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Feliz Minhós

School of Sciences and Technology. Department of Mathematics.

University of Évora.
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Abstract. In this the authors consider the nonlinear fully equation

u(iv) (x) + f(x, u (x) , u′ (x) , u′′ (x) , u′′′ (x)) = 0

for x ∈ [0, 1] , where f : [0, 1]×R4 → R is a continuous functions, coupled with
the Lidstone boundary conditions,

u(0) = u(1) = u′′(0) = u′′(1) = 0.

They discuss how different definitions of lower and upper solutions can

generalize existence and location results for boundary value problems with

Lidstone boundary data. In addition, they replace the usual bilateral Nagumo
condition by a one-sided condition, allowing the nonlinearity to be unbounded.

An example will show that this unilateral condition generalizes the usual one

and stress the potentialities of the new definitions.

1. Introduction. Fourth order differential equations are often called beam equa-
tions due to their relevance in beam theory, namely in the study of the bending of
an elastic beam. In this work we consider the fully nonlinear equation

u(iv) (x) + f (x, u (x) , u′ (x) , u′′ (x) , u′′′ (x)) = 0 (1)

for x ∈ [0, 1] , where f : [0, 1]×R4 → R is a continuous function, with the boundary
conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0, (2)

known as Lidstone boundary conditions. They appear in several physics and engi-
neering situations such as simply supported beams ([6, 7]) and suspension bridges
([1, 8]). Different boundary conditions, meaning different types of support at
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the endpoints, are considered in the literature. As examples one can refer to
[6, 9, 11, 12].

In this work we apply a more general Nagumo-type assumption: an unilateral
condition. From this point of view, the results in the literature for problem (1)-(2)
are improved because the nonlinearity can be unbounded from above or from below,
following arguments suggested by [3, 4].

It is pointed out that, for Lidstone problems, where there is no information about
the odd derivatives on the boundary, the replacement of the bilateral condition by
an unilateral one is not trivial. It requires a new type of a priori bound and a
more elaborate auxiliary problem in the proof of the main results. The last section
contains an example where it can be seen how the one-sided Nagumo condition
generalizes the usual bilateral one.

Moreover, the absence of data in the first derivative in the boundary conditions
requires that the lower and upper solutions are defined as a pair of functions (see
Definition 2.4) where condition (iii) could not be removed. This fact restricts the
set of admissible functions as lower and upper solutions.

In Section 4, the above difficulty is overcome by introducing some adequate
auxiliary functions and new definitions (see Definition 4.1). Moreover, the existence
and location result still holds in the presence of not necessarily ordered lower and
upper solutions and the corresponding first derivatives. More precisely, condition
(11) is replaced by (23), where the ”well order” is only required for the second
derivatives.

2. Definitions and auxiliary results. In this section some auxiliary results and
definitions, essential to the proof of main results, are presented.

We consider a one-sided Nagumo-type condition, meaning that the function f
is only limited either from above, (3), or from below, (4). Therefore two different
lemmas can be obtained, depending on the condition assumed on the nonlinearity
f .

The one-sided Nagumo-type condition to be used and the consequent a priori
estimation are as follows:

Definition 2.1. Given a subset E ⊂ [0, 1]× R4, a continuous function f : E → R
is said to satisfy a one-sided Nagumo-type condition in E if there exists a real
continuous function hE : R+

0 → [k,+∞[, for some k > 0, such that

f (x, y0, y1, y2, y3) ≤ hE (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E (3)

or
f (x, y0, y1, y2, y3) ≥ −hE (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E, (4)

with ∫ +∞

0

t

hE (t)
dt = +∞. (5)

Lemma 2.2. Let f : [0, 1]× R4 → R be a continuous function, verifying Nagumo-
type conditions (3) and (5) in

E =
{

(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : γi (x) ≤ yi ≤ Γi (x) , i = 0, 1, 2
}
, (6)

where γi (x) and Γi (x) are continuous functions such that, for i = 0, 1, 2, γi (x) ≤
Γi (x) , for every x ∈ [0, 1] . Then for every ρ > 0 there is R > 0 such that every
solution u (x) of equation (1) satisying

u′′′(0) ≥ −ρ , u′′′(1) ≤ ρ (7)
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and

γi (x) ≤ u(i) (x) ≤ Γi (x) , ∀x ∈ [0, 1] , (8)

for i = 0, 1, 2, satisfies

‖u′′′‖∞ < R.

Proof. The proof follows the method suggested in [4].

If the function f satisfies (4) the following lemma still holds:

Lemma 2.3. Let f : [0, 1]× R4 → R be a continuous function, verifying Nagumo-
type conditions (4) and (5) in E given by (6).

