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Resumo 

 
A vazão em comportas planas verticais foi determinada através de vários métodos de 

cálculo, sendo alguns calibrados com medições realizadas em canal laboratorial. As equações 

testadas baseiam-se nos métodos da energia-quantidade de movimento, algumas considerando 

um fator de correção, e no teorema dos 𝛱𝛱 da análise dimensional. O estudo foi desenvolvido 

para as situações de ressalto hidráulico livre e submerso.  

Entre todas as formulações consideradas, obteve-se um erro médio geral para escoamento 

com ressalto livre de 4% e com ressalto submerso de 9%. Para ressalto livre, o método mais 

preciso gerou erros próximos de 2% e, para ressalto submerso, o método mais preciso obteve um 

erro médio de 4%.  

Foram também comparadas algumas equações de fronteira, entre o ressalto livre e 

submerso, tendo-se concluído que uma das equações garante maior rigor na definição dessa 

fronteira. 

 

Palavras-chave: Comportas; equações da vazão; ressalto hidráulico; ressalto livre; ressalto 

submerso. 
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Determination of discharge in sluice gates for different flow conditions 

 

Abstract 

 
Discharge in vertical sluice gates was computed by different calculation methods, some of 

them calibrated with measurements performed in a laboratory canal. The tested equations are 

based in energy-momentum method, some of them consider a correction factor, and in a method 

based on 𝛱-theorem of the dimensional analysis. The study was developed for free and 

submerged flow. 

From all the equations considered, there were obtained an overall average error for free 

flow of 4% and for submerged flow of 9%. In free flow, the most accurate method obtained an 

error close to 2% and in submerged flow, the most accurate method an error of 4%. 

Were also compared some equations of distinguishing condition, which function is 

determine the type of hydraulic jump. One of the considered equations gave the best result and 

accuracy in the definition of the frontier between free and submerged flow. 

 

Keywords: Gates; discharge equations; hydraulic Jump; free flow; submerged flow. 
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1 Introdução 

1.1 Enquadramento 

 
A água é um recurso natural essencial à vida. Sendo a base do desenvolvimento humano é 

necessário garantir a sua disponibilidade em qualidade e quantidade. 

A exploração da água tem vindo a aumentar nas últimas décadas devido ao rápido 

crescimento da população mundial (WWAP, 2009). Atualmente existem cerca de 7 biliões de 

pessoas no mundo e em 2050 estima-se que existam 9 biliões (WWAP, 2009).  

O consumo de água está distribuído pelos setores agrícola, industrial e urbano. O setor que 

mais água consome é o agrícola, sendo responsável por mais de 70% do consumo de água 

mundial (UN, 2006). Tendo em conta que a eficiência do uso da água neste setor é inferior a 40% 

(UN, 2006), existe uma grande parte que não é aproveitada. Associando a isto o facto de se 

estimar um aumento da temperatura global superior a 2 graus Celsius até ao final do século (IPCC, 

2013), fica evidente que todos os fatores aqui considerados obrigam a uma gestão mais eficiente 

da água, de forma a reduzir as perdas e a assegurar o seu fornecimento. 

No sentido de gerir melhor a água promovendo uma utilização eficiente, decorre em 

Portugal o Programa Nacional do Uso Eficiente da Água (PNUEA), com implementação para 2012-

2020. O objetivo do PNUEA é reduzir as perdas de água e otimizar o seu uso, nos três setores de 

abastecimento, de forma a contribuir para uma utilização sustentável deste recurso. Uma das 

medidas deste programa é a modernização das redes hidráulicas e é neste contexto que se insere 

a presente dissertação. 

As comportas hidráulicas instaladas em canal têm a função de controlar o escoamento, 

sendo possível calcular a vazão nestas estruturas. Com um método de cálculo adequado pode ser 

determinado o caudal em comportas, permitindo controlar a adução de água necessária para 

exploração, diminuindo as perdas de água e aumentando a eficiência no transporte, preservando 

o meio ambiente. 

 

1.2 Objetivos 

 

Pretende-se com este trabalho reunir as principais equações da vazão em comportas 

disponíveis na literatura e avaliar os seus desempenhos comparativamente com um conjunto de 

ensaios realizados em canal laboratorial, para várias situações de escoamento. Algumas das 

equações têm de ser calibradas com os resultados medidos nos ensaios, para melhorar o seu 

desempenho. 
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A componente prática realizou-se no canal experimental do Laboratório de Hidráulica da 

Universidade de Évora, equipado com uma comporta plana vertical e um descarregador triangular 

de soleira delgada. 

 

1.3 Organização 

 

A presente dissertação está organizada em revisão bibliográfica, instalação e metodologia 

experimentais, análise de resultados e conclusões.  

Na revisão bibliográfica são referidos os conceitos relacionados com o escoamento em 

comportas instaladas em canal e apresentados alguns dos principais métodos de cálculo da vazão 

em comportas, desenvolvidos nas últimas décadas. 

Em instalação e metodologia experimentais é realizada a descrição dos equipamentos 

utilizados, dos ensaios desenvolvidos no canal laboratorial e o tratamento de dados. 

A análise de resultados é feita avaliando o desempenho de cada um dos métodos de cálculo 

considerados, comparando os valores obtidos com os resultados experimentais. 

Nas conclusões são comentados os principais resultados obtidos e sugeridas 

recomendações para trabalhos futuros. 
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2 Revisão Bibliográfica 

2.1 Comportas hidráulicas 
 

As comportas hidráulicas são estruturas que têm como principal função controlar o 

escoamento, ajustando os níveis de água e/ou os caudais desejados, de acordo com as 

necessidades de exploração. Estas estruturas são utilizadas em várias construções de engenharia, 

podendo ser instaladas em descarregadores de barragem, em eclusas e em canais de adução e 

drenagem, entre outras aplicações.  

Nos canais de adução, as alturas de água podem ser controladas por descarregadores e por 

comportas, para que: a superfície livre nos canais domine por gravidade toda a zona a beneficiar; 

as tomadas de água possam ser alimentadas em boas condições; se evitem galgamentos de canal; 

se reduzam os tempos de resposta dos canais; se reduzam as perdas de água operacionais ou 

devidas ao controlo (Rijo, 2010). 

 

2.1.1 Elementos básicos constituintes  

 

Os elementos básicos que constituem uma comporta são o tabuleiro, peças fixas e o 

mecanismo de manobra. A Figura 2.1 apresenta o esquema de uma comporta plana vertical. 

 

Figura 2.1 - Esquema dos elementos básicos de uma comporta. 

 
O tabuleiro representa o elemento principal da comporta, que serve de barreira à 

passagem do escoamento. Este elemento pode ser reforçado por vigamentos de forma a resistir 

melhor aos esforços provocados pela água. As peças fixas são elementos que ficam inseridos na 

estrutura que dá suporte à comporta (ou quadro da comporta) e têm a função de absorver os 
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esforços que esta recebe, proporcionando estabilidade. O mecanismo de manobra tem a função 

de ajustar a abertura da comporta conforme as necessidades.  

Dependendo do tipo de comporta, a sua abertura pode ser acionada manualmente, através 

da impulsão da água ou de forma motorizada, podendo ser, neste último caso, atuada através de 

autómatos(1). No que respeita à estanquicidade, esta pode ser obtida através do contacto entre os 

seus elementos ou através de juntas isoladoras.  

 

2.1.2 Tipos de comportas 

 

Na Figura 2.2, apresentam-se alguns tipos de comporta comuns em canal. 

Plana vertical  Descarregadora plana vertical 

  

Segmento  Descarregadora plana inclinada 

  

AMIL 

 

 Figura 2.2 - Exemplos de comportas usadas em canais controlados (Rijo, 2010).  

                                                           
(1)

 Autómato é um equipamento eletrónico programado pelo utilizador, responsável pelo comando dos sistemas 
automatizados. 
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Com base na Figura 2.2, pode concluir-se que, dependendo do tipo de comporta, esta pode 

funcionar como orifício retangular, quando tem abertura inferior (à exceção da AMIL®), ou como 

descarregador, dando-se o escoamento pela parte superior. Qualquer um dos tipos de comporta 

indicados, à exceção da comporta AMIL®, pode ter o mecanismo de manobra manual ou 

motorizado. A comporta AMIL® é autorregulada por um sistema de flutuadores e contrapesos que 

rodam em torno de um eixo horizontal. 

As comportas apresentadas permitem controlar o escoamento a montante, fazendo variar 

a área da sua abertura. Entre a comporta plana vertical e a de segmento pode destacar-se o facto 

de a primeira requerer uma menor área de implantação e ser mais económica que a comporta de 

segmento, no entanto esta última necessita de menor força para a sua manobra (Clemmens et al., 

2003).  

Nas comportas descarregadoras, a plana vertical é mais limitada em termos de variação da 

altura. No entanto, para grandes caudais, a comporta descarregadora inclinada necessita de um 

sistema motorizado com maiores gastos de energia para poder efetuar a sua regulação. 

As comportas AMIL® mantêm o nível de montante a uma cota constante, correspondente à 

altura de assentamento do seu eixo de rotação, independentemente da vazão. Esta comporta não 

tem escoamento do tipo orifício, uma vez que o tabuleiro não tem estanquicidade lateral. 

 

2.1.3 Vantagens e desvantagens no cálculo da vazão 

 

A principal função das comportas é controlar o escoamento. No entanto, se estiverem 

devidamente calibradas, é possível calcular o caudal nestas estruturas (Sepúlveda, 2008). 

Apresentam-se as principais vantagens e desvantagens na utilização de comportas na medição do 

caudal. 

Vantagens: 

 Redução de custos e tempo associado ao projeto, construção ou aquisição de estruturas 

de medição dedicadas e equipamento;  

 Pequena perda de carga; 

 Melhoramento do controlo automático através de ajustamentos precisos das comportas 

para rapidamente alcançarem a vazão pretendida. 

Desvantagens: 

 Menos precisas que os descarregadores;  

 A calibração pode ser complexa para todas as condições de escoamento. 
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2.2 Caracterização do ressalto hidráulico  

 

O ressalto hidráulico é o fenómeno de escoamento rapidamente variado por meio do qual 

o regime rápido a montante passa bruscamente para o regime lento a jusante (Quintela, 1981). 

Nestas condições, a superfície livre(2) eleva-se rapidamente, existindo uma grande dissipação de 

energia, devido à transformação da energia cinética em energia potencial (Manzanares, 1980). 

A ocorrência do ressalto pode ser a jusante de comportas hidráulicas e de descarregadores, 

aparecendo também em quedas em canal e em canais evacuadores de cheias associados a 

barragens. Em canais evacuadores, este fenómeno, ao dissipar uma parte considerável de energia 

de corrente rápida, permite a restituição ao leito a jusante em condições muito próximas das 

naturais, reduzindo o risco de erosão das margens e do leito. Nos canais de adução, o ressalto 

ocorre a jusante de comportas e no final de trechos muito inclinados (Rijo, 2010). 

O ressalto hidráulico pode desenvolver-se de forma livre ou submersa. É livre quando a 

superfície da veia líquida contraída(3) contacta com a atmosfera ou outro meio gasoso. É 

submerso quando se forma uma camada de água turbilhonar sobre a veia líquida contraída, tal 

como distingue a Figura 2.3. Esta camada turbilhonar tem influência no escoamento a montante, 

fazendo aumentar a altura de água.  

 

Figura 2.3 - Escoamento em comporta: a) ressalto livre; b) ressalto submerso (Henderson, 1966). 

 
As variáveis apresentadas na Figura 2.3 são: ℎ1 – altura de água a montante da comporta (4) 

(𝑚); 𝑏 – altura de abertura da comporta (𝑚); ℎ2 – altura da veia líquida na secção contraída (𝑚); 

ℎ′2 – altura de água a montante do ressalto hidráulico submerso (𝑚); ℎ3 – altura de água a 

jusante do ressalto (𝑚). 

