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Preface

NONLINEAR DYNAMICS OF ELECTRONIC SYSTEMS 2004 (NDES 2004) is the 

twelfth in a series of international specialist workshops on Nonlinear Dynamics of 

Electronics Systems, since 1993, when the first NDES workshop took place in Dresden.

Since then, the NDES has steadily increased its impact in the scientific community,

becoming a truly international event, the largest of its kind in Europe. 

In 2004, the workshop brought together specialists in engineering and applied sciences, in 

physics and geophysics and in mathematics, in order to provide an opportunity to meet in a 

low-cost informal setting to address new theoretical and practical results, novel analysis 

and design methods in nonlinear dynamic systems and circuits and to discuss open 

problems in nonlinear science in general. 

NDES2004 has been organized and hosted by the Centro de Geofísica de Évora (Centre of 

Geophysics of Évora) of the University of Évora, Portugal. Évora is, since 1986, a

UNESCO World Heritage Site. 

This book of proceedings contains all accepted papers, distributed among the following

subjects: Circuit systems, Chaos, Stability and Control, Nonlinear Time Series Analysis,

Chaos in Earth Sciences, Econophysics and Econometrics, Biological Systems and 

Synchronization.

We are very grateful to the following sponsors: Fundação Eugénio de Almeida, Fundação 

Calouste Gulbenkian, Fundação para a Ciência e a Tecnologia, Câmara Municipal de 

Évora, Banco Espírito Santo, CARMIM – Reguengos de Monsaraz and Universidade de 

Évora.

We are also very grateful to the invited speakers for contributing to NDES2004 and for

meeting our deadlines.

We express our warm thanks to all the technicians that enthusiastically collaborated to

make this event a pleasant reality; in particular we would like to mention the contribution 

of Luis Almas (University of Évora). 

Finally we also thank all participants for their contributions and for coming. We wish all a 

very productive and enjoyable stay in Évora! 

Évora, April 15, 2004 

The Editors 
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Abstract— Dunes are aerodynamic instabilities of
a mobile ground. Only recently the equations of mo-
tion of a free granular surface born by air and gravity
have been established. I will present the equations
and analyse their stability. A numerical solution gives
very good quantitative agreement with field measure-
ments. As function of wind velocity and the amount of
sand various patterns are reproduced. I will discuss
in particular Barchan dunes that under certain condi-
tions behave like solitons and can in other cases breed
offspring. Also practical applications like protection
against desertification will be discussed.

I. INTRODUCTION

Everybody knows the majestic wave-like shapes of
dunes in the desert. Sand dunes develop wherever
loose sand is driven by a fluid (air, water . . . ) that
lifts grains from the ground and entrains them into
a surface flow. The diverse conditions of wind and
sand supply in different regions on Earth give rise to
a large variety of different shapes of aeolian dunes
[1], [2], [3]. Moreover, dunes have been found on
the sea–bottom and even on Mars. Despite the long
history of the subject, the underlying physical mecha-
nisms of dune formation are still not very well under-
stood. How are aerodynamics (hydrodynamics) and
the particular properties of granular matter acting to-
gether to create dunes? How is the shape of a dune
maintained when it grows and moves? What deter-
mines the size of dunes? Due to the fact that neither
now nor in the near future we will be able to simulate
dunes on the grain scale (an average barchan com-
prises 10�� grains), we concentrate in the following
on an effective continuum model that can be applied
to sand dunes or other geomorphological problems on
a large scale. Due to the highly complicated physi-
cal processes involved (saltation, turbulent wind) and

the wide range of length and time scales to be cov-
ered — from the dynamics of single sand grains, the
formation of ripples, to the genensis and migration of
dune fields, the time and length scales span over more
than seven orders of magnitude — the derivation of
the model will not be given here. We will instead af-
ter reviewing our experimental measurements present
the basic elements of the model and finally compare
the two.

The simplest and best known type of dune is the
barchan dune shown in Fig. 1, shaped in a crescent,
which occurs if the wind comes steadily from the
same direction throughout the year and if there is not
enough sand to cover the entire surface. Barchan
dunes move proportionally to the wind velocity and
inversely proportionally to their height. They are en-
countered for instance in Peru [4], [5], [6], [7], in
Namibia [8] and Morocco [9]. On these dune fields,
hundreds of barchans can be found, generally all of
the same size. The dunes have heights between 1.5
and 10 m, while their bases are typically 40 to 150 m
long and 30 to 100 m wide. The windward or stoss-
side of the dune has typical slopes between 8� and
20� and is limited by a sharp edge, called the brink.
The brink coincides in many cases with the crest of
the dune and separates the slip face from the dune’s
windward side. Roughly speaking, its section is a
parabola-like curve reaching from the tip of one horn
to the point of maximum slip face height and back
to the tip of the other horn. Despite the fact that for
more than 50 years geologists and geographers have
been measuring dunes in the field and have obtained
data on height, width, length, volume and dune veloc-
ity, very little is yet known [10], [11] about the exact
quantitative shape of barchans. From a mathematical
point of view, the barchan dune is a symmetrical ob-
ject in the wind direction, but in nature there are many
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Fig. 1. Barchan dunes near Laâyoune, Morocco. The dune
in the front, on the left side was measured in detail dur-
ing our field trip in May 1999, see [14]..

