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CONSTRUCTAL VIEW OF THE GLOBAL CIRCULATION OF THE 

ATMOSPHERE AND FLOW ARCHITECTURES OF RIVER BASINS AND 

LUNG TREE 

A. Heitor Reis 

Physics Department, University of Évora and Évora Geophysics Center 

Rua Romão Ramalho 59, 7000-761 Évora, Portugal 

 

1.     Atmospheric global circulation and climate – from numerical experiments to 

Constructal theory 

Climate means the average thermo-hydrodynamic conditions that prevail over a significant 

period (generally 30 years) at a particular region of Earth’s surface. Due to non-uniform heating, 

flows develop on the Earth’s surface carrying heat from hot to cold regions. Atmospheric and 

oceanic circulations of a wide range of magnitudes participate in this transfer. Coupling between 

different scales of heat and mass flows is highly non-linear, therefore making prediction of the 

thermo-hydrodynamic state of the atmosphere a very hard task [1, 2].  

Thermodynamically, the Earth as a whole is not in equilibrium as can be concluded from the 

observational evidence that temperature and pressure have spatial and temporal variations. 

However, if we consider local values averaged over a long period, temperature and pressure become 

time independent even if their spatial variation is preserved. This procedure implies loss of 

information of short-period phenomena, but it allows the construction of useful models of the whole 

system. These models capture the long-term performance of the Earth system and allow useful 

predictions about climate.  

Atmospheric and oceanic circulations are the largest flow structures on Earth. Modelling of such 

flow structures rely on deterministic equations, e.g., conservation of mass, energy, angular 
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momentum and momentum, some of which are non-linear and give rise to additional terms that 

result from the averaging procedure. The closure of such system of equations is not easy and is 

achieved with the help of a set of semi-empirical equations. Though complex and despite the large 

number parameters used in such models they have very much helped to understand global 

circulation and climate [3].  

A different kind analysis may be performed based on Bejan’s Constructal Law (Principle), which 

states: “Every fluid system develops the flow architecture that maximizes flow access under the 

constraints posed to the flow” [4]. Although Constructal Theory also uses constitutive equations, 

like mass and energy conservation, it derives the actual flow field (the flow architecture) from the 

maximization of the flow access performance of the whole system under the existing constraints. 

Unequal heating of Earth’s surface and atmosphere drives the Earth circulations. The “purpose” of 

these circulations is to transfer heat from the equatorial zone to the polar caps. They are organized 

in such a way that perform this transport by the most efficient way, which is the one that maximizes 

the heat flow or, alternatively, by the flow structure that minimizes the resistance to the global heat 

flow. 

According to the Second Law heat flows from hot to cold systems but transfer time is not taken 

into account nor does this law impose any specific flow field to this transfer. Constructal Principle 

enters here as a powerful tool for selecting the flow field that perform heat transfers the fastest.  

Here we analyze the results of numerical experiments on global circulation presented in three 

reference papers and we compare them with the results of the application of the Constructal 

Principle to a simple model general circulation and climate (Bejan and Reis [5], Reis and Bejan 

[6]). 

It is generally accepted that the main forcing factors of the Earth global circulation are the 

differential heating between the equator and the poles and the Earth’s rotation rate. Atmospheric 
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global circulation models (GCMs) have been widely employed to perform numerical experiments of 

sensitivity of global circulation to these forcing factors. 

Navarra and Boccaletti (2002) [7], used ECHAM4, a very recent GCM of the European Centre 

for Medium Range Weather Forecast (ECMRWF) developed at the Max-Planck Institute for 

Meteorology in Hamburg, to investigate the sensitivity of global circulation to rotation rate. The 

model was run with day rotation periods of 18, 24, 72, 144 and 360 h. The results of the meridional 

stream function (kg/s) and of the averaged zonal velocity (m/s) show that at the day rotation periods 

of 360 h and 144 h, a single Hadley cell develops from the equator to each pole. At the day rotation 

period of 72 h the Ferrel cell becomes evident while at day rotation periods of 24 h (control) and 18 

h the Polar cell adds to the other two. It seems evident that if the Earth’s rotation rate determines the 

meridional cells, must play an important role in global circulation and climate. In fact, at the 

latitudes where air raises, atmospheric instability develops originating strong precipitation. In the 

Earth, these zones match to the equatorial zone and to the boundaries between the Polar and the 

Ferrel Cells (~50º latitude in each hemisphere). On the other hand at the latitudes between the 

Hadley and the Ferrel cells, air moves down and hence is compressed adiabatically and heated up. 

Therefore clouds and precipitation are almost absent at these latitudes, which correspond to the belt 

of deserts that occur close 30º latitude in both hemispheres. This is why the meridional circulation 

cells are so important to the Earth’s climate.  

 The influence of lower day rotation periods upon the atmospheric global circulation was 

investigated by Jenkins (1996) [8] who run a similar model (CCM1) of the National Center for 

Atmospheric Research (NCAR, USA), for day rotation periods of 22, 20, 18, 16, and 14h. The 

resulting latitude-pressure distributions of the stream function show that the latitudinal positioning 

of Hadley, Ferrel and Polar cells does not practically change with the rotation rate. This is important 

because if rotation rate is the main cause of the existence of the three-cell regime of Earth’s 
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atmospheric general circulation, we would expect that this influence extends noticeably to the 

latitudinal cell distribution corresponding to lower rotation periods.  

With the purpose of clarifying this point let us analyse the results of a study concerning the effect 

of “differential heating” i.e. the effect of varying the difference between the polar and equatorial 

radiative equilibrium temperatures, ∆TR.  This study was carried out by Stenzel and Storch (2004) 

[9] that used a modified version of ECHAM to incorporate the effect of differential heating but kept 

day rotation period constant and equal to 24 h.  

The results show that for ∆TR = 20ºC, only one Hadley cell develops in each hemisphere, even 

though the day rotation period is 24 h. We note that in figs. 1 and 2 we see the development of three 

cells at the same rotation period. For ∆TR = 30ºC, a weak Ferrel cell develops between the latitudes 

30º and 60º. The case shown in Fig. 3 c) corresponds to ∆TR = 60ºC and represents the case of the 

real atmosphere of the Earth. 

At higher temperature differences ∆TR ~ 130ºC-190ºC, the Polar cell disappears. Then, how to 

understand this in light of the currently accepted idea that the actual three cells (Hadley, Ferrel and 

Polar) exist as a consequence of the Earth’s rotation? Moreover, what role does temperature 

differences ∆TR play in the development of these cells?  

Next, by making use of a simple radiative model, we will see how Constructal theory contributes 

to enlighten these questions. Besides, Constructal theory does not assume any equator to pole 

temperature difference. This difference comes with the three-cell partitioning of atmospheric 

meridional circulation as a result of the application of the Constructal law. 

