)) + rnorm(n - lambda, sd = 5) )

# cria dataframe

df <- data.frame(
tempo = t,
valor =y

# estima breakpoints
bp <- breakpoints(y ~ t)
fitted_vals <- fitted (bp)

df$fitted <- fitted_vals
library(ggplot2)
ggplot (df, aes(x = tempo)) +

geom_line (aes(y = valor), color = "black", linewidth = 1.2) +
geom_line(aes(y = fitted), color = "blue", linewidth = 1.2) +
geom_vline(xintercept = bp$breakpoints, linetype = "dashed",
color = "red",size=1) +
labs (
title = "k=50",
x = "tg",
y = "y"
) +
theme_minimal () +
theme (
panel.grid = element_blank(), # remove a grelha
axis.line = element_line(color = "black", linewidth = 0.8), #
adiciona linhas dos eixos
axis.ticks = element_line(color = "black") #

adiciona ticks

HHAHHAHAHHAHBAHHAHHABH AR B HHABHBABHA RS A B S HHAHHAHHAHA A B SRR HBABH A RS RS H R AR R AR RS

library (evd)

set.seed (123)
n <- 100

# --- Cen rio I: xi constante = 0.2 ---
x1 <- rgev(n, loc = 0, scale = 1, shape = 0.2)
dfl <- data.frame(

t = 1:n,
valor = x1
)
# --- Cen rio II: xi muda em t = 50 ---
x2 <- c(
rgev (50, loc = 0, scale = 1, shape 0.2),
rgev (50, loc = 0, scale = 1, shape = 0.5)
)
df2 <- data.frame(
t = 1:n,
valor = x2
)
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# --- Gr fico 1: Cen rio I ---
gl <- ggplot(dfl, aes(x = t, y = valor)) +

geom_line(color = "black",size=1) +
labs(
title = "I",
x = "g",
y = "y"
)+
theme_minimal (base_size = 13) +
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
# --- Gr fico 2: Cen rio II ---
g2 <- ggplot(df2, aes(x = t, y = valor)) +
geom_line(color = "blue",size=1) +
geom_vline(xintercept = 50, color = "red", linetype = "dashed",
linewidth = 1) +
labs(
title = "II",
x = "g",
y = "y"
)+
theme_minimal (base_size = 13) +
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
# --- Exibe gr ficos lado ao lado

library (gridExtra)
grid.arrange(gl, g2, ncol = 2)

HAEHSHAHHAEHAHFHHSHFHHS
library (patchwork) # para combinar gr ficos

# --- Fun o CUSUM ---
cusum_stat <- function(y) {
n <- length(y)
stats <- numeric(m - 1)
for (lambda in 1:(n - 1)) {
meanl <- mean(y[1l:lambdal)
mean2 <- mean(y[(lambda + 1):n])
stats[lambda] <- sqrt((lambda * (n - lambda)) / n) * abs(meanl

- mean2)
}
return(stats)
}
# --- Simula o de dados ---
set.seed (123)
y <- c(rnorm(50, mean = 0), rnorm(50, mean = 3))

cusum_vals <- cusum_stat (y)

df _y <- data.frame(t = 1:length(y), valor = y)
df _cusum <- data.frame(lambda = 1:(length(y)-1), C = cusum_vals)
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# --- Gr fico 1: S rie temporal ---
gl <- ggplot(df_y, aes(x = t, y = valor)) +
geom_line(color = "blue", linewidth = 1) +

labs(title = "S rie temporal", x = "X", y = "y") +
theme _minimal (base_size = 13) +
theme (

panel.grid = element_blank(),

axis.line = element_line(color = "black")

# --- Gr fico 2: Estat stica CUSUM ---
g2 <- ggplot(df_cusum, aes(x = lambda, y = C)) +
geom_line(color = "darkred", linewidth = 1) +
geom_vline(xintercept = which.max(cusum_vals), color = "red",
linetype = "dashed") +
labs(title = "Estat stica CUSUM", x = " ", y = expression(C[
lambdal)) +
theme_minimal (base_size = 13) +
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")

# --- Lado a lado ---
gl + g2
#
HUHHHHHHH S S B HHH S S HHH S S HHH S S HHH S S HH S S B HH S S S HH S S S HHH S S S HH S S S H B S S HHH B S S 44

set.seed (123)
# Par metros

n <- 200 # Tamanho da s rie

n_series <- 2000 # N mero de s ries

phil <- 0.2 # Coeficiente AR(1)

mul <- 1; mu2 <- 4 # M dias antes/depois

sdl <- 1; sd2 <- 1 # Desvios padr o antes/depois
m_real <- 50 # Ponto verdadeiro de mudan a
penalt_val <- "BIC"

methodl <- "BinSeg"

#Armazenar vectores

matrx <- matrix(NA, nrow = n_series, ncol = n)

cpt.vet <- vector("list", n_series)

epsilon <- numeric(n_series)
num_detectados <- numeric(n_series)

# Simula o com mudan a na m dia e na vari ncia
for (i in 1:n_series) {

x1 <- arima.sim(n = m_real, model = list(ar = phil), sd = sdl) +
mul

x2 <- arima.sim(n = n - m_real, model = list(ar = phil), sd = sd2
) + mu?2

y <- c(xl, x2)
matrx[i, ] <- y

# Detec o de mudan a com BinSeg
change_t <- cpt.meanvar(y, method = methodl, penalty = penalt_val
)
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detectados <- cpts(change_t)
cpt.vet[[1i]] <- detectados
num_detectados[i] <- length(detectados)

if (length(detectados) == 1) {
epsilon[i] <- detectados - m_real
} else {

epsilon[i] <- NA
}
}

epsilon_validos <- na.omit(epsilon)
n_validos <- length(epsilon_validos)

# taxa de acerto para janelas O a b5
Hs <- sapply(0:5, function(k) {
sum (abs (epsilon_validos) <= k) / n_validos

b

Hs

# --- Gr fico 1: BinSeg ---

df <- data.frame(erro = sort(abs(epsilon_validos)))

df $proporcao <- ecdf (abs(epsilon_validos)) (df$erro)

gl <- ggplot(df, aes(x = erro, y = proporcao)) +

geom_line(color = "blue", size = 1) +
geom_vline (xintercept = 2, linetype = "dashed", color = "red",
size = 1.5) +
annotate ("text", x = 4.5, y = 0.3,
label = "",
hjust = 0, vjust = 0,
size = 4.2, fontface = "italic", color = "black") +
labs (
title = "Segmenta o Bin ria",
x ="/ I",
y = "Propor o acumulada"
) +

scale_x_continuous (breaks = seq(0, 10, 2), limits = c(0, 10)) +
theme_minimal (base_size = 13) +

theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
# --- Fun o CUSUM ---

cusum_stat <- function(y) {
n <- length(y)
stats <- numeric(m - 1)
for (lambda in 1:(m - 1)) {
meanl <- mean(y[1:lambdal)
mean2 <- mean(y[(lambda + 1):n])
stats[lambda] <- sqrt((lambda * (n - lambda)) / n) * abs(meani