factors, like non-steady winds or inclined ground sur-
faces leading to asymmetrical shapes. Numerical sim-
ulations to predict the evolution of barchan dunes and
their exact shape have been performed by [12], [13].

II. EXPERIMENTAL MEASUREMENTS OF A

BARCHAN DUNE

A. Dune Morphology

Qualitatively the crescent-like shape of the barchan
is well known. The first measurements concerning
barchan dunes and their morphologic relationships
were performed by Coursin (1964) [15] in Maurita-
nia and Finkel (1959) [4] in the Pampa de La Joya in
southern Peru. Hastenrath (1967,1987) [5], [6] anal-
ysed barchans in the same area and revisited the site
20 years later. Additional investigations in the same
field were undertaken by Lettau and Lettau (1969).
[7] Slattery (1990) [8] measured barchan dunes in
Namibia. However, they did not measure the en-
tire shape of the dune, but only the typical lengths.
Our own field measurements [14] were performed in
a dune field in the Sahara desert, located in south-
ern Morocco (former Spanish Sahara) near the city of
Laâyoune.

We define for each horn, the lengths ��, �� and the
widths ��, �� independently, as did Finkel (1959)
[4]. The orientation of the measuring axis is chosen
according to the wind direction, which coincides with
the symmetry line for a totally symmetric dune. Fur-
thermore, we introduce the length of the slip face ��
and the length �� from the dune’s toe on the windward
side to the brink. Finally, the height of the slip face �
is defined at the highest point of the brink, which is
the intersection of the brink and the longitudinal cen-
terline of the dune.

The relationship between the width of the horns
� � �� ��� and the height � of the slip face has
been studied many times. An overview can be found
by Hesp and Hastings (1998). [10] A linear relation-
ship was found between the height � and the width

of the horns � .

� � ��� � �� (1)

For the management of dune movement the volume
� of a dune is one of the most interesting features,
apart from the rate of movement ��. Together they
determine the bulk flux �� of sand transported by the
dunes.

�� � �������� (2)

To obtain the total flux ��, in addition to the bulk flux
the inter-dune-flux ��, has to be taken into account.

�� � �� ��� (3)

A study of these fluxes has been performed by Sarn-
thein and Walger (1974) [16]. In the following we
concentrate on the bulk flux and the dune volume.

According to Oulehri (1992) [9], the rate of move-
ment of the dunes in the area of Laâyoune is 32 m yr��

for a dune of 9 m height. The bulk density of the
dune sand is 1670 kg m��, on average. Using these
data and the calculated volume of 23 000 m� for dune
7, we obtain a flux of 1.2 million t m�� yr�� or
736 000 m� yr��. Lettau and Lettau (1969) [7] es-
timated a bulk flux of 20 550 m� yr�� for an average
barchan of the Pampa de La Joya whose height was
3 m. A large barchan with a height of 5.2 m gave a
bulk flux of 60 000 m� yr��.

The overall length � of a barchan is the sum of the
length �� from the windward foot of the dune to its
crest, the length of the slip face ��, and the average of
the horn lengths �� � ��� � ���	�

� � �� � �� �
�� � ��

�
(4)

This definition uses four lengths, of which only the
length of the slip face �� has an obvious dependence
on the height � ,

�� �
�

���

� (5)

where � is the angle of repose with typical values be-
tween 31� and 35�. This angle is an intrinsic property
of the sand and is therefore independent on the aeolian
processes.

Finkel [4] reported for the horn length.

�	 � �	� � �	 (6)

Further the ratio of the horn length �� to the stoss-
side length �� also depends on the dune’s height.
This shows clearly that the relative position of the slip

N  D  E  S        2  0  0  4

10



-0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

normalized length ~x

Fig. 2. Profile along the symmetry plane of the dunes
(thin lines) using normalized variables and the standard
parabola (thick line) from [14].