1.2   Simple constructal model of the Earth as a heat collector and radiator 

The Earth may be viewed as a closed system having two surfaces, a hot surface of area AH and 

temperature TH, which is heated by the Sun, and a cold surface (AL, TL) cooled by radiation to the 

universe. The Earth’s rotation rate is assumed to be fast enough for the surface temperature to be 
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considered independent of longitude. The surface temperature is taken as its climatologic value, and 

represented by two temperatures (TH, TL) that correspond to the equatorial, and polar zones (AH, 

AL), the net collector and the net radiator, respectively (Fig. 1). The total heat transfer surface is 

fixed: 

AH+AL=A  (1)

The equatorial surface receives the solar heat current: 

4
spHsH Tf)1(Aq σα−=  (2)

and radiates into space the heat current  

4
HHH T)1(Aq σγ−=  (3)

In eqs. (2) and (3) Ts, σ, f and α are the temperature of the sun as a black-body (5762K), the 

Stefan-Boltzmann constant (5.67 × 10–8 W m–2K–4), the Earth-sun view factor (2.16 × 10–5), the 

albedo of the Earth (0.35) and γ = 0.4 is the Earth's greenhouse factor, or the reflectance in the 

infrared region, respectively. The area AHp represents the projection of the area AH on a plane 

perpendicular to the sunrays and varies with the latitude θ as 

θπ
θθ+θ= sin2

cossinA/A HpH  (4)

The difference between qsH and qH is convected over the Earth’s surface, from AH to AL 

HSH qqq −=  (5)

In a similar way , the radiative balance of the net radiator is given by 

LSL qqq =+  (6)

where qSL and qL represent the solar radiation absorbed and the heat radiated by the cold surface 

respectively,  which are given by 
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4
sLpLs Tf)1(Aq σα−=   (7)

and 

4
LLL T)1(Aq σγ−=  (8)

In Eqs. (3) and (8) the temperature of the background, 4T∞ ~3K, has been neglected because of its 

small value, as compared with TL and TH and α and γ are assumed to have the same values in both 

zones. From Eqs. (1)-(8) and with x = AH/A= sinθ, we obtain the heat balance of the net collector as 

(see also, [6]) 

0)1(R4/qTx)x1(xxarcsinB 24
H

2/12 =



 γ−σπ−−



 −+  (9)

In a similar way the heat balance of the net radiator is given by 

0)1(R4/qT)x1()x1(xxarcsin2/B 24
L

2/12 =



 γ−σπ+−−



 −−−π  (10)

where 

494
s K101.41

1
2
fTB ×≅

γ−
α−

π
=  (11)

The fraction of the Earth’s surface area x,  allocated to the net colector is unknown. There is a 

continuous set of partitions, x, of the Earth’s surface, which are solutions of Eqs. (9) and (10). 

However, the Constructal Principle indicates that the area actually allocated to the collector is the 

one that maximizes the heat current, q, flowing towards the radiator. In this case, the Constructal 

Principle is expressed by the simple mathematical expressions [6]: 
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0
x
T,0

x
T,0

x
q

2
L

2
L

TH

>
∂

∂
=

∂
∂

=







∂
∂  (12)

which imply that maximum heat current is achieved when the temperature of the radiator has the 

minimum value compatible with the heat balance equation (9). In order to apply these conditions to 

the global system we fix the temperature TH of the equatorial zone (the net collector) thus giving 

rise to the family of curves q(x)TH. To each TH corresponds a curve with a well-defined maximum 

(e.g. qmax and xopt in Fig. 2, and to each maximum corresponds a temperature TL that is determined 

by combining Eqs. (9) and (10) in the form 

B
2

T)x1(Tx 4
L

4
H

π
=−+          (13) 

According to the Constructal Principle as defined by Eq. (12) the maximum heat flow 

corresponds to the minimum of TL, and this happens for TL=275.5 K, which enables the 

determination of the point of optimum performance as x = 0.434, TH=294.0 K and TL = 275.5 K 

(see, Fig 2).  

In a way similar to that lead to Eq. (12), Constructal Principle determines the conditions of 

optimum performance of the heat sink as [6] 

0
x
T,0

x
T,0

x
q

2
H

2
H

TL

<
∂

∂
=

∂
∂

=








∂
∂  (14)

Eq. (14) means that for maximum heat flow entering the net radiator (heat sink) the temperature 

of the hot zone (heat source) must have the highest value allowed by the energy balance defined by 

Eqs. (9) and (10). 

In order to find the optimum performance point (TH, TL, x) we fix TL in Eq. (10), determine the 

points (qmax, xopt), and then locate the maximal TH, as required by the second and third conditions in 



 

 8

Eq. (14).  Optimal performance of the net radiator (heat sink) is achieved for x = 0.8, TH = 288 K 

and TL = 265.5 K as shown in Fig. 3. 

 The latitude corresponding to the partition x=0.434 that determines the optimal performance 

of the net collector is 25°40' while 53°10' is the latitude that corresponds to the partition x=0.8 that 

defines the optimal performance of the net radiator. Figs. (4) and (5) show the results of both the 

optimization processes. 

The optimal collector is the equatorial zone of average temperature TH = 294.0 K, which is 

located between 25°40' N and 25°40' S and the non-optimized net radiator is the ensemble of two 

surfaces of average temperature TL = 275.7 K, which are located above the latitude 25°40'.   

The optimal radiator is the pair of polar caps above 53°10', with the temperature TL = 265.5 K, 

and the non-optimized heat collector is the equatorial zone of temperature TH = 288 K.  The two 

zones between the latitudes 25°40' and 53°10', north and south, contribute to the average 

temperature of the non-optimized collector and to the average temperature of the non-optimized 

radiator. In this way, the average temperature of this zone THL may be evaluated as 

0.434 × 294.0 K + (0.8 – 0.434)THL = 0.8 × 288 K (15)

and its value is THL = 281.5 K. 

Both the optimization of the collector and of the radiator gives the same value for the Earth’s 

averaged surface temperature, which is 283.5 K. This temperature is determined in one and the 

other cases (x = 0.434, TH = 294.0 K, TL = 275.5 K) and (x = 0.8, TH = 288 K, TL = 265.5 K) as  

<T>I = 0.434 × 294.0 K + (1 – 0.434) × 275.5 = 283.5 K (16)

and 

<T>II = 0.800 × 288 K + (1 – 0.800) × 265.5 = 283.5 K (17)
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The latitude 25°40' matches to the boundary between the Hadley cells and the Ferrel cells in both 

hemispheres and the latitude 53°10' approaches the latitude 60°, which is usually accepted to define 

the boundary between the Ferrel cells and the Polar cells.  

We believe that the equator to pole temperature difference plays the major role in the definition 

of the three-cell regime of meridional circulation in line with the results of Stenzel and von Storch 

[9]. At slow rotation, the role of Earths’ rotation rate is determinant because it reduces the 

temperature gradient between dark and illuminated hemispheres, but for values of day rotation 

periods lower that 24 h it does not affect significantly the position of the three cells, as shown by 

Jenkins [8]. 