- mean2)
}
return(stats)
}
# --- DETEC 0 COM CUSUM ---

epsilon_cusum <- numeric(n_series)
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for (i in 1:n_series) {
y <- matrx[i, ]
stats <- cusum_stat (y)
lambda_est <- which.max(stats) # ponto estimado de mudan a

if (length(lambda_est) == 1) {
epsilon_cusum[i] <- lambda_est - m_real
} else {

epsilon_cusum[i] <- NA
}
}

epsilon_cusum_validos <- na.omit(epsilon_cusum)
n_validos_cusum <- length(epsilon_cusum_validos)

# taxa de acerto para janelas O a b5
Hs_cusum <- sapply(0:5, function(k) {

sum(abs (epsilon_cusum_validos) <= k) / n_validos_cusum
b

Hs_cusum

# --- Gr fico 2: CUSUM ---
df _cusum <- data.frame(erro = sort(abs(epsilon_cusum_validos)))
df _cusum$proporcao <- ecdf(abs(epsilon_cusum_validos)) (df_cusum$
erro)
g2 <- ggplot(df_cusum, aes(x = erro, y = proporcao)) +
geom_line(color = "darkgreen", size = 1) +
geom_vline(xintercept = 3, linetype = "dashed", color = "red",
size = 1.5) +
annotate ("text", x = 4.5, y = 0.3,
label = "",
hjust = 0, vjust = 0,
size = 4.2, fontface = "italic", color = "black") +
labs(
title = "CUSUM",
x =" |",
y = "Propor o acumulada"
)+
scale_x_continuous (breaks = seq(0, 10, 2), limits = c(0, 10)) +
theme_minimal (base_size = 13) +
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
# --- Compara o Lado a Lado ---
gl + g2 + plot_annotation(title = "Compara o BinSeg vs CUSUM")

#

HAHARAHAHHHBAHA R AR AR BHBAH AR AR AHHHBH RS R AR AR AR BH B SR AR AR AR AR B R R A B AR AR AR B BB AR AHH

# Par metros da simula o
set.seed (123)

m_real <- 50

n <- 200

n_serie <- 2000
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penaltyl <- "MBIC"

phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("PELT")
intervalo_tolerancia <- 3

deltas <- ¢(0.5, 1.5, 3)

# Labels com

rotulos_delta <- c(expression(delta == 0.5),
expression(delta == 1.5),
expression(delta == 3))
# Resultados
resultados <- data.frame ()
set.seed (123)
for (d in 1:length(deltas)) {
delta <- deltas([d]
for (phi in phis) {
for (met in methods) {
acertos <- O
for (i in 1:n_serie) {
x1 <- arima.sim(n = m_real, model = list(ar = phi))
X2 <- arima.sim(n = n - m_real, model = list(ar = phi)) +

delta
y <- c(xl, x2)
cpt <- cpt.mean(y, penalty = penaltyl, method = met, test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in’% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados, data.frame(delta = factor(
deltas[d]), phi = phi, metodo = met, taxa_acerto = taxa))
}
}
}
# Gr fico com na legenda
ggplot (resultados, aes(x = phi, y = taxa_acerto, color = delta)) +
geom_line(size = 1.2) +
labs(title = "",
x = expression(phi),
y = "Taxa de Acerto",
color = "PL") +
scale_color_manual (values = c("blue", "green", "red"), labels =
rotulos_delta) +
theme_minimal (base_size = 14)+
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
HHEHHHHHHHEH

library (dplyr)
library (tidyr)
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# Criar data frame com os valores
x <- seq(0, 5, length=1000)
df <- data.frame(

X = X,

t_05 = dt(x, 4df=0.5),
t_1 = dt(x, df=1),
t_15 = dt(x, df=1.5),
t_3 = dt(x, df=3),
t_10 = dt(x, df=10),
normal = dnorm(x)

# Transformar para formato longo
df _long <- df %>%
pivot_longer (cols = -x, names_to = "Distribuicao", values_to =
densidade")

# Mapear nomes para legendas com express o
labels_expr <- c(
t_05 = expression(t(nu==0.5)),

t_1 = expression(t(nu==1)),
t_15 = expression(t(nu==1.5)),
t_3 = expression(t(nu==3)),
t_10 = expression(t(nu==10)),
normal = "Normal padr o"

# Criar gr fico
ggplot (df _long, aes(x = x, y = densidade, color = Distribuicao,

linetype = Distribuicao)) +
geom_line(size = 1.3) +
scale_color_manual (values = c("purple", "red", "orange", "blue",

"green", "black"),
labels = labels_expr) +
scale_linetype_manual (values = c(1,1,1,1,1,3),
labels = labels_expr) +

labs(

title = "Distribui es t-Student vs Normal padr o (x >= 0)",

x = "x",

y = "Densidade",

color = NULL,
linetype = NULL

) o+

theme_minimal (base_size = 14) +

theme (
legend.position = "right", # Colocar a legenda direita
legend.direction = "vertical", # Vertical

legend.title = element_text(size = 12),
legend.text = element_text(size = 10)

)+
theme (
panel.grid = element_blank (),
axis.line = element_line(color = "black")
)
BHHHHHHHHHHHHHH#H3
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# Par metros

m_real <- 50

n <- 200

n_serie <- 2000

phi <- 0.4

deltas <- c¢(0.5, 1.5, 3) # fraca, moderada, forte
dfs <- seq(1, 10, by = 0.5)

tolerancia <- 3

methods <- "BinSeg"

names (methods) <- c("BinSeg")

set.seed (123)

# Resultados
resultados <- data.frame ()

# Simula o
for (delta in deltas) {
for (df in dfs) {
for (met_nome in names (methods)) {
metodo <- methods[met_nomel
penalty <- "BIC"
acertos <- 0

for (i in 1:n_serie) {
# Inova es t-Student
innovl <- rt(m_real, df = df)
innov2 <- rt(n - m_real, df = df)

# S rie AR(1) com mudan a de n vel delta

x1 <- arima.sim(n = m_real, model = list(ar = phi), innov =
innov1)
X2 <- arima.sim(n = n - m_real, model = list(ar = phi),
innov = innov2) + delta

y <- c(xl, x2)

# Detec o0 de mudan a de m dia

cpt <- cpt.mean(y, penalty = penalty, method = metodo)

cps <- cpts(cpt)

if (any(cps %in’% (m_real - tolerancia):(m_real + tolerancia

) A

acertos <- acertos + 1

taxa <- acertos / n_serie
resultados <- rbind(resultados, data.frame(delta
= df , taxa_acerto = taxa))

# Transformar delta em fator para legendas

delta, df

resultados$delta <- factor(resultados$delta, levels = deltas)

# Labels para legenda com e intensidade
labels_delta <- c(expression("Fraca ("“delta==0.5"")"),
expression("Moderada ("“delta==1.5"")"),
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expression("Forte ("7“delta==3"")"))