����������

Fig. 3. Sketch of a small and a large dune.

face within the whole dune varies from small to large
dunes and that the ratio of horn length to total length
increases with the height as shown in Fig. 3. This dis-
proves scaling invariance of barchan dunes. The size
scaling of Barchans can be used to put them all on top
of each other by rescaling the axis for each dune and
using dimensionless variables. This is done for the
longitudinal cross section in Fig. 2. We see that on
the windward part the shape is a parabolloid and the
brink position �� moves to the right for larger dunes.
In fact �� is a linear function of the height. There-
fore we have a deviation from perfect size scaling as
shown in Fig. 3. Looking from the top, the brink line
has also the shape of a parabola.

B. Wind velocity and sand flux

Correlated measurements of the wind velocity �
and the sand flux � have been performed [17] on a
large barchan dune near the beach of Jericoacoara (see
Fig. 4) during the first week of December 2000, at the
end of the dry season. The dune has approximately

Wind direction

Fig. 4. Aerial photography of the coastal dune field near
Jericoacoara.

34 m in height, a width of 600 m, and the length of its
windward side is 200 m. When a fully turbulent atmo-
spheric boundary layer develops over a flat surface it
gives rise to a logarithmic velocity profile ���� [18],

���� �
��
�

��
�

��
� (7)

where �� denotes the shear velocity, �� the roughness
length of the surface, and � � ��� the von Kármán
constant. The shear velocity �� has dimensions of
velocity but is defined in terms of the shear stress
� � 	air�

�
�

and density 	air of the air. According to
Hunt et al. [19] the height 
 of the shear stress layer
can be obtained implicitely through


 �
����

�� 
���
� (8)

where � is the characteristic length of the dune which
is measured from the half height of the windward
side to the crest, according to the definition of [19].
From Eq. (8), we obtain for � � ���m and a rough-
ness length �� � ���� m, a height of this layer of

 � 	��m (
 � �m for �� � ���� m). Hence, we
placed the anemometers at a height of 1 m that is well
inside the shear stress layer. One should note that it is
very difficult to measure the wind velocity with stan-
dard anemometers within this layer for small dunes.
This is the main reason for choosing a large dune. A
reference anemometer has been placed approximately
300 m upwind of the dune’s foot and has been kept
there during all the measurements. With a second
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anemometer, we measured the average velocity �� ev-
ery 24 m on the central profile during 10 minutes. Fi-
nally, we normalized the average velocity ���� by the
average velocity in the same period obtained from the
reference anemometer, ������. By doing so, we could
get rid of the long term (� 10 minutes) variations in
the wind speed time series throughout the day and ob-
tain the shear velocity ���� through

� � ����� �
����
���

�
����

������
� (9)

where ����� is the dimensionless shear velocity pertur-
bation of the air caused by the dune and ��� is the
undisturbed shear velocity far upwind of the dune. ���
can be calculated assuming a typical logarithmic pro-
file from turbulent flow Eq. (7). During our measure-
ments, the wind was blowing quite constantly and had
an average value of 7.5 m s�� at the reference station.
Assuming a roughness length �� � ��� � ���� m,
we obtain from Eq. (7) the undisturbed shear veloc-
ity over the plane ��� � ����m s��. The averaged
and normalized measured shear velocities are plotted
in Fig. 5.

We also measured the sand flux on the central slice
of the dune using cylindrical traps with a diameter of
5 cm and an opening of 1 cm at the front. The back–
side of the traps have an opening of 2 cm covered by
a fabric with pores smaller than the grain diameter.
The traps were placed at the same positions where the
wind speed has been measured. From the mass �
of the collected sand, the collection time � , and the
width � of the opening, we calculated the sand flux
	 � �
	� �
. The measured sand fluxes are shown
in Fig. 6.

III. THE MODEL

Since we are interested in the formation and
movement of dunes, the important time scale of our
problem is defined by the erosion and deposition pro-
cesses that changes the surface. A significant change
of the surface happens within some hours or even
days. In contrast to this, the time scale of the wind
and the saltation process is of the order of seconds and
therefore several orders of magnitude faster. Hence,
we will use in the following stationary solutions for
the wind field and the sand flux. Similarly we ne-
glect the finite life time of avalanches (a few seconds)
and consider them as instantaneous compared to the
movement of the dunes. The separation of the differ-
ent time scales and the resulting approximations lead
to an enormous simplification, because it decouples
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Fig. 5. The circles show the measured shear velocity
�� and wind speed ��� � �m� normalized by their
reference values ��� and ���� � �m�, respectively.
The solid line depicts the prediction of Eq. (11) using
the measured height profile ���� shown in the bottom
curve (crosses). The depression at the dune’s foot is
about 0.8 and the maximum speed–up at the brink is
approximately 1.4 from [17].
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Fig. 6. Measured and calculated sand flux onto the cen-
tral slice of a barchan dune. The circles denote mea-
surements and the solid line the prediction of the non–
equilibrium sand flux model, Eq. (13) (solid line). The
two dashed lines correspond to the classical empirical
relation for saturated flux: ref. [19]and ref. [27]is de-
picted. Yet, these saturated sand flux relations cannot
correctly predict the sand flux near the dune’s foot and
show clearly that the assumption of saturation breaks
down from ref. [17].