                                                           
(2)

 O escoamento de um líquido ocorre com superfície livre quando uma parte do seu contorno se apresenta em 
contacto com a atmosfera ou outro meio gasoso. 
 
(3)

 A veia líquida contraída é o jato fluido que sofre a diminuição da secção ao atravessar um orifício. 
 
(4)

 Por norma, na presente dissertação irá usar-se o índice 1 para designar a secção 1, a montante da comporta, o índice 
2 para designar a secção 2, na veia líquida contraída do escoamento, e o índice 3 para designar a secção 3, a jusante do 
ressalto. A ausência de índice refere a secção genérica do canal. 
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2.2.1 Classificação do ressalto hidráulico  

 

O ressalto hidráulico pode ser classificado tendo em conta o número de Froude de 

montante. Este número é derivado da equação da energia específica: 

 
𝐸 = ℎ +

𝑄2

2𝑔𝑆2
 

(2.1) 

Em que 𝐸 é a energia específica (𝑚), 𝑔 a aceleração da gravidade (𝑚 /s2), ℎ a altura de água (𝑚), 

𝑄 o caudal (𝑚3/𝑠) e 𝑆 é a área líquida transversal (𝑚 2). 

 

O número de Froude é dado pela equação seguinte, que representa a relação entre a 

velocidade média do escoamento e a celeridade(5) das pequenas perturbações (Manzanares, 

1980): 

 𝐹𝑟 =
𝑈

 𝑔ℎ
 (2.2) 

Em que, 𝐹𝑟  é o número de Froude e 𝑈 a velocidade média do escoamento (𝑚/𝑠). 

 

O escoamento pode ocorrer em três regimes, consoante o número de Froude: 

 Regime lento, se 𝐹𝑟 < 1; 

 Regime crítico, se 𝐹𝑟 = 1; 

 Regime rápido, se 𝐹𝑟 > 1. 

 

O ressalto hidráulico, segundo Peterka (1958), pode ser classificado em:  

 𝐹𝑟 ≤ 1 – Para estes valores o regime é lento ou crítico e não há ressalto; 

 1 < 𝐹𝑟 < 1,7 – Ressalto ondulado, aqui as alturas conjugadas(6) apresentam pequenas 

diferenças, havendo suaves ondulações na superfície; 

 1,7 ≤ 𝐹𝑟 < 2,5 – Ressalto fraco, origina pequenos rolos na superfície; 

 2,5 ≤ 𝐹𝑟 < 4,5 – Ressalto oscilante, ocorrem pulsações que produzem ondas de período 

irregular, desenvolvendo-se para jusante ao longo de grandes extensões; 

 4,5 ≤ 𝐹𝑟 < 9 – Ressalto estável é bem localizado e caracterizado; 

 𝐹𝑟 ≥ 9 – Ressalto forte, apresenta uma intensa formação de vórtices, emulsionamento de 

ar e grande turbulência. 

                                                           
(5)

 Velocidade relativa da propagação de onda. 
(6)

 Alturas de água, a montante e a jusante do ressalto hidráulico, com igual quantidade de movimento total. 
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2.2.2 Alturas conjugadas 

 

As alturas ℎ2  e ℎ3 , a montante e a jusante do ressalto hidráulico, respetivamente, 

apresentadas na Figura 2.4, correspondem às alturas conjugadas, sendo o escoamento em regime 

rápido na secção 2 e em regime lento na secção 3. 

 

Figura 2.4 - Representação das alturas conjugadas do ressalto hidráulico. 

 
Para determinar as alturas de água conjugadas do ressalto hidráulico, recorre-se ao 

teorema da quantidade de movimento aplicado ao volume de líquido limitado pelas secções a 

montante e a jusante do ressalto (Quintela, 1981), considerando que a quantidade de movimento 

se mantém constante entre as secções 2 e 3. Para canais prismáticos(7) representa-se com a 

seguinte equação: 

 
𝛾𝑆2ℎ𝐺2

+
𝛾

𝑔

𝑄2

𝑆2
= 𝛾𝑆3ℎ𝐺3

+
𝛾

𝑔

𝑄2

𝑆3
 

(2.3) 

Em que, ℎ𝐺  é a profundidade do centro de gravidade da área líquida transversal (𝑚) e 𝛾 o peso 

volúmico da água (𝑁/𝑚3). 

 
As alturas conjugadas do ressalto hidráulico para canais retangulares foram deduzidas por 

Bélanger (Chow, 1959), considerando a equação 2.3 e tendo em conta o número de Froude de 

montante do ressalto, obtendo as equações, 

 

 
ℎ3

ℎ2
=

1

2
  1 + 8𝐹𝑟2

2 − 1  (2.4) 

 ℎ2

ℎ3
=

1

2
  1 + 8𝐹𝑟3

2 − 1  (2.5) 

                                                           
(7)

 Canal de secção transversal e declive longitudinal, constantes, ao longo do percurso e com rugosidade 
constante ao longo de cada geratriz. 
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2.3 Equações de vazão de comportas 

 

Nas últimas décadas, muitos investigadores têm-se dedicado ao estudo da vazão em 

comportas instaladas em canais, com o objetivo de desenvolver equações que permitam calcular 

com rigor o caudal.  

O método da conservação da energia e da quantidade de movimento total (E-M) tem sido 

amplamente utilizado por vários investigadores (Henry, 1950; Henderson, 1966; Yen et al., 2001) 

na determinação do caudal com ressalto livre e submerso. Algumas alterações têm sido feitas ao 

método E-M, introduzindo um fator de correção para a energia específica, com a finalidade de 

melhorar a sua precisão, exemplos disto são os trabalhos de Belaud et al. (2009) e Habibzadeh et 

al. (2011). Recentemente, um método baseado no teorema dos 𝛱𝛱 da análise dimensional, 

apresentado em Ferro (2000) para o ressalto livre e em Ferro (2001) e Ansar (2001) para o 

ressalto submerso, tem sido testado com bons resultados. 

 

2.3.1 Equações da energia-quantidade de movimento 

 

No método tradicional da E-M é igualada a energia específica da secção a montante da 

comporta com a energia específica na veia líquida contraída e considerada a conservação da 

quantidade de movimento total entre a veia líquida contraída e a secção a jusante do ressalto. É 

assumida uma distribuição hidrostática das pressões e velocidade uniforme nas secções referidas. 

As perdas de energia entre a secção de montante da comporta e a veia líquida contraída são 

pequenas, pelo que se podem ignorar, conforme assinalam Henry (1950), Henderson (1966) e Yen 

et al. (2001). 

 

2.3.1.1 Dedução da equação de vazão 

 

Em Henderson (1966), é feita uma dedução teórica da equação para o cálculo da vazão em 

comportas. Desta dedução resulta também uma equação para o cálculo do coeficiente de vazão 

para o ressalto livre, como adiante se irá apresentar. São igualadas as energias específicas da 

secção 1 e 2, isto é,  

 ℎ1 +
𝑄2

2𝑔𝐿2ℎ1
2 = ℎ2 +

𝑄2

2𝑔𝐿2ℎ2
2 (2.6) 

Em que 𝐿 é a largura da comporta (𝑚). 
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Resolvendo a equação 2.6 em função do caudal, é obtido: 

 𝑄 = 𝐿ℎ1ℎ2 
2𝑔

ℎ1 + ℎ2
 (2.7) 

Introduzindo o coeficiente de contração, 𝐶𝑐 , na equação 2.7 vem: 

 𝑄 = 𝐿𝐶𝑐𝑏 2𝑔ℎ1

ℎ1

ℎ1 + ℎ2
 (2.8) 

Na equação (2.8) considera-se que ℎ2 = 𝐶𝑐𝑏. 

Daqui resulta a equação para o cálculo do caudal em comportas: 

 𝑄 = 𝐶𝑣𝐿𝑏 2𝑔ℎ1 (2.9) 

Onde,    

 
𝐶𝑣 =

𝐶𝑐

 1 + 𝐶𝑐𝑏/ℎ1

 (2.10) 

Em que 𝐶𝑣  é o coeficiente de vazão.  

 

2.3.1.1.1  Coeficiente de contração 

 

Para comportas do tipo plana vertical, vários investigadores consideraram um valor 

constante de 𝐶𝑐 . Henry (1950) considerou 𝐶𝑐=0,60, Henderson (1966) utilizou 𝐶𝑐= 0,61, entre 

outros.  

O valor constante de 0,61 é uma aproximação de π/(π + 2), tendo sido demonstrado por 

Kirchoff (Henderson, 1966) para o coeficiente de contração de um jato, sem perdas de energia e 

com pequena deflexão causada pela gravidade, a partir de um orifício retangular ao longo de um 

grande reservatório. 

Em Yen et al. (2001), é referido que o coeficiente de contração pode variar ligeiramente em 

comportas planas verticais em termos teóricos, mas que, na prática, podem ocorrer variações 

importantes deste coeficiente. Já Belaud et al. (2009) referem que o 𝐶𝑐  pode ser bastante 

superior a 0,61 para grandes aberturas de comporta e grande submersão do ressalto. 
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2.3.1.1.2 Coeficiente de vazão 

 

O coeficiente de vazão pode ser definido como a razão entre o caudal do líquido real e o 

caudal que se escoaria em idênticas condições se o líquido fosse perfeito, traduzindo-se num 

ajustamento da lei da vazão para ter em conta as perdas de carga e a distribuição não uniforme 

de velocidades e de pressões (Rijo, 1993). 

Com ressalto livre, o coeficiente de vazão depende de 𝐶𝑐 , ℎ1 e 𝑏 e, com ressalto submerso, 

depende de 𝐶𝑐 , ℎ1 , 𝑏  e ℎ3  (Henderson, 1966). Alguns métodos de cálculo consideram o 𝐶𝑣   

constante, enquanto noutros este coeficiente é calculado. 

 

2.3.1.2 Equações de Henry 

 

Henry (1950) determinou experimentalmente o coeficiente de vazão para o escoamento 

com ressalto livre e submerso. Os resultados destes ensaios foram dispostos no diagrama 

adimensionalizado da Figura 2.5. 

 
Figura 2.5 - Coeficiente de vazão obtido experimentalmente (Henry, 1950). 

 

Da análise do diagrama da Figura 2.5, pode concluir-se que o coeficiente de vazão diminui 

com o aumento da submersão do ressalto e que para ressalto submerso pode variar bruscamente 
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com a pequena alteração de uma das variáveis em presença. Conclui-se ainda que o coeficiente 

tende para o limite de 0,6 em ressalto livre para valores elevados de ℎ1/𝑏. 

Henry (1950) completou o seu trabalho com duas equações do coeficiente de vazão, 

determinadas a partir do método E-M, que se aproximam das curvas obtidas no diagrama da 

Figura 2.5. Estes coeficientes de vazão são aplicados na equação 2.9 para calcular o caudal. 

A Figura 2.5 apresenta a traço interrompido curto os valores do coeficiente de vazão dados 

pela equação, 

 𝐶𝑣 = 𝐾𝐶𝑐 1 − ℎ′2/ℎ1 (2.11) 

Em que, 𝐾 = 1/ 1 −  𝐶𝑐𝑏/ℎ1 
2  é um parâmetro adimensional, para o qual Henry considerou 

𝐶𝑐 = 0,6. Para ressalto submerso, é usado ℎ′2 e para ressalto livre é usado ℎ2. 

A Figura 2.5 apresenta a traço interrompido mais comprido os valores do coeficiente de 

vazão dados pela equação, 

 𝐶𝑣 = 𝐶𝑐 1 − ℎ3/ℎ1 (2.12) 

Henry (1950) considerou esta última equação para calcular o coeficiente de vazão em 

situações de maior submersão. 