Additionally, the results of this optimization find further experimental support as they provide 

values for the convective conductance on the horizontal direction along the meridian (D) that may 

be calculated in both cases as [10]  

)TT(Rπ2
q~D

LH
2 −

 
(18)

where q is the heat flow corresponding to the optimal performances of the collector and of the 

radiator, respectively, and TH and TL are the corresponding temperatures. The values of D that 

match the optimal performances of the collector and of the radiator are 0.96 W/m2 and 1.06 W/m2, 

respectively, and fall in the range 0.6-1.1 W/(m2K) of the empirically evaluated values of D [10]. 

The total entropy generated on the Earth’s surface may be calculated as 








 −+







−

−
+−=

HLsLH

2
0gen T

1
T
1q

T
1

T
)x1(

T
xRπ)α1(SS  

(19)

where the solar constant S0 = 1380 W/m2 is the solar radiation (power per unit area perpendicular to 

the sun rays), α is the albedo of the Earth, and Ts = 5762 K is the sun temperature. Fig. 6 shows the 
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entropy generation on Earth’s surface for the case of optimal collector and for the case of optimal 

radiator together and Table 1 shows a synopsis of the main results of the optimization process.  

 

Table 1. Values of several variables that match the cases of optimal collector  
and optimal radiator. 

 x lat TH(K) TL(K) q(W) D(W/m2) Sgen(W/K)
Optimal 
Collector 

 
0.434 

 
25º 40’ 

 
293.9 

 
275.5 

 
4.5×1015

 
0.96 

 
3.9×1014 

Optimal 
radiator 

 
0.8 

 
53º 10’ 

 
288 

 
265.5 

 
6.2×1015

 
1.06 

 
3.9×1014 

 

One of the two maxima of entropy generation occurs when the partition of the Earth’s surface 

corresponds to the optimal collector while the other maximum occurs for a partition very close to 

that corresponding to the optimal radiator. 

The first maximum matches the latitude of the boundary of the Hadley and Ferrel cells while the 

second one falls somewhat above to the boundary between the Ferrel and the Polar cells. As shown 

in Fig. 6, the entropy generation corresponding to each of Earth’s optimal partitions (x=0.434, 

x=0.8) has practically the same value 3.9×1014 W/K.  

We note that neither TH and TL nor the Earth’s surface partitions were assumed in advance. As it 

is usual with Constructal theory they came out of the optimisation process. 

1.3     Latitudinal heat transport by vertical loops 

The latitudinal temperature differences are the exergy source that powers the Earth’s meridional 

circulations. The available exergy is converted into potential energy with the help of gravity, trough 

buoyancy forces, and then into kinetic energy that is dissipated by the friction forces, which act as 

the brake of the flow, namely in the Earth’s boundary layer. Therefore vertical loops develop for 

meridional heat transport from the equatorial belt to the polar caps. The pressure difference that 

drives the boundary layer flow is given by [6] 
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( ) ( ) ξHgTTρβ~gHρρ~P∆ LHHL −−  (20)

It is opposed and balanced by the shear force thereby maintaining an average flow velocity given by 

2/12

LH L
H)TT(ξgβ10~v 








−  

          (21)

Here, ρ, g, H and L represent density, acceleration due to gravity, height of the boundary layer 

and distance between the two branches of the counterflow, respectively, β the coefficient of 

volumetric thermal expansion and ξ = (1– βgH/Rg)–1 a factor that results from the expansion and 

linear approximation of ρ = P/(RgT), namely, ρL – ρH = βρ(TH – TL) + kTρ(PL – PH), where kT is the 

isothermal compressibility, kT =ρ–1(∂ρ/∂P)T. 

The total heat flow transported by each vertical loop, which is supposed to develop 

symmetrically with respect to Earth’s rotation axis, is given by [6] 

2/3
LH2/3 )TT(Cq −=  (22)

Here C3/2 is a new kind of heat conductivity proposed by A. Bejan [6] that is given by 

σ)γ1(Rπ4

)x(W)x(LH)βξg()R/c(ρ12
C

2

2/132/3
gp

2/3
−

=
−

           (23)

where R is the radius of the Earth, L(x) and W(x) are known geometric functions of the fraction 

x of the Earth’s surface allocated to the collector, which represent the length of the loop boundary 

layer along the meridian and the width of the loop along the parallel, respectively.  

This huge loop is supposed to transport all the heat from the optimal net collector to the radiator. 

This heat flow is the input variable to Eqs. (20)-(23), which allow for the calculation of the average 

pressure difference between the two branches of the counterflow ∆P, the average latitudinal velocity 

v, and the C3/2 conductivity. These results and values of the variables corresponding to the optimal 

net radiator, which were calculated in an analogous way are shown in Table 2. 
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Table 2. Average velocity of the latitudinal flow, heigh of the boundary layer,  
pressure difference between the branches of the counterflow at Earth’s  

   surface, and C3/2 conductivity, for optimal collector and optimal radiator 
 v (m/s) H (m) ∆P (Pa) C3/2  (WK-3/2) 
Optimal collector 5.7 1110 995 3.04 × 106 
Optimal radiator 2.5 633 672 3.04 × 106 

 
 

The values of v, H, and ∆P, in Table 2 scale with the observed values of the meridional 

circulation. The average latitudinal velocity and the height of the friction layer are higher at the 

latitude 25°40' than at the latitude 53°10', which is in fair agreement with the observed wind 

intensity relation between the Ferrel westerlies at each of these latitudes.  The average latitudinal 

component of these winds points northward,  starts in the vicinity of latitude of 30° and reaches a 

maximum at the latitude 53° [11, p. 128].   

The average pressure in the equatorial zone is PH ~ (PE + Pθ)/2, and in the polar caps is PL ~ (Pθ 

+ PP)/2, where PE, PP and Pθ stand for the pressure at the equator, at the pole and at the boundary 

between the two zones, respectively.  By noting that ∆P =PH – PL = (PE – PP)/2, we find that the 

pressure differences between the two zones presented on Table 2 (i.e. 995 Pa and 672 Pa) give for 

(PE – PP)=2<∆P>~1667 Pa, which agrees in a scaling sense with the observed average mean sea-

level pressure difference between the equator and the poles (PE – PP) that is of order of 1500 Pa.  

