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Abstract

In this paper, a systematic approach for elastic finite
strain crack propagation with multiple cohesive cracks
and self-contact is described. Crack paths are deter-
mined by the CTOD method and the advance crite-
rion uses either the equivalent stress intensity factor
or the tip-element stress. Crack intersections, coales-
cence and cohesive laws are accounted for, as is the for-
mation of multiple particles. Globally-optimized mesh
repositioning is used to minimize the least-square of all
elements’ inner-angle error. This is followed, in a stag-
gered form, by a Godunov-based advection step for the
deformation gradient. Several examples are presented
showing the robustness and accuracy of the implemen-
tation, as well as the ability to represent crack face
thickness variation in finite strains. Classical fracture
benchmarks are solved and a problem of multiple crack
evolution is proposed. Excellent results were observed
in the effected tests.

KEYWORDS: Fracture, arbitrary Lagrangian-

Eulerian method, cohesive cracks, nonlinear

elasticity

1 Introduction

Bi-dimensional crack propagation algorithms have
been developed in the past two decades with varying
degrees of effectiveness and generality. Existing tech-
niques can be classified as discrete or continuum-based:
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� Full and local remeshing procedures [12, 16], nu-
merous local displacement [32, 31, 26, 28] (or
strain [35, 2]) enrichments, clique overlaps [24],
edges repositioning or edge-based fracture with R-
adaptivity [30];� Element erosion [42], smeared band procedures
[34], viscous-regularized techniques [21], gradient
and non-local continua [41].

In the context of finite strain simulation, each one has
specific advantages which we weighed before taking the
decision documented in this paper. In particular, the
extended finite element method (XFEM) by Belytschko
and co-workers [11, 32] was used previously but still
poses challenges for large amplitude displacements and
also multiple intersections. Concerning the latter, den-
sification of the Jacobian matrix occurs due to pile-up
of degrees-of-freedom for nodes contributing to multi-
ple cracks. If nc cracks are present in elements in the
support of a given node, this has (1+nc)nSD degrees of
freedom where nSD is the number of spatial dimensions;
this produces a fill-in in the sparse Jacobian contrasting
with remeshing that retains sparsity along the analysis
(by increasing the number of nodes). Large displace-
ments with contact or cohesive forces between crack
faces are directly dealt with classical computational ge-
ometry search and collision detection algorithms. The
adaptation of these to deal with enriched elements is
of debatable scientific value. However, it is noticeable
that large amplitude displacements are perfectly man-
aged (see, e.g. [27]) by XFEM if neither contact nor
cohesive forces are present. A noticeable development
of XFEM for large displacements is the one of Legrain
and co-workers [27].

Both difficulties can be mitigated at the cost of in-
tricate coding. As a consequence of these difficulties,
typically idealized numerical examples are displayed.
Features are then added, such as crack face friction,
coupled heat transfer, etc., which share the inherited
limitations of the maiden work. Here, the opposite
direction is taken: we start with a general fracturing
approach, valid for finite strains and multiple cracks,
which is then particularized for specific problems.

From the enumerated options, it is often pointed
out that local remeshing techniques lead to ill-
formed elements (in particular blade and dagger-
shaped triangles) which compromise the solution accu-
racy. These ill-formed elements motivate, besides other
aspects, the use of full remeshing. However, mesh-
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generation groups have developed high-performance
node-reposition (smoothing) methods perfectly capa-
ble of removing severe ill-formations (see, e.g. [43]).
Therefore, a combination of local remeshing and node-
repositioning is proposed here. Specifically, a stag-
gered approach (constrained analysis, detection, recur-
sive local remeshing, node repositioning, advection) is
introduced. Crack advance occurs when either the
equivalent stress intensity factor exceeds the maxi-
mum allowed value for linear elastic fracture mechan-
ics (LEFM) or when the maximum principal stress σ1

ahead of the crack tip exceeds the critical material
stress ft. Crack trajectories stem from stress inten-
sity factors calculated from the crack tip opening dis-
placement (CTOD) criterion in both cases, following
well-known relations. The node repositioning uses a
(global) non-linear least-square finite element method
(LSFEM) which minimizes the norm of the sum of ele-
ment internal angles to reposition the reference nodes.
This always results in well-formed elements avoiding
crack path inaccuracies and spurious arrests due to the
crack turning back.

This paper is organized as follows: section 2 presents
the kinematics, constitutive laws and cohesive formula-
tion; section 3 describes the propagation algorithm (ad-
vance and global minimization methods); six numerical
examples (including two newly proposed) are presented
in section 4 and explored to obtain a clear picture of the
expected performance and possible problems. Finally,
concluding remarks appear in section 5.