# Plot
gl<-ggplot(resultados, aes(x = df, y = taxa_acerto, color = delta,
group = delta)) +
geom_line(size = 1.2) +

scale_color_manual (

values = c("purple", "orange", "red"),
labels = labels_delta

) +

labs (
title = "",
x = "df",
y = "Taxa de acerto",
color = "BS"

) o+

theme _minimal (base_size = 14) +

theme (
legend.position = "right",
legend.direction = "vertical",
panel.grid = element_blank(),
axis.line = element_line(color = "black")

)

HHHHHHHHHHHHHHH#H#3

# Par metros

m_real <- 50

n <- 200

n_serie <- 2000

phi <- 0.4

deltas <- ¢(0.5, 1.5, 3) # fraca, moderada, forte
dfs <- seq(1, 10, by = 0.5)

tolerancia <- 3

methods <- "PELT"

names (methods) <- c("BinSeg")

set.seed (123)

# Resultados
resultados <- data.frame ()

# Simula o
for (delta in deltas) {
for (df in dfs) {
for (met_nome in names (methods)) {
metodo <- methods[met_nome]
penalty <- "BIC"
acertos <- O

for (i in 1:n_serie) {
# Inova es t-Student
innovl <- rt(m_real, df = df)

innov2 <- rt(n - m_real, df = df)

# S rie AR(1) com mudan a de n vel delta
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x1 <- arima.sim(n = m_real, model = list(ar =

phi), innov =

innov1)
X2 <- arima.sim(n = n - m_real, model = list(ar = phi),
innov = innov2) + delta

y <- c(x1l, x2)

# Detec o de mudan a de m dia
cpt <- cpt.mean(y, penalty = penalty, method =
cps <- cpts(cpt)

if (any(cps %in’% (m_real - tolerancia):(m_real
M) A

acertos <- acertos + 1

taxa <- acertos / n_serie
resultados <- rbind(resultados, data.frame(delta
= df, taxa_acerto = taxa))

# Transformar delta em fator para legendas
resultados$delta <- factor(resultados$delta, levels =

# Labels para legenda com e intensidade

labels_delta <- c(expression("Fraca ("“delta==0.5"")")
expression ("Moderada ("“delta==1.57"
expression("Forte ("7“delta==37")"))

# Plot

metodo)

+ tolerancia

delta, df

deltas)

>

)ll)’

g2<—ggplot(resu1tados, aes(x = df, y = taxa_acerto, color = delta,

group = delta)) +
geom_line(size = 1.2) +

scale_color_manual (

values = c("purple", "orange", "red"),
labels = labels_delta

)+

labs(
title = "",
x = "df",
y="",
color = " PL"

) +

theme_minimal (base_size = 14) +

theme (
legend.position = "right",
legend.direction = "vertical",
panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
HHABHAHHHHAHAHHAHAHAHHAHS

# Par metros
m_real <- 50
n <- 200
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n_serie <- 200

phi <- 0.4

deltas <- ¢(0.5, 1.5, 3) # fraca, moderada, forte
dfs <- seq(1, 10, by = 0.5)

tolerancia <-

set.seed (123)

# Resultados
resultados <- data.frame ()

# Simula o
for (delta in deltas) {
for (df in dfs) {
acertos <- 0

for (i in 1:n_serie) {
# Inova es t-Student
innovl <- rt(m_real, df = df)
innov2 <- rt(n - m_real, df = df)

# S rie AR(1) com mudan a de n vel delta

x1 <- arima.sim(n = m_real, model = list(ar = phi), innov
innov1)
x2 <- arima.sim(n = n - m_real, model = list(ar = phi),

= innov2) + delta
y <- c(xl, x2)

# Detec o de mudan a (for ando 1 quebra)
fm <- breakpoints(y ~ 1, breaks = 1, h = 10)
cps <- fm$breakpoints

if (any(cps %in% (m_real - tolerancia):(m_real + tolerancia))
) A{
acertos <- acertos + 1
}

taxa <- acertos / n_serie
resultados <- rbind(resultados, data.frame(delta = delta,
df , taxa_acerto = taxa))

# Transformar delta em fator para legendas
resultados$delta <- factor(resultados$delta, levels = deltas)

# Labels para legenda com e intensidade

labels_delta <- c(expression("Fraca ("“delta==0.5"")"),
expression("Moderada ("“delta==1.5"")"),
expression("Forte ("“delta==3"")"))

# Plot
g3 <- ggplot(resultados, aes(x = df, y = taxa_acerto, color =
, group = delta)) +

geom_line(size = 1.2) +

scale_color_manual (values = c("purple", "orange", "red"),
labels = labels_delta) +

labs (
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title = "",

x = "df",
y = nn
color = "BP"
) o+
theme _minimal (base_size = 14) +
theme (
legend.position = "right",
legend.direction = "vertical",
panel.grid = element_blank(),
axis.line = element_line(color = "black")

)
gl+ g2 + g3
HHAAHHHARAHHBH A A HHH AR B HH S AR HHH AR HBH A B HH A AR HH B A A AR RS AR B SRR HHHH RS
library (changepoint)
library (ggplot2)

# Par metros da simula o
set.seed (123)

m_real <- 50

n <- 200

n_serie <- 2000

penaltyl <- "MBIC"

phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("BinSeg")
intervalo_tolerancia <- 3

deltas <- c(0.5, 1.5, 3)

# Labels com

rotulos_delta <- c(expression(delta == 0.5),
expression(delta == 1.5),
expression(delta == 3))
# Resultados
resultados <- data.frame ()
set.seed (123)
for (d in 1:length(deltas)) {
delta <- deltas([d]
for (phi in phis) {
for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {
x1 <- arima.sim(n = m_real, model = list(ar = phi))
X2 <- arima.sim(n = n - m_real, model = list(ar = phi)) +

delta
y <- c(x1l, x2)
cpt <- cpt.mean(y, penalty = penaltyl, method = met, test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in’% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados, data.frame(delta = factor(

deltas[d]), phi = phi, metodo = met, taxa_acerto = taxa))
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# Gr fico com na legenda

gl<-ggplot(resultados, aes(x = phi, y = taxa_acerto, color = delta)

) +
geom_line(size = 1.2) +
labs(title = "",
x = expression(phi),
y = "Taxa de Acerto",
color = "BS") +
scale_color_manual (values = c("blue", "green", "red"),
rotulos_delta) +
theme_minimal (base_size = 14)+
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
HHEHHSHHHBHSHHERRHHH
# Par metros da simula o
set.seed (123)
m_real <- 50
n <- 200
n_serie <- 200
penaltyl <- "MBIC"
phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("PELT")
intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com

rotulos_delta <- c(expression(delta == 0.5),
expression(delta == 1.5),
expression(delta == 3))
# Resultados
resultados <- data.frame ()
set.seed (123)
for (d in 1:length(deltas)) {
delta <- deltas[d]
for (phi in phis) {
for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {
x1 <- arima.sim(n = m_real, model = list(ar = ph
X2 <- arima.sim(n = n - m_real, model = list(ar

delta
y <- c(x1l, x2)
cpt <- cpt.mean(y, penalty = penaltyl, method =

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in’% (m_real - intervalo_tolerancia)

intervalo_tolerancia))) {
acertos <- acertos + 1

}

taxa <- acertos / n_serie
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resultados <- rbind(resultados, data.frame(delta = factor(
deltas[d]), phi = phi, metodo = met, taxa_acerto = taxa))