However the most intriguing feature is that the C3/2 conductivity has exactly the same value in 

both cases. This conductivity comes out of the model of vertical convection loops. We may 

speculate that the optimisation of heat transfer on Earth’s surface implies vertical circulation loops 

as the heat transport mechanism.  
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3. Maximization of heat transfer performance at daily scale 

We analyse here the heat transfer between illuminated and dark hemispheres of Earth. The 

collector area corresponds to the illuminated part of the Earth surface, and the radiator corresponds 

to the dark part.  As the sun rays are practically parallel the collector area, the illuminated area is 

half of the Earth surface (x=AH/AL≅1/2). The excess heat in the illuminated hemisphere, the 

collector, is transported by the Earth's rotation (note that the boundary between the illuminated and 

the dark hemisphere is moving as the Earth rotates), while the rest is convected over the Earth 

surface (see Fig. 7).   

The Earth’s rotation transfers heat continuously from the illuminated hemisphere to the dark 

hemisphere even in the absence of convection, as the boundary between the illuminated and dark 

surfaces moves with a speed equal to the Earth rotation speed at the same latitude. A relatively 

small part is convected at the average velocity u, from the illuminated to the dark surface. Because 

the collector area is equal to the radiator area, the parameter that is allowed to vary in the 

constructal optimization of the flow configuration is the average velocity of the atmospheric air 

relative to the Earth surface. 

The heat flow from the collector at temperature TH to the radiator at temperature TL is given by: 

( ) ( )[ ] RHπΛu2π/U2TcρTcρq 0LpLHpHd +−=           (24)

Here U0 = 462 ms–1 is the Earth rotation velocity at the equator, 2U0/π., is the rotation velocity 

averaged over the meridian, H is the height of the friction layer, u is the average convection velocity 

of the planetary fluid relative to the Earth surface (Fig. 7), and Λ ~ 1.2 represents the mean ratio of 

total enthalpy to sensible heat in the air.  

By using the ideal gas law P=ρRgT, Eq. (24) transforms into 
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( ) RHπ2Λu
π

U
R
c

PPq 0

g

p
LHd 






 +−=  

(25)

which may be related to the total power dissipated by fluid friction on the Earth surface, wd = (PH 

– PL) u2πRH, as 








 += 1
uπ

U
R
c

Λwq 0

g

p
dd           (26)

The heat qd that flows to the cold region and afterwards is radiated into space, may also be 

written as 

4
L

2
d Tσ)γ1(Rπ2q −=  (27)

We note that that Eq. (26) represents the sum of two heat currents:  the current that is transported 

to the radiator by the Earth rotation in the absence of fluid flow relative to the Earth surface, that is 

uπ
U

R
c

Λwq 0

g

p
d0d =  

          (28)

and the current qdc convected by the fluid motion relative to the Earth surface 

g

p
dcd R

c
Λwq =            (29)

The Constructal Principle requires the fluid flow structure to develop on the purpose of 

maximizing the heat current qdc convected from the collector to the radiator. Because the 

partitioning of the Earth surface is fixed (x = 1/2), the optimization is made with reference to the 

other free parameters of the flow structure:  the velocity u and the height of the friction layer, H. 

Then, we combine u and H into a non-dimensional group, the Ekman number (Ek), with respect to 

which the convective heat current can be maximized.  
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In view of the fact that U/u >> 1, again with the help of the ideal gas law, P=ρRgT, from eqs. 

(26) and (27) we obtain 

Ek
εCT d

0
4
L ≅            (30)

where εd is a power density, 

u)PP()RHπ2/(wε LHdd −==  (31)

and ( )gp0 Rσ)γ1(4/cΛC −=  is a known constant and Ek is the Ekman number 

Hu2
uC

Ek
2

D

ω
=  

          (32)

Here CD ~ 0.01 represents the friction coefficient in the boundary layer [12]. The Ekman number 

represents the ratio of the friction forces CDρu2/H to the Coriolis forces 2ρωu. 

Since AH = AL, or x = 1/2, the overall radiative balance given by Eq. (13) is now modified to 

BTT 4
H

4
L π=+  (33)

The average convective velocity u is given by Eq. (21), which together with Eqs. (30)-(33) 

becomes 

22
D

2

2
0

1
2

1LH
RgβξCπ100

LU16
C,EkCTT =+=            (34)

Here C1 is a constant, ξ has the same meaning as in Eq. (21), and the brackets indicate average 

values in the interval [TL,TH]. Therefore, by combining the Eqs. (33), (34) and (30) we obtain 

Bπ
Ek
ε

CEkC
Ek
ε

C d
0

4
2

1

4/1
d

0 =+











+






   

        (35) 
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This equation expresses the power density εd as function of the Ekman number as shown in Fig. 

8. From the curve εd (Ek) and Eqs. (30) and (34) we determine TL and then TH. Next, Eqs. (31) and 

(32) together with Eq. (20) enable us to calculate the height of the friction layer as 

( )

2/1

LH

dD

EkgTT2
C

H 








ξβ−ω
ε

=  

 

       (36) 

 

In the calculations leading to Eq. (36) we took L/<ξ> ~ 1.2 R, which results from L = π1/2R. The 

average velocity u follows from Eq. (32).  From Eqs. (29) and (31) we determine the convective 

heat current qdc(Ek) that is shown in Fig. 9, and has a maximum at Ek=0.2.  

The curves corresponding to the average convective velocity, temperatures, height of the 

boundary layer and pressure difference, which was determined from Eq. (31), are shown in Fig. 10. 

Table 3 shows a synopsis of all results, including the overall entropy generation on Earth and the 

C3/2 conductivity, which were calculated from Eqs. (19) and (22), respectively. 

 

Table 3  Flow variables that result from optimisation of heat transfer between 
        illumiated and dark hemispheres 

qdc  
(W) 

TH  
(K) 

TL  
(K) 

D 
 (Wm-2)

u 
(ms-1) 

H 
(m) 

∆P 
(Pa) 

Sgen 
(WK-1 ) 

C3/2 
(K5/2) 

8.1 × 1014 287.4 280.4 0.47 4.5 2440 890 3.9 × 1014 2.5 × 106 
 

These predictions may be refereed against observational values. The main important aspects are: 

1. The average temperature difference TH – TL between day and night is 7 K. This 

agrees in order of magnitude with the average diurnal amplitudes observed on Earth, which 

for the maritime areas is around 3 K and for continental areas is around 10 K ([11], p. 44). 

2. The average temperature of the Earth’s surface is (TH+TL)/2~283.9 K, which is 

almost the same value that results from the optimization of the latitudinal heat transport. 
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3. The entropy generation rate calculated on the diurnal scale has the same value as that 

found from the optimization of the latitudinal heat transport in spite of the variables used in 

these two Sgen calculations being derived in very different ways. For the latitudinal heat 

transport, the heat current was determined as function of the Earth partition x, while for the 

diurnal scale it was determined as function of the Ekman number which involves the Earth 

rotation velocity, the height of the friction layer and the fluid flow velocity. 

4. Even though the temperatures (TH, TL) and the heat current at daily scale differ from 

those corresponding to latitudinal heat transport the variables defining the properties of the 

friction layer have values of the same order of magnitude. 