2 Governing equations

2.1 Kinematics, equilibrium and mate-

rial model

The crack propagation problem can be decomposed
into a classical continuum mechanics step and a se-
quence of remeshing and node reposition steps, fol-
lowed by an advection step. Conventional continuum
mechanics notation is adopted (e.g. [3]) and deriva-
tions are mostly standard. Equilibrium is established
using the displacement-based virtual work principle.
The open set Ω0 ⊂ R

3 is the material configuration
of a given body whose external boundary includes pre-
existing cracks and notches. It is assumed that each
point X is associated by a bijective map to its posi-
tion in that configuration: X → X ∈ Ω0. To contrast
with the material configuration, lower-case letters are
used for quantities defined in the deformed configura-
tion. In this sense x is the spatial position; addition-
ally, we assume that there exists a function (to spare
the notation we overload the symbols) x ≡ x(X). The
difference between positions, with X fixed, is the dis-
placement, u(X) = x[X(X)]−X(X). All measures of
deformation in Ω0 stem from the deformation gradient,
F = ∂x

∂X
. Energy conjugacy with F requires a coun-

terpart stress quantity, which we denote as the first
Piola-Kirchhoff stress P . Essential and natural bound-
ary conditions (corresponding to domains Γu and Γt,

respectively, such as Γ = Γu ∪ Γt, Γu ∩ Γt = ⊘) are
also required ingredients. In addition, there exists a
vector-valued function of body forces B.

The equilibrium equations and boundary conditions
in the strong form are stated as:

∇0 · P
T + B = 0 in Ω0 (1)

u = u on Γu (2)

t = t on Γt\Γσn
(3)

t · n = σn([[u]]n) on Γσn
(4)

Note that, by use of the Dirac-delta distribution, we
can write t = δΓt

B with δΓt
= 0 a.e. in Ω0 and

δΓt
= +∞ in Γt. Also, in part of Γt (Γσn

), a spe-
cific stress is imposed: the cohesive crack stress σn, is
assumed to depend on [[u]]n, the crack opening. The
symbol ∇0 means gradient with respect to X. Also
shown in figure 1 is the boundary ΓX (which coincides
with the complete boundary Γ), meaning that: the
body is completely defined by Γ and therefore original
point coordinates in this boundary must remain there.
Later in the text we will introduce a reference system
whose boundary coincides with the material one. Use
of standard arguments in continuum mechanics results
in the following weak form of equilibrium:

δW =

ˆ

Ω0

(

τ : ∇u△ − B · u△
)

dΩ0 (5)

−

ˆ

Γt\Γσn

t · u△dΓt −

ˆ

Γσn

σn[[u]]△n dΓσn
≡ 0

where ∇• = ∇0 • F−1 and τ = PF T is the Kirchhoff
stress. The symbol △ represents the change in the af-
fected kinematic quantity; this means that u△ satisfies
homogeneously the essential boundary conditions (the
notation is also used by S.S. Antman [3]). Solutions of
(5) include solutions of the equilibrium system. Mini-
mization of the work function could have been adopted,
but since complementarity may be present in the cohe-
sive term, that work function is not differentiable in the
classical sense. The first variation of (5) is required for
use in the Newton-Raphson method and is given by:

∆δW =

ˆ

Ω0

[

∇u△ : c : ∇∆u (6)

−∆B · u△ + τ :
(

∇∆uT∇u△
)]

dΩ0

−

ˆ

Γt\Γσn

∆t · u△dΓt

−

ˆ

Γσn

(

∆σn[[u]]△n + σn∆[[u]]△n
)

dΓσn

where ∆• indicates an infinitesimal change in •. We use
the compressible neo-Hookean hyperelastic law, whose
strain energy function is given by (see [14], eqs. 5.28
and 5.29):
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ψ =
µ

2
(Ib − 3) − µ lnJ +

λ

2
(lnJ)

2
(7)

with J = det F and Ib = tr[FF T ]. Properties µ and
λ are extensions of the small-strain shear modulus and
Lamé’s parameter, respectively. For the compressible
neo-Hookean material with Lamé parameters µ and λ,
the Kirchhoff stress and modulus are respectively given
by:

τ = µ(FF T − I) + λ ln{det[F ]}I (8)

c = λI ⊗ I + (µ− λ ln{det[F ]})I (9)

where I is the second-order identity tensor and I is
the fourth-order symmetric identity tensor. The sur-
face cohesive law, returning σn, is given in section
2.4. Although arbitrary Lagrangian-Eulerian (ALE)
techniques are often introduced at the continuum level
(e.g. [9]), this requires some level of complexity that
we avoid here.

t

[[u]]n

Ω

Γu

σn([[u]]n) Γt

New crack path

Γ = ΓX

ΓXȧ

tpath

npath

Figure 1: Multiple fracturing non-linear continuum:
boundaries, loading and normal jump definition.

2.2 Kinematic discrete form

Standard finite-element notation is used: parent-
domain coordinates are θ1 and θ2 and XK

i is the
ithcoordinate of local node K (as well as uK

i for the cor-
responding displacement). Remeshing methods make
use of an intermediate set of nodal coordinates, be-
tween the spatial xK

i and the material XK
i , which we

denote by reference coordinates, χK
i . Using the chain-

rule we can calculate the deformation gradient as:

F = fFo (10)

where Fo = ∂χ
∂X

and f = ∂x
∂χ

. The deformation gradi-
ent Fo becomes a history variable, to be re-mapped by
an advection step (see section 3.3). Since (10) affects
the Jacobian, an analogous relation for J is obtained:

J = jJo (11)

u =



(1 − θ1
− θ2)u1

1 + θ1u2

1 + θ2u3

1

(1 − θ1
− θ2)u1

2 + θ1u2

2 + θ2u3

2

ff

(12)

j = χ
3

2χ
2

1 + χ
1

1χ
2

2 + χ
1

2χ
3

1 − χ
1

2χ
2

1 − χ
2

2χ
3

1 − χ
1

1χ
3

2 (13)

f =
1

j
·

»

j + (u3

1 − u1

1)(χ
1

2 − χ2

2) + (u2

1 − u1

1)(χ
3

2 − χ1

2)
(u3

2 − u1

2)(χ
1

2 − χ2

2) + (u3

2 − u1

2)(χ
2

1 − χ1

1)
(14)

(u3

1 − u1

1)(χ
2

1 − χ1

1) + (u2

1 − u1

1)(χ
1

1 − χ3

1)
j + (u3

2 − u1

2)(χ
2

1 − χ1

1) + (u2

2 − u1

2)(χ
1

1 − χ3

1)

–

Remaining quantities can be directly obtained from
these, and therefore are omitted. This simplicity allows
a very fast computation and stable residual behavior.
These aspects are far more important for rough prob-
lems (like fracture) than for pure convergence rate of
the results. In addition, convergence rate is limited by
the equilibrium equation regularity [25], and therefore
higher-order elements are inappropriate for this appli-
cation.

2.3 Cohesive discretization

The representation of the finite-displacement cohesive
element makes use of a five node arrangement as de-
picted in figure 2. This is an extension, with two ad-
ditional nodes, of the classical point-to-segment con-
tact element, here with a cohesive law. We consider
all external edges (i.e. with only one underlying solid
element) and perform a two-pass enforcement. Cer-
tain geometrical aspects are dealt with in Chapter 23
of the book by M.A. Crisfield [17], although we used
Mathematica [37] with the Acegen add-on to obtain
the relevant code.

x4

[[u]]n

σn([[u]]n)

ft

x2

ll

lr

x3

x1

Fracture energy: GF

[[u]]n

x5

Unloading/reloading path

Loading path

θ

fn = h(ll+lr)
2 σn([[u]]n)

θ = arg
min

(d{x4, [(1 − θ)/2]x1 + [(1 + θ)/2]x2})

Figure 2: Five node cohesive element for finite displace-
ments; h represents the thickness.
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2.4 Mixed-mode traction separation

law

We use a damage-based elastic traction-separation law
dependent on three constitutive properties, ft, GF and
β which are the tensile strength, the fracture energy
and a mode II parameter, respectively. It is an adapta-
tion of the law proposed by Alfaiate et al. [1] to deal
with unloadings/reloadings with negative wn. It incor-
porates the closure effect, mode II damaging effect and
unloading to origin. A thorough discussion of cohesive
representations is provided in the paper by Elices et al.

[19]. The damage variable is denoted as d ; normal and
tangential stresses are denoted as σ and τ , respectively,
and are grouped in a traction vector t which is given
using the 1 − d pre-multiplication:

t =

{

σ
τ

}

= (1 − d)
f⋆

κ0

{

awn

wt

}

(15)

where wn is the normal displacement, wt is the tangen-
tial displacement and a is the crack closure parameter;
f⋆ and κ0 are the initial stress and the kinematical
shift, respectively. The damage parameter depends on
a kinematical variable, κ, according to the following
rate law:

ḋ = e
−

ft
GF

(κ)

{

κ0 [GF + ftκ]

GFκ2

}

κ̇ (16)

where κ0, the kinematical shift, is introduced to avoid
the initial infinite slope. The kinematical variable κ
can be viewed as the “equivalent opening,” a quantity
to be defined by complementarity conditions. We use
a non-dimensional tolerance, tol, to define κ0:

κ0 = 2tol
GF

ft

(17)

The crack closure parameter is a function of the open-
ing sign:

a =

{

1, wn ≥ 0
1

1−d
, wn < 0

(18)

this allows a fixed slope for contact and keeps the
tangential stress unaltered in penetration. The initial
stress is obtained after replacement of the kinematical
shift in the damage expression:

f⋆ = [1 − d(κ = 0)]ft (19)

The evolution of κ is implicitly defined by the follow-
ing complementarity conditions:

ḋ ≥ 0

ḋφ = 0 (20)

φ ≤ 0

with the fracture surface being defined by the level sets
of the following function (of wn and wt) :

φ =< wn > +β|wt| − κ (21)

This simple mixed-mode law and the related kine-
matical shift were found to be sufficient for the exam-
ples under study, although complete solutions to this
class of problems resort to the concept of set-valued
forces [7, 22].

3 Crack propagation algorithm

Our crack propagation algorithm is a sequence of five
steps:

1. Satisfaction of the advance criterion

2. Tip edge insertion

3. Global minimization mesh smoothing

4. Godunov advection step

5. Solution with constrained tip

Brief descriptions are given in the following sub-
sections. Note that simultaneous crack growth and
multiple-edge growth is possible, as are intersections
and coalescence.

3.1 Advance criterion

According to the case (LEFM critical equivalent stress
intensity factor and cohesive fracture) one of the fol-
lowing fracture criteria is used:� LEFM: critical equivalent stress intensity factor

Keq > K1c.� Cohesive fracture: critical principal stress ahead
of the crack tip σ1 > ft.