}
}
}
# Gr fico com na legenda
g2<-ggplot(resultados, aes(x = phi, y = taxa_acerto, color = delta)
)+
geom_line(size = 1.2) +
labs(title = "",
x = expression(phi),
y="",
color = "PL") +
scale_color_manual (values = c("blue", "green", "red"), labels =
rotulos_delta) +
theme _minimal (base_size = 14)+
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)

##u########library (changepoint)

# Par metros da simula o
set.seed (123)

m_real <- 50

n <- 200

n_serie <- 2000

penaltyl <- "MBIC"

phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("AMOC")
intervalo_tolerancia <- 3

deltas <- c(0.5, 1.5, 3)

# Labels com

rotulos_delta <- c(expression(delta == 0.5),
expression(delta == 1.5),
expression(delta == 3))
# Resultados
resultados <- data.frame ()
set.seed (123)
for (d in 1:length(deltas)) {
delta <- deltas([d]
for (phi in phis) {
for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {
x1 <- arima.sim(n = m_real, model = list(ar = phi))
X2 <- arima.sim(n = n - m_real, model = list(ar = phi)) +

delta
y <- c(x1l, x2)
cpt <- cpt.mean(y, penalty = penaltyl, method = met, test.

stat = "Normal")
cps <- cpts(cpt)
if (any(cps %in’% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

78



}

taxa <- acertos / n_serie

resultados <- rbind(resultados, data.frame(delta = factor(
deltas[d]), phi = phi, metodo = met, taxa_acerto = taxa))

# Gr fico com na legenda
g3<-ggplot (resultados, aes(x = phi, y = taxa_acerto, color = delta)
) o+
geom_line(size = 1.2) +
labs(title = "",
x = expression(phi),
y = "Taxa de Acerto",
color = "AMOC") +
scale_color_manual(values = c("blue", "green", "red"), labels =
rotulos_delta) +
theme _minimal (base_size = 14)+
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")
)
HAEHSHAH B SRS RS R BRI HHH

# Par metros da simula o
set.seed (123)

m_real <- 50

n <- 200

n_serie <- 2000

penaltyl <- "BIC"

phis <- seq(0.01, 0.9, by = 0.05)
methods <- c("SegNeigh")
intervalo_tolerancia <- 3

deltas <- c(0.5, 1.5, 3)

# Labels com

rotulos_delta <- c(expression(delta == 0.5),
expression(delta == 1.5),
expression(delta == 3))
# Resultados
resultados <- data.frame()
set.seed (123)
for (d in 1:length(deltas)) {
delta <- deltas[d]
for (phi in phis) {
for (met in methods) {
acertos <- 0
for (i in 1:n_serie) {
xl <- arima.sim(n = m_real, model = list(ar = phi))
X2 <- arima.sim(n = n - m_real, model = list(ar = phi)) +

delta

y <- c(x1l, x2)

cpt <- cpt.mean(y, penalty = penaltyl, method = met, test.
stat = "Normal")

cps <- cpts(cpt)
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if (any(cps %in’% (m_real - intervalo_tolerancia):(m_real +
intervalo_tolerancia))) {
acertos <- acertos + 1

}
}
taxa <- acertos / n_serie
resultados <- rbind(resultados, data.frame(delta = factor(
deltas[d]), phi = phi, metodo = met, taxa_acerto = taxa))
}
}
}
# Gr fico com na legenda

gb<-ggplot(resultados, aes(x = phi, y = taxa_acerto, color = delta)
) +
geom_line(size = 1.2) +
labs(title = "",
x = expression(phi),
y = "Taxa de Acerto",
color = "SegNeigh") +
scale_color_manual (values = c("blue", "green", "red"), labels =
rotulos_delta) +
theme_minimal (base_size = 14)+
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")

HHAHHAHHHHS

# Par metros da simula o

set.seed (123)

m_real <- 50

n <- 200

n_serie <- 2000

phis <- seq(0.01, 0.9, by =

methods <- c("breakpoints")
a fun o usada

s ilustrativo, pois breakpoints

intervalo_tolerancia <- 3
deltas <- c(0.5, 1.5, 3)

# Labels com

rotulos_delta <- c(expression(delta == 0.5),
expression(delta == 1.5),
expression(delta == 3))

# Resultados
resultados <- data.frame ()

for (d in 1:length(deltas)) {
delta <- deltas[d]
for (phi in phis) {
acertos <- O
for (i in 1:n_serie) {
# duas partes AR(1) com shift na m dia

x1 <- arima.sim(n = m_real, model = list(ar = phi))
x2 <- arima.sim(n = n - m_real, model = list(ar = phi)) +
delta

y <- c(xl, x2)
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# Ajuste de breakpoints (1 quebra)
bp <- breakpoints(y ~ 1, breaks = 1)
cps <- bp$breakpoints

# Contagem de acertos (dentro do intervalo de toler ncia)
if (any(cps %in% (m_real - intervalo_tolerancia):(m_real +

intervalo_tolerancia))) {
acertos <- acertos + 1

}
taxa <- acertos / n_serie
resultados <- rbind(resultados,

data.frame (delta = factor (deltas[d]),

phi = phi,

metodo = "breakpoints",

taxa_acerto = taxa))

# Gr fico com na legenda
g6 <- ggplot(resultados, aes(x
delta)) +
geom_line(size = 1.2) +
labs(title = "",
x = expression(phi),
y="",
color = "BP") +
scale_color_manual (values = c("blue", "green", "red"),
rotulos_delta) +
theme_minimal (base_size = 14) +
theme (
panel.grid = element_blank(),
axis.line = element_line(color = "black")

gl+g2+g6

HAHHHHHH B AR HHHHH B BB R HHHHH#H#333
#dependencia

m_real <- 50

n <- 200

n_serie <- 2000

df <- 5 # graus de liberdade da t-student

penalties <- c("AIC", "BIC", "MBIC")

mu2_vec <- c¢(0.5, 1.5, 3)

phi_vec <- c(0.2, 0.5, 0.8) # valores do phi a testar
meanl <- 0 # m dia antes da mudan a

tol <- 3 # toler ncia para considerar acerto

set.seed (123)

phi, y = taxa_acerto, color =

labels

# Array 3D para armazenar taxa de acerto: phi x mu2 x penalty

taxas_acerto <- array(NA,

dim = c(length(phi_vec), length(mu2_vec),

length (penalties)),

dimnames = list(pasteO("phi=", phi_vec),
paste0 ("mu2=", mu2_vec),
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penalties))