 

2.3.1.3 Equações de Henderson 

 

Henderson (1966) deduziu, teoricamente a partir do método E-M, a equação de cálculo do 

coeficiente de vazão para o ressalto livre, dado pela equação 2.10. Para calcular o coeficiente de 

vazão com ressalto submerso, em Yen et al. (2001) é apresentada a seguinte equação, deduzida 

com base nos conceitos de Henderson (1966), tendo em conta a conservação de energia 

específica entre as secções 1 e 2 e a conservação da quantidade de movimento total, entre as 

secções 2 e 3, 

 
𝐶𝑣 = 𝐶𝑐

 𝜉 −  𝜉2 −  
1

𝜂2 − 1 
2

 1 −
1

𝜆2  

1/2

1
𝜂
− 𝜂

 
(2.13) 

Em que 𝜂 = 𝐶𝑐𝑏/ℎ1, 𝜆 =  ℎ1/ℎ3 e 𝜉 =  1/𝜂 − 1 2 + 2(𝜆 − 1) são parâmetros adimensionais e 

𝐶𝑐 = 0,61. 

 

Os coeficientes de vazão obtidos são introduzidos na equação 2.9 para calcular o caudal.  
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2.3.1.4 Equações de Rajaratnam e Subramanya 

 

De acordo com Rajaratnam e Subramanya (1967) apud Sepúlveda et al. (2009) foram 

obtidas as equações que seguem, respetivamente, para o cálculo do caudal com ressalto livre e 

com ressalto submerso,  

 𝑄 = 𝐶𝑣𝐿𝑏 2𝑔(ℎ1 − 𝐶𝑐𝑏) (2.14) 

 𝑄 = 𝐶𝑣𝐿𝑏 2𝑔(ℎ1 − ℎ2) (2.15) 

Nestas equações é utilizado 𝐶𝑐 = 0,61  e o coeficiente de vazão é dado por: 

 

 𝐶𝑣 = 0,61/ 1 − 0,372 ℎ1/𝑏 −2   (2.16) 

A equação 2.15 para o cálculo do caudal com ressalto submerso considera a altura ℎ2, 

relativa à altura de água na veia contraída a jusante da comporta. No entanto, nestas condições, 

existe a almofada de água sobre a veia líquida contraída, o que impossibilita a determinação desta 

altura com precisão. Estes investigadores determinaram para o cálculo de ℎ2, a seguinte equação: 

 ℎ2 = 𝑏𝐶𝑣  2  1 −
𝑏𝐶𝑣

ℎ3
 +  4  1 −

𝑏𝐶𝑣

ℎ3
 

2

+  
ℎ3

𝑏𝐶𝑣
 

2

− 4  
ℎ1

𝑏𝐶𝑣
−

ℎ1

ℎ3
   (2.17) 

As equações que fazem a separação entre as duas situações de ressalto são designadas por 

equações de fronteira. Em Rajaratnam e Subramanya (1967) apud Bijankhan e Kouchakzadeh 

(2011) foi determinada a equação seguinte, para saber se o escoamento ocorre com ressalto livre 

ou submerso: 

  ℎ3 = 𝑏 ×
𝐶𝑣

2
  1 + 16

 ℎ1/𝑏 − 0,61

𝐶𝑣
− 1  (2.18) 

O ressalto é livre se os valores da altura ℎ3, medidos em canal, forem inferiores aos obtidos 

pela equação 2.18 e é submerso quando os valores medidos são superiores aos da equação 2.18. 

O mesmo é válido para todas as equações de fronteira que se apresentam ao longo deste 

capítulo. 
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2.3.1.5 Equações de Bos  

 

Bos (1989) apresenta as duas equações que seguem, respetivamente, para calcular o caudal 

com ressalto livre e submerso:  

 
𝑄 = 𝐶𝑣 × 𝑐𝑣𝐿𝑏 2𝑔(ℎ1 − ℎ2) 

(2.19) 

 

 𝑄 = 𝐶𝑣 × 𝑐𝑣𝐿𝑏 2𝑔(ℎ1 − ℎ′2) (2.20) 

Em que 𝑐𝑣  é o coeficiente de velocidade e que por ter valores muito próximos da unidade não se 

irá considerar para efeitos de cálculo. 

 

Bos (1989) considera um valor de 0,61 para o coeficiente de vazão nos orifícios com 

contração total. Se não houver contração nalgum dos lados do orifício, como acontece com as 

comportas sem contração lateral (da mesma largura do canal) e sem soleira associada, o 

coeficiente de vazão deve ser determinado pela equação, 

 Cv = 0.61(1 + 0.15r) (2.21) 

Em que 𝑟 é a razão entre o perímetro não contraído e o perímetro total do orifício.  

 

No ressalto submerso, Bos (1989) refere que a sua formulação é mais precisa na obtenção 

do caudal que o diagrama de Henry (1950), que pode originar erros elevados quando a diferença 

entre ℎ1/𝑏 e ℎ3/𝑏 é inferior à unidade. 

É também sugerida uma equação de fronteira em Bos (1989), dada por:  

 ℎ3 = 𝑏 ×
𝐶𝑐

2
  1 + 16  

ℎ1

𝐶𝑐𝑏
− 1 − 1  (2.22) 

 

2.3.1.6 Equações de Swamee  

 

As equações de Swamee (1992) apud Sepúlveda et al. (2009) foram determinadas a partir 

de uma análise regressiva ao diagrama de Henry (1950) para poder calcular o coeficiente de 

vazão, obtendo as duas equações que seguem, respetivamente, para o escoamento com ressalto 

livre e submerso, 
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 𝐶𝑣 = 0,611 
ℎ1 − 𝑏

ℎ1 + 15𝑏
 

0,072

 (2.23) 

 𝐶𝑣 = 0,611  
ℎ1 − 𝑏

ℎ1 + 15𝑏
 

0,072

 0,32 
0,81ℎ3(ℎ3/𝑏)0,72 − ℎ1

ℎ1 − ℎ3
 

0,7

+ 1 

−1

 (2.24) 

O caudal é calculado aplicando os valores do coeficiente de vazão obtidos pelas equações 

2.23 e 2.24 na equação 2.9.  

Este investigador estabeleceu a equação de fronteira entre o ressalto livre e submerso que 

se segue: 

 h3 =
h1

0,81 ×  h3/b 0,72
 (2.25) 

 

2.3.1.7 Equações de Lin, Tsai e Yen 

 

Em Yen et al. (2001) e Lin et al. (2002) foram desenvolvidos ensaios para o escoamento em 

comportas e concluíram que o 𝐶𝑐  varia com a abertura da comporta, o tipo de comporta, o tipo 

de batente e com a altura de água a montante da comporta. 

Com base nas equações E-M e considerando a influência do 𝐶𝑐 , estes investigadores 

apresentaram equações de cálculo do coeficiente de vazão para a situação de ressalto livre e 

submerso, uma equação para fazer a fronteira entre as duas situações de ressalto e outra 

equação para calcular a altura de água ℎ′2. 

Quando a abertura da comporta é igual ou superior à altura crítica, não há ressalto 

hidráulico. Nesta situação, a comporta não consegue controlar o escoamento, apenas causa 

alguma perturbação na superfície (Yen et al. 2001). Desta forma, a comporta tem de estar sempre 

com uma altura de abertura inferior à altura crítica, para haver controlo do escoamento. Em 

canais retangulares, a altura crítica, ℎ𝑐  é definida pela equação seguinte: 

 

 
ℎ𝑐 =  

𝑄2

𝑔𝐿2 

1/3

 
(2.26) 

 

O coeficiente de vazão para ressalto livre apresentado em Yen et al. (2001) é dado pela 

equação 2.10 com 𝐶𝑐  = 0,6. O coeficiente de vazão para ressalto submerso é obtido pela equação,  
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 𝐶𝑣 = 𝐶𝑐 
1 −

ℎ′2
ℎ1

1 −  
𝐶𝑐𝑏
ℎ1

 
2 (2.27) 

Os coeficientes de vazão obtidos por estas equações são introduzidos na equação 2.9 para 

calcular o caudal. Yen et al. (2001), para obterem a altura de água ℎ′2, considerando a quantidade 

de movimento total e o coeficiente de contração, estabeleceram a equação que segue: 

 ℎ′2
ℎ1

=
2  

1
𝜂
− 𝜆 

 
1
𝜂
 

2

− 1

+  

 
 
 
 2

 
1
𝜂
 

2

− 1

 
1

𝜂
− 𝜆 − 1

 
 
 
 

2

−  1 −  
1

𝜆
 

2

  
(2.28) 

A equação de fronteira apresentada por estes investigadores foi obtida teoricamente 

envolvendo a equação 2.6 da energia específica, a equação 2.2 do número de Froude, e a 

equação 2.4 das alturas conjugadas. Sendo  ℎ3𝑚𝑎𝑥
 (8) a máxima altura a jusante para o ressalto 

livre, a equação que define a fronteira com o ressalto hidráulico submerso é dada por: 

 ℎ3𝑚𝑎𝑥
= 𝐶𝑐𝑏 ×

1

2

 

 
 

 
1 +

16

𝐶𝑐𝑏
ℎ1

 1 +  
𝐶𝑐𝑏
ℎ1

  

− 1

 

 
 

 (2.29) 

A Figura 2.6 mostra a fronteira teórica obtida pela equação 2.29, separando o escoamento 

com ressalto livre do submerso. 

 
Figura 2.6 - Fronteira teórica obtida pela equação 2.29 (Yen et al., 2001). 

                                                           
(8)

 Por norma, na presente dissertação, o índice max significa máximo. 
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Nos ensaios realizados por estes investigadores, foi utilizada uma comporta plana vertical e 

uma comporta plana vertical alterada, com o batente adaptado, a simular uma comporta de 

segmento. Nos resultados obtidos, foi verificado que o coeficiente de contração na comporta 

plana vertical variou entre 0,59 e 0,61 e na comporta alterada, variou entre 0,65 e 0,75. 

De acordo com Clemmens et al. (2003), em comportas de segmento, o 𝐶𝑐  é em grande 

parte influenciado pelo ângulo da lâmina da comporta com a horizontal. Neste tipo de comporta, 

a vazão vai ser maior que em comportas planas verticais, tendo capacidade para suportar alturas 

de água a jusante do ressalto, ℎ3, mais elevadas, mantendo o ressalto livre (Lin et al., 2002). 

Para o ressalto submerso, Yen et al. (2001) referem que a vazão diminui com o aumento da 

altura ℎ3, sendo que, para manter a mesma vazão, a altura ℎ1 ou a abertura da comporta terá de 

aumentar. 

 

2.3.2 Equações da energia-quantidade de movimento com fator de correção  

 

Investigações recentes baseadas no método E-M têm considerado as perdas de energia na 

comporta através de um fator de correção, 𝑘. Estas perdas podem ter várias origens, tais como a 

resistência ao escoamento oferecida pelas superfícies de fronteira, os vórtices na zona de 

recirculação a montante da comporta e a camada turbilhonar que se forma sobre a veia líquida no 

ressalto hidráulico submerso. 

 

2.3.2.1 Equações de Belaud, Cassan e Baume 

 

Belaud et al. (2009) estudaram o coeficiente de contração para as duas situações de 

ressalto, tendo por base o princípio E-M e considerando a pressão exercida na face de montante 

da comporta. Com a introdução do fator 𝑘  ≥ 1  na equação de igualdade entre a energia 

específica de montante e a de jusante da comporta é obtida a equação, 

 

 ℎ1 +
𝑄2

2𝑔𝐿2ℎ1
2 = ℎ′2  + 𝑘

𝑄2

2𝑔𝐿2ℎ2
2 (2.30) 

Em que, para a secção 2, se considera que a almofada de água sobre a veia líquida apenas 

influencia a pressão (sem componente cinética). 
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Para avaliar a variação do coeficiente de contração em cada situação de escoamento, foi 

considerada a abertura relativa da comporta, 𝑎, e a razão de submersão, 𝑠, obtidas com: 

 

 𝑎 = 𝑏/ℎ1 (2.31) 

 𝑠 = ℎ′2/ℎ1 (2.32) 

Na equação da razão de submersão é considerado ℎ′2 com ressalto submerso e ℎ2 com ressalto 

livre. 