The use of LEFM in finite strain problems requires the
assumption of sufficiently small strains near the process
zone. Fracture of polymers often makes use of LEFM
despite the presence of large strains away from the tips.

The equivalent stress intensity factor is given, after
direct manipulation (see the treatise by Bažant and
Planas [10]):

Keq =
E

4

√

π

2R

√

d2
I + d2

II (22)

where E is the elasticity modulus and R is given by
(see figure 3):

R =
1

2
‖xND

− xNT
‖2 +

1

2
‖xNO

− xNT
‖2 (23)

We use the displacement field to estimate Keq. The
mode II vector is given by:

vII = xNT
− (xND

+ xNO
)/2 (24)

and the mode I vector is given by: vI = e3 × vII with
e3 = {0, 0, 1}T .

4



The difference in near-tip displacement is given by:

∆uT = uND
− uNO

(25)

from which the mode I and II displacements are given
by projection:

dI = ∆uT · v̂I (26)

dII = ∆uT · v̂II (27)

where the notation •̂ = •/‖ • ‖2 was used. For cohesive
fracture, the tip is constrained by a penalty to be closed
and, if the resulting stress is greater than ft, the tip is
released.

3.2 Tip edge insertion

In the discrete setting, the tip advance (an incremental
length ∆a) corresponds exactly to a newly introduced
edge, whose origin is the previous tip and the destina-
tion is the new tip, which is a convex combination of
the opposing edge nodes (see figure 3). The algorithm
is the following sequence:

1. Search for candidate outer edges and respective T ,
O and N nodes (see figure 3 i)

2. For each candidate edge pair, determine either the
tip normal stress or the CTOA

3. Sort the candidates according to the critical values

4. Calculate the crack direction using the CTOD
(28,29) and check for advance

5. Based on the crack direction, calculate the affected
element and the corresponding intersection with
the opposite edge. This involves the identification
of D and O edges (in figure 3 ii). If there is a
neighborhood element then split it by joining with
the opposite node. The total splitting will result
in elements ET1,ET2 and, if the element ahead of
the tip exists, EB1 and EB2. The connectivities
are obtained by application of modulus algebra,
resulting in a very concise code.

The crack path orientation (the orientation of the
new edge) in pure mode I is given by:

vPATH = v̂I sin(θc) + v̂II cos(θc) (28)

where θc, in degrees, is given by:

θc = −36.5 arctan

[

2.2 arctan

(

dII

dI

)]

(29)

This is the criterion of Ma and Sutton [29] for LEFM.
Despite the simplicity of the above criterion, surpris-
ingly accurate crack paths are obtained. This contrasts
with the Rankine criterion [19] since the FE displace-
ments are much more accurate than stresses; despite

this fact, mesh quality has a very important effect in
the crack path results. Therefore, we use a global node
repositioning minimization algorithm to ensure mesh
quality along the propagation process.

3.3 Element-based global minimization

smoothing and advection

The mesh repositioning algorithm makes use of a least-
square finite element procedure for the minimization
of the inner angle differences with π/3. The problem
consists of a minimization of a potential which is a
function of the reference coordinates. Each smoothing-
element provides a local gradient and a Hessian matrix
of its least-square contribution. The quantity to be
minimized is the following sum over the number of ele-
ments (ne) and the number of local nodes (3):

Πangle =
1

2

ne
∑

e=1

3
∑

ie=1

(

∆αe
ie

)2
(30)

where

∆αe
ie

= s arctan

(

‖aie
× bie

‖

|aie
· bie

|

)

−
π

3
(31)

with s = sign [e3 · (aie
× bie

)]. The vectors aie
and bie

depend on the nodal coordinates according to the usual
notation of modulus algebra:

aie
= χie+13

− χie3

(32)

bie
= χie+23

− χie3

(33)

To monitor the mesh quality (in degrees), the mea-
sured angle error is introduced by the following for-
mula:

εα =
27.0095

√

Πangle

ne

(34)

where convergence to degrees and nodal average were
effected. Grouping all nodal positions as generalized

tpath
npath

[EB1]

ET1

ii) New elements relative position

[EB2]
ET2

iii-b) Node splitting without subsequent element

NO

ND

CTOA

ET

i) Tip segment appending

iii-a) Node splitting with subsequent element

ED

EO

NT

[EB]

αT

D-edge identification
NB

O-edge identification

Figure 3: 2D crack advance with minimal remeshing
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coordinates χv = {χ11, χ12, . . . , χnno1, χnno2}, we ob-
tain the corresponding internal force and stiffness of
the“angle-element”set from the first and second deriva-
tives of Πangle:

fα =
∂Πangle

∂χv

(35)

Kα =
∂2Πangle

∂χv∂χv

(36)

The solution of fα(Xv) = 0 with ∆χino = 0 if ino ∈
Γ provides the repositioned set Xv minimizing Πangle.

The advection process follows the first-order Go-
dunov scheme (e.g. [38, 39, 9]) which we specify here
for our triangle mesh arrangement. A comprehensive
description of this scheme is given in the LS-DYNA the-
ory manual [23], Chapter 17. In particular, we use their
full-donor approximation. Figure 4 shows the quan-
tities participating in the advection scheme for each
triangular element. In 1D, the field transference corre-
sponds to the motion of a node inside a line segment,
and hence can be accounted exactly. In 2D, we are left
with a set of established practices to choose from. The
Godunov scheme was developed elsewhere and hence is
only sketched here.