the different physical processes. The entire model can
be thought of as four (almost) independent parts: the
stationary wind field over a complex terrain, the sta-
tionary aeolian sand transport, the time evolution of
the surface due to erosion, and avalanches.

A. The wind shear stress

The fully turbulent atmospheric boundary layer
develops over a flat surface the logarithmic velocity
profile �	�
 of eq. 7 [18]. A perturbation of the ground
�	�
 such as a dune or hill gives rise to a non–local
perturbation ��	�
 of the undisturbed air shear stress
��,

�	�
 � �� �� � ��	�
� � (10)
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Fig. 7. The envelope ����� of the windward profile of a
dune ���� (solid line) and the separating streamline
���� (dashed line) form together a smooth object which
is used to calculate the air shear stress ���� (dash-
dotted line) on the windward side. In the region of
recirculation the air shear stress � is set to zero.

The functional dependence of the air shear stress per-
turbation is crucial for the understanding of the sta-
bility of dunes and to predict the sand flux onto the
windward side of a dune. Analytical calculations of
the flow over a gentle hill yield an analytical expres-
sion for the shear stress perturbation ����� [?], [20],
[21]. We performed further simplifications in order to
obtain a minimal expression that captures the crucial
features (and only those) and is applicable for sand
dunes [22]. The resulting formula for the air shear
stress perturbation �� is,

����� � �

�
�

�

�
�

��

��

�� �
	� �
��

�
� (11)

where �� denotes the spatial derivative of the dune’s
profile ���� in wind direction. The coefficients
������� and 
������ depend only logarithmically
on the ratio between the characteristic length � of the
dune and the roughness length �� of the surface. For
a dune with a length and width ratio �� � � and
���� � ��� ��� we obtain � � ��	 and 
 � ��� from
Ref. [14], [22]. Equation (11) has several features
that are important for dune formation. First, the air
shear stress is completely scale invariant and leads to
the same speed–up for small and large dunes. This is
expected in the fully turbulent regime where no char-
acteristic length exists. Secondly, the shear stress per-
turbation �����, Equation (11), scales with the height
� and inversely with the characteristic length � of
the dune and thus with the average slope of the dune’s
windward side, �� � ���. Thirdly, a depression of
���� in front of the hill occurs as a consequence of the
strongly non–local contribution in Equation (11). Fi-
nally, the shear stress perturbation ����� for the wind-
ward side of the dune is calculated using Eq. (11), the
profile ���� on the windward side, and the separating
streamline ���� on the lee side. The result is shown in

Fig. 5 together with the measured mean values (aver-
ages over 10 minutes intervals) normalized according
to Eq. 9. The agreement between model results and
measurements is good. From this, we can conclude
that the heuristic model of the separation bubble com-
bined with the analytic expression, Eq. (11), provide a
reasonable approximation for the wind field above the
dune. This strategy enormously reduces the compu-
tational effort, compared to the numerical solution of
turbulence models and the averaged three dimensional
Navier–Stokes equation.

Equation (11) is based on a perturbation theory and
can only be applied to smooth hills. Jackson and Hunt
[20] assumed ��� � ���
, whereas Carruthers et al.
[23] showed that mean slopes up to ��� � ��� give
reasonable results. The windward side of a barchan
dune is always below the latter value and the formula
should be applicable. However, flow separation oc-
curs at the brink, which is out of the scope of the lin-
ear perturbation theory. A heuristic solution to solve
this problem has been suggested by Zeman and Jensen
[24]. They introduced a separation bubble that com-
prises the recirculating flow (the large eddy in the
wake of the dune), which reaches from the brink (the
point of detachment) to the bottom (to the point of
reattachment) see fig III-A. We model the separat-
ing streamline by a third order polynomial that is a
smooth continuation of the profile ���� at the brink
������ and at the reattachment point ������ � ��, i.e.
��������� � ����, ���������� � �����, ����� � �,
������ � �, where �� � �� is the downwind dis-
tance of the reattachment point from the brink. The
shear stress perturbation ����� for the windward side
of the dune is finally calculated using equation (10),
the profile ���� on the windward side, and the sepa-
rating streamline ���� on the lee side. An example is
depicted in fig. III-A.