Os autores concluíram que com ressalto livre e submerso associado a pequenas aberturas 

de comporta  𝑎 ≤ 0,5 , o 𝐶𝑐  se mantem perto de 0,61. Para grandes aberturas de comporta 

 𝑎 > 0,5  e  grande submersão a jusante desta, o coeficiente de contração vai aumentar. Esta 

situação gera grandes erros entre o caudal medido e o calculado, uma vez que a altura ℎ′2 é difícil 

de obter com precisão e porque o coeficiente de contração não se mantem constante. 

Belaud et al. (2009) determinaram o gráfico da Figura 2.7, de onde se pode obter o valor do 

coeficiente de contração em função de 𝑎 e de 𝑠. 

 

 

 

 

 

 

 

 

 

Figura 2.7 - Determinação do coeficiente de contração (Belaud et al. 2009). 

 

Na Figura 2.7, é identificada uma área intermédia que representa o escoamento 

parcialmente submerso. Esta área é atribuída ao escoamento que apresenta a veia líquida 

contraída submersa, mas não totalmente, ou seja, sem a almofada de água turbilhonar ter 

atingido a comporta. 
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Estes investigadores consideraram a seguinte equação:  

 𝑄 =
𝐶𝑐

 𝑘
𝑏𝐿 2𝑔 ℎ1 − ℎ′2   (2.33) 

Belaud et al. (2009), utilizando um fator 𝑘 =1.05, obtiveram uma boa sobreposição sobre 

as curvas do diagrama de Henry (1950). Consideram que ainda se têm de realizar ensaios para 

testar a precisão do método para grandes aberturas de comporta. 

 

2.3.2.2 Equações de Habibzadeh, Vatankah e Rajaratnam 

 

Habibzadeh et al. (2011) introduziram também um fator de correção, 𝑘, para as perdas de 

energia na comporta e deduziram teoricamente as equações para calcular o coeficiente de vazão 

nas situações de ressalto livre e submerso, a partir do método E-M. Através da análise de ensaios 

realizados, determinaram um fator de correção para o escoamento com ressalto livre e outro 

para o escoamento com ressalto submerso. Apresentaram também uma equação de fronteira, 

considerando as perdas de energia. 

A equação da igualdade das energias específicas, a montante e a jusante da comporta, 

tomou a seguinte forma: 

 ℎ1 +
𝑄2

2𝑔𝐿2ℎ1
2 = ℎ′2  + (𝑘 + 1)

𝑄2

2𝑔𝐿2ℎ2
2 (2.34) 

A partir da equação 2.34 (tomando ℎ′2  = ℎ2  ) é obtida a equação para calcular o 

coeficiente de vazão na situação de ressalto livre, 

 𝐶𝑣 = 𝐶𝑐 
 1 − 𝜂 

 1 + 𝑘 − 𝜂2 
 (2.35) 

Com ressalto submerso, a equação de cálculo do coeficiente de vazão é obtida a partir da 

equação 2.34 e da equação 2.3 da quantidade de movimento total, obtendo-se, 

 
𝐶𝑣 = 𝐶𝑐 .

  𝑘 
1

𝜂
 

2
+ 

1

𝜂
−1 

2
+2 𝜆−1  −  𝑘 

1

𝜂
 

2
+ 

1

𝜂
−1 

2
+2 𝜆−1  

2

−  
1

𝜂
 

2
 1+𝑘 −1 

2

 1−
1

𝜆2 

1

𝜂
 1+𝑘 −𝜂

. 
(2.36) 

Em que 𝐶𝑐 = 0,611. 
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Da análise realizada às perdas de energia na comporta, estes investigadores estabeleceram 

os valores 0,062 e 0,088 para 𝑘, respetivamente, para ressalto livre e submerso. O facto de as 

perdas de energia na comporta serem superiores para ressalto submerso deve-se à turbulência 

sobre a veia líquida contraída. 

A equação de fronteira é definida por ℎ3𝑚𝑎𝑥
. Considerando a equação 2.4 das alturas 

conjugadas e a equação 2.35 do coeficiente de vazão para ressalto livre é obtida a equação que se 

segue: 

 
ℎ3𝑚𝑎𝑥

= 𝑏 ×
1

2
𝐶𝑐

 
 
 
 
 
 

1 +
16 

1
𝜂
− 1 

 1 + 𝑘 − 𝜂2 
− 1

 
 
 
 
 

 
(2.37) 

 

2.3.3 Equações de Ferro 

 

Com base no teorema dos 𝛱𝛱 da análise dimensional, Ferro (2000) deduziu um método 

para determinar a vazão em comportas planas verticais, com ressalto livre, tendo calibrado as 

suas variáveis adimensionais com resultados experimentais. Este estudo foi alargado ao ressalto 

submerso com Ansar (2001) e Ferro (2001). O método tem sido testado experimentalmente por 

alguns investigadores (Sepúlveda, 2008; Sepúlveda et al., 2009), concluindo que, se devidamente 

calibrado, possibilita resultados bastante precisos na obtenção do caudal para ambas as situações 

de ressalto hidráulico.  

Em Ferro (2000), Ansar (2001) e Ferro (2001), foram obtidas as equações que se seguem 

para determinar as constantes, 𝑘𝑖 , para ressalto livre e submerso: 

 ℎ𝑐

𝑏
= 𝑘0  

ℎ1

𝑏
 
𝑘1

   (2.38) 

 ℎ𝑐

𝑏
= 𝑘′0  

 ℎ1 − ℎ3

𝑏
 
𝑘′1

 (2.39) 

Em que 𝑘0 e 𝑘1 são constantes a calibrar para ressalto livre e 𝑘′0 e 𝑘′1 são constantes a calibrar 

para ressalto submerso. 

 

Estas constantes servem para calibrar as equações da vazão e são determinadas através de 

uma regressão linear dos resultados obtidos experimentalmente em vários ensaios, como se irá 

apresentar no capítulo seguinte sobre a instalação e metodologia experimentais. 
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As equações para o cálculo da vazão são obtidas substituindo a altura crítica das equações 

2.38 e 2.39 pela equação 2.26 e resolvendo em ordem a 𝑄 vindo, respetivamente, para as 

situações de ressalto livre e submerso, 

 𝑄 = 𝐿 𝑔  𝑏𝑘0  
ℎ1

𝑏
 
𝑘1

 

3

 (2.40) 

 𝑄 = 𝐿 𝑔  𝑏𝑘′0  
ℎ1 − ℎ3

𝑏
 
𝑘1
′

 

3

 (2.41) 

Os valores das constantes obtidas por Ferro (2000) e Ferro (2001) são apresentados na 

Tabela 2.1. 

 

Tabela 2.1 - Constantes obtidas por Ferro (2000 e 2001). 

Ferro (2000) Ferro (2001) 

𝑘0 𝑘1 𝑘′0 𝑘′1 

0,830 0,378 1,0559 0,3344 

 

Em Sepúlveda (2008) e Sepúlveda et al. (2009) foram testados diferentes métodos de 

cálculo para determinar a vazão para comportas planas verticais com ressalto hidráulico 

submerso. Concluíram que o método de Ferro (2001), tendo as constantes calibradas com os 

resultados experimentais, é o que apresenta maior precisão relativamente ao caudal medido nos 

ensaios realizados em canal, com erros na ordem dos 3%. Foram estudadas três comportas planas 

verticais instaladas ao longo do canal experimental e os valores obtidos para as constantes de 

cada comporta são apresentados na Tabela 2.2. 

 

Tabela 2.2 - Constantes obtidas por Sepúlveda (2008). 

 

Escoamento com ressalto submerso 

 𝑘′0 𝑘′1 

Comporta 1 0,9176 0,3489 

Comporta 2 0,9482 0,3202 

Comporta 3 1,0097 0,3154 
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3 Instalação e Metodologia Experimentais 

3.1 Laboratório e instrumentação 

 
O programa experimental foi realizado no canal do Laboratório de Hidráulica da 

Universidade de Évora, apresentado na Figura 3.1. Este canal tem secção retangular e declive 

variável, tendo sido mantida a inclinação nula. O canal foi equipado com uma comporta plana 

vertical e com um descarregador triangular de soleira delgada.  

 

Figura 3.1 - Canal experimental do Laboratório de Hidráulica da Universidade de Évora. 

 

3.1.1 Canal 

 

O canal experimental funciona em circuito fechado. A água é bombada do reservatório para 

o canal, descarregando esta num tabuleiro, onde se encontra o descarregador triangular que, por 

sua vez, devolve a água ao reservatório. 

A bomba é alimentada por energia elétrica e tem uma válvula manual, que permite regular 

o caudal a elevar. A capacidade do reservatório é de 3 𝑚 3 e o canal experimental tem uma largura 

de 0,3 𝑚, altura de 0,465 𝑚 e comprimento de 7,5 𝑚. O tabuleiro fica instalado sobre o 

reservatório e tem secção retangular com 0,6 𝑚 de largura e 0,3 𝑚 de altura. A Figura 3.2 mostra 

o esquema do canal e acessórios utilizados. 
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3.1.2 Comporta plana vertical 

 

A comporta é do tipo plana vertical e foi instalada sensivelmente a meio do canal. Assim, o 

escoamento a montante alcança a comporta com pequenas perturbações e, a jusante, o ressalto 

hidráulico tem espaço para se desenvolver dentro do canal. A comporta tem a mesma largura do 

canal (sem contração lateral), 0,3 𝑚 e é feita de aço, tendo uma placa amovível que se 

movimenta por manivela associada a um eixo vertical, permitindo regular a abertura desejável. 

Na Figura 3.3 é apresentada a comporta usada. 

 

Figura 3.3 - Comporta plana vertical utilizada nos ensaios laboratoriais. 

 

3.1.2.1 Limites de aplicação da comporta 

 
Em Bos (1989) são referidos os requisitos que a instalação de comportas planas verticais em 

canais retangulares deve assegurar, para permitir resultados precisos na determinação do caudal. 

A comporta utilizada respeitou as dimensões do batente, apresentas na Figura 3.4. 

 

Figura 3.4 - Batente da comporta plana vertical (Bos, 1989). 
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A comporta utilizada nos ensaios laboratoriais respeitou também as condições seguintes: 

 A face de montante ficou instalada exatamente vertical; 

 O batente da comporta foi mantido horizontal; 

 Os lados do orifício, neste caso as paredes do canal, são verticais. 

 

3.1.3 Comporta descarregadora plana inclinada 

 

A comporta descarregadora plana inclinada está instalada na secção de jusante do canal, 

permitindo regular o nível de água a jusante da comporta plana vertical, possibilitando diferentes 

graus de submersão para o ressalto hidráulico. Esta comporta é movimentada por ação de uma 

manivela. 

 

3.1.4 Descarregador triangular de soleira delgada 

 
Para medir o caudal dos ensaios realizados foi utilizado o descarregador triangular de 

soleira delgada que se observa na Figura 3.5.  

Os descarregadores são estruturas que têm a função de controlar o escoamento e medir os 

caudais. Para caudais inferiores a 30 l/s, é aconselhada a utilização do descarregador triangular, 

pois apresenta maior precisão (Lencastre, 1983). Considera-se que o descarregador tem soleira 

delgada quando esta apresenta uma espessura reduzida, na ordem de 1 ou 2 milímetros 

(Lencastre, 1983).  

