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In this paper, given f : [a, b] × C ([a, b]) × R2 → R a L1-Carathéodory function, it is considered the functional
fourth order equation

u( iv) (x) = f
(
x, u, u′′(x), u′′′(x)

)
, a.a. x ∈ [a, b],

together with the nonlinear functional boundary conditions

L0

(
u, u′′, u(a)

) = 0,

L1

(
u, u′′, u(b)

) = 0,

L2

(
u, u′′, u′′(a), u′′′(a)

) = 0,

L3

(
u, u′′(b), u′′′(b)

) = 0.

Here Li , i = 0, 1, 2, 3, satisfy some adequate monotonicity assumptions and are not necessarily continuous
functions. It will be proved an existence and location result in presence of non ordered lower and upper
solutions.
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1 Introduction

In this paper it is considered the following functional fourth order boundary value problem composed by the
equation

u(iv)(x) = f
(
x, u, u′′(x), u′′′(x)

)
(1.1)

for a.a. x ∈ [a, b], where f : [a, b] × C([a, b]) × R2 → R is a L1-Carathéodory function, and the boundary
conditions

L0
(
u, u′′, u(a)

) = 0,

L1
(
u, u′′, u(b)

) = 0,

L2
(
u, u′′, u′′(a), u′′′(a)

) = 0,

L3
(
u, u′′(b), u′′′(b)

) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.2)

where Li , i = 0, . . . , 3, satisfy some adequate conditions and are allowed to be discontinuous on some of their
variables.
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The existence of extremal solutions has been studied for several types of problems and in different fields, as it
can be seen, for instance, in [1], [2], [4], [6], [7], [9], [11], [13], [16]–[19]. Functional boundary value problems
include a large number of differential equations and many types of boundary conditions, as it is discriminated
and exemplified in [5], [8], [14]. The functional dependence in the differential equation along with such general
boundary conditions, allow to study the existence of maximal and minimal solutions even to classic problems
such as Lidstone, multipoint, nonlocal, . . . , coupled with fourth-order integro-differential equations, with delay,
advanced, maximum or minimum arguments, . . . For these and others fourth order boundary value problems, as
well as for a huge variety of applications in beam theory and suspension bridges, among others, there were not, to
the best of our knowledge, results to obtain the existence of extremal solutions allowing the functional dependence
in every boundary conditions.

A key point in this work is a second order auxiliary problem, obtained from (1.1)–(1.2) by a reduction of order,
where it is applied a standard Nagumo condition and a previous result, from [3], to have the existence of extremal
solutions.

The fourth order problem is studied by adding to the previous problem two algebraic equations, to which it
applies an advanced version of the Bolzano’s theorem, given in [10]. An important tool is a non-ordered lower and
upper solutions technique, meaning that lower and upper solutions have not to be necessarily ordered, to define a
convenient integral operator, which has a least and a greatest fixed points, as it is given in [12].

The paper is developed as follows: in Section 2 we introduce the main concepts that we will use, in Section 3,
to deduce the existence of extremal solutions of problem (1.1)–(1.2). We finalize the paper in Section 4 with an
example in which we apply the obtained results.

2 Definitions and auxiliary results

In this section it will be introduced the notations and definitions needed forward together with some auxiliary
functions and results useful to obtain the main result.

In the following, W m,1([a, b]) denotes the usual Sobolev Spaces in [a, b], that is, the subset of Cm−1([a, b]) func-
tions, whose (m − 1)th derivative is absolutely continuous in [a, b] and the mth derivative belongs to L1 ([a, b]).

Throughout this paper the following hypothesis will be assumed:

(H1) f : [a, b] × C ([a, b]) × R2 → R is such that for every u ∈ C([a, b]), the function fu : [a, b] × R2 → R
defined as fu(x, y, z) := f (x, u, y, z) is a L1-Carathéodory function, that is, fu(x, ·, ·) is a continuous
function for a.a. x ∈ [a, b]; fu(·, y, z) is measurable for (y, z) ∈ R2; and for every M > 0 there is a
real-valued function ψM ∈ L1([a, b]) such that

∣∣ fu(x, y, z)
∣∣ ≤ ψM(x), for a.a. x ∈ [a, b]

and for every (y, z) ∈ R2 with |y| ≤ M , |z| ≤ M.