Then for every ρ > 0 there is R > 0 such that every solution u (x) of equation
(1) satisfying

u′′′(0) ≤ ρ , u′′′(1) ≥ −ρ, (9)

and

γi (x) ≤ u(i) (x) ≤ Γi (x) , ∀x ∈ [0, 1] , (10)

for i = 0, 1, 2, satisfies

‖u′′′‖ < R.

Remark 1. Observe that R depends only on the functions hE , γ2 and Γ2 and not
on the boundary conditions.

The functions used as lower and upper solutions are defined as a pair:

Definition 2.4. The functions α, β ∈ C4 (]0, 1[) ∩ C2 ([0, 1]) verifying

α(i) (x) ≤ β(i) (x) , i = 0, 1, 2, ∀x ∈ [0, 1] , (11)

define a pair of lower and upper solutions of problem (1)-(2) if the following condi-
tions are satisfied:

(i) α(iv) (x) + f (x, α (x) , α′ (x) , α′′ (x) , α′′′ (x)) ≥ 0,

β(iv) (x) + f (x, β (x) , β′ (x) , β′′ (x) , β′′′ (x)) ≤ 0;

(ii) α (0) ≤ 0, α′′ (0) ≤ 0, α′′ (1) ≤ 0,

β (0) ≥ 0, β′′ (0) ≥ 0, β′′ (1) ≥ 0;

(iii) α′ (0)− β′ (0) ≤ min {β (0)− β (1) , α (1)− α (0)}.

As it was shown in [10], condition (iii) can not be removed for this type of
definition. However if the minimum in (iii) is non-positive then assumption (11)
can be replaced by α′′ (x) ≤ β′′ (x) for every x ∈ [0, 1] , as the other inequalities are
obtained from integration.

3. Existence and location result. A general existence and location result, where
the nonlinear part can be unbounded from above or from below, is the following.

Theorem 3.1. Suppose that there is a pair of lower and upper solutions of the
problem (1)-(2), α (x) and β (x), respectively. Let f : [0, 1]×R4 → R be a continuous
function satisfying the one-sided Nagumo conditions (3) and (5) in

E∗ =
{

(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : α(i) (x) ≤ yi ≤ β(i) (x) , i = 0, 1, 2
}

and

f (x, α, α′, y2, y3) ≤ f (x, y0, y1, y2, y3) ≤ f (x, β, β′, y2, y3) , (12)
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for

α (x) ≤ y0 ≤ β (x) , α′ (x) ≤ y1 ≤ β′ (x)

and for fixed (x, y2, y3) ∈ [0, 1] × R2. Then the problem (1)-(2) has at least one
solution u (x) ∈ C4 ([0, 1]), satisfying

α(i) (x) ≤ u(i) (x) ≤ β(i) (x) , for i = 0, 1, 2, ∀x ∈ [0, 1] .

Proof. Consider the continuous truncations δi given by

δi (x, yi) =


α(i) (x) , if yi < α(i) (x) ,
yi, if α(i) (x) ≤ yi ≤ β(i) (x) ,

β(i) (x) , if yi > β(i) (x) ,

, (13)

for i = 0, 1, 2. For λ ∈ [0, 1], consider the homotopic equation

u(iv) (x) = u′′ (x) (14)

− λ [f (x, δ0 (x, u) , δ1 (x, u′) , δ2 (x, u′′) , u′′′) + δ2 (x, u′′)]

and the boundary conditions

u (0) = u (1) = 0,
(1− λ)u′′′ (0) = λ |u′′(0)| ,
(1− λ)u′′′ (1) = −λ |u′′(1)| .

(15)

Let r2 > 0 be large enough such that, for every x ∈ [0, 1] ,

−r2 < α′′ (x) ≤ β′′ (x) < r2, (16)

r2 − f (x, β (x) , β′ (x) , β′′ (x) , 0)− β′′ (x) > 0, (17)

r2 + f (x, α (x) , α′ (x) , α′′ (x) , 0) + α′′ (x) > 0. (18)

The proof follows similar steps to the proof of the main result in [2], therefore only
the key points of the arguments are presented:

• Every solution u (x) of the problem (14)-(15) satisfies

|u′′ (x)| < r2, |u′ (x)| < r1, |u (x)| < r1, ∀x ∈ [0, 1] ,

with r1 := r2 + u′ (0) independently of λ ∈ [0, 1] .

As for interior points, the technique is identical to [2] we give a proof for only the
boundary points. Assume, by contradiction, that

max
x∈[0,1]

u′′ (x) := u′′ (0) ≥ r2 > 0.