5. Dai and Wang [13] used pressure data of the period 1976-97 from meteorological 

stations covering the Earth’s surface and found that diurnal tides between dark and 

illuminated hemisphere exist in global surface pressure fields, with amplitudes of order 2 

mb. The theoretical results shown in Table 3 predict amplitudes of order 890 Pa ~9 mb. 

Even though the prediction did not match the observed values, it is of same order.  

6. The average heat flow between the illuminated and dark hemispheres (qdc) is roughly 

6 or 7 times lower than the poleward current. However, the convective conductance in the 

horizontal direction (D) and the conductivity (C3/2) both have values of the same magnitude 

as those obtained for the latitudinal transport. 

Another interesting remark comes from the analysis of the TH and TL curves in Eq. (10). The 

value of the Ekman number as well as those of all other variables in Table 3, came out of the 

optimisation of the heat flow. Two of these variables, the average velocity u, and the height of the 

boundary layer H, enter in the definition of Ek (see, Eq. (32)). The third variable is the angular 

speed of rotation of the Earth, which is an input variable to the model. It is known that the Earth 

rotation is continuously being slowed down due to ocean tidal friction therefore making the length 

of the day longer and longer by about 15 seconds per million years. At this rate the speed of rotation 
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will decrease 15% one billion years from now and the optimal Ekman number will go up to 0.23. 

Therefore the diurnal amplitude of temperature will increase up to 10 K and the Earth’s climate will 

be rather different from now. This is another varying parameter determining climate changes on 

Earth. 

 

2.     From Constructal theory to actual river basins 

Flow architectures are ubiquitous in Nature. From the planetary circulations to the smallest scales 

we can observe panoply of motions that exhibit organized flow architectures: general atmospheric 

circulations, oceanic currents, eddies at the synoptic scale, river drainage basins, dendritic crystals, 

etc. Fluids circulate in all living structures, which exhibit special flow structures such as lungs, 

kidneys, arteries and veins in animals, and roots, stems, leaves in plants.  

Rivers are large scale natural flows that play a major role in the shaping of the Earth’s surface. 

River morphology exhibits similarities that are documented extensively in geophysics treatises. For 

example, Rosa [14] in a recent review article gives a broad list of allometric and scaling laws 

involving the geometric parameters of the river channels and of the river basins. 

In living structures heat and mass flows occur for the same reason, i.e. dissipating minimum 

exergy they reduce the food or fuel requirement, and make all such systems (animals, and “man + 

machine” species) more “fit”, i.e., better survivors.  

Constructal theory views the naturally occurring flow structures (their geometric form) as the end 

result of a process of area to point flow access optimisation with the objective of providing minimal 

resistance to flow (see Bejan, [4]).  

Natural systems are complex and change in many ways. In the past, scientists realized that for 

understanding nature they had to focus their attention on simple and homogenous systems. Motion, 

as the change of relative position with time, is the ubiquitous phenomenon that called for 

explanation, and the principle of least action is the principle that unified motions from point to point 
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in a common picture. The constructal law is its counterpart, by allowing systems with complex 

internal flows to be described and understood under a unified view. 

 

2.1     Scaling laws of river basins 

River basins are examples of area to point flows. Water is collected from an area and conducted 

trough a network of channels of increasing width down to the river mouth. River networks have 

long been recognized as being self-similar structures over a range of scales. In general, small 

streams are tributaries of the next bigger stream in such a way that flow architecture develops from 

the lowest scale to the highest scale, ω (see Fig. 11). 

The scaling properties of river networks are summarized in well-known laws.  If Li denotes the 

average of the length of the streams of order i, Horton’s law of stream lengths [14, 15-17] is 

 L1ii RLL =−  (37) 

where RL is Horton’s ratio of channel lengths, while Horton’s law of stream numbers [14, 15-17] is 

 Bi1i Rnn =−  (38) 

where ni is the number of tributaries of a stream of order i, and RB is Horton’s bifurcation ratio. In 

river basins RL ranges between 1.5 and 3.5, and is typically 2, while RB ranges between 3 and 5, 

typically 4, [15]. 

The mainstream length Lω and the area Aω of a river basin with streams up to order ω, are related 

trough Hack’s law [14, 15, 18, 19]:  

 Lω = α(Αω)β (39) 

where α ~ 1.4 and β ~ 0.568 are constants [19]. 

If we define a drainage density Dω = LT/A where LT is the total length of streams of all orders and A 

the total drainage area and a stream frequency Fs= Ns/A, where Ns is the number of streams of all 

orders, then Melton’s law [14, 16, 20] indicates that the following relation holds: 
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 ( )2
ωs D694.0F =  (40) 

Other scaling laws relate discharge rate with river width, depth, and slope (see Rosa, [14]). 

 

2. 2     River networks as constructal fluid trees. 

  River basins are examples of area-to-point flow, which is a classical topic of constructal theory. 

Adrian Bejan has addressed this type of flows and optimized the channel network that minimizes 

the overall resistance to flow. A detailed treatment can be found one of his books [4]. Here we 

summarize the optimized area-to-point flow geometry when the permeability of a channel of width 

D is given by K = (1/12)D2 , which corresponds to Hagen-Poiseuille flow between parallel plates. 

Therefore, if Hi and Li represent the dimensions of the area allocated to each stream of order i (see 

Fig. 12) and ni is the number of streams of order i that are tributaries of each stream of order i+1, 

then the optimized values are shown in Table 4. 

 

Table 4 - The optimised geometry of area-to-point flow (channels with Hagen-Poiseuille  
flow, (Bejan, [4]) ( 0A/KK̂ = ; 2/1

0iiii )A/()L,H()L~,H~( = ; iii H/DΦ = ). 

Order iH~  iL~  in  

0 
2/1

0

6/16/16/5

Φ
K̂32  

6/16/16/5

2/1
0

K̂32
Φ

 - 

1 
6/16/1

2/1
0

6/1

K̂3
Φ2

 2/12/3

2/3
1

K̂2
Φ

 3/26/13/4

2/1
0

2/3
1

K̂32
ΦΦ

 

2 
2/12/1

2/3
1

K̂2
Φ

 
6/52/1

0
3/5

2/3
12

6/1

K̂Φ2
)ΦΦ(3

 
3/2

0
6/5

2/3
2

3/1

K̂Φ2

)ΦΦ(3
 

3 
6/52/1

0
3/2

2/3
12

6/1

K̂Φ2
)ΦΦ(3

 6/7
0

3/4

2/3
123

3/1

K̂Φ2

)ΦΦΦ(3  
3/2

0

2/3
23

3/16/1

K̂Φ
)ΦΦ(32

 

4 
6/7

0
3/1

2/3
123

3/2

K̂Φ2

)ΦΦΦ(3
 6/92/3

0
2/1

2/3
1234

2/1

K̂Φ2

)ΦΦΦΦ(3  
3/2

0

2/3
34

3/26/7

K̂Φ

)ΦΦ(32
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The void-allocation (channel) optimisation provides the additional relationships [4]: 

01 ΦΦ = ;   ( ) 02 Φ76Φ = ;   ( ) 03 Φ7760Φ = ;   ( ) 04 Φ118Φ =      (41) 

With eqs. (41), iL~ and in  may be rewritten in the forms shown in Table 5.  