(H2) L0, L1 : (C([a, b]))2 × R → R are nonincreasing in the first variable and nondecreasing in the second
one.

(H3) L2 : (C([a, b]))2 × R2 → R is non increasing in the first variable and nondecreasing in the second
and fourth variables. Moreover, for every u ∈ C(I ) given, L2(u, vn, xn, yn) → L2(u, v, x, y) whenever
{vn} → v in C(I ) and {(xn, yn)} → (x, y) in R2.

(H4) L3 : C([a, b]) × R2 → R is nondecreasing in the first and third variables. Moreover, for every u ∈ C(I )
given, L3(u, xn, yn) → L3(u, x, y) whenever {(xn, yn)} → (x, y) in R2.

Remark 2.1 Notice that some continuities are allowed in the two first variables of the function f , in the first
variable of the functions L2 and L3 and in all the variables of L0 and L1.

The preliminary results are related to some second order boundary value problems for which it will be assumed
that the conditions (H1) and (H2) hold.

Let v ∈ W 4,1([a, b]) be a fixed function and denote by (Pv) the problem composed by the equation

y′′(x) = fv
(
x, y(x), y′(x)

) ≡ f
(
x, v, y(x), y′(x)

)
, a.a. x ∈ [a, b], (2.1)
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and the boundary conditions

L2
(
v, y, y(a), y′(a)

) = 0, L3
(
v, y(b), y′(b)

) = 0. (2.2)

Definition 2.2 A function yv ∈ W 2,1([a, b]) is a solution of problem (Pv) if it satisfies conditions (2.1) and
(2.2).

For this second-order auxiliary problem we define as lower and upper solutions the functions that verify the
following conditions:

Definition 2.3 A function ζ : [a, b] → R, ζ ∈ W 2,1([a, b]), is said to be a lower solution of problem (Pv) if:

(i) ζ ′′(x) ≥ f
(
x, v, ζ (x), ζ ′(x)

)
, a.a. x ∈ [a, b];

(ii) L2
(
v, ζ, ζ (a), ζ ′(a)

) ≥ 0 and L3
(
v, ζ (b), ζ ′(b)

) ≤ 0.

A function η ∈ W 2,1([a, b]) is said to be an upper solution to the problem (Pv) if the reversed inequalities
hold.

A Nagumo-type growth condition, assumed on the nonlinear part, will be an important tool to set a priori
bounds for solutions of some differential equations.

Definition 2.4 Consider �, γ ∈ L1([a, b]), such that, �(x) ≥ γ (x),∀x ∈ [a, b], and the set

E = {
(x, y0, y1) ∈ [a, b] × R2 : γ (x) ≤ y0 ≤ �(x)

}
.

A function f : [a, b] × C [a, b] × R2 → R is said to verify a Nagumo-type condition in E if there exists
ϕ ∈ C ([0,+∞) , (0,+∞)) such that

| fv(x, y0, y1)| ≤ ϕ(|y1|),
for every (x, y0, y1) ∈ E and all v ∈ [γ, �], with∫ +∞

r

s

ϕ(s)
ds > max

x∈[a,b]
�(x) − min

x∈[a,b]
γ (x).

Here r is given by

r := max

{
�(b) − γ (a)

b − a
,
�(a) − γ (b)

b − a

}
.

Standard arguments (see for example [15]) give us the following a priori estimation on the first derivative of
the solutions of problem (Pv).

Lemma 2.5 There exists R > 0, depending only on ϕ, γ and �, such that for every L1-Carathéodory function
f : I × C([a, b]) × R2 → R satisfying a Nagumo-type condition in E, and every solution yv of (2.1) such that

γ (x) ≤ yv(x) ≤ �(x), ∀ x ∈ I,

we have that
∥∥y′

v

∥∥ < R.

Considering (Pv) as a particular case of problem (3.1)–(3.3) presented in [3], we deduce the following result
as a consequence of [3, Theorem 3.2].