Then for λ ∈ ]0, 1] , it is obtained

0 ≥ (1− λ)u′′′(0) = λu′′(0) ≥ λr2 > 0.

For λ = 0, u′′′(0) = 0. Therefore u(iv) (0) ≤ 0 and this case is identical to that of
the interior points.

If

max
x∈[0,1]

u′′ (x) := u′′ (1) ≥ r2,

for λ ∈ ]0, 1], the contradiction is similar:

0 ≤ (1− λ)u′′′(1) = −λ |u′′(1)| ≤ −λr2 < 0.

The case λ = 0, implies u′′′(1) = 0 and u(iv) (1) ≥ 0 and the contradiction is
obtained by the same technique as for the interior points.
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The case u′′ (x) ≤ −r2 is analogous and so

|u′′ (x)| < r2, ∀x ∈ [0, 1] ,∀λ ∈ [0, 1] .

Integrating in [0, x] , u′(x)− u′ (0) =
∫ x

0
u′′(s)ds < r2, and

|u′(x)| < r2 + u′ (0) , ∀x ∈ [0, 1] ,∀λ ∈ [0, 1] .

By integration, we obtain

|u′ (x)| < r1, |u (x)| < r1,∀x ∈ [0, 1] .

• There is R > 0 such that, every solution u (x) of the problem (14)-(15) satis-
fies

|u′′′ (x)| < R, ∀x ∈ [0, 1] ,

independently of λ ∈ [0, 1] .

• Problem (14)-(15) has at least a solution u1 (x) for λ = 1.

The existence of at least one solution u1 (x) for problem (14)-(15) is obtained
with the operators L : C4 ([0, 1]) ⊂ C3 ([0, 1])→ C ([0, 1])× R4 given by

Lu =
(
u(iv) − u′′, u (0) , u (1) , u′′′ (0) , u′′′ (1)

)
,

Nλ : C3 ([0, 1])→ C ([0, 1])× R4 by

Nλ =

(
λ [−f (x, δ0 (x, u) , δ1 (x, u′) , δ2 (x, u′′) , u′′′ (x))− δ2 (x, u′′)] ,

0, 0, λ [u′′′ (0) + |u′′(0)|] , λ [u′′′ (1)− |u′′(1)|]

)
and Tλ :

(
C4 ([0, 1]) ,R

)
→
(
C4 ([0, 1]) ,R

)
by

Tλ (u) = L−1Nλ (u) .

The function u1 (x) will be a solution of the initial problem (1)-(2) if it satisfies

α(i) (x) ≤ u(i)
1 (x) ≤ β(i) (x) , i = 0, 1, 2, ∀x ∈ [0, 1] .

Suppose, by contradiction, that there is x ∈ [0, 1] such that α′′ (x) > u′′1 (x) and
define

min
x∈[0,1]

[u′′1 (x)− α′′ (x)] := u′′1 (x1)− α′′ (x1) < 0.

If x1 ∈ [0, 1], then u′′′1 (x1) = α′′′ (x1) and u(iv) (x1) ≥ α(iv) (x1) .
By Definition 2.4 and (12) we obtain the contradiction:

α(iv) (x1) ≤ u
(iv)
1 (x1)

= −f (x1, δ0 (x1, u) , δ1 (x1, u
′) , α′′ (x1) , α′′′ (x1))

+u′′ (x1)− α′′ (x1)

< −f (x1, α (x1) , α′ (x1) , α′′ (x1) , α′′′ (x1)) ≤ α(iv) (x1) .

If x1 = 0 or x1 = 1 the contradiction is trivial by Definition 2.4 (ii).
Therefore, α′′ (x) ≤ u′′1 (x) for every x ∈ [0, 1] . In a similar way, it can be proved

that u′′1 (x) ≤ β′′ (x), and so

α′′ (x) ≤ u′′1 (x) ≤ β′′ (x) , for every x ∈ [0, 1] . (19)

By (2),

0 =

∫ 1

0

u′1 (x) dx =

∫ 1

0

(
u′1 (0) +

∫ x

0

u′′1 (s) ds

)
dx

= u′1 (0) +

∫ 1

0

∫ x

0

u′′1 (s) ds dx,
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so

u′1 (0) = −
∫ 1

0

∫ x

0

u′′1 (s) dsdx. (20)

By this technique ∫ 1

0

∫ x

0

α′′ (s) ds dx = α(1)− α(0)− α′(0)

and, by Definition 2.4 (iii), (19) and (20),

−β′(0) ≤ α(1)− α(0)− α′(0) =

∫ 1

0

∫ x

0

α′′ (s) ds dx

≤
∫ 1

0

∫ x

0

u′′1 (s) ds dx = −u′1 (0) .