The corrected deformation gradient F e
o , as a history

variable in element e, is obtained after a smoothing
step as:

F e
o = F e + (37)

1

2Ae

3
∑

L=1

{[

lLnL ·
(

∆xL3
+ ∆xL+13

−∆χL3
− ∆χL+13

)]

(

F e(L) − F e
)}

where modulus algebra was employed. Please com-
pare this equation with equation (26) of reference [38].
Equation (37) is a specialization for the three-node tri-
angle by rearrangement of equation (26) of [38]. The
elements represented with a dashed line in figure 4 are
neighborhood elements providing F e(L). Note that the
plus function is given by (•)+ = max(0, •) and is intro-
duced to impose the direction of flow. The well known
drawback of this approach, which is the restriction to
piecewise constant fields, is of no consequence in our
work, since constant-F elements are used. The simplic-
ity of this approach stems from the absence of spatial
derivatives, required in other methods.

3.4 Solution with linear arc-length con-

straint and multipoint constraints

In the determination of the load (or displacement) fac-
tor, which we denote here as λ, either the equivalent
stress intensity factor (Keq) or the stress is constrained.
A discussion of the constraint is given in Moës and
Belytschko [31]. However, in that paper the Authors

avoided a full consistent linearization for the constraint
equation, performed here.

If a load-parameter λ is included as an unknown, the
system must be enlarged by appending a new equation
s(u) = 0:

r(λ,u) = 0 (38)

s(u) = 0 (39)

where r(λ,u) is the discrete equilibrium residual and
s(u) is the crack constraint. The solution by Newton-
Raphson iteration (it is the iteration counter) results
in:

[

K(λit
,uit

) −e(λit
,uit

)

−
ds(uit

)

du
0

]{

uv

λv

}

= (40)

{

r(λit
,uit

)
s(uit

)

}

where uv = uit+1−uit
and λv = λit+1−λit

. Omitting
the iteration counter it,

e(λ,u) =
∂r(λ,u)

∂λ
(41)

K(λ,u) = −
∂r(λ,u)

∂u
(42)

Defining ur = K−1r and ue = K−1e , and sr =
ds
du

ur, se = ds
du

ue we obtain:

λv =
−sr(uit

) − s(λ,uit
)

se(λ,uit
)

(43)

uv = ur + ueλv (44)

which provides the overall solution process for the con-
strained equilibrium. If several cracks are present, the
constraint is applied to the one presenting the largest
Keq.

e(L = 1) n1

l1

L = 1

L = 2

e(L = 2)

L = 3

{x1, χ1}

{x2, χ2}

n2

l2

l3

e(L = 3)

n3

{x3, χ3}

Figure 4: Relevant quantities involved in the ALE Go-
dunov scheme.
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The imposition of multipoint constraints in the code
(see [4]) uses clique operations and is based on the ad-
ditional imposition of the equality t(u) = 0 where t

is a vector with m components. If m unknowns to re-
tain are selected, we can apply Newton’s method and
solve for um as a function of the remaining n−m un-
knowns (n is the number of the unconstrained degrees
of freedom). We use the subscript s for the dependent
unknowns:

uvs = −

(

∂t

∂us

)−1 (

∂t

∂um

)

uvm −

(

∂t

∂us

)−1

t (45)

Enlarging (45) to include all unknowns in the left-
hand-side, and rearranging the Jacobians in transfor-
mation matrices, we obtain

uvs = Tuvm + b (46)

which, inserted in the equilibrium system and pre-
multiplying by T T , provides

T T KTus = T T r − T T Kb (47)

The n −m unknowns in the reduced system satisfy
(tangentially) the constraints. This is used to force
certain symmetries and anti-symmetries and to force a
set of nodes to have the same displacement, etc.

4 Numerical examples

Six numerical examples are tested with the code SIM-
PLAS [4], created by the first Author and used previ-
ously in a variety of problems. The examples show ex-
ceptional robustness for the crack path and very good
agreement with the experimental results; both LEFM
(cohesionless) and cohesive cracks are analyzed and
comparisons are made with both experimental and al-
ternative numerical results from other Authors. Com-
bined use of multipoint constraints and continuation
methods is made to avoid crack tip retention and to
control the opening.

4.1 Study of thickness variation in

pulling test

In this test, we use the zero out-of-plane normal stress
condition to obtain the thickness variation in a plate
with a central crack. Classical fracture mechanics are
used to propagate the crack. The KI stress inten-
sity factor is used as control variable. Three values of
GF ∈ { 1

2 , 5, 20} consistent units are tested with two ini-
tial meshes (4678 and 19278 elements). Crack-advance
is imposed in each time step before a full crack is devel-
oped and the most critical crack tip is used to enforce
the strain energy release rate. The relevant data is
shown in figure 5. Thickness contour plots for GF = 20
are shown in figure 6 using the true deformed geometry
of the specimen and figure 7 shows the evolution of P
and u with the crack length. Despite the absence of

cohesive law (dissipation occurs at the tips) relatively
mesh-invariant results are obtained.