Theorem 2.6 Assume that the assumptions (H1), (H3) and (H4) hold.
If there are lower and upper solutions of (Pv) such that γ ≤ δ and f satisfies a Nagumo-type growth condition

in

Eγ δ = {
(x, y0, y1) ∈ [a, b] × R2 : γ (x) ≤ y0 ≤ δ(x)

}
,

then (Pv) has extremal solutions in [γ, δ] .

In the proof of the main result of this paper, it will be applied the following version of the Bolzano’s Theorem:

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Lemma 2.7 ([10, Lemma 2.3]) Let c, d ∈ R, c ≤ d, and h : R → R be such that either h (c) ≥ 0 ≥ h (d) and

lim sup
z→x−

h(z) ≤ h(x) ≤ lim inf
z→x+

h(z), for all x ∈ [c, d] ,

or h(c) ≤ 0 ≤ h(d) and

lim inf
z→x−

h(z) ≥ h(x) ≥ lim sup
z→x+

h(z), for all x ∈ [c, d] .

Then there exist c1, c2 ∈ [c, d] such that h (c1) = 0 = h (c2) and if h (c3) = 0 for some c3 ∈ [c, d] then c1 ≤
c3 ≤ c2, i.e., c1 and c2 are, respectively, the least and the greatest of the zeros of h in [c, d] .

The following fixed point theorem will also be needed in the proof of the main result.

Lemma 2.8 ([12, Theorem 1.2.2]) Let Y be a subset of an ordered metric space (X,≤), [p, q] a nonempty
ordered interval in Y , and T : [p, q] → [p, q] a nondecreasing mapping. If {T xn} converges in Y whenever {xn}
is a monotone sequence in [p, q], then there exists x∗ the least fixed point of T in [p, q] and x∗ is the greatest one.
Moreover

x∗ = min {y | T y ≤ y} and x∗ = max {y | T y ≥ y} .

3 Extremal solutions to fourth-order problem

This section is devoted to prove the existence of extremal solutions of the problem (1.1)–(1.2). To this end we use
the lower and upper solutions technique. In this case we consider the non-ordered case, that is, lower and upper
solution do not need to be ordered.

In fact, we apply some auxiliary functions “to get some order”.
For α, β ∈ W 2,1([a, b]), with α′′ ≤ β ′′ a.a. on [a, b], we define the functions α0, β0 : [a, b] → R by

β0(x) = A0
b − x

b − a
+ A1

x − a

b − a
+

∫ b

a
G(x, s)β ′′(x)ds, (3.1)

and

α0(x) = B0
b − x

b − a
+ B1

x − a

b − a
+

∫ b

a
G(x, s)α′′(x)ds,

where A1, A2, B1, B2 ∈ R are given by

A0 = min
{
α(a), β(a)

}
, B0 = max

{
α(a), β(a)

}
,

A1 = min
{
α(b), β(b)

}
, B1 = max

{
α(b), β(b)

}
,

and G is the Green’s function associated to the Dirichlet problem

y′′ (x) = 0, a.a. x ∈ [a, b], y(a) = y (b) = 0.

By standard computations, it is well known that such function follows the expression

G(x, s) = 1

b − a

{
(a − s) (b − x) , if a ≤ x ≤ s ≤ b,

(a − x) (b − s) , if a ≤ s ≤ x ≤ b.

In particular it is non-positive on [a, b] × [a, b] and, as a consquence, β0 ≤ α0 in [a, b].
Lower and upper solutions for the fourth order problem (1.1)–(1.2) are defined with the previous auxiliary

functions:
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Definition 3.1 The functions α, β ∈ W 4,1([a, b]) are a pair of lower and upper solutions, respectively, of the
problem (1.1)–(1.2) if the following conditions hold:

α(iv)(x) ≥ f
(
x, α0, α

′′(x), α′′′(x)
)
, a.a. x ∈ [a, b],

0 ≤ L0
(
α0, α

′′, α0(a)
)
,

0 ≤ L1
(
α0, α

′′, α0(b)
)
,

0 ≤ L2
(
α0, α

′′, α′′(a), α′′′(a)
)
,

0 ≥ L3
(
α0, α

′′(b), α′′′(b)
)
,

β(iv)(x) ≤ f
(
x, β0, β

′′(x), β ′′′(x)
)
, a.a. x ∈ [a, b],

0 ≥ L0
(
β0, β

′′, β0(a)
)
,

0 ≥ L1
(
β0, β

′′, β0(b)
)
,

0 ≥ L2
(
β0, β

′′, β ′′(a), β ′′′(a)
)
,

0 ≤ L3
(
β0, β

′′(b), β ′′′(b)
)
.