for (f in seq_along(phi_vec)) {
phi <- phi_vec[f]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec[m] + meanl # m dia ap s mudan a

for (p in seq_along(penalties)) {
penaltyl <- penalties[p]

cp_detected <- vector("list", n_serie)

for (i in 1:n_serie) {

innovl <- rt(m_real, df = d4df)
innov2 <- rt(n - m_real, df = df)
x1 <- arima.sim(n = m_real, model = list(ar = phi), innov =
innovl) + meanl
X2 <- arima.sim(n = n - m_real, model = list(ar = phi),
innov = innov2) + mean2

y <- c(xl, x2)

cpt <- cpt.mean(y, penalty = penaltyl, method = "BinSeg")
cp_detected [[i]] <- cpts(cpt)
}

acertos <- sum(sapply(cp_detected, function(x) any(x %in% (m_
real - tol):(m_real + tol))))
taxas_acerto[f, m, p] <- acertos / n_serie

}

3

print (round (taxas_acerto * 100, 2))
HHAAHHHARAHHH AR HH AR A B BB A B BB A AR B HBH AR B H AR HBH AR B BB AR R AR HH

## Res duos normais e independentes
# Processos estacion rios em segmentos
library(changepoint)

n <- 200 # tamanho total da s rie
breakp <- 50 # ponto real da mudan a
meanl <- 0

mean?2 <- 1

penaltyl <- "AIC"

n_sim <- 2000

tol <- 3

detected_cpts <- vector("list", n_sim)
set.seed (123)

for (i in 1:n_sim) {

yt <- c(
rnorm (breakp, mean = meanl, sd = 1),
rnorm(n - breakp, mean = mean2, sd = 1)
)
y <- ts(yt)
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cp <- cpt.mean(y, method = "PELT", penalty = penaltyl)
detected_cpts[[i]] <- cpts(cp)
}

acertos <- sum(sapply(detected_cpts, function(x) any(x %in’% 47:53))
)

tax_acert <- acertos / n_sim

print (paste("Taxa de acerto:", round(tax_acert, 4)=*100, "7"))

set.seed (123)

# Par metros

n <- 200
n_series <- 2000
phil <- 0.2

mul <-
mu2 <-
sdl <-
sd2 <-
m_real - 50

methodl <- "BinSeg"

penalties <- c("AIC", "BIC", "MBIC")
tol_max <- 5 # janelas O a 5

AN R D =

# Matriz para armazenar taxas de acerto
taxas_acerto <- matrix(NA, nrow = tol_max + 1, ncol = length(
penalties),
dimnames = list(pasteO(" ", O:tol_max),
penalties))

for (p in seq_along(penalties)) {
pen <- penalties[p]
epsilon <- numeric(n_series)

for (i in 1:n_series) {
# Simula 0 da s rie com mudan a de m dia e vari ncia

x1 <- arima.sim(n = m_real, model = list(ar = phil), sd = sdl)
+ mul
X2 <- arima.sim(n = n - m_real, model = list(ar = phil), sd =

sd2) + mu?2
y <- c(x1l, x2)

# Detec o de mudan a
cp <- cpt.meanvar (y, method = methodl, penalty = pen)
detectados <- cpts(cp)

if (length(detectados) == 1) {
epsilon[i] <- detectados - m_real
} else {

epsilon[i] <- NA
}
}

epsilon_validos <- na.omit(epsilon)
n_validos <- length(epsilon_validos)
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# Calcular taxas de acerto para janelas O a b5
taxas_acerto[, p] <- sapply(0:tol_max, function(k) {
sum (abs (epsilon_validos) <= k) / n_validos * 100

i)
}
# Transformar em dat para visualiza o
df _taxas <- data.frame(Janela = rownames (taxas_acerto), taxas_
acerto)
print (df _taxas)
#

HHAHHAHAHHAH BB HHAHAABAH B AR HAHHABH AR SRR SR B ABHAHA AR B R B BHAHA A B SRR AR HAHHAHA R RS HHS
library (changepoint)

# Par metros

n <- 200

breakp <- 50

meanl <- O

mu2_vec <- c(0.5, 1.5, 3) # magnitude da mudan a
penalties <- "MBIC"

n_sim <- 2000

tol <- 3
phi_vec <- c¢(0, 0.2, 0.5, 0.8) # coeficientes AR(1)
METHOD <- c("BinSeg", "PELT") # m todos a testar

# Array 4D: phi x mu2 x m todo x penalty
taxas_acerto <- array(NA,
dim = c(length(phi_vec), length(mu2_vec),
length (METHOD), length(penalties)),

dimnames = list(
paste0("phi=", phi_vec),
pasteO0 ("mu2=", mu2_vec),
METHOD ,
penalties

))

set.seed (123)

for (j in seq_along(phi_vec)) {
phi_val <- phi_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec [m]

for (meth in seq_along (METHOD)) {
method_val <- METHOD [meth]

for (p in seq_along(penalties)) {
penaltyl <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# simula AR(1) normal
Z <- arima.sim(model = list(ar = phi_val), n = n)
yt <- c(Z[1l:breakp] + meanl,
Z[(breakp+1) :n] + mean2)
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cp <- cpt.mean(yt, method = method_val, penalty =
penaltyl, Q@ = 1)
cpt.vet[[i]] <- cpts(cp)
¥

acertos <- sum(sapply(cpt.vet, function(x) any(x %in% (
breakp - tol):(breakp + tol))))
taxas_acerto[j, m, meth, p] <- acertos / n_sim
}
}

# Visualizar resultados em porcentagem
print (round (taxas_acerto * 100, 2))
#
HAERHHAAAA AR A AR AR R R R R BB R A A HH SRS HSAAAA A AR AR R R R R BB HH A A S S A A S S SRS AR R R R R H

# Overthingt

HHAHHAHAHHBHBAHHAHHABA A BB HHAHBABHA RS R BB HBABHAHH A B SRR HH A RS A BA A B SRR H B A BH AR RS

library (changepoint)

# Par metros

n <- 200

breakp <- 50

meanl <- 0

mu2_vec <- c¢(0.5, 1.5, 3) # magnitude da mudan a
penalties <- "MBIC"

n_sim <- 2000

tol <- 3
phi <- ¢(0.2, 0.5, 0.8) # graus de liberdade
METHOD <- c("BinSeg", "PELT") # M todos a testar

set.seed (123)

# Array 4D: df x mu2 x m todo x penalty
taxas_acerto <- array(NA,
dim = c(length(df_vec), length(mu2_vec),
length (METHOD), length(penalties)),

dimnames = list(
pasteO("df=", df_vec),
paste0 ("mu2=", mu2_vec),
METHOD ,
penalties