Therefore u′1 (0) ≤ β′(0) and, by integration of (16), one obtains

u′1 (x)− u′1 (0) =

∫ x

0

u′′1 (s) ds ≤
∫ x

0

β′′ (s) ds = β′(x)− β′(0)

and

u′1 (x) ≤ β′(x)− β′(0) + u′1 (0) ≤ β′(x),∀x ∈ [0, 1].

The relation α′ (x) ≤ u′1 (x) , for every x ∈ [0, 1], can be proved by similar arguments.
Then

α′ (x) ≤ u′1 (x) ≤ β′ (x) ,∀x ∈ [0, 1] .

By Definition 2.4 (ii)

α (x) ≤
∫ x

0

α′ (s) ds ≤
∫ x

0

u′1 (s) ds = u1 (x)

≤
∫ x

0

β′ (s) ds = β(x)− β(0) ≤ β(x).

Therefore, u1 (x) is a solution for problem (1)-(2).

Remark 2. Theorem 3.1 still holds if condition (3) is replaced by (4) and conditions
(15) are replaced by

u (0) = u (1) = 0,
(1− λ)u′′′ (0) = −λ |u′′(0)| ,

(1− λ)u′′′ (1) = λ |u′′(1)| .

4. Generalized lower and upper solutions. When looking at the definition of
lower and upper solutions one can wonder about its impact and importance in the
existence and location results presented in the previous sections.

It is immediate that they provide a very graphical information about some qual-
itative properties of the solution, but one can ask how deep is their influence in the
final results, for instance, in Definition 2.4 is it possible to relax condition (11) and
condition iii)? How does this change affect the final result?

With this thought in mind, we consider the following definitions for lower and
upper solutions:

Definition 4.1. Functions α, β ∈ C4 (]0, 1[) ∩ C2 ([0, 1]) are a pair of lower and
upper solutions of (1)-(2) if the following conditions are satisfied:

(i) α(iv) (x) + f (x, α0 (x) , α1 (x) , α′′ (x) , α′′′ (x)) ≥ 0,
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where
α0 (x) =

∫ x
0
α1 (s) ds,

α1 (x) = α′ (x)− α′ (0)−
∫ 1

0

∫ x
0
|β′′ (s)| dsdx;

(21)

(ii) α′′ (0) ≤ 0, α′′ (1) ≤ 0;

(iii) β(iv) (x) + f (x, β0 (x) , β1 (x) , β′′ (x) , β′′′ (x)) ≤ 0,

where
β0 (x) =

∫ x
0
β1 (s) ds,

β1 (x) = β′ (x)− β′ (0) +
∫ 1

0

∫ x
0
|α′′ (s)| dsdx;

(22)

(iv) β′′ (0) ≥ 0, β′′ (1) ≥ 0.

Now, the main existence and location result becomes:

Theorem 4.2. Suppose that there is a pair of lower and upper solutions of the
problem (1)-(2), α (x) and β (x), respectively satisfying

α′′ (x) ≤ β′′ (x) , ∀x ∈ [0, 1] . (23)

Let f : [0, 1] × R4 → R be a continuous function satisfying the one-sided Nagumo
conditions (3), or (4), and (5) in

E∗ =

{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : α0 (x) ≤ y0 ≤ β0 (x) ,

α1 (x) ≤ y1 ≤ β1 (x) , α′′ (x) ≤ y2 ≤ β′′ (x)

}
and

f (x, α0, α1, y2, y3) ≤ f (x, y0, y1, y2, y3) ≤ f (x, β0, β1, y2, y3) , (24)

for
α0 (x) ≤ y0 ≤ β0 (x) , α1 (x) ≤ y1 ≤ β1 (x)

and for fixed (x, y2, y3) ∈ [0, 1]× R2.
Then the problem (1)-(2) has at least one solution u (x) ∈ C4 ([0, 1]), satisfying

αi (x) ≤ u(i) (x) ≤ βi (x) , for i = 0, 1, ∀x ∈ [0, 1] ,

and
α′′ (x) ≤ u′′ (x) ≤ β′′ (x) , ∀x ∈ [0, 1] .