To obtain the main reult one needs the following hypothesis on the functions L0 and L1:

(H5) For every (v, u, x) ∈ [α0, β0] × [α′′, β ′′] × [Ai , Bi ], i = 0, 1, the following property holds:

lim sup
z→x+

Li (v, u, z) ≤ Li (v, u, x) ≤ lim inf
z→x−

Li (v, u, z).

The main result is given by the following theorem:

Theorem 3.2 Assume that conditions (H1)–(H5) hold and f (x, ., y0, y1) is nondecreasing for a.a. x ∈ [a, b]
and all (y0, y1) ∈ R2.

If there is a pair of lower and upper solutions of (1.1)–(1.2), α and β, respectively, such that

α′′(x) ≤ β ′′(x) for every x ∈ [a, b],

and f satisfies a Nagumo type growth condition in the set

Eα,β := {
(x, y0, y1) ∈ [a, b] × R2 : α′′(x) ≤ y0 ≤ β ′′(x)

}
,

then problem (1.1)–(1.2) has extremal solutions in the set

S ≡ {
u ∈ C2([a, b]) : u ∈ [β0, α0] and u′′ ∈ [

α′′, β ′′]} .

P r o o f. Let v ∈ [β0, α0] be fixed. Consider the second-order ordinary problem (Pv) . As α and β are,
respectively, lower and upper solutions of problem (1.1)–(1.2), then the monotonicity assumptions on function
f with respect to its second variable implies that α′′ and β ′′ are lower and upper solutions of (Pv), respectively,
according to Definition 2.3. In consequence problem (Pv) has extremal solutions in

[
α′′, β ′′] for all v ∈ [β0, α0] .

Denote by yv the minimal solution of (Pv) in
[
α′′, β ′′].

By (H2) and Definition 3.1, we have for i = 0, 1.

Li (v, yv, Bi ) ≥ Li
(
α0, α

′′, Bi
) ≥ 0, (3.2)

and

Li (v, yv, Ai ) ≤ Li
(
β0, β

′′, Ai
) ≤ 0. (3.3)

From condition (H5) one can apply Lemma 2.7 to obtain that equations

Li (v, yv, z) = 0, i = 0, 1,

have greatest zeros in [Ai , Bi ], denoted by wv if i = 0 and zv when i = 1

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 286, No. 17–18 (2013) / www.mn-journal.com 1749

Define, for each x ∈ [a, b], the operator T by

T v(x) =
∫ b

a
G(x, s)yv(s)ds + wv

b − x

b − a
+ zv

x − a

b − a
.

It follows from the definition of T, α0 and β0 that T ([β0, α0]) ⊂ [β0, α0].
To analyze the monotonicity of T , consider v1, v2 ∈ [β0, α0] such that v1 ≤ v2 and let yv1 and yv2 be the

corresponding minimal solutions of (Pv1) and (Pv2) in [α′′, β ′′], respectively. Therefore, by the assumptions on f ,

y′′
v1

(x) = f
(
x, v1, yv1(x), y′

v1
(x)

) ≤ f
(
x, v2, yv1(x), y′

v1
(x)

)
and, by (H3) and (H4),

0 = L2
(
v1, yv1 , yv1(a), y′

v1
(a)

) ≥ L2
(
v2, yv1 , yv1(a), y′

v1
(a)

)
,

0 = L3
(
v1, yv1(b), y′

v1
(b)

) ≤ L3
(
v2, yv1(b), y′

v1
(b)

)
.

So, yv1 is an upper solution of (Pv2). As α′′ ≤ yv1 ≤ β ′′, then, by Theorem 2.6, there are extremal solutions for
the problem (Pv2) in [α′′, yv1 ]. In particular the least solution yv2 of (Pv2) in [α′′, yv1 ] is the least solution of (Pv2)
in [α′′, β ′′].