 

Figura 3.5 - Descarregador triangular utilizado nos ensaios laboratoriais. 
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Na Figura 3.6 faz-se a representação esquemática de um descarregador triangular de 

soleira delgada, com a identificação das variáveis a considerar no cálculo do caudal. 

 

Figura 3.6 - Esquema do descarregador triangular de soleira delgada (Henriques et al., 2007). 

 
As variáveis representadas na Figura 3.6 são: ℎ𝑣  – altura de água sobre o vértice do 

descarregador (𝑚 ); 𝐿ℎ  – distância de medição de ℎ𝑣  (𝑚 ); 𝐵  – largura do tabuleiro do 

descarregador (𝑚); ∅ – ângulo do descarregador triangular (graus); 𝑑 – altura desde o rasto do 

tabuleiro ao vértice do descarregador (𝑚); 𝑐 – altura entre a água a jusante do descarregador e o 

vértice deste (𝑚). 

O caudal medido neste tipo de descarregador é obtido através da equação de Kindsvater-

Shen (Henriques et al., 2007; USBR, 2001) que segue: 

 

 𝑄 = 𝐶𝑣

8

15
 2𝑔 𝑡𝑎𝑛  

∅

2
  ℎ𝑣 + 𝑘ℎ 

5/2 (3.1) 

Em que 𝑘ℎ  é o fator de correção da energia específica no descarregador (𝑚). 

 

O coeficiente de vazão é obtido em função de ℎ𝑣/d, d/B e ∅. Para o ângulo de 90o, o 

coeficiente de vazão é determinado pelo diagrama apresentado na Figura 3.7. 
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Figura 3.7 - Diagrama do coeficiente de vazão para o descarregador triangular (Henriques et al., 2007). 

 

Na equação 3.1 considera-se 𝑘ℎ = 0,00085 𝑚  (Henriques et al., 2007). Este fator é 

utilizado para reduzir o erro que resulte de se tomar a carga a montante do descarregador por ℎ𝑣. 

 

3.1.4.1 Limites de aplicação do descarregador 

 
Apresentam-se os requisitos necessários para o descarregador triangular de soleira delgada 

possibilitar leituras precisas da altura de água a montante, de acordo com Bos (1989). O 

descarregador utilizado nos ensaios laboratoriais apresenta-se dentro das dimensões mostradas 

na Figura 3.8. 

 

Figura 3.8 - Dimensões da crista do descarregador triangular de soleira delgada (Bos, 1989). 

 



28 
 

Garantiu-se que o ângulo do descarregador triangular tinha o seu eixo de simetria com a 

vertical e ficava equidistante de ambos os lados do tabuleiro. De acordo com Bos (1989), o 

descarregador utilizado no trabalho laboratorial corresponde ao tipo parcialmente contraído. 

Nesta situação, as contrações dos lados do descarregador não são totalmente desenvolvidas, 

devido à proximidade das paredes do tabuleiro ou do rasto. Para o tipo parcialmente contraído 

deve ser usado o ângulo, ∅ = 90° e respeitarem-se as condições: 

 ℎ𝑣/𝑑 ≤ 1,2; 

 ℎ𝑣/𝐵 ≤ 0,4 ; 

 0,05 < ℎ𝑣 ≤ 0,6 𝑚; 

 Distância do vértice ao rasto, 𝑑 ≥ 0,1 𝑚; 

 Largura do tabuleiro, 𝐵 ≥ 0,6 𝑚; 

 O nível de água a jusante do descarregador deve ser inferior à altura do vértice. 

A Tabela 3.1 apresenta os valores registados no descarregador triangular necessários para 

comprovar os requisitos anteriores. 

Tabela 3.1 - Medias registadas no descarregador triangular. 

Descarregador triangular com ∅ = 90° 

ℎ𝑣  máximo registado 0,149 (𝑚) 

ℎ𝑣  mínimo registado 0,103 (𝑚) 

𝑑 0,126 (𝑚) 

𝐵 0,6 (𝑚) 

 

Da Tabela 3.1, pode concluir-se que as medidas registadas estão de acordo com o critério 

estabelecido em Bos (1989). A jusante do descarregador, o nível de água foi sempre inferior ao 

seu vértice em todos os ensaios realizados. 

 

3.1.5 Instrumentos de medição 

 

As medições foram efetuadas com um hidrómetro de ponta fina, com precisão de 0,1 𝑚𝑚. 

Para as leituras das alturas de água no canal, o hidrómetro foi posicionado sobre os carris que 

percorrem a parte superior daquele. No descarregador triangular, o hidrómetro foi apoiado sobre 

uma armação metálica para permitir efetuar a leitura da altura de água. Todas as medições foram 
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efetuadas no eixo central do escoamento. Apresenta-se na Figura 3.9 um exemplo de medição 

realizada nos ensaios, relativa ao registo da altura de água a montante da comporta. 

 

Figura 3.9 – Medição de altura de água com hidrómetro. 

 

3.2 Adaptações nos equipamentos 

 

Os equipamentos utilizados no canal experimental tiveram algumas alterações para 

melhorar a sua funcionalidade.  

O sistema de fixação original da comporta plana vertical é feito com base nuns calces, 

apertados às barras superiores do canal. No entanto, esta comporta teve de ser reforçada com 

um sistema de barras em madeira, tal como se apresenta na Figura 3.10. Assim, conseguiu-se 

manter esta estrutura na vertical, uma vez que, com o aumento do caudal a comporta tinha 

tendência a deslocar-se para a frente, devido à impulsão da água a montante. 

 

Figura 3.10 - Sistema de reforço aplicado na comporta. 
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Esta solução de reforço mostrou-se eficaz, mantendo a comporta estabilizada para todos os 

ensaios realizados, diminuindo o erro provocado nas alturas de água a registar. 

No local onde a água proveniente do canal descarrega no tabuleiro é comum haver muita 

turbulência. Para caudais elevados, esta agitação origina algumas perdas de água por galgamento. 

Deste modo, optou-se por colocar uma rede sintética dobrada em várias camadas, para estabilizar 

o escoamento naquele local, diminuindo as perdas de água. A Figura 3.11 apresenta a solução 

usada, acompanhada de uns tijolos que têm a mesma função de estabilização do escoamento. 

 

Figura 3.11 - Rede de estabilização do escoamento na descarga para o tabuleiro. 

 

O descarregador triangular, que fica instalado no tabuleiro onde descarrega a água 

proveniente do canal, apresentava pouca estanquicidade em todo o perímetro de contacto com o 

tabuleiro. De forma a eliminar as fugas de água nesta zona de contacto, optou-se por inicialmente 

isolar todo este limite com silicone para juntas e após a sua secagem procedeu-se ao reforço com 

fita isoladora impermeável, própria para locais em permanência com água. Com esta intervenção 

é garantida maior precisão na medição do caudal. A Figura 3.12 apresenta a solução utilizada. 

 

Figura 3.12 - Isolamento nas juntas de contacto do descarregador com o tabuleiro. 
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3.3 Procedimento experimental 

3.3.1 Medição das alturas de água 

  

A Figura 3.13 representa os dois tipos de ressalto hidráulico, onde estão identificadas as 

alturas de água a registar no canal laboratorial. 

 

Figura 3.13 - Alturas de água a registar em canal para ressalto livre e submerso (Lin et al., 2002). 

 

Em cada ensaio, procedeu-se à obtenção das alturas de água em quatro locais distintos. As 

primeiras três leituras no canal principal – ℎ1, ℎ2 ou ℎ′2 e ℎ3. A última leitura foi obtida no 

tabuleiro de descarga, onde se encontra o descarregador triangular – ℎ𝑣  . 

De forma a obter maior rigor nos resultados, foram realizadas 3 leituras em cada local por 

ensaio, para depois comparar as leituras e descartar algum valor inesperado. Das leituras 

consideradas em cada ensaio, foi determinado o seu valor médio. Considerou-se um tempo de 

estabilização do escoamento entre leituras num mesmo local de 10 minutos, que correspondia 

em média ao tempo que demorava a registar os 4 pontos no escoamento. As leituras em cada 

local foram registadas da seguinte forma: 

 ℎ1 – registada imediatamente a montante da comporta; 

 ℎ2 – registada a altura mínima na veia líquida contraída (Lin et al., 2002); 

 ℎ′2  – registada imediatamente a jusante da comporta; 

 ℎ3  – registada a jusante do ressalto, onde o escoamento apresenta menor 

turbulência; 

 ℎ𝑣  – registada à distância 𝐿ℎ . (Henriques et al., 2007; Bos 1989).  

 

No caso das alturas ℎ1, ℎ2 e ℎ𝑣, a leitura é fácil, uma vez que o escoamento apresenta a 

superfície relativamente estável. Já para a obtenção de ℎ′2, a superfície fica muito agitada, 

dificultando a leitura precisa. A altura ℎ3, dependendo da intensidade do ressalto, pode também 

apresentar forte turbulência no local da medição.  



32 
 

3.3.2 Ensaios realizados 

 
Os ensaios realizados no canal experimental foram considerados tendo por base o 

diagrama de Henry (1950). Sobre a área do diagrama foram distribuídos vários pontos para avaliar 

situações de escoamento diversificadas, tendo como referência os resultados obtidos por Henry 

(1950). No total foram realizados 23 ensaios, considerando quatro aberturas de comporta, para 

ressalto livre e submerso. 

A Tabela 3.2 apresenta os resultados obtidos dos ensaios laboratoriais e o caudal calculado 

através do descarregador triangular.  

   

Tabela 3.2 - Resultados obtidos dos ensaios laboratoriais. 

N 

Comporta plana vertical Descarregador triangular 

𝑏 ℎ1  ℎ2 ℎ′2  ℎ3 ℎ1/𝑏 ℎ3/𝑏 ℎ𝑣  ℎ𝑣/𝑑 𝐶𝑣  𝑄 

(𝑚) (𝑚) (𝑚) (𝑚) (𝑚) - - (𝑚) - - (𝑚3/𝑠) 

 Ensaios com ressalto livre 

1 0,035 0,0550 0,0217 - 0,0445 1,57 1,27 0,112 0,89 0,580 0,0058 

2 0,035 0,0805 0,0204 - 0,0604 2,30 1,73 0,121 0,96 0,581 0,0071 

3 0,04 0,0694 0,0255 - 0,0608 1,74 1,52 0,122 0,97 0,581 0,0073 

4 0,04 0,0806 0,0248 - 0,0673 2,02 1,68 0,129 1,03 0,582 0,0084 

5 0,04 0,0894 0,0224 - 0,0702 2,24 1,75 0,129 1,03 0,582 0,0084 

6 0,04 0,0995 0,0244 - 0,0742 2,49 1,86 0,136 1,08 0,582 0,0095 

7 0,03 0,2000 0,0180 - 0,0995 6,67 3,32 0,141 1,12 0,583 0,0105 

8 0,035 0,1795 0,0200 - 0,1021 5,13 2,92 0,145 1,15 0,584 0,0112 

9 0,025 0,3003 0,0152 - 0,1226 12,01 4,91 0,148 1,17 0,584 0,0117 

10 0,04 0,1499 0,0326 - 0,1015 3,75 2,54 0,148 1,17 0,584 0,0117 

11 0,04 0,1492 0,0241 - 0,0950 3,73 2,38 0,149 1,18 0,584 0,0119 

 Ensaios com ressalto submerso 

1 0,04 0,1514 - 0,1276 0,1398 3,79 3,50 0,103 0,82 0,579 0,0047 

2 0,04 0,0998 - 0,0734 0,0905 2,49 2,26 0,110 0,87 0,580 0,0056 

3 0,035 0,2806 - 0,2386 0,2500 8,02 7,14 0,112 0,89 0,580 0,0059 

4 0,035 0,1806 - 0,1304 0,1494 5,16 4,27 0,115 0,91 0,580 0,0063 

5 0,04 0,0813 - 0,0457 0,0700 2,03 1,75 0,116 0,92 0,580 0,0064 

6 0,03 0,2994 - 0,2229 0,2399 9,98 8,00 0,123 0,97 0,581 0,0074 

7 0,025 0,3007 - 0,1735 0,1997 12,03 7,99 0,125 1,00 0,581 0,0078 

8 0,035 0,1804 - 0,0767 0,1192 5,15 3,41 0,133 1,05 0,582 0,0090 

9 0,035 0,2802 - 0,1433 0,1812 8,01 5,18 0,141 1,12 0,583 0,0105 

10 0,03 0,3005 - 0,1388 0,1814 10,02 6,05 0,141 1,12 0,583 0,0105 

11 0,025 0,3999 - 0,1497 0,2008 16,00 8,03 0,143 1,14 0,583 0,0109 

12 0,025 0,3506 - 0,0751 0,1510 14,02 6,04 0,146 1,16 0,584 0,0114 
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Os ensaios apresentados na Tabela 3.2 foram organizados por ordem crescente de caudal e 

por situação de ressalto. A partir dos resultados registados para cada ensaio, foi realizada a 

sobreposição no diagrama de Henry (1950), tal como se apresenta na Figura 3.14, em função de 

ℎ1/𝑏 e ℎ3/𝑏. 