Y

XZ

1

Clamped

3

E = 3000
ν = 0.35
GF ∈ {0.5, 5, 20}

Initial crack

(Consistent units are used)

10

Meshes: 4678 and 19278 elements

a0 = 0.3

a

u, P

Figure 5: Pulling test: geometry, boundary conditions
and material properties

8.60e-001 9.02e-001 9.43e-001 9.84e-001 1.02e+000

Thickness

P = 1.58 × 102, a = 1.78 P = 5.31 × 101, a = 2.86

P = 0, a = 3.03

P = 1.07 × 103, a = 0.3
P = 5.97 × 102, a = 1.02

Figure 6: Pulling test: thickness contour plots for
GF = 20 consistent units. The true deformed geom-
etry is shown.
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Figure 7: Pulling test: evolution of u and P with the
crack length a

4.2 Bittencourt’s drilled plate

To evaluate the crack path accuracy of the proposed
technique, we use the example by Bittencourt et al.
[12] who studied curvilinear crack propagation both ex-
perimentally and numerically. Specimens are made of

7



polymethylmethacrylate (PMMA) and large deforma-
tions are present. The geometry, material properties
and boundary conditions are depicted in figure 8 for
two specimens differing in the dimensions a and b. In
reference [12], the Erdogan-Sih [20] (this was found to
be the most accurate) fracture criterion was used, with
stress intensity factors calculated in a variety of forms,
including the domain-integral (see also [31] for a more
recent application) and quarter-point elements. In that
paper, a recursive spatial decomposition method was
introduced to subdivide the mesh. Specially refined
elements were used in the neighborhood of the holes
and the Authors have tried a wide variety of step in-
crements, stress-intensity factor criteria and crack path
criteria.

In contrast, the problem is run without user-defined
parameters, albeit a relatively fine mesh was also
adopted near the holes for perfect fit. Only specimen
#1 required smaller elements (which was also a conclu-
sion of Bittencourt et al.) in the crack turning region
near the second hole, but we use approximately the
same mesh size for both specimens. The presence of the
three holes perturbs the stress fields making the crack
trajectory very sensitive to the position and size of the
existent notch. The crack path in the absence of holes
can be seen in figure 9 where it is marked as “pristine
specimen” for both specimens. Despite previous well
known accuracy difficulties (documented in [12] and
implicitly seen in [30] who omit the crack turn), excel-
lent agreement was observed between predicted and ex-
perimental crack paths (see figure 9). To the Authors’
knowledge, this accuracy was not achieved before by
simulations.

The crack mouth opening displacement (CMOD) is
used to control the solution and capture the snap-backs.
The principal stress contour plot is shown in figure 10
for both specimens over the true deformed mesh. Load-
deflection and load-CMOD results are shown in figure
11 for specimen #1 and 12 for specimen #2. Very
smooth results are obtained and we reach small en-
ergies without convergence problems. Sharper snap-
backs may result in convergence difficulties. Accurate
solution of more extreme situations requires the use of
the so-called set-valued forces (see, e.g. [22]).

4.3 Single edge notched beam

A simulation of the single edge notched (SEN) beam
tested by Schlangen (cf. [40]) is performed. A geomet-
rical description of this problem, with material prop-
erties and boundary conditions is shown in figure 13.
Three uniform meshes are adopted, containing 4532,
8910 and 18820 elements. The arc-length method (see
subsection 3.4) is used, with monotonically increasing
CMSD (crack mouth sliding displacement). The crack
path reproduces closely the experimental envelope, as
can be observed in figure 14; even near the support the
experimental observations are accurately reproduced.

A comparison with the experimental results and the
DSDA method [1, 6, 18], along with a study of mesh
and step size influence is effected. As can be observed

in figure 15, after the peak load is reached, the nu-
merical results are more brittle than the experimental

#2
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2

a

E=3000 N/mm2

6

8

2

2

2.75

20

Initial notch

⊘0.5

b

a

P

1

b
1.5

Specimen

1 1σmax=70 N/mm2
ν=0.35

h=1 mm
GF ∈ {1, 5, 10, 30} N/mm

(dimensions are in mm)

K1c = E
4

√

π
2R

√

U 2
1B + U 2

2B

(a) Relevant data

(b) Specimen #1 final mesh

(c) Specimen #2 final mesh

Figure 8: Bittencourt’s drilled plate: geometry, bound-
ary conditions and material properties. Geometry pa-
rameters a and b vary according to the specimen. For
specimen #1 we use a converged mesh of 17782 ele-
ments and for specimen #2 we use a mesh of 17932
elements. The two meshes after crack propagation are
shown for GF = 1 N/mm.