))

for (j in seq_along(df_vec)) {
df _t <- df_vecl[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec [m]
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for (meth in seq_along(METHOD)) {
method_val <- METHOD [meth]

for (p in seq_along(penalties)) {
penaltyl <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
yt <- c(
rt (breakp, df = df_t) + meanl,
rt(n - breakp, df = df_t) + mean?

cp <- cpt.mean(yt, method = method_val, penalty =
penaltyl, Q@ = 1)
cpt.vet[[i]] <- cpts(cp)
}

acertos <- sum(sapply(cpt.vet, function(x) any(x %in% (
breakp - tol):(breakp + tol))))
taxas_acerto[j, m, meth, p] <- acertos / n_sim

3

# Visualizar resultados em porcentagem
print (round (taxas_acerto * 100, 2))
#
HHRHAAAHHHHHAAAH AR B R AR A A A BB R AAAFHH BB R A AR AR R BB HAAA R R R B R AR A HHHHHHHAFH#H333

library(strucchange)

# Par metros
n <- 200
breakp <- 50
meanl <- O

mu2_vec <- c¢(0.5, 1.5, 3) # magnitude da mudan a
n_sim <- 2000

tol <- 3

df _vec <- c(1.5, 2.5, b5) # graus de liberdade

set.seed (123)

# Array 3D: df x mu2 x m todo (s BK aqui)
taxas_acerto <- array(NA,
dim = c(length(df_vec), length(mu2_vec), 1),

dimnames = list(
pasteO("df=", df_vec),
pasteO0 ("mu2=", mu2_vec),
n BK n

))

for (j in seq_along(df_vec)) {
df _t <- df_vec[j]

for (m in seq_along(mu2_vec)) {

mean2 <- mu2_vec [m]
cpt.vet <- vector("list", n_sim)
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for (i in 1:n_sim) {
yt <- c(
rt (breakp, df = df_t) + meanl,
rt(n - breakp, df = df_t) + mean2

# Modelo de regress o simples para detectar mudan a na
m dia
bp <- breakpoints(yt ~ 1, h = 10) # h = tamanho m nimo do
segmento
cpt.vet[[i]] <- bp$breakpoints
}

acertos <- sum(sapply(cpt.vet, function(x) any(x %in% (breakp -
tol) : (breakp + tol))))
taxas_acerto[j, m, "BK"] <- acertos / n_sim

}

# Resultados em %
print (round (taxas_acerto * 100, 2))

HAEHSHHAHB A HSHHSHH S HB B SR B SR BB H S A H S HH SR B BB S A H AR H S HH B SR H SR B HH#H#H#33
library (changepoint)

# Par metros

n <- 200

breakp <- 50

meanl <- O

mu2_vec <- c¢(0.5, 1.5, 3)
penalties <- "BIC"

n_sim <- 2000

tol <- 3
df _vec <- c(1.5, 2.5, b5)
METHOD <- c(”BinSeg", "PELT")

phi <- 0.8 # autocorrela o AR(1)
set.seed (123)

# Array 4D: df x mu2 x m todo x penalty
taxas_acerto <- array(NA,
dim = c(length(df_vec), length(mu2_vec),
length (METHOD), length(penalties)),

dimnames = list(
pasteO("df=", df_vec),
paste0 ("mu2=", mu2_vec),
METHOD ,
penalties

))

for (j in seq_along(df_vec)) {
df _t <- df_vecl[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec [m]

for (meth in seq_along(METHOD)) {
method_val <- METHOD [meth]
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for (p in seq_along(penalties)) {
penaltyl <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# gera inova es t-student
epsl <- rt(breakp, df = df_t)
eps2 <- rt(n - breakp, df = df_t)

# gera s rie AR(1) manualmente
ytl <- numeric(breakp)
yt2 <- numeric(n - breakp)

yt1[1] <- epsi1[1] + meanl
for (t in 2:breakp) {

yt1[t] <- phi * yti[t-1] + epsi[t] + meanl
}

yt2[1] <- eps2[1] + mean2
for (t in 2:(n - breakp)) {

yt2[t] <- phi * yt2[t-1] + eps2[t] + mean2
}

yt <- c(ytl, yt2)

# detec o de mudan a
cp <- cpt.mean(yt, method = method_val, penalty =
penaltyl, Q = 1)
cpt.vet[[i]] <- cpts(cp)
3

acertos <- sum(sapply(cpt.vet, function(x) any(x %in% (
breakp - tol):(breakp + tol))))
taxas_acerto[j, m, meth, p] <- acertos / n_sim
}
}

# Resultados em porcentagem

print (round (taxas_acerto * 100, 2))
HHEAHAHBHHAHAH S HAHAHBHHAHEHHES
library(strucchange)

# Par metros

n <- 200

breakp <- 50

meanl <- O

mu2_vec <- c¢(0.5, 1.5, 3)

n_sim <- 2000

tol <- 3

df _vec <- c¢c(1.5, 2.5, 5)

phi <- 0.8 # autocorrela o AR(1)

set.seed (123)

taxas_acerto <- array(NA,
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dim = c(length(df_vec), length(mu2_vec)),

dimnames = list(
pasteO("df=", df_vec),
pasteO0("mu2=", mu2_vec)
))

for (j in seq_along(df_vec)) {
df _t <- df_vecl[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec [m]

cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# gera 1inova es t-student
epsl <- rt(breakp, df = df_t)
eps2 <- rt(n - breakp, df = df_t)

# gera s rie AR(1) manualmente
ytl <- numeric(breakp)
yt2 <- numeric(n - breakp)

yt1[1] <- eps1[1] + meani
for (t in 2:breakp) {

yt1[t] <- phi * yti1[t-1] + epsi[t] + meani
}

yt2[1] <- eps2[1] + mean?
for (t in 2:(n - breakp)) {

yt2[t] <- phi * yt2[t-1] + eps2[t] + mean2
}

yt <- c(ytl, yt2)

# detec o de mudan a usando strucchange
bp <- breakpoints(yt ~ 1, breaks = 1)
cpt.vet[[i]] <- bp$breakpoints

}

acertos <- sum(sapply(cpt.vet, function(x) any(x %in% (breakp -
tol) : (breakp + tol))))
taxas_acerto[j, m] <- acertos / n_sim

}

# Resultados em porcentagem
print (round (taxas_acerto * 100, 2))

HAHBHHAHHAHAHHAHHAHAHHAHBRAHA R B HHAHH A BB HHAHHH

# Par metros

n <- 200

breakp <- 50

meanl <- 0

mu2_vec <- c(0.5, 1.5, 3)
penalties <- "BIC"

n_sim <- 2000

tol <- 3
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df _vec <- c¢(1.5, 2.5, 5)
METHOD <- c("BinSeg", "PELT")
phi <- 0.8 # autocorrela o AR(1)

set.seed (123)

# Array para guardar apenas falsos positivos
taxas_fp <- array(NA,
dim = c(length(df_vec), length(mu2_vec), length(
METHOD), length(penalties)),

dimnames = list(
pasteO("df=", df_vec),
paste0 ("mu2=", mu2_vec),
METHOD ,
penalties