 

Figura 3.14 - Representação dos ensaios obtidos sobre o diagrama de Henry (1950). 

 

Esta sobreposição permite comparar os valores dos coeficientes de vazão obtidos 

experimentalmente com aqueles determinados por Henry (1950). 

 

3.4 Tratamento de dados 

3.4.1 Precisão das medições  

 

Os dados recolhidos experimentalmente são sempre uma aproximação do verdadeiro valor 

a registar, podendo ser ligeiramente superiores ou inferiores (Bos, 1989). Neste sentido, as 

medições efetuadas vão ter um erro associado. Os erros podem ser de três tipos, os grosseiros, os 

aleatórios e os sistemáticos. 

Os erros grosseiros podem ser facilmente identificados, uma vez que destoam dos 

restantes valores medidos e, por isso, devem ser retirados de uma análise estatística. A sua 
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ocorrência pode ser originada por erros de leitura ou mau funcionamento dos equipamentos de 

medição.  

Os erros aleatórios são originados ocasionalmente por leituras de difícil precisão ou devido 

às ondulações na superfície do escoamento. O erro médio aleatório deverá diminuir com o 

aumento do número de medições.  

Os erros sistemáticos ocorrem devido a um instrumento de medição não calibrado ou se 

existe a tendência de anotar sempre os valores medidos por excesso ou por defeito. Logo, assim 

que haja evidência de que este tipo de erro ocorre, o erro médio deverá ser considerado para 

validar as medições realizadas. 

É fundamental para a precisão das medições efetuadas que a instalação dos equipamentos 

esteja feita de forma adequada, que exista boa calibração dos instrumentos de medição e fazer 

boa análise dos resultados, mantendo a inspeção frequente dos equipamentos tendo em atenção 

cada procedimento (USBR, 2001). 

Os resultados gerados pelas equações de cálculo para um determinado caudal têm de ser 

comparados com o caudal medido, para se poder saber o erro que está associado a cada 

formulação e, desta forma, encontrar aquela que melhor se adequa aos ensaios realizados. A 

equação para determinar o erro relativo obtido é dada por: 

 𝑒 =
𝑄𝑐𝑎𝑙 − 𝑄𝑚𝑒𝑑

𝑄𝑚𝑒𝑑
× 100 (3.2) 

Em que 𝑒 é o erro relativo (%), 𝑄𝑐𝑎𝑙  é o caudal calculado (𝑚3/𝑠) e 𝑄𝑚𝑒𝑑  é o caudal medido pelo 

descarregador triangular (𝑚3/𝑠). 

 

O erro percentual absoluto médio originado por cada método de cálculo utilizado pode ser 

obtido pela equação seguinte: 

 𝑒𝑎𝑚 =
100

𝑁
  

𝑄𝑐𝑎𝑙 − 𝑄𝑚𝑒𝑑

𝑄𝑚𝑒𝑑
 

𝑁

𝑖=1

 (3.3) 

Em que 𝑒𝑎𝑚  é o erro percentual absoluto médio (%) e 𝑁 o número de ensaios realizados. 

 

3.4.2 Calibração do método de Ferro 

 

As equações de Ferro requerem calibração prévia das suas constantes para puderem ser 

utilizadas com maior precisão nos cálculos. Em Sepúlveda (2008), é referido que a calibração 

deste método pode ser efetuada através de uma regressão linear utilizando o método dos 
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mínimos quadrados. No entanto, Sepúlveda (2008) reconhece que, utilizar o método Least 

Absolute Deviations (LAD) resulta em menores erros, permitindo obter uma regressão mais 

aproximada de valores teóricos. 

Consideraram-se os métodos anteriormente referidos para o cálculo das constantes dos 

resultados obtidos experimentalmente. Para tal, foi utilizada uma folha de cálculo Microsoft Excel 

onde se organizaram os resultados das variáveis obtidas experimentalmente, por ordem 

crescente, tal como se apresenta nas Tabelas 3.3 e 3.4 para cada situação de escoamento. 

 

Tabela 3.3 - Dados para calibração de Ferro com ressalto livre. 

ℎ𝑐/𝑏 ℎ1/𝑏 

0,97 1,57 
0,98 1,74 
1,08 2,02 
1,08 2,24 
1,10 2,30 
1,17 2,49 
1,35 3,75 
1,36 3,73 
1,49 5,13 
1,66 6,67 
2,15 12,01 

 

Tabela 3.4 - Dados para calibração de Ferro com ressalto submerso. 

ℎ𝑐/𝑏  ℎ1 − ℎ3 𝑏  

0,73 0,29 
0,82 0,23 
0,90 0,28 
0,97 0,88 
1,01 0,89 
1,29 1,75 
1,31 1,98 
1,43 2,83 
1,64 4,04 
1,67 3,97 
2,04 7,96 
2,11 7,98 

 

A calibração é realizada graficamente calculando as linhas de tendência dos resultados 

experimentais apresentados nas Tabelas 3.3 e 3.4. Foram determinadas quatro linhas de 

tendência, considerando duas formas de cálculo para o método dos mínimos quadrados, o cálculo 

do método LAD e as constantes padrão de Ferro. Para o método dos mínimos quadrados, 
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recorreu-se a uma linha de tendência potencial gerada automaticamente pelo gráfico de 

dispersão do Microsoft Excel, obtendo as constantes pela equação desta linha, e a outra forma de 

cálculo para o método dos mínimos quadrados e do método LAD foi através da opção Solver do 

Microsoft Excel, permitindo obter as constantes para a calibração do método de Ferro. 

As linhas de tendência obtidas para a calibração do método de Ferro para escoamento com 

ressalto livre estão representadas na Figura 3.15 e os valores das constantes gerados por estas 

linhas são dados na Tabela 3.5. 

 

Figura 3.15 - Linhas de tendência para calibrar o método de Ferro para ressalto livre. 

 

Tabela 3.5 - Constantes para a calibração do método de Ferro para ressalto livre. 

Métodos de Cálculo 
Ressalto livre  

𝑘0 𝑘1 

LAD 0,7904 0,4027 

Min. Quadrados Solver 0,7976 0,3952 

Constantes de Ferro 0,83 0,378 

Min. Quad. Eq. Potencial 0,8011 0,3918 
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Para escoamento com ressalto submerso, as linhas de tendência obtidas graficamente para 

calibrar o método de Ferro estão apresentadas na Figura 3.16. A Tabela 3.6 faz o resumo das 

constantes fornecidas pelas linhas de tendência. 

 

Figura 3.16 - Linhas de tendência para calibrar o método de Ferro para ressalto submerso. 

 

Tabela 3.6 - Constantes para a calibração do método de Ferro para ressalto submerso. 

Métodos de Cálculo 
Ressalto submerso  

𝑘′0 𝑘′1 

LAD 1,0732 0,3105 

Min. Quadrados Solver 1,1025 0,2942 

Constantes de Ferro 1,0559 0,3344 

Min. Quad. Eq. Potencial 1,1196 0,2730 
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4 Análise de Resultados 

 

No presente capítulo, são apresentados e discutidos os resultados obtidos por cada método 

de cálculo descrito anteriormente. Os diferentes métodos de cálculo considerados foram 

distribuídos por três grupos, para se compararem os valores de caudal calculados com os 

resultados obtidos no descarregador triangular. O grupo I engloba os métodos com base nas 

equações da energia-quantidade de movimento. No grupo II, são apresentados os resultados das 

equações E-M com fator de correção, e, o grupo III é referente aos cálculos realizados com as 

equações de Ferro. 

As equações de fronteira são também comparadas entre si, para determinar qual obtém 

com mais rigor a situação de ressalto, no escoamento em comportas. 

  

4.1 Comparação entre caudais calculados e medidos 

4.1.1 Escoamento com ressalto hidráulico livre 

 

O gráfico representado na Figura 4.1 faz a comparação dos valores de caudal calculados 

pelas equações do grupo I com os valores de caudal medidos em cada ensaio realizado. 

 

Figura 4.1 - Comparação das equações do grupo I com o caudal medido na situação de ressalto livre. 
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Pela análise da Figura 4.1, é possível observar que, no geral, os valores de vazão calculados 

estão próximos dos valores medidos no descarregador triangular. Nota-se a tendência para os 

valores calculados serem inferiores aos medidos, à exceção do cálculo de Bos (1989). 

No ensaio número 9, a maioria dos métodos de cálculo apresentam resultados mais 

afastados do valor medido que nos restantes ensaios realizados. Da análise dos resultados 

experimentais da Tabela 3.2, conclui-se que este ensaio é o que tem a maior relação ℎ1/𝑏, 

podendo ser esta a origem da discrepância de valores. 

Os métodos que forneceram resultados mais afastados dos valores medidos foram o 

diagrama de Henry (1950), o Swamee (1992) apud Sepúlveda et al. (2009) e o Henderson (1966) 

com o coeficiente de contração calculado por ensaio. Este último método não é dado nas 

equações de Henderson (1966), uma vez que consideram 𝐶𝑐 = 0,61. Tomou-se este critério para 

perceber como o cálculo de 𝐶𝑐 , tendo em conta a relação ℎ2/𝑏, podia influenciar os resultados. 

Conclui-se que o valor de 𝐶𝑐  constante dá origem a resultados mais precisos no cálculo da vazão. 

O diagrama de Henry (1950) é mais suscetível de originar erros de cálculo, uma vez que os 

valores do coeficiente da vazão são obtidos graficamente, o que pode originar erros na leitura do 

valor e, o método de Swamee (1992) apud Sepúlveda et al. (2009) sendo baseado neste diagrama, 

também seria de esperar que a precisão fosse inferior à de outros métodos de cálculo. 

Na Figura 4.2, são apresentados os resultados das equações do grupo II comparados com o 

caudal medido. 

 

Figura 4.2 - Comparação das equações do grupo II com o caudal medido na situação de ressalto livre. 
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Neste grupo, foram comparadas as equações que consideram o fator de correção k na sua 

formulação. Em ambos os métodos aplicados, os resultados da vazão foram bastante próximos 

dos medidos no descarregador triangular. Curiosamente, os valores calculados a partir de Belaud 

et al. (2009) foram muito precisos, apesar de os valores do coeficiente de contração serem 

obtidos graficamente. 

As equações do grupo III, baseadas no método de Ferro, têm os seus resultados 

apresentados na Figura 4.3. 

 

Figura 4.3 - Comparação das equações do grupo III com o caudal medido na situação de ressalto livre. 