B. The Sand flux

Sand transport has been studied already by Bag-
nold [25] and it was also him who proposed the
first phenomenological law that predicted the sand
transport from the shear stress of the air. Improved
laws have been proposed by several authors in the
meantime [26], [7], [27]. However, all these rela-
tions assume that the sand flux � is in equilibrium
and can be written as a function of the shear stress
� , � ������. Temporal or spatial transients are com-
pletely neglected. In the following we will call such
a relation saturated, because it predicts the amount of
sand that can be maintained in the saltation layer at a
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certain air shear stress � .
This condition is hardly fulfilled at the windward

foot of an isolated dune [21], e.g. a barchan, where
the bed changes rapidly from bedrock or vegetation to
sand. Besides the particular conditions at the dune’s
foot, the sand flux may never reach saturation [28]
on the entire windward side, where the shear velocity
increases gradually from the foot to the crest. Wind
tunnel measurements indicate that the typical time to
reach saturation in saltation is approximately two sec-
onds [29], which corresponds to a saturation length of
the order of 10 m. This length is of the order of the
dune size and can not be neglected if the sand flux on
the entire windward side is significant. Furthermore, it
has been observed that the time to reach saturation in-
creases for shear velocities close to the threshold [29].
In this situation, the sand flux may never reach satura-
tion on the entire windward side and should increase
exponentially with distance from the dune’s foot [28].
In recent years, several models to calculate the wind
field have been developed, from analytic boundary
layer approximations to numerical solutions of the
Navier–Stokes equation with an enormous computa-
tional effort. Although some previous studies have
discussed the limits of the saturation approximation
in detail [21], much less effort has been dedicated to
the development of sand flux relations that effectively
incorporate non–saturation effects [30].

For the saturated flux many different functional
forms of these sand transport laws exist and have been
used in the past. For high shear stresses, however, they
all converge to the simple relation proposed by [1],

�� � ����� (12)

All other more elaborate relations add higher order
corrections to the Bagnold formula that become im-
portant close to the air shear stress threshold. To over-
come the limitation of saturation and to obtain infor-
mation about the dynamics of the saltation process,
numerical simulations on the grain scale have been
performed in the last years [31], [32], [33]. Still,
concerning the modeling of dune formation, both ap-
proaches had to be discarded. The microscopic mod-
els are computationally too expensive and the equilib-
rium assumption that is inherent in the simple flux re-
lations does not hold on the entire windward side of a
dune [11], [12], [14], [21], [34]. Since both known ap-
proaches cannot be used to model dune formation we
developed a new phenomenological continuum salta-
tion model that is computationally very efficient on
the one side and on the other side incorporates the dy-
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Fig. 8. The solutions for large volumes — above a critical
heigth — are dunes including a slip face, whereas for
small volumes heaps develop. An important fact is that
the steepest lee side of a heap (dashed lines) is approx-
imately 15Æ, which is well below the angle of repose of
34Æ.

namics of the saltation layer and thus allows for sat-
uration transients [34]. In this model the sand flux is
defined by a differential equation of the form

�

��
� �

�

��
�

�
��

�

��

�
� (13)

where ����� is the saturated sand flux and �����

the characteristic length of the saturation transients,
called saturation length. The saturation length �����

depends on the air shear stress, but converges to-
wards a constant value for � � �� [34]. A com-
parison between the saturated sand flux, our model,
Equation (13), and the field measurements from Jeri-
coacuara can be seen in Figure 6. One observes that
Equation (13) gives the right behaviour at the foot of
the Barchan while the neglect of the transient gives an
unphysical dip.

C. The surface evolution

A spatial change in sand flux implies that ero-
sion or deposition takes place and the surface changes
in height. The time evolution of the surface can be
calculated from the conservation of mass,

��

��
�

�

	sand

��

��
� (14)

where 	sand is the bulk density of dune sand. Finally,
we note that Equation (14) is the only remaining time
dependent equation and thus defines the time scale of
the model.

The full dune model can be sketched as follows.
An initial surface � is used to start the time evolution.
If flow separation has to be modeled the separating
streamline 
��� is calculated. Next, the air shear stress
���� onto the given surface � (or � and 
) is calculated
using Equation (10). From the air shear stress ����

the sand flux can be determined using Equation (13).
Then, the integration forward in time of the surface is
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Fig. 9. Profiles along the symmetry plane of 3d Barchans
of different size normalized on a single height as ob-
tained from the model (from [35].).