Specimen #1 Specimen #2

Experimental results (Bittencourt 1996)

Present model

Pristine specimen Pristine specimen

Experimental results (Bittencourt 1996)
Present model

Figure 9: Bittencourt’s drilled plate: comparison be-
tween experimentally obtained (cf. [12] in red here)
and the present model with GF = 1 N/mm., for spec-
imens #1 and #2 . Also shown in blue are the crack
paths when holes are absent. Both geometries are un-
deformed.
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results. According to [2], this is due to the fact that
an isotropic mode-I traction-jump law is used. The
results are immune to the step-size up to very large
CMSD increments.
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(a) Specimen #1 (not magnified), v = {0.277, 0.238, 0.186}

0.000e+00

4.896e+01

9.792e+01

1.469e+02

1.958e+02

Principal Stress

0.000e+00

4.896e+01

9.792e+01

1.469e+02

1.958e+02

Principal Stress

0.000e+00

4.896e+01

9.792e+01

1.469e+02

1.958e+02

Principal Stress

(b) Specimen #2 (not magnified), v = {0.433, 0.232, 0.218}

Figure 10: Bittencourt’s drilled plate: sequence of con-
tour plots over deformed meshes for both specimens,
GF = 1 N/mm; v is the downward displacement of the
loaded point.
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Figure 11: Bittencourt’s drilled plate: specimen #1
load-vertical displacement and load-CMOD results for
the loaded point for four values of GF .
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Figure 12: Bittencourt’s drilled plate: specimen #2
load-vertical displacement and load-CMOD results for
the loaded point for four values of GF .
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4.4 Cohesive crack growth in a four-

point bending concrete beam

This problem consists of a bi-notched concrete beam
subjected to two point loads. It was proposed by Bocca
et al. [13] and numerically studied by a plethora of
Authors. In [13], the experimental setting and rele-
vant data are described. From the set of specimens

E=35000 N/mm2

ν=0.15
ft=3.0 N/mm2

GF=0.1 N/mm
h=100 mm

180 180

517.5 17.5

1
11

P

20
80

10
11

P

(Dimensions are in mm)

Figure 13: Schlangen’s SEN test: geometry, boundary
conditions and material properties.

(a) 4532 initial elements

(b) 8910 initial elements

(c) 18820 initial elements

DSDA

Experimental envelope (Schlangen 1993)

Present model

(d) Crack path comparison

Figure 14: Schlangen’s SEN test: Deformed meshes
for the 3 cases are shown, with 4532, 8910 and 18820
elements and CMSD=0.1 mm. Crack path (8910 initial
elements) compared with DSDA [18] (yellow) and the
experimental results by Schlangen [40].

under inspection by Bocca et al. we only retain spec-
imens with c/b = 0.8, b = 50 and b = 200 mm, since
experimental load-displacement results are only avail-
able for these two cases. In addition to these results,
we are also concerned with the crack paths that were
reported in [13]. Using the well-known cracking par-
ticle method, Rabczuk and Belytschko [36] obtained
very good results for the crack path in this problem,
although the load in the load-displacement diagram
was slightly higher than the experimental one. In addi-
tion, with the particle methods, there is the problem of
choosing the support size in the crack region, which is
not trivial. Our method does not consider user-defined
parameters besides mesh size. We use a single uniform
mesh, with 19860 initial elements. The relevant data is
shown in figure 16. For anti-symmetry reasons, we im-
pose the same mouth opening at the edge of notches A
and B: ∆uB = ∆uA. It has been debated if quasi-static
simulations allow prppagation of more than one crack;
we avoid this discussion here but note that many large
research groups show this, (see the excellent thesis by
Chaves e.g. [15]) .

Two simultaneously evolving cracks occur and the
result is typically sensitive to the mesh orientation and
quality. We obtain an excellent agreement with the
experimental crack paths, as shown in figure 17. The
relatively wide spread of experimental crack paths is
typical and results from the use of 6 specimens. Exper-
imentally, some residual crack evolution in the opposite
direction of the final path was observed and we also ob-

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 0.02 0.04 0.06 0.08 0.1

L
oa

d

CMSD

key:
18820 Elements
8910 Elements
4532 Elements
Experimental

DSDA Locally refined

(a) Load-CMSD results for three mesh densities

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 0.02 0.04 0.06 0.08 0.1

L
oa

d

CMSD

key:
∆CMSD=2.5 × 10−4

∆CMSD=5 × 10−4

∆CMSD=1 × 10−3

∆CMSD=2 × 10−3

(b) Load-CMSD results for several CMSD increment sizes

Figure 15: Schlangen’s SEN test: load-CMSD results:
comparison with the experimental results by Schlangen
[40], the DSDA technique and effect of mesh and step
size.
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tained that effect.

Load-displacement results are shown in figure 18
where a comparison with the measurements of Bocca
et al. [13] and the cracking particle method of Rabczuk
and Belytschko [36] is made. For the smaller specimen
there is a slightly longer and lower curve than the ob-
served one, but this is still reasonable since the exact
cohesive properties and the mode II effect are not ac-
curately known.
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c/b = 0.8

∆uB = ∆uA

0.1666F

b
∈
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c
l = 4b

Specimen #1: b=200 mm
Specimen #2: b=50 mm

a = 0.2b

Figure 16: Four-point bending of a concrete beam: ge-
ometry, boundary conditions, multipoint constraints
(∆uB = ∆uA) and material properties. Also shown
is the final deformed mesh 10× magnified.

c/b = 0.8
b = 200 mm

Experimental envelope (Bocca et al. 1991)

Present model

Figure 17: Four-point bending of a concrete beam:
crack paths compared with the envelope of experimen-
tal results by Bocca, Carpintieri and Valente [13].