 

Table 5. - The jointly optimised network parameters (minimization of the overall resistance to flow 
and optimisation of void (stream area) allocation) 
 iL~  in  

0 ( ) 2/13/1
0K̂Φ467.0 −  - 

1 ( ) 2/33/1
0K̂Φ357.0 −  ( )23/1

0K̂Φ331.0 −  

2 ( ) 2/53/1
0K̂Φ300.0 −  ( )23/1

0K̂Φ809.0 −  

3 ( ) 2/73/1
0K̂Φ312.0 −  ( )23/1

0K̂Φ883.0 −  

4 ( ) 2/93/1
0K̂Φ414.0 −  ( )23/1

0K̂Φ990.1 −  

 

Both iL~ and in  depend uniquely on 3/1
0K̂Φ − which in turn is the product of two terms: (i) 0Φ that 

represents the ratio of the area of the smallest (first order) channel to the area of the porous layer 

that feeds it and (ii) the dimensionless permeability K̂ raised to the power (–1/3).  

As none of these parameters depend upon the particular geometry of the layer we conclude that 

despite the relationships of Tables 4 and 5 were derived from constructs of regular geometry as that 

of Fig. 12, the relationships in Table 5 are applicable to any hierarchized stream network 

irrespectively to its particular geometry. Channel hierarchy is understood in the Hortonian sense, 

i.e. all streams of order i are tributaries of streams of order i+1. 

River basins are examples of area-to-point flows that approach the Hortonian hierarchy, 

therefore  the constructal rules defined in Table 5 for stream networks up to order 4 must hold, at 
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least approximately. For example, with the use of Table 5, the ratios of the lengths of consecutive 

streams are given in Table 6.             

 

Table 6 - Constructal Horton ratios of stream lengths, RL.  

01 L~L~  12 L~L~  23 L~L~  34 L~L~  

3
1

0K̂Φ758.0
−

 3
1

0K̂Φ847.0
−

 3
1

0K̂Φ038.1
−

 3
1

0K̂Φ327.1
−

 

 

We see that the ratio of the characteristic lengths of streams of consecutive order 

3/1
0i1i K̂Φ~L~L~ −

− is practically constant as required by Horton’s law of stream lengths (Eq. 37). 

To check if the constructal relations in Table 5 match Horton’s law of stream numbers (Eq. 38) 

we calculate the number Ni of streams pertaining to order i, which is given by: 

  12i1iii n...nnnN ××××= −−  (42) 

where nj is the number of streams of order j that are tributaries of each stream of order j+1. Taking 

into account Eq. (42), the ratio of the number of streams of order i-1 to the number of streams of 

order i is given by: 

 i1ii nNN =+  (43) 

which is the number of streams ni of order i already shown in table 5. We conclude that these ratios 

are almost of the same order, i.e. ( )23/1
01ii K̂Φ~NN −

+ therefore matching Horton’s law of stream 

numbers, closely. Recalling that the ratio of stream lengths is 3/1
0i1i K̂Φ~L~L~ −

+ , we conclude 

that 

 ( )2
i1i1ii L~L~~NN ++  (44) 
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i.e., the ratio of stream numbers is of the order of the square of the ratio of stream lengths. As stated 

in the introduction, in real river basins Lι/Lι−1 = RL ranges between 1.5 and 3.5, and is typically 2, 

while Nω-1/Nω = RB ranges between 3 and 5, typically 4 [14, 15, 17], i.e. the constructal rule evinced 

by Eq. (44) is closely verified for the real river basins. 

Next we will show that Hack’s law, (Eq. 39) also follows from the constructal relationships of 

Tables 4 and 5. Noting that iii LHA =  and using Table 4 and Eqs. (41) we obtain the sub-basin 

areas shown in Table 7.  

 

Table 7 – Dimensionless area of constructal river basins up to order 4 

0A~  1A~  2A~  3A~  4A~  

1 ( )23/1
0K̂Φ330.0 −  ( )43/1

0K̂Φ212.0 −  ( )63/1
0K̂Φ188.0 −  ( )83/1

0K̂Φ374.0 −  

 

The constructal relationship between the mainstream length Lω and the area Aω of a river basin 

with streams up to order ω is determined by using this table together with Table 5, and is shown in 

Table 8.  

 

Table 8 – Constructal Hack’s exponent β for river basins up to order 4. 

750.0
11 A~L~  625.0

22 A~L~  583.0
33 A~L~  563.0

44 A~L~  

 

Gray [21] found β  ~ 0.568 while Muller [22] reported that β ~ 0.6 for river basins less than 8000 

mi2, β ~ 0.5 for basins between 8000 and 100,000 mi2 and β ~ 0.47 for basins larger than 100,000 

mi2 (see also [19]).        

The constructal rule for the exponent β is the following: 
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ω4

1ω2βω
+

=  (45) 

We see from Eq. (45) that as the order of the river basin increases, β approaches 0.5 in good 

agreement with Muller’s findings for actual river basins. 

In order to check Melton’s law, first we calculate the drainage density Dω as: 

 ωω
ω

1i
iiω L~H~L~nD ∑=

=
 (46) 

and the stream frequency as 

 ωL~H~NF ω
ω

1i
iω ∑=

=
 (47) 

By using Tables 1 and 2 and with the help of Eq. (42) we obtain: 

( ) ( ) ++=
−−− 5.03/1

0
3/1

04 K̂Φ135.0K̂Φ182.0D ( ) ( ) 5.23/1
0

5.13/1
0 K̂Φ443.0K̂Φ345.0

−−−− +  (48) 

and 

 ( ) ( ) +++=
−−−− 43/1

0
23/1

04 K̂Φ155.1K̂Φ381.01F ( ) 63/1
0K̂Φ424.1

−−  (49) 

We note that the drainage density of a stream of order 0 is 2/1
00 )HL( while the stream 

frequency is 1, which is its lowest limit. ( )83/1
0K̂Φ374.0 −  

The variation of F4 with D4 is shown in Fig. 13. We see that the constructal relations (48) and 

(49) follow Melton’s law quite approximately in the range 1 < D4 < 100, i.e. F4 is proportional to D4 

raised to the power 2.45.  

In accordance with the Constructal Law, the scaling laws of river basins evince the organized 

flow architectures that result from the underlying struggle for better performance, by reducing the 

overall resistance in order to drain water from the basins the fastest.  