Fig. 10. Four snapshots of the solitary wave behavior of
two Barchan dunes placed behind each other. The pa-
rameters are �� = 7.5m and Æ���� = 0.9. a the two
Barchans reached their steady form. In b, 0.48 years
after a, the smaller Bachan bumps into the larger. c
shows the hybrid state 0.63 years after a. In d the two
dunes left the hybrid state (1.42 years after a) from
[36].

calculated from the mass conservation, Equation (14).
Finally, sand is eroded and transported downhill if the
local angle ��� exceeds the angle of repose. This re-
distribution of mass (avalanches) is performed until
the surface slope has relaxed below the critical angle.
The time integration is calculated until the final shape-
invariantly moving solution is obtained.

IV. THE SHAPE OF THE DUNE AND OUTLOOK

In order to analyze the properties of the shape-
invariantly moving solution of our model, we per-
formed a series of calculations varying the volumes of
the Gaussian hills that have been used as initial con-
figuration. The final shape invariantly moving solu-
tions are displayed in Fig. 8. For small volumes we

obtained heaps without a slip face, whereas for large
volumes dunes with a slip face developed. Hence,
there is a minimal height for dune formation or, more
precisely, a minimal height for the formation of a slip
face. Empirically, this was observed many times in
nature.

The simulation also showed that the Barchan shape
is a steady state solution. Starting from different ini-
tial configurations having the same volume, one al-
ways obtains after a certain transient the same cres-
cent shape dune. This dune moves with constant ve-
locity inversely proportional to its height and quanti-
tatively agrees with the ones measured in the field for
corresponding volume.

Simulating 3d Barchans by starting from an ini-
tial Gaussian heap can be done under essentially two
boundary conditions: an absorbing bedrock �� � ��
for coastal dunes or a finite influx and � �� � on the
bedrock for desert dune fields. In Fig. 9 we see lon-
gitudinal profiles along the symmetry plane of desert
Barchans for different initial volumes of dunes, nor-
malized such that their heights fall on top of each
other. One observes that the measured profiles from
Fig. 2 agree very well with this prediction. The nu-
merical study of Fig. 9 also shows that the tail on the
windward side is not parabolic but rather logarithmic.

One can also using our programme construct vir-
tual dunes and produce virtual desert landscapes. One
example is shown in Fig. 10 where one sees four im-
ages of the time evolution of two dunes. The one in
front was a little larger than the one behind and there-
fore also slower. When the two dunes approach each
other, their relative velocity decreases and becomes
zero shortly before they touch. The larger dune in
front starts to loose sand to the dune behind until the
dune behind is the larger one and the dune in front,
being now the smaller one, can leave the scene since
it is now faster. Eventually the two dunes will have the
same size and shape before and after the collision and
only that their role has been inverted. Therefore they
have survived the collision without change and effec-
tively crossed each other. One says they behaved like
solitons. If the dune behind is even smaller, it will be
swallowed by the larger one, but it might eventually
eject baby Barchans at the horns. This phenomena
we call breeding. If the dune behind is even smaller,
it will completely be swallowed by the dune in front
which we call coalescence. A morphological diagram
for the three cases was obtained in ref. [36].

Starting from measured topographies one can pre-
dict the future evolution and therefore planify in ad-
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vance to protect cities and fields against moving sand
masses in the Sahara. Another perspective of the use
of our equations of motion is the possibility to study
techniques used to stop or destroy dunes, like Bofix,
as introduced by Meunier in Nouakchott. Here low
fences are placed strategically on the dune in order
to deviate the wind in such a way that digs through
eddies and currents virtually channels in the sand ef-
fectively splitting the dune in pieces.
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Abstract—We present two different approaches to
detect and quantify phase synchronization in the case
of coupled non-phase coherent oscillators. The first
one is based on the general idea of the curvature of
an arbitrary curve. The second one is based on re-
currences of the trajectory in phase space. We illus-
trate both methods in the paradigmatic example of the
Rössler system in the funnel regime. We show that the
second method is applicable even in the case of noisy
data.