Proof. The arguments are similar to the proof of Theorem 3.1. So we only prove
that the solution u1 (x) of the modified problem will be a solution of the initial
problem (1)-(2). For that it is sufficient to show that

α′′ (x) ≤ u′′ (x) ≤ β′′ (x) (25)

and
αi (x) ≤ u(i) (x) ≤ βi (x) , for i = 0, 1, (26)

for every x ∈ [0, 1] .
The inequalities (25) can be proved as in Theorem 3.1.
By integration,

u′ (x)− u′ (0) =

∫ x

0

u′′ (s) ds ≤
∫ x

0

β′′ (s) ds = β′ (x)− β′ (0) ,

so
u′ (x) ≤ β′ (x)− β′ (0) + u′ (0) . (27)
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Furthermore, by (2)

0 =

∫ 1

0

u′ (x) dx ≤ u′ (0) +

∫ 1

0

∫ x

0

β′′ (s) dsdx.

Hence,

u′ (0) ≥ −
∫ 1

0

∫ x

0

β′′ (s) dsdx

and in a similar way u′ (0) ≤ −
∫ 1

0

∫ x
0
α′′ (s) dsdx.

Applying this in (27)

u′ (x) ≤ β′ (x)− β′ (0)−
∫ 1

0

∫ x

0

α′′ (s) dsdx

≤ β′ (x)− β′ (0) +

∫ 1

0

∫ x

0

|α′′ (s)| dsdx = β1 (x) .

Using the same arguments it can be proved that

α1 (x) ≤ u′ (x) ≤ β1 (x) , ∀x ∈ [0, 1] .

Integrating the previous inequality

α0 (x) =

∫ x

0

α1 (s) ≤ u (x) ≤
∫ x

0

β1 (s) ds = β0 (x) , ∀x ∈ [0, 1] .

As one can notice the inclusion of the auxiliary functions α0, β0 and α1, β1 allows
not only the use of non-ordered lower and upper solutions, increasing the range of
admissible lower and upper solutions for the problem (1)-(2), but also overrun the
order relation between the first derivatives, where there is no information.

5. Example. The next example illustrates a set of lower and upper solutions that
were not covered by Definition 2.4 and Theorem 3.1 but are now included in Def-
inition 4.1 and Theorem 4.2. In this example, lower and upper solutions are not
ordered and condition (iii) from Definition 2.4 is eliminated, a case that was not
possible by Definition 2.4 and Theorem 3.1.

Example 5.1. For x ∈ [0, 1] consider the differential equation

u(iv) (x) + eu(x) + arctan (u′ (x))− (u′′ (x))
3 − |u′′′ (x)|k = 0, (28)

with k ∈ [0, 2] , along with the boundary conditions (2).
The functions α, β : R→ R given by

α (x) = −x2 + 1
2 ,

β (x) = x2 − 1
2 ,

are lower and upper solutions, respectively, of problem (28),(2) satisfying (23) with
the auxiliary functions given by Definition 4.1

α0 (x) = −x2 − x,
α1 (x) = −2x− 1,

and
β0 (x) = x2 + x,
β1 (x) = 2x+ 1.



ROLE OF LOWER AND UPPER SOLUTIONS IN LIDSTONE PROBLEMS 225

The function

f (x, y0, y1, y2, y3) = ey0 + arctan (y1)− (y2)
3 − |y3|k (29)

is continuous, satisfies conditions (3)and (5) in

E =

{
(x, y0, y1, y2, y3) ∈ [a, b]× R5 : αi ≤ yi ≤ βi, i = 0, 1

α′′ ≤ y2 ≤ β′′
}
.

and satisfies (24). By Theorem 4.2 there is a solution u (x) of problem (28),(2),
such that

−x2 − x ≤ u (x) ≤ x2 + x,
−2x− 1 ≤ u′ (x) ≤ 2x+ 1,

−2 ≤ u′′ (x) ≤ 2,

Notice that the nonlinearity f given by (29) does not satisfy the two-sided Nagumo
type conditions and, therefore, [10] can not be applied to (28)-(2). In fact, sup-
pose by contradiction that there are a set E and a positive function ϕ such that
|f (x, y0, y1, y2, y3)| ≤ ϕ (|y3|) in E and∫ +∞

0

s

ϕ (s)
= +∞.

Consider, in particular, that

f (x, y0, y1, y2, y3) ≤ ϕ (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E,
and (0, 0, 0, y3) ∈ E. So, for x ∈ [0, 1] , y0 = 0, y1 = 0, y2 = 0, and y3 ∈ R+,

f (x, 0, 0, 0, y3) = 1 + |y3|k ≤ ϕ (|y3|) .
As ∫ +∞

0

s

1 + sk
ds,

is finite, the following contradiction is obtained:

+∞ >

∫ +∞

0

s

1 + sk
ds ≥

∫ +∞

0

s

ϕ (s)
ds = +∞.
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