 
Os valores obtidos pelas equações do grupo III foram os mais aproximados dos resultados 

de vazão medidos. Pelo gráfico da Figura 4.3, pode identificar-se que os valores com a calibração 

de Ferro (2000) estão ligeiramente mais afastados dos resultados medidos, o que se justifica dado 

que estas constantes foram calibradas com diferentes resultados. Já os restantes métodos de 

calibração apresentam resultados bastante próximos.  

Nos primeiros dois grupos de equações estudados é observado, no ensaio número 9, um 

maior afastamento entre a vazão calculada pelos diferentes métodos e a vazão medida. No 

entanto, com as equações de Ferro, os valores calculados foram muito precisos para este ensaio. 

Conforme já assinalado, este ensaio tem a maior relação ℎ1/𝑏, e na determinação das curvas de 

tendência da Figura 3.14, estando este valor isolado no final das curvas, percebe-se que pode ser 

esta a causa da precisão obtida neste valor. Esta situação seria melhor compreendida, havendo 

disponíveis mais resultados próximos desta relação ℎ1/𝑏. 
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4.1.2 Escoamento com ressalto hidráulico submerso 

 

Nesta secção, são comparados os valores de vazão calculados para o escoamento com 

ressalto submerso, com os caudais medidos no descarregador triangular em cada ensaio. Na 

Figura 4.4, apresentam-se os caudais calculados com as equações do grupo I comparadas com os 

valores de caudal medidos. 

 

Figura 4.4 - Comparação das equações do grupo I com o caudal medido na situação de ressalto submerso. 

 
Os cálculos realizados com ressalto submerso pelos vários métodos baseados nas equações 

da energia-quantidade de movimento, à semelhança dos cálculos efetuados com ressalto livre, 

apresentaram por norma, valores de cálculo inferiores aos medidos experimentalmente. O 

método de Bos (1989) continua a gerar valores ligeiramente superiores aos medidos.  

Os resultados obtidos pelos vários métodos de cálculo apresentam-se mais afastados dos 

resultados medidos no descarregador, quando comparados aos gráficos anteriores para ressalto 

livre, prevalecendo a menor precisão nos métodos do diagrama de Henry (1950) e de Swamee 

(1992) apud Sepúlveda et al. (2009). O coeficiente de vazão gerado pela equação 2.11 de Henry 

(1950) proporciona grande precisão no cálculo do caudal, bem como as formulações de Bos 

(1989) e Yen et al. (2001). 

Na Figura 4.5 são apresentados os resultados das equações do grupo II para o ressalto 

submerso. 
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Figura 4.5 - Comparação das equações do grupo II com o caudal medido na situação de ressalto 
submerso. 

 

As equações do grupo II, que consideram um fator de correção na sua formulação, 

demonstram que o método de Belaud et al. (2009) tem resultados muito próximos dos medidos 

(Figura 4.5). O método de Habibzadeh et al. (2011) já apresenta valores um pouco afastados 

daqueles medidos no descarregador triangular. 

Na Figura 4.6, são mostrados os resultados dados pelas equações do grupo III.  

 

Figura 4.6 - Comparação das equações do grupo III com o caudal medido na situação de ressalto 
submerso. 
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De entre as formas de calibração consideradas que se apresentam na Figura 4.6, o LAD é o 

que apresenta valores mais precisos. Já as equações calibradas com as constantes de Ferro (2001) 

e com a comporta nº 3 de Sepúlveda (2008) são as menos precisas. Na Figura 4.6 observa-se que, 

nos ensaios 2 e 5, as equações obtiveram valores mais afastados dos medidos no descarregador. 

Esta situação é discutida seguidamente na análise dos erros obtidos por cada método de cálculo. 

 

4.2 Erro gerado pelos métodos de cálculo 

4.2.1 Erro percentual absoluto médio  

 
Aplicando a equação 3.3, fez-se a comparação do erro percentual absoluto médio para cada 

método de cálculo. Na Figura 4.7, são apresentados os resultados obtidos para ressalto livre e 

submerso. 

 

Figura 4.7 - Erro percentual absoluto médio para os diferentes métodos de cálculo nas situações de 
ressalto livre e submerso. 

 

Da análise da Figura 4.7, avaliando as várias formulações de cálculo é obtido um erro médio 

geral de 4% para escoamento com ressalto livre e um erro médio geral de 9% para o escoamento 

com ressalto submerso. A diferença de precisão entre os dois tipos de ressalto é evidente, 

revelando que a determinação da vazão com ressalto livre é a mais precisa, o que está de acordo 

com Sepúlveda et al. (2009) e Clemmens et al. (2003). É referido em Clemmens et al. (2003) que, 
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para comportas de segmento, os erros de medição do caudal com ressalto livre rondam os 5%, já 

com ressalto submerso os erros podem ir até aos 50%. 

Enquanto os erros percentuais absolutos médios gerados com ressalto livre variam menos 

de método para método, os erros percentuais absolutos médios obtidos pelas equações com 

ressalto submerso variam muito mais, havendo uma maior dispersão em torno da média.  

Os resultados apresentados na Figura 4.7 vão ser analisados nos três grupos considerados 

anteriormente, de forma a facilitar a leitura dos resultados obtidos. 

 

4.2.1.1 Análise de resultados das equações do grupo I 

 

Pela análise dos resultados com base no diagrama de Henry (1950), o erro percentual 

absoluto médio para ressalto submerso de 13% é justificado devido à dificuldade em conseguir 

precisar o valor do coeficiente de vazão porque, como já referido, pequenas variações neste 

coeficiente originam grande diferença na vazão calculada. Com o ressalto livre, o erro percentual 

absoluto médio do diagrama de Henry é de cerca de 6%. 

Aplicando a equação 2.11 de Henry (1950), os resultados obtidos foram bastante próximos 

dos medidos no descarregador triangular. Como esta equação originalmente utiliza o coeficiente 

de contração igual a 0,60, experimentou-se utilizar a mesma equação com o 𝐶𝑐 = 0,61, valor 

considerado por vários investigadores, para avaliar o seu desempenho. Concluiu-se que com este 

último coeficiente de contração, a equação 2.11 proporciona resultados ainda mais precisos.  

A equação 2.12 de Henry não foi considerada, uma vez que apenas apresentou valores 

próximos dos medidos para elevados graus de submersão do ressalto. 

As equações de Henderson (1966) para o escoamento com ressalto livre forneceram 

resultados muito precisos, já para escoamento com ressalto submerso, o erro percentual absoluto 

médio obtido foi superior à média dos métodos considerados. Conforme anteriormente 

comentado, considerou-se o cálculo de 𝐶𝑐  em cada ensaio com ressalto livre, com a formulação 

de Henderson (1966), mostrando os resultados que o erro gerado é superior aquele que se obtém 

considerando este coeficiente com valor constante. 

As equações de Rajaratnam e Subramanya (1967) apud Sepúlveda et al. (2009), à 

semelhança de Henderson (1966), dão resultados com baixo erro para ressalto livre, mas, para 

ressalto submerso, o erro é superior à média. 

As equações de Bos (1989) deram resultados muito próximos dos medidos, para ambas as 

situações de escoamento, com erro percentual absoluto médio inferior a 5%. 
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Os resultados fornecidos pelas equações de Swamee (1992) apud Sepúlveda et al. (2009) 

foram os que originaram maior erro percentual absoluto médio, tanto para escoamento com 

ressalto livre como para ressalto submerso. Esta situação já tinha sido comentada, porque este 

método é baseado no diagrama de Henry (1950) que, por si só, já origina um erro maior que a 

média dos cálculos considerados. A pouca precisão obtida pelas fórmulas de Swamee (1992) apud 

Sepúlveda et al. (2009) foi também referida em Sepulveda et al. (2009), Belaud et al. (2009) e 

Habibzadeh et al. (2011). 

No método de cálculo de vazão proposto por Yen et al. (2001), para ressalto livre o erro 

percentual absoluto médio é pequeno, na ordem dos 3%. No cálculo da vazão para ressalto 

submerso foi considerado o método sugerido por estes investigadores, que considera a equação 

(2.28) para o cálculo da altura submersa, ℎ′2, e optou-se também por introduzir a altura submersa 

medida nos ensaios, para assim comparar os resultados obtidos. Desta forma, concluiu-se que o 

método original forneceu erros bastante mais elevados, que quando se introduz a altura 

submersa medida em cada ensaio. A equação (2.28) deu um erro percentual absoluto médio de 

10,6% em comparação com o valor medido de ℎ′2. 

 

4.2.1.2 Análise de resultados das equações do grupo II 

 

Os resultados do método de Belaud et al. (2009) são muito precisos em ambas as situações 

de ressalto, com um erro percentual absoluto médio de cerca de 4%. A equação (2.33) para 

calcular o caudal, proposta por estes investigadores, considera um fator de correção k que tem de 

ser maior ou igual à unidade e serve para corrigir as perdas de energia na comporta, como 

anteriormente referido. No entanto, nos cálculos realizados na presente dissertação concluiu-se 

que, utilizando k=1, se conseguiam os resultados com maior precisão. Em canais protótipos, com 

caudais superiores aos estudados, este coeficiente poderá ser uma mais-valia para calibrar a 

equação da vazão, uma vez que as perdas de energia aí serão superiores às ocorridas em 

laboratório. 

As equações apresentadas em Habibzadeh et al. (2011) foram consideradas neste estudo 

para o cálculo da vazão, tendo dado bons resultados para ressalto livre. No entanto, para o 

ressalto submerso, o erro percentual absoluto médio foi elevado, cerca de 15%. Possivelmente, 

uma das causas do erro para ressalto submerso, está relacionado com o facto de este método 

considerar coeficientes de correção calibrados em diferentes condições laboratoriais. 
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4.2.1.3 Análise de resultados das equações do grupo III 

 

As equações baseadas no método de Ferro, calibradas com os resultados experimentais, 

proporcionaram valores muito próximos entre si. Mesmo utilizando as constantes padrão, o que 

se pode justificar devido a condições experimentais semelhantes, porque em Sepúlveda et al. 

(2009), é referido que as constantes padrão aumentaram muito o erro. Com ressalto livre, o erro 

percentual absoluto médio obtido pelas equações de Ferro foi o menor de todos os métodos, com 

erros próximos dos 2%. No entanto, para o ressalto submerso o erro percentual absoluto médio 

aumentou devido aos dois ensaios assinalados anteriormente. Dentre as formas de calibração 

consideradas, a que proporcionou valores mais precisos foi LAD. 

 Na revisão bibliográfica foram referidas as constantes obtidas em Sepúlveda (2008), para 

as três comportas estudadas. E estas foram testadas neste trabalho e o conjunto de constantes 

que gerou menor erro foi o da comporta 3. Estes dados são mostrados na comparação do caudal 

obtido com as equações de Ferro com o medido e não foram apresentados na Figura 4.7 porque 

Sepúlveda (2008) apenas fez o estudo para o escoamento com ressalto submerso e também 

porque os resultados obtidos foram menos precisos (erro percentual absoluto médio de 11%) que 

os das outras calibrações consideradas com o método de Ferro. 

Em Sepúlveda et al. (2009), é referido que cada comporta é única e, desta forma, as 

constantes para fazer a sua calibração são diferentes. Isto explica porque os resultados 

experimentais de Sepúlveda (2008), tendo três comportas iguais a funcionar nas mesmas 

condições, proporcionaram constantes de calibração diferentes. 

Sepúlveda (2008) obteve um erro percentual absoluto médio de 3% com ressalto 

submerso, utilizando as equações de Ferro calibradas com o método LAD, aplicado aos seus 

resultados experimentais. Nesta dissertação, confirmou-se esta afirmação, aplicando o mesmo 

método de cálculo aos resultados experimentais deste investigador. 