I. INTRODUCTION

Phase synchronization has been studied extensively
during the last years [1], as this phenomenon has
found numerous applications in natural [2] and engi-
neering systems [3]. Two systems are said to be phase
synchronized when their respective frequencies and
phases are locked. Till now chaotic phase synchro-
nization (CPS) has been mainly observed for chaotic
attractors with rather coherent phase dynamics. These
attractors have a relatively simple topology of oscilla-
tions and a well-pronounced peak in the power spec-
trum, which allows to introduce the phase and the
characteristic frequency of motions. However, some
difficulties appear dealing with non-coherent attrac-
tors with a rather broad band power spectra. Then
it might not be straightforward to define a phase of
the oscillations, and in general no single character-
istic time scale exists. In contrast to phase coherent
attractors, it is quite unclear whether some phase syn-
chronized state can be achieved.
To treat this problem, we propose in this paper two
different approaches: i) we present a method that de-
fines the phase more generally and allows to study
CPS in systems of coupled chaotic oscillators with

even strongly noncoherent phase properties and ii)
we propose a method based on recurrences in phase
space, that allows to quantify indirectly CPS, which
even works in the case of noisy noncoherent oscilla-
tors.
We demonstrate the applicability of both methods for
the paradigmatic system of two coupled nonidentical
Rössler oscillators:

ẋ1,2 = −ω1,2y1,2 − z1,2,

ẏ1,2 = ω1,2x1,2 + ay1,2 + µ(y2,1 − y1,2), (1)

ż1,2 = 0.1 + z1,2(x1,2 − 8.5),

where µ is the coupling strength. ω1,2 determine
the mean frequency of the oscillators in the case of
phase coherent attractors. In our simulations we take
ω1 = 0.98 and ω2 = 1.02. The parameter a ∈
[0.15 : 0.3] governs the topology of the chaotic attrac-
tor. When a is below a critical value ac (ac ≈ 0.186
for ω1 = 0.98 and ac ≈ 0.195 for ω2 = 1.02), the
chaotic trajectories always cycle around the unstable
fixed point (x0, y0) ≈ (0, 0) in the (x, y) subspace,
i.e., max(y) > y0 (Fig. 1a). In this case, the rotation
angle

φ = arctan
y

x
(2)

can be defined as the phase, which increases almost
uniformly, i.e., the oscillator has a coherent phase dy-
namics. Beyond the critical value ac, the trajectories
no longer always completely cycle around (x0, y0),
and some max(y) < y0 occur, which are associated
with faster returns of the orbits; the attractor becomes
a funnel one. Such earlier returns in the funnel at-
tractor happen more frequently with increasing a (Fig.
1b). It is clear that for the funnel attractors, usual (and
rather simple) definitions of phase, such as Eq. (2) [1],
are no longer applicable.
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Fig. 1. Upper panel (a),(b): projections of the attractors
of the Rössler systems (1) onto the plane (x, y); lower
panel (c),(d): projections onto (ẋ, ẏ). The parameters
are ω = 1.02 and a = 0.16 (a),(c), resp. a = 0.2925
(b),(d).

II. PHASE CALCULATION BASING ON CURVATURE

In order to overcome the problem of the definition
of the phase in the case of noncoherent oscillators,
we firstly propose another approach which is based
on the general idea of the curvature of an arbitrary
curve [4]. For any two-dimensional curve �r1 = (u, v)
the angle velocity at each point is ν = ds

dt /R, where
ds/dt =

√
u̇2 + v̇2 is the speed along the curve and

R = (u̇2 + v̇2)3/2/[v̇ü − v̈u̇] is the radius of the cur-
vature. If R > 0 at each point, then ν = dφ

dt = v̇ü−v̈u̇
u̇2+v̇2

is always positive and therefore the variable φ defined
as φ =

∫
νdt = arctan v̇

u̇ , is a monotonically grow-
ing angle function of time and can be considered as a
phase of the oscillations. Geometrically it means that
the projection �r2 = (u̇, v̇) is a curve cycling monoton-
ically around a certain point.

These definitions of φ and ν hold in general for any
dynamical system if the projection of the phase tra-
jectory on some plane is a curve with a positive cur-
vature. We find that it is applicable to a large vari-
ety of chaotic oscillators, such as Lorenz system [5],
Chua circuit [6] or the model of an ideal four-level
laser with periodic pump modulation [7].

This is clear for phase-coherent as well as funnel
attractors in the Rössler oscillator. Here projections of
chaotic trajectories on the plane (ẋ, ẏ) always rotate
around the origin (Fig. 1, c, d) and the phase can be
defined as

φ = arctan
ẏ

ẋ
. (3)