))

for (j in seq_along(df_vec)) {
df _t <- df_vecl[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec [m]

for (meth in seq_along (METHOD)) {
method_val <- METHOD [meth]

for (p in seq_along(penalties)) {
penaltyl <- penalties[p]
cpt.vet <- vector("list", n_sim)

for (i in 1:n_sim) {
# gera inova es t-student
epsl <- rt(breakp, df = df_t)
eps2 <- rt(n - breakp, df = df_t)

# gera s rie AR(1) manualmente
ytl <- numeric(breakp)
yt2 <- numeric(n - breakp)

yt1[1] <- eps1[1] + meanl
for (t in 2:breakp) {

yt1[t] <- phi * yti[t-1] + epsi[t] + meanl
}

yt2[1] <- eps2[1] + mean2
for (t in 2:(n - breakp)) {

yt2[t] <- phi * yt2[t-1] + eps2[t] + mean2
}

yt <- c(ytl, yt2)
cp <- cpt.mean(yt, method = method_val, penalty =
penaltyl, Q@ = 5)
cpt.vet[[i]] <- cpts(cp)
X

falsos_pos <- sum(sapply(cpt.vet, function(x) any(!(x %in%
(breakp - tol):(breakp + tol)))))

taxas_fp[j, m, meth, p] <- falsos_pos / n_sim
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}

print (round(taxas_fp * 100, 2))
HAHBHHABHHAHARABAHHAHHAHA A BB HHAHHA BB AR B HHABHAHA R R HHAHA R B AR AHH

e Par metros ----------------------

n <- 200 # comprimento da s rie

breakp <- 50 # ponto de mudan a verdadeiro (k)
meanl <- 0 # m dia antes da mudan a

mu2_vec <- c(0.5, 1.5, 3) # magnitudes da mudan a (mu2)
penalties <- "MBIC" # penaliza o

n_sim <- 2000 # n mero de simula es

tol <- 3 # raio de toler ncia (breakp +/- tol)
phi_vec <- ¢(0.2, 0.5, 0.8) # coeficientes AR(1)

METHOD <- c("BinSeg", "PELT") # m todos a testar

L Inicializar array ----------------------

# Este array armazenar a PROPOR 0 de vezes que ocorreu o
overfit"
overfit <- array(NA,
dim = c(length(phi_vec), length(mu2_vec), length(
METHOD), length(penalties)),

dimnames = list(
paste0("phi=", phi_vec),
paste0 ("mu2=", mu2_vec),
METHOD ,
penalties
))
e Simula o (CORRIGIDA)

set.seed (123)

for (j in seq_along(phi_vec)) {
phi_val <- phi_vec[j]

for (m in seq_along(mu2_vec)) {
mean2 <- mu2_vec [m]

for (meth in seq_along(METHOD)) {
method_val <- METHOD [meth]

for (p in seq_along(penalties)) {
penaltyl <- penalties[p]

# VETOR TEMPOR RIO: Armazena o resultado de cada uma das n
_sim itera es
overfit_results <- numeric(n_sim)

for (i in 1:n_sim) {
# 1. Simular a s rie temporal (AR(1) + Mudan a de
M dia)
Z <- arima.sim(model = list(ar = phi_val), n = n)
yt <- c(Z[1l:breakp] + meanl,
Z[(breakp+1) :n] + mean2)
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# 2. Detec o de ponto de mudan a
# Usamos Q = 1 para for ar a detec o de um
ponto de mudan a

nico

cp <- cpt.mean(yt, method = method_val, penalty =

penaltyl, Q = 1)
est_cpts <- cpts(cp)

# 3. Contar o n mero de "overfit" na simula
deve ser 0 ou 1)

# A condi o de "overfit" : o CP estimado
do intervalo [breakp - tol, breakp + tol]

# Tratamento para quando n o h CP detectado
NA) :

o atual (

est fora

(est_cpts

# sum(..., na.rm=TRUE) garantir que ele conte 0O se est_

cpts for NA.
is_overfit <- sum(est_cpts < (breakp - tol) |
(breakp + tol), na.rm = TRUE)

# Armazenar o resultado da itera o i’
overfit_results[i] <- is_overfit

# 4. C lculo final: Armazenar
# n mero total de simula es)
overfit[j, m, meth, pl] <- sum(overfit_results) /
}
}

est_cpts >

n_sim

HHEHBHAHAH AR BB HAHAHBHHHH AR AR AR B SR AR AR AR R RS R AR AR HH RSB AR AR HH

# Mudan as na Forma da Distribui o

require (evd)

library (npcp)

n <- 100

k <- 50 ## the true change-point

## Change in the shape parameter of a GEV

x <- rgev(k,loc=0,scale=1,shape=0)

y <- rgev(k,loc=0,scale=1,shape=0.8)

cp <- cpBlockMax(c(x,y), r=10,method = "pwm")
cp$pvalues [3]

max (cp$stats.shape)

## Estimated change-point
which(cp$stats.shape == max(cp$stats.shape))
## Change in the scale parameter of a GEV

cpCopula

x <- rgev(k,loc=0,scale=0.5,shape=0)
y <- rgev(k,loc=0,scale=1,shape=0)
cp <- cpBlockMax(c(x,y))

cp
## Estimated change-point
which(cp$stats.scale == max(cp$stats.scale))

## Change in the location parameter of a GEV
x <- rgev(k,loc=0,scale=1,shape=0)

y <- rgev(k,loc=0.5,scale=1,shape=0)

cp <- cpBlockMax(c(x,y))
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cp
## Estimated change-point
which(cp$stats.loc == max(cp$stats.loc))

######## C digo simples#H##H#H#H#HHAHSHHAH

library (evd)

set.seed (123)

n <- 1000

shapel <- 0.1

shape2 <- 0.6

phi <- 0.2

k <- 500

z <- numeric(n)

z[1] <- rnorm(1)

for (t in 2:n) {
z[t] <- phi * z[t - 1] + rnorm(1l)

}

U <- pnorm(z)

x1 <- qgev(U[1:k], loc = 0, scale = 1, shape = shapel)

x2 <- qgev(U[(k+1):n], loc = 0, scale = 1, shape = shape2)
y <- c(xl, x2)

library (npcp)
which(cp$stats.loc == max(cp$stats.shape))

#
HAHAHRAHAHBHHAH AR AR AR B R B AR AR AR AR BH B AR AR AR BH B S B AR AR AR BH B HAH AR BHBH B HAHAHH#33

R 1. Fun o para simular GEV com depend ncia AR(1)
sim_gev_arl <- function(n, phi, xi, mu = 0, sigma = 1) {

# Passo 1: simula AR(1) normal padr o

Z <- arima.sim(model = list(ar = phi), n = n)

# Passo 2: transforma para uniforme (CDF normal)

U <- pnorm(Z)