Tendo em conta a precisão dos cálculos obtidos com o método de Ferro em Sepúlveda 

(2008), procurou-se perceber o que originou os dois valores de cálculo mais afastados, 

apresentados na Figura 4.6. 

Em Bijankhan et al. (2012), é referido que o método de Ferro tem boa precisão na situação 

de ressalto livre, mas para ressalto submerso, em particular com baixa submersão, este método 

apresenta menor precisão de cálculo. Estes investigadores definem o tipo de submersão como 

alta ou baixa tendo em conta a relação: 𝑆∗ = 100 ×  ℎ3 − ℎ3𝑚𝑎𝑥  /ℎ3𝑚𝑎𝑥
 , em que ℎ3𝑚𝑎𝑥

 é a 

equação de fronteira determinada por Habibzadeh et al. (2011) pela equação 2.37. A submersão é 

baixa se 0 ≤ 𝑆∗ < 20 e é alta se 𝑆∗ ≥ 20. 
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Tal como salientam Bijankhan et al. (2012), nesta dissertação procedeu-se à análise dos 

resultados experimentais de Sepúlveda (2008) relativamente ao critério de submersão apontado 

anteriormente e confirmou-se que, praticamente todos os ensaios de Sepúlveda (2008), ocorrem 

em alta submersão. Desta forma, considera-se que um grupo de resultados mais alargados deste 

investigador, que contemplassem a baixa submersão, seria fundamental para avaliar esta 

situação. 

Bijankhan et al. (2012) desenvolvem no seu trabalho um método de cálculo designado por 

Discharge Reduction Factor (DRF), afirmando que é eficaz na determinação da vazão para ressalto 

livre e submerso, incluindo a baixa submersão. No entanto, este método não foi considerado no 

presente estudo, uma vez que, não se determinou o seu funcionamento, que envolve a calibração 

de vários parâmetros. 

De forma a compreender se o critério de submersão dado em Bijankhan et al. (2012) é 

valido para a calibração LAD realizada aos resultados experimentais desta dissertação, apresenta-

se a Tabela 4.1, que relaciona os valores do erro relativo obtidos com o método de Ferro 

calibrado com LAD para cada ensaio com ressalto submerso, avaliando a influência do tipo de 

submersão, 𝑆∗, e da abertura relativa de comporta, 𝑎. 

 

Tabela 4.1 - Avaliação dos erros relativos para ressalto submerso calibrados com LAD. 

Ensaio Erro LAD (%) 𝑆∗ 𝑎 

1 0,5 42,8 0,26 

2 25,0 21,7 0,40 

3 9,2 85,7 0,12 

4 3,5 43,9 0,19 

5 27,6 8,7 0,49 

6 1,5 83,6 0,10 

7 1,6 65,2 0,08 

8 1,2 14,9 0,19 

9 5,8 34,8 0,12 

10 1,7 38,5 0,10 

11 0,0 42,0 0,06 

12 4,4 14,7 0,07 

 

Os ensaios que geraram maior erro relativo com ressalto submerso, aplicando o método de 

Ferro calibrado com LAD, foram o 2 e o 5, com 25 % e 27,6 % de erro, respetivamente. 

Tendo em conta o critério de baixa submersão (0 ≤ 𝑆∗ < 20), na Tabela 4.1 pode ser 

identificado que existem 3 ensaios nestas condições, respetivamente o 5, 8 e 12, sendo o ensaio 2 

também bastante próximo deste critério. Logo, apesar de os ensaios que geram maiores erros 
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estarem próximos ou dentro do critério de baixa submersão, existem outros dois ensaios que se 

incluem nesta situação, mas que tiveram um erro relativo muito reduzido. Neste sentido, não se 

conseguem tirar conclusões quanto à eficiência deste conceito. Percebeu-se no entanto que, os 

cálculos com LAD que apresentam maior erro relativo estão próximos dos valores de grande 

abertura de comporta  𝑎 > 0,5 . 

A partir da análise realizada ao método de Ferro, pode concluir-se que, o método apresenta 

muito boa precisão para escoamento com ressalto livre e que, para ressalto submerso com 

valores próximos das grandes aberturas de comporta, ainda tem de ser aperfeiçoado, requerendo 

para tal mais ensaios realizados nessas condições, para se conseguir encontrar um método capaz 

de calibrar com precisão o escoamento continuamente em todos os tipos de submersão. 

O método de Ferro tem a mais-valia de não utilizar o valor da altura de água a montante do 

ressalto hidráulico submerso, ℎ′2, na sua formulação, uma vez que este valor é de difícil precisão, 

por isso possibilita melhores resultados. 

 

4.2.2 Erro percentual absoluto médio obtido de cada método de cálculo 

 

Na Figura 4.8, é apresentado o gráfico com os valores de erro percentual absoluto médio 

obtido por cada método de cálculo. 

 

Figura 4.8 - Erro percentual absoluto médio por método de cálculo. 
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Pelo gráfico apresentado na Figura 4.8 pode concluir-se que, os métodos de cálculo 

considerados apresentaram na sua maioria erros percentuais absolutos médios próximos dos 5%, 

quando comparados com os resultados obtidos no canal experimental. A equação 2.11 de Henry 

(1950) com Cc = 0,61, foi a que gerou menores erros de cálculo. Esta equação obteve resultados 

precisos para todas as situações de escoamento consideradas, mostrando-se por isso uma boa 

opção de cálculo para vazão em comportas.  

As equações de Bos (1989), Yen et al. (2001), Belaud et al. (2009) e de Ferro também 

demonstraram capacidade para o cálculo da vazão com precisão. 

Os métodos estudados que apresentaram menor precisão de cálculo foram Swamee (1992) 

apud Sepúlveda et al. (2009), que originou erros percentuais absolutos médios acima dos 10% 

para as duas situações de ressalto, Habibzadeh et al. (2011) com erro percentual absoluto médio 

também elevado, o diagrama de Henry (1950), especialmente para ressalto submerso, e o 

método de Henderson (1966), quando é calculado o coeficiente de contração para cada ensaio. 

 

4.3 Equações de fronteira 

 

O caudal só pode ser determinado com rigor, conhecendo a situação em que o escoamento 

ocorre, e assim, aplicar o devido método de cálculo. No caso de uma comporta acionada 

automaticamente, tendo como apoio sensores que permitam fazer as leituras das alturas de água 

nos locais requeridos e já identificados, é através das equações de fronteira que é determinada a 

situação de ressalto. Estas equações representam um limite teórico entre o ressalto livre e o 

submerso, tendo como referência a altura de água a jusante do ressalto, ℎ3. 

As equações de fronteira são resolvidas em ordem a ℎ3 e é comparado este valor com o 

resultado de ℎ3 medido no canal. Quando o valor de ℎ3 medido no canal, é inferior ao valor 

calculado pela equação de fronteira, a equação considera que está a ocorrer ressalto livre. Se o 

valor medido for superior ao calculado pela equação de fronteira, esta considera que ocorre 

ressalto submerso. 

Os valores de cálculo obtidos pelas várias equações de fronteira, apresentadas na revisão 

bibliográfica, são em seguida comparados com os resultados medidos em cada ensaio, para 

determinar qual equação consegue distinguir a situação de ressalto com maior rigor. As equações 

de fronteira são analisadas separadamente, por situação de ressalto. Na Figura 4.9 são 

comparados os valores calculados com os resultados medidos para ressalto livre e, na Figura 4.10, 

são comparados os valores calculados com os resultados medidos para ressalto submerso. 

Os resultados foram organizados por ordem crescente de forma a facilitar a leitura. 
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Figura 4.9 - Equações de fronteira para os ensaios com ressalto livre. 

 

 

Figura 4.10 - Equações de fronteira para os ensaios com ressalto submerso. 
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do ressalto livre, sabe-se que uma equação de fronteira admitiu corretamente a situação de 

ressalto, se os valores medidos foram inferiores aos calculados. Analisando a Figura 4.9 percebe-

se que alguns dos valores de ℎ3 medidos são superiores aos calculados pelas equações de 

fronteira, estando nessas situações as equações a admitir que o ressalto é submerso nesses 

ensaios, quando na verdade é livre.  

O método que obteve mais precisão na determinação de ressalto livre foi o de Swamee 

(1992) apud Sepúlveda et al. (2009), tendo gerado dois valores incorretos. Yen et al. (2001) 

obteve três valores incorretos, Rajaratnam e Subramanya (1967) apud Bijankhan e Kouchakzadeh 

(2011) gerou quatro incorreções, e as equações de Bos (1989) e de Habibzadeh et al. (2011) 

obtiveram cinco incorreções na determinação do ressalto livre. 

 Na determinação do escoamento com ressalto submerso, apresentado na Figura 4.10, 

todos os valores de ℎ3  medidos foram superiores aos calculados pelas várias equações de 

fronteira, estando desta forma todos os cálculos corretos, admitindo que está a ocorrer ressalto 

submerso. 

À exceção da equação de Swamee (1992) apud Sepúlveda et al. (2009), as outras 

formulações são muito semelhantes em termos de construção e de resultados, especialmente 

notado na Figura 4.10 para ressalto submerso. 
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5 Conclusões 

 

O estudo desenvolvido nesta dissertação para a determinação do caudal em comportas 

para várias situações de escoamento apresentou bons resultados, demonstrando que estão 

disponíveis várias equações capazes de realizar este cálculo com bastante precisão. Alguns 

métodos necessitam ainda ser melhorados para a situação de ressalto submerso. 

Os resultados experimentais obtidos no canal laboratorial de hidráulica de Universidade de 

Évora, demonstram que existem soluções capazes de realizar o cálculo do caudal com erro 

percentual absoluto médio inferior a 5%, para os três grupos de equações estudadas. 

De entre as equações baseadas no método da energia-quantidade de movimento, a 

equação proposta em Henry (1950) para determinar o coeficiente de vazão, associada depois à 

equação da energia para o cálculo do caudal, dá resultados muito precisos em todas as situações 

de escoamento, aumentado a sua precisão quando se opta pelo coeficiente de contração igual a 

0,61. Apesar de muitos investigadores recentes apontarem o diagrama de Henry (1950) como 

uma referência de cálculo, esta equação não é referida, mas aqui conclui-se que é uma boa 

solução para determinar o caudal em comportas planas verticais. Ainda dentro do grupo de 

equações E-M destacam-se as apresentadas em Bos (1989) e em Yen et al. (2001). 

No grupo de equações da E-M com introdução de um fator de correção, o método 

apresentado em Belaud et al. (2009) mostrou-se bastante preciso no cálculo da vazão. Apesar de 

se notar que o fator de correção unitário era o que gerava melhores resultados, o coeficiente de 

contração variável adaptou-se muito bem à equação destes investigadores. 

O último grupo de equações estudadas, relativo ao método de Ferro, permitiu grande 

precisão para o cálculo de caudais nas situações de ressalto livre e submerso, à exceção da 

situação em que ocorre baixa submersão ou grande abertura de comporta. Esta situação requer 

mais investigação através da realização de novos ensaios neste tipo de submersão e no 

desenvolvimento de equações que assegurem o cálculo com precisão em todas as situações de 

escoamento. 

De entre as equações de fronteira consideradas, a equação de Swamee (1992) apud 

Sepúlveda et al. (2009) representou com maior rigor o limite entre o ressalto livre e o submerso. 

No entanto, este tipo de equações necessita ser melhorado de forma a definir melhor o tipo de 

ressalto que está a ocorrer em determinada situação. 

Para novos estudos relacionados com o tema desenvolvido nesta dissertação, será 

interessante alargar a investigação a canais protótipo, no sentido de testar as equações aqui 
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referidas em situações práticas. Neste tipo de canais, as condições de funcionamento têm 

algumas diferenças relativamente às laboratoriais. Desta forma, será talvez necessário adequar os 

métodos aqui testados para todas as situações de escoamento.  
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