Therefore, yv1 ≥ yv2 and, by (H2) ,

Li (v2, yv2 , w) ≤ Li (v1, yv2 , w) ≤ Li (v1, yv1 , w), ∀w ∈ R, i = 0, 1. (3.4)

In consequence wv1 ≤ wv2 and zv1 ≤ zv2 .
Therefore

T v1 ≤ T v2,

that is, the operator T is nondecreasing in [β0, α0].
Consider now a monotone sequence {vn}n in [β0, α0]. Therefore the sequence {T vn}n is monotone too and,

since

(T vn)
′′ (x) = yvn (x) ∈ [

α′′(x), β ′′(x)
]
, x ∈ [a, b],

one can easily verify that it is bounded in C2 ([a, b]). So, applying Ascoli-Arzéla theorem, {T vn}n is convergent
in C ([a, b]).

Therefore T sends monotone sequences into convergent ones and, by Lemma 2.8, T has a greatest fixed point
in [β0, α0] , denoted by v∗, satisfying

v∗ = max
{
v ∈ [β0, α0] : v ≤ T v

}
. (3.5)

It is immediate to verify that v∗ ∈ S and it is a solution of problem (1.1)–(1.2). Let’s see that v∗ is actually the
maximal solution of problem (1.1)–(1.2) in the set S.

Let v be an arbitrary solution of problem (1.1)–(1.2) in [β0, α0], with v′′ ∈ [α′′, β ′′]. From Theorem 2.6 we
have that v(a) ≤ wv in [β0(a), α0(a)] and v(b) ≤ zv in [β0(b), α0(b)].

Since v′′ = y, with y a solution of (Pv) in [α′′, β ′′], and yv is the minimal solution of (Pv) in [α′′, β ′′ ], then
v′′ ≥ yv and we deduce that v ≤ T v. Thus, by (3.5), v ≤ v∗ and so v∗ is the greatest solution of (1.1)–(1.2) in S.

The existence of the least solution can be proved using analogous arguments and obvious changes in the
operator T . �

4 Example

Consider, for x ∈ [0, 1], the fourth order equation

u(iv)(x) = max
x∈[0,1]

(∫ x

0
u(s)ds

)
+ λ

(
u′′(x)

)3 − (
u′′′(x) + 1

) 2
3 (4.1)
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Fig. 1 Despite α and β are non ordered there are extremal solutions in the set [β0, α0].

along with the functional boundary conditions

− max
x∈[0,1]

u(x) + u (0) = 0,

min
x∈[0,1]

u′′(x) + δu (1) = 0,

u′′ (0) = 0,

u′′ (1) = 0.

(4.2)

This problem is a particular case of (1.1)–(1.2) with

f (x, y0, y1, y2) = max
x∈[0,1]

(∫ x

0
y0(s)ds

)
+ λy3

1 − (y2 + 1)
2
3 ,

L0 (z1, z2, z3) = − max
x∈[0,1]

z1 + z3,

L1 (z1, z2, z3) = min
x∈[0,1]

z2 + δz3,

L2 (z1, z2, z3, z4) = −z3,

L3 (z1, z2, z3) = z2.

The functions

α(x) = − x2

2
− x + 1 and β(x) = x2

2
+ x − 1

are, respectively, lower and upper solutions to the problem (4.1)–(4.2), with

A0 = −1, B0 = 1, A1 = −1

2
, B1 = 1

2
,

α0 (x) = 1 − x2

2
and β0(x) = x2

2
− 1

for 1≤ λ < ∞ and δ ≥ 2.

As one can see in Figure 1, despite the fact that the lower and upper solutions α and β are not ordered, the
auxiliar functions α0 and β0 are well ordered.

C© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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As the continuous function f verifies a Nagumo type growth condition, according Definition 2.4, in

E = {
(x, y1, y2) : −1 ≤ y1 ≤ 1

}
with ϕ (y2) = 1 + |λ| + |y2 + 1| 2

3 , then, by Theorem 3.2 the problem (4.1)–(4.2) has extremal solutions in [β0, α0].
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Spain, project MTM2010-15314.
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