 

2.3     A constructal model of river basin development 
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Constructal theory views the naturally occurring flow structures (its geometric form) as the end 

result of a process of area to point flow access optimisation with the objective of providing minimal 

resistance to flow. For example, the features of the river drainage basins can be anticipated based on 

the area-to-point flow access optimization presented in section 2. The generation of dendrite-like 

patterns of low resistance channels can be understood based on a simple model of surface erosion 

together with a principle that is invoked at every step. The model assumes that the changes in the 

river channel are possible because finite blocks can   be   dislodged and entrained in the stream. As 

a rule (principle), every squared block of area L2 and height W, is dislodged whenever the pressure 

difference ∆P across the block surpasses the critical force needed to dislodge it, i.e.  ∆PLW > τL2, 

([4], [14]). The flow resistance decreases with block removal. Further increase in the flow rate may 

create the conditions for the removal a second block and for the repetition of the process. A 

macroscopic dendrite-like structure emerges progressively (see Fig. 14) while flow resistance 

decreases. 

Other impressive features of river morphology are the sinusoidal shape of river channels, which 

wavelength (λ) is proportional to the channel width (λ ~W) that, in turn, is proportional to the 

maximum depth, w ~ d. Constructal theory links geometry to performance of river flow and 

explains how this geometric relations result from the minimization of global resistances (Bejan [4]. 

The bottoms of river channels are round or nearly round. The same occurs in living structures 

(blood vessels, pulmonary airways, etc.). Calculations show that the flow resistances decrease as the 

shape becomes rounder. Although the round shape is the best, the nearly round shapes perform 

almost as well ([4], [24]).  

 

3.     Constructal theory of the lung tree 
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The Constructal law, (Bejan [4]), states that if a system has freedom to morph it develops in 

time the flow architecture that provides easier access to the currents that flow trough it. In all 

classes of flow systems (animate, inanimate, engineered) the generation of flow architecture 

emerges as a universal phenomenon. According to Constructal theory the optimal structure is 

constructed by optimizing volume shape at every length scale, in a hierarchical sequence that begins 

with the smallest building block and proceeds towards larger building blocks (which are called 

“constructs”). A basic outcome of Constructal theory is that system shape and internal flow 

architecture do not develop by chance, but result from the permanent struggle for better 

performance and therefore must evolve in time [25]. 

Bejan used Constructal theory to successfully explain some allometric laws of living 

structures namely the rhythm of respiration in animals in relation with body size [27], the relation 

between metabolic rate and total body volume [4, 26], and the heartbeat frequency in relation to 

metabolic rate [4, 27].  Reis et al. [28] focused on the structure of the pulmonary airflow tree, which 

starts at the trachea and bifurcates 23 times before reaching the alveolar sacs. Until now, the reason 

for the existence of just 23 bifurcations in the respiratory tree has remained unexplained in the 

literature. Has this special flow architecture been developed by chance or does it represent the 

optimum structure for the lung’s purpose, which is the oxygenation of the blood?  

 

3.1     Purpose of the lungs and trade-off between competing trends  

Even though every living fluid tree works with a specific purpose, all share some general 

features. For example, every living fluid tree works either for the delivery of substances to a volume 

or a surface where a process occurs, e.g. a chemical reaction, or for the removal of other substances 

including the products of chemical reactions. At the smallest scale diffusion dominates while 

channelling of the flow and development of flow architectures occur at higher scales. Fig. 12 

illustrates how a first channel of width D0 and conductivity K0, collects the fluid that permeates the 
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rectangular area and delivers it to a wider channel (D1, K1). Channels organize hierarchally in a 

flow architecture in which channels of lower conductivity are tributaries of a channel of higher 

conductivity.  

As illustrated in Fig. 12, increase in the number of the elementary areas through which fluid 

diffuses implies increasing number of channels, and therefore increasing resistance to fluid flow. 

On the other hand, if the number of channels is reduced, the resistance to fluid flow is also reduced 

accordingly but in this case, the elemental rectangle has to have a larger area, therefore increasing 

the resistance to fluid diffusion. The optimal flow architecture is the one that results from the trade-

off between these two competing trends.   

In line with Bejan’s Constructal law, we believe that every living system has developed in 

time the flow architecture that provides easier access to the currents that flow trough it.  As a 

leading example of a living flow structure, we focus on the human respiratory tree. By using 

Constructal theory, Reis et al. [28] addressed the study of the respiratory tree as a flow system with 

duct flow resistances (trachea and bronchial system) and diffusive resistances.  In their study, to 

evaluate and compare the flow resistances, was considered that oxygen and carbon dioxide flow 

within the respiratory tree (bronchial tree plus alveolar sacs) as driven by the chemical potential. 

This is a rather convenient potential because pressure differences that drive the isothermal airflow 

in the bronchial system may be expressed in terms of chemical potential differences trough the 

generalized Gibbs-Duhem equation, ε∆P∆ρµ∆ 1 += − , where ε  stands for kinetic energy per unit 

mass (see [28] for details). The bronchial tree was assumed to be composed of cylindrical channels 

with Hagen-Poiseuille flow. Even though the bronchial channels are not perfectly round, Bejan has 

shown that nearly round channels perform almost as well as the exactly round channels [25]. 

For laminar flow, Constructal theory indicates that the minimum flow resistance at a 

bifurcation is achieved if the ratio between consecutive duct diameters is: 
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 Dn/Dn-1 = 2-1/3  (50) 

while the ratio of the respective lengths, is 

 Ln/Ln-1 = 2-1/3                              (51) 

These relations that are theoretically predicted by Constructal theory were discovered empirically 

long ago and correspond to the so-called Murray’s laws. 

After having considered every detail of the flow between the entrance of the trachea and the 

alveolar surface where oxygen meets the blood and carbon dioxide is removed from the blood, 

including the resistances due to bifurcations, Reis et al. [28] showed that the global resistance (J s 

kg-2 ) to oxygen transportation within the respiratory tree is of the form, 

                
( )[ ]

( )
ρφDLπ

2TR13.0
)1N(

ρφφDπ
Lν256

R
oxox0

3/N2
oxg

ox0ox
4
0

0
ox

−

++
−

≅                   (52) 

In Eq. (52), N matches to the number of bifurcations of the bronchial tree, ν is the kinematic 

viscosity of the air, L0 and D0 represent trachea length and diameter, respectively, T is temperature, 

φox and (φox)0 represent the relative concentration of oxygen in the alveoli and in the outside air, 

respectively, Dox is the diffusivity of the oxygen in the air, Rg is the air constant and ρ stands for the 

density of the air. 