We have to note that for the funnel chaotic attractors
the coupling may change their topology. As a conse-

quence the strong cyclic structure of orbits projection
in the (ẋ, ẏ)-plane may be destroyed and the phase
measurement Eq. (3) fails occasionally for intermedi-
ate values of coupling. But for small coupling and for
coupling near the transition to CPS, the phase is well-
defined by Eq. (3) [8].
We use two criteria to detect the existence of CPS:
locking of the mean frequencies Ω1 = 〈ν1〉 = Ω2 =
〈ν2〉, and locking of the phase |φ2(t)−φ1(t)| ≤ const
( we consider here only 1:1 synchronization). Apply-
ing the new definition of the phase Eq. (3) to the sys-
tem of Eq. (1) for a = 0.2925 (strongly noncoherent)
and µ = 0.179, we obtain the phase difference rep-
resented in Fig. 2. We find two large plateaus in the
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Fig. 2. (a) Time evolution of phase difference of the sys-
tem of Eq. (1). (b) Variables ẏ1,2 in system (1) for
a = 0.2925 and µ = 0.179. Solid and dotted lines
correspond to the fi rst and the second oscillator, re-
spectively. In the time interval between dashed lines
the fi rst oscillator produces 4 rotations in the (ẋ1, ẏ1)-
plane around the origin, but the second one generates
only 3 rotations, which leads to a phase slip in (a).

evolution of the difference of the phases with time, i.e.
we detect CPS, but we also find a phase slip associated
to a different number of oscillations in the two oscil-
lators in the represented period of time. This means,
we observe the seldom occurrence of phase slips. It is
interesting to note that in this system CPS occurs after
one of the positive Lyapunov exponents passes to neg-
ative values, i.e. it is also a transition to generalized
chaotic synchronization (GCS).
Although this approach works well in noncoherent
model systems, we have to consider that one is of-
ten confronted with the computation of the phase in
experimental time series, which are usually corrupted
by noise. In this case, some difficulties may appear
in computing the phase by Eq. (3), because deriva-
tives are involved in its definition. We will address
this problem in the next section.
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III. PHASE SYNCHRONIZATION BY MEANS OF

RECURRENCES

Here, we propose a rather different approach based
on recurrences in phase space to detect and quantify
CPS. The concept of recurrence in dynamical systems
goes back to Poincaré [9], when he proved that af-
ter a sufficiently long time interval, the trajectory of
a chaotic system will return arbitrarily close to each
former point of its route.
We define a recurrence of the trajectory of a dynami-
cal system {�xi}N

i=1 in the following way: we say that
the trajectory has returned at t = jδt to the former
state at t = iδt if

R
(ε)
i,j = Θ(ε − ||�xi − �xj||) = 1, (4)

where ε is a pre-defined threshold, Θ(.) is the Heavi-
side function and δt is the sampling rate [10]. Based
on this definition of recurrence, it is straightforward
to estimate the probability P (ε)(τ) that the system re-
turns to the neighborhood of a former point �xi of the
trajectory (the neighborhood is defined as a box of size
ε centered at �xi, as we use the maximum norm) after
τ time steps

P̂ (ε)(τ) =
1

N − τ

N−τ∑
i=1

Θ(ε − ||�xi − �xi+τ ||)

=
1

N − τ

N−τ∑
i=1

R
(ε)
i,i+τ .

(5)

This function can be considered as a generalized auto-
correlation function, as it also describes higher order
correlations between the points of the trajectory in de-
pendence on the time delay τ . A further advantage
with respect to the linear autocorrelation function is
that P̂ (ε)(τ) is determined for a trajectory in phase
space and not only for a single observable of the sys-
tem’s trajectory. Further, we have recently shown that
it is possible to reconstruct the attractor by only con-
sidering the recurrences of single components of the
system [11]. Because of this, it is also possible to
estimate dynamical invariants of the system (e.g. en-
tropies and dimensions) by means of recurrences in
phase space even without embedding [12], i.e. the
recurrences of the system in phase space contain in-
formation about higher order dependencies within the
components of the system. This method has been suc-
cessfully applied to experimental flow [12] and geo-
physical data [13].
For a periodic system in a 2-dimensional phase space,

it can be easily shown that

P (τ) = lim
ε→0

P̂ (ε)(τ) =

{
1 : τ = T
0 : otherwise

For coherent chaotic oscillators , such as Eq. 1 for
a = 0.16, P̂ (ε)(τ) has local maxima at multiples of
the mean period, but the probability of recurrence af-
ter one or more rotations around the fixed point is less
than one.
Analyzing the probability of recurrence, it is possible
to detect CPS for noncoherent oscillators. This ap-
proach is based on the following idea: Originally, a
phase φ is assigned to a periodic trajectory �x in phase
space, by projecting the trajectory onto a plane and
choosing an origin, around which the whole trajec-
tory oscillates. Then an increment of 2π is assigned to
φ, when the point of the trajectory has returned to its
starting position, i.e. when �y(t+T )−�y(t) = �0. Anal-