The evolution of the angle error (εα) with the num-
ber of steps is shown in figure 19 for both cases (with
and without mesh repositioning). The well known
crack back-turning phenomenon occurs in the latter
case; the detail in this figure shows this effect in the
upper crack. The analysis was halted at this point.

The effect of step size in the convergence behav-
ior is shown in figure 20 for the first 100 iterations.
Quadratic convergence is observed despite some error
growth in early iterations for ∆CMSD = 2× 10−3 mm.
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Figure 18: Load-displacement results, compared with
the results of Bocca et al. [13] and the cracking particle
method of Rabczuk and Belytschko [36] (for the case
b = 200 mm) with their 68000 particle analysis.
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4.5 Simultaneous propagation of 10

cracks under normal and shear

strain

In this problem we analyze a square, plane-strain, plate
containing 10 cracks. It is a variation of the test by G.
Zi et al. [44] who performed a fatigue cycle counting
with the same geometry and crack arrangement. The
tests involve multiple crack growth and coalescence in-
cluding intersections with the outer boundary. The
problem data and the crack positioning are shown in
figure 21. As can be observed, two meshes are used for
comparison. Essential boundary conditions are slightly
different than what was reported in [44], since only lim-
ited crack extension was obtained by those Authors.
Additionally, two load cases are inspected here.

Deformed mesh sequences (using the finer mesh) for
case A can be seen in figure 22. The homogenized
Kirchhoff stress versus the Hencky strain are depicted
in figure 23. It can be observed that, despite the large
difference in mesh density (the ratio of hc, with hc be-
ing the characteristic element size, is around 1.66), a
close reproduction of results is obtained. This also in-
dicates that the growth is immune to spurious crack
shielding. All cracks can grow simultaneously until
their length fails to satisfy the critical stress intensity
factor criterion. The reader can also verify that, even
taking in consideration the different analysis type, our
methodology leads to more realistic behavior than the
one shown in [44].
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Y
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Fine mesh: 21840 (hc = 9.57 × 10−3 m)
Coarse mesh: 7872 (hc = 1.59 × 10−2 m)

Same vertical displacement

Figure 21: Multiple crack test: problem data, geometry
and material properties (adapted from [44]).

4.6 Nooru’s mixed-mode panel

A double-edge notched specimen is subject to mixed-
mode inducing loads. This experiment was proposed
and studied by Nooru–Mohamed [33]; the 200×200×50
mm specimen has two 25 × 5 mm horizontal notches
located at half-height as shown in figure 24. Two L-
shaped steel frames are glued to the specimen and the
loading is applied at the top steel frame. One of the
experimental load paths is numerically simulated: first,
a horizontal force Ph is progressively applied until the
value Pmax is reached. Then, the force is kept constant
and a vertical displacement v is gradually applied (see
figure 24). The material parameters are also taken from
[33].

Two unstructured meshes are tested: a coarse mesh
with 2326 triangular elements and a fine mesh with
5278 triangular elements. Two values of Pmax are used:
5kN and 10kN. The two crack paths are shown in figure
25 where the experimental results from [33] are super-
imposed. Also shown, for the case Pmax = 10kN, is
the crack path obtained with the DSDA method (see
references [1, 6]). The crack paths agree reasonably,
although not perfectly, with the experimental results.
However, we must remark that there is considerable
scatter in the latter.
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Figure 22: Multiple crack test: sequence of deformed
meshes illustrating growth, coalescence and intersec-
tion of cracks for the fine mesh (see figure 21) for the
load case A. Principal stress τ1 grayscale contour plots
are also shown. In detail, we can observe the formation
of a particle by simultaneous crack growth.
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Figure 23: Homogenized stress-strain results for both
meshes (load cases A and B) and comparison between
crack paths for the two initial meshes
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Figure 24: Nooru’s mixed-mode panel: problem data,
geometry, boundary conditions and material proper-
ties.
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Figure 25: Nooru’s mixed-mode panel: crack path com-
parisons for F = 5 kN and F = 10 kN. The experi-
mental envelope and the DSDA results are shown for
Pmax = 10kN.
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5 Conclusions and outlook

A simple method to solve brittle and quasi-brittle crack
propagation 2D problems was described and tested;
observed effects in experiments such as intersection,
coalescence and particle formation were successful ob-
tained. This is not easily done with enrichment meth-
ods (see [6, 5, 8, 7]). A combination of local tip remesh-
ing, recursive subdivision and nodal repositioning was
proposed which solves well-known issues in crack mod-
eling with traditional enrichment or remeshing meth-
ods:� Difficulties in modeling crack intersection and co-

alescence� Crack tip and step size dependence� Presence of blade and dagger-shaped finite ele-
ments� Representation of thickness variation at the crack
faces due to plane stress condition or incompress-
ibility

Excellent crack path agreement with experiments was
systematically obtained. Good load-deflection and
load-CMOD results were also observed. Quadratic con-
vergence was always achieved in problems where the co-
hesive law was used. In all examples both step size and
mesh near-independence was observed and, after solv-
ing the aforementioned problems, we found the present
framework robust enough to be used as one scale in a
multiscale simulation.

Perspectives of application to finite strain plasticity
can make use of the strong ellipticity condition and
continuum-based cohesive laws.
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nica de Catalunya, Escola Tècnica Superior
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