# Passo 3: aplica fun o quantil da GEV

X <- qgev(U, loc = mu, scale = sigma, shape = xi)

return (X)
3
L 2. Simular cen rio com mudan a em Xi ----------
sim_gev_arl_change <- function(n, phi, xil, xi2, lambda, mu = O,

sigma = 1) {
Z <- arima.sim(model = list(ar = phi), n = n)

U <- pnorm(Z)
Ul <- U[1:1lambdal
U2 <- U[(lambda+1) :n]

X1 <- qgev(Ul, loc = mu, scale = sigma, shape = xil)

X2 <- qgev (U2, loc = mu, scale = sigma, shape = xi2)

return(c (X1, X2))
}
# —---mm - 3. Fun o para rodar o teste cpBlockMax ----------
rodar_teste <- function(x, metodo = "gpwm", r = 10) {
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X <- as.numeric(x) # garantir que vetor num rico

res <- cpBlockMax(x, method = metodo, r = r)
return(res$pvalues [3]) # p-valor para mudan a no shape
}
A 4. Simula o para n vel emp rico e poder

set.seed (123)

n <- 200

Nsim <- 2000

phi_vals <- ¢(0.2, 0.5, 0.8)
alpha <- 0.05

xi_const <- 0.2

nivel_emp <- numeric(length(phi_vals))
poder <- numeric(length(phi_vals))

for (i in seq_along(phi_vals)) {
# N vel emp rico (sem mudan a)
rejeicoes <- 0
for (j in 1:Nsim) A
X <- sim_gev_arl(n, phi = phi_vals[i], xi =
pval <- rodar_teste(X, metodo = "gpwm", r =

if (pval < alpha) rejeicoes <- rejeicoes + 1

}

nivel _emp[i] <- rejeicoes / Nsim

# Poder (com mudan a em xi)
rejeicoes <- 0
for (j in 1:Nsim) {

xi_const)

10)

X <- sim_gev_arl_change(n, phi = phi_vals[i], xil = 0.2, xi2 =
0.4, lambda = n/2)
pval <- rodar_teste(X, metodo = "gpwm", r = 10)
if (pval < alpha) rejeicoes <- rejeicoes + 1
}
poder [i] <- rejeicoes / Nsim
}
# —--mmmmm - 5. Resultados ----------
data.frame (phi = phi_vals, NivelEmpirico = nivel_emp, Poder = poder
)
HAHSHHSHHAHAHHHH A HHAHA R B SRR HFAHA ARG HH A RS A B SRR HH A RS R B SRS HH
HHu#HHAHA#H#A#E Estimar pontos de localiza o
HHAHAHHAHHAHA R BB HHAHAH BB HBABH AR SRR AHH R RS RS
#o-mmmmm - 1. Fun o para simular GEV com depend ncia AR(1)
sim_gev_arl <- function(n, phi, xi, mu = 0, sigma = 1) {
# Passo 1: simula AR(1) normal padr o
Z <- arima.sim(model = list(ar = phi), n = n)
# Passo 2: transforma para uniforme (CDF normal)
U <- pnorm(Z)
# Passo 3: aplica fun o quantil da GEV
X <- qgev(U, loc = mu, scale = sigma, shape = xi)
return (X)
}
# oo - 2. Simular cen rio com mudan a em xi ----------
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sim_gev_arl_change <- function(n,
sigma 1 A

Z <- arima.sim(model

U <- pnorm(Z)

lambda <- as.integer (lambda)

if (lambda < 1 || lambda >= n)

Il—].")

list (ar

Ul <- U[1l:lambdal
U2 <- U[(lambda+1) :nl]
X1 <- qgev(Ul, loc = mu, scale
X2 <- qgev (U2, loc = mu, scale
return (c (X1, X2))

}

# - 3. Fun o}

function(x, metodo

as.numeric(x) # garantir

rodar_teste <-
x <-

res <- tryCatch(
cpBlockMax (x,
error

method metodo

if (is.null(res)) {

# em caso de erro, devolve NA

return(list (pval = NA_real_,
}
# p-valor para mudan a no shape (assumindo que
posi o)
pval <- NA_real_

phi, xil, xi2, lambda, mu = O,

= phi), n = n)

stop("lambda deve estar entre 1 e
= sigma, shape = xil)

= sigma, shape = xi2)

que

, T

function(e) return (NULL)

cpt

n gpwm n s

para rodar o teste cpBlockMax (robusta)

10) {

vetor num rico

r

r),

NA_integer_))

est na terceira

if (!is.null(res$pvalues) && length(res$pvalues) >= 3) pval <-

res$pvalues [3]

# Estimador do ponto de mudan
cpt <- NA_integer_

a

if ("stats.shape" %in’% names(res) && length(res$stats.shape) > 0)

{

cpt <- as.integer (which.max(res$stats.shape))
} else if ("cpts" %in% names(res) && length(res$cpts) > 0) {

cpt <- as.integer(res$cpts[1]
}
return(list (pval = pval, cpt =
}
# oo - 4. Simula o para
precis o ----------
set.seed (123)
n <- 200
Nsim <- 2000
phi_vals <- ¢(0.2, 0.5, 0.8)
alpha <- 0.05
xi_const <- O

# par metros
r_level <- 1
r_power <- 1

# para n vel
# para poder

emp

)

cpt))

n vel

rico
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nivel_emp <- numeric(length(phi_vals))
poder <- numeric(length(phi_vals))
precisao <- numeric(length(phi_vals))

for (i in seq_along(phi_vals)) {
phi <- phi_vals[i]

# - - N vel emp rico (sem mudan a) ----------
rejeicoes <- 0
for (j in 1:Nsim) {
X <- sim_gev_arl(n, phi = phi, xi = xi_const)
teste <- rodar_teste(X, metodo = "gpwm", r = r_level)
if (!is.na(teste$pval) && teste$pval < alpha) rejeicoes <-
rejeicoes + 1

}

nivel _emp[i] <- rejeicoes / Nsim

R Poder e precis o (com mudan a em xi) ----------
rejeicoes <- 0

acertos_localizacao <- 0

lambda <- as.integer(n/2)

raio <- 3 # crit rio 3

for (j in 1:Nsim) {

# mudan a de xi: ex.: 0.2 -> 0.4

X <- sim_gev_arl_change(n, phi = phi, xil = -0.2, xi2 = 0.2,
lambda = lambda)

teste <- rodar_teste(X, metodo = "gpwm", r = r_power)

if (!is.na(teste$pval) && teste$pval < alpha) {
rejeicoes <- rejeicoes + 1
if (!is.na(teste$cpt) && abs(teste$cpt - lambda) <= raio) {
acertos_localizacao <- acertos_localizacao + 1

}
}

poder [i] <- rejeicoes / Nsim
precisao[i] <- acertos_localizacao / Nsim

A 6. Resultados ----------
res_df <- data.frame(phi = phi_vals,
NivelEmpirico = nivel_emp,

Poder = poder,
Acerto = precisao)

print (res_df)
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