The first term in the r.h.s. of Eq. (52) represents the global channel flow resistance 

(bronchiolar tree) while the second term matches to the global diffusive resistance to oxygen 

transport in the alveoli. Equation (52) with the corresponding variables holds also for the resistance 

to carbon dioxide flow in the respiratory tree. These resistances can be evaluated by assuming a 

body temperature of 36ºC and taking al pertinent values at this temperature. The average value of 

oxygen relative concentration within the respiratory tree, φox, may be evaluated from the alveolar air 

equation in the form: ((φox)0-φox)Q-S=0, where (φox)0 ~1/2(φair+φox) and φair are the oxygen relative 

concentration at the entrance of the trachea, and in the external air, respectively, Q is the tidal 
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airflow and S is the rate of oxygen consumption. With (φox)air=0.2095, Q~6×10-3 m3/min and 

S~0.3×10-3 m3/min we obtain φox ~ 0.1095. The value of the average relative concentration of 

carbon dioxide in the respiratory tree, φcd=0.04. In this case we used S=0.24×10-3 m3/min since the 

respiratory coefficient is close to 0.8 and (φcd)air ~ 0.315×10-3. Anatomic treatises [29, 30] indicate 

that L0 is typically 15 cm, while the trachea diameter, D0, is approximately 1.5 cm. The global 

resistances to oxygen and carbon dioxide transportation in the respiratory tree are plotted against 

number of bifurcations in Fig. 15. 

The minimum of each resistance occurs close to N = 23.  This same result can be obtained 

by finding the number of bifurcations Nop analytically that matches to the minimum of the global 

resistance (see Eq. (52)). This minimum is given by:  
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With the same values used for the respective curves in Fig.16. we found Nop = 23.4 and Nop 

= 23.2 for the oxygen and the carbon dioxide transport, respectively. As the number of bifurcations 

must be an integer we conclude that it must be 23.  

A first result is that the human respiratory tree that bifurcates 23 times between the trachea 

and the alveoli is optimized both for oxygen access and for carbon dioxide removal. The trade-off 

between resistance to flow in the bronchial tree and resistance to oxygen and carbon dioxide 

diffusion in the alveoli is achieved by the human respiratory tree, which has been optimized by 

nature in time. A second outcome is that the actual flow architecture of the respiratory tree can be 

anticipated theoretically based on Constructal theory. 

3.2     Other constructal features of the lung tree 
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We see from Eq. (53) that the number of bifurcations that matches to minimal global 

resistance to oxygen access an carbon dioxide removal is function of several environmental 

variables such as normal body temperature, oxygen and carbon dioxide diffusivities and 

concentrations in the air, air kinematic viscosity and only one morphological parameter, which is 

the length 0
2
0 LDλ = . As every individual lives with the same the average environmental 

parameters, we conclude that if the respiratory tree with 23 bifurcations is a characteristic of 

humankind therefore the number λ is also a characteristic of humankind. In other words, the ratio of 

the square of trachea diameter to its length is the same for every human being. This theoretical 

result is anticipated by Constructal theory and now awaits confirmation by the anatomists. 

Another constructal relationship involving the length λ, the area allocated for the respiratory 

process (the total area of the alveoli) A, the volume of the lungs V, and the length of the respiratory 

tree (between the entrance of the trachea and the surface of the alveolus) L, was also derived by 

Reis et. al.  [28] and is the following:  
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ox0oxoxg

oxox

0

2
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φDν
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D
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−
==                                    (54) 

From Eq. (5) we conclude that the non-dimensional number AL/V, determines the 

characteristic length λ=D0
2/L0, which in turn determines the number of bifurcations of the 

respiratory tree by Eq. (53). This constructal relationship may be summarized as follows: “The 

alveolar area required for gas exchange A, the volume allocated to the respiratory system V, and the 

length of the respiratory tree L, which are constraints posed to the respiratory process determine 

univocally the structure of the lungs, namely the bifurcation level of the bronchial tree.” Here we 

may observe the realm of Constructal theory, which is minimization of global resistances to fluid 

access under geometric constraints imposed to the process.  
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FIGURE CAPTIONS 

Fig. 1 Earth as a collector/radiator. The surfaces AH and AL correspond to net collector and net 

radiator, respectively and θ represents latitude. The heat current, q, transfers to the net radiator the 

excess of heat in the net collector.  

Fig. 2 For each TH the heat flowing from the net collector (the heat source) q, shows a well-defined 

maximum, which determines the temperature of the heat sink, TL. Maximization of the heat flowing 

from the net collector occurs at x = 0.434, TH=294.0 K and TL = 275.5 K. 

Fig. 3 For each TL the heat flow entering the net radiator (the heat sink) q, shows a well-defined 

maximum, which determines the temperature of the heat source, TH. Maximization of the heat 

entering the net radiator occurs at x = 0.8, TH=288.0 K and TL = 265.5 K.  

Fig. 4 The curves TH(x) and TL(x) that match the heat balance equations (9) and (10). The optimal 

performance of the net collector matches a fraction x=0.434 while that of the optimal net radiator 

corresponds to x=0.8. 

Fig. 5 Representation of the partition of the Earth’s surface that corresponds to the optimization of 

the net collector and of the net radiator, respectively. 

Fig. 6 Total entropy generation on Earth’s surface as function of the latitude of the boundaries for 

optimal collector and for optimal radiator. 

 

Fig. 7 Heat transfer between the illuminated and dark hemispheres. Heat is transferred within a 

current at a rate equal to the Earth’s average peripheral rotation speed U, and a convective current 

of average speed, u. 
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Fig. 8 Friction power intensity, see Eq. (35), shown against Ekman number. The maximum power 

intensity occurs close to Ek=5.5. 

 

Fig. 9 Heat flow convected by Earth’s circulations from the illuminated to the dark hemisphere. 

Maximum heat transferred matches Ek=0.2. 

 

Fig. 10 Temperatures of the illuminated and dark hemispheres TH and TL, respectively, average 

convection velocity u, pressure difference ∆P, and height of the boundary layer H, plotted against 

Ekman number Ek. 

 

Fig. 11 River network with streams up to order ω. 

 

Fig. 12 Area-to-point flow. The fluid diffuses on the surface of the elemental area before it reaches 

the channel of width D0 that delivers it to a higher conductivity (K1) channel. Complex flow 

architecture may be constructed by repeating the process at higher scales. 

 

Fig. 13  For a river basin of order 4 the constructal relationships indicate that steam frequency is 

proportional to drainage density raised to a power of 2.45, which is close to 2 (Melton’s law). 

 

Fig. 14 Constructal dendrite-like structure resulting from a constructal model of river basin 

development (Bejan [4]) 

 

Fig. 15 Total resistances to oxygen and carbon dioxide transport between the entrance of the trachea 

and the alveolar surface plotted as function of the level of bifurcation (N). The minimum resistance 

both to oxygen access and carbon dioxide removal matches to N = 23. 
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Fig. 2  
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Fig. 3  
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Fig. 4 
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Fig. 5  
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Fig. 7  
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Fig. 8  
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Fig. 9  
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Fig. 10  
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Fig. 11  
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Fig. 12  
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Fig. 13  
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Fig.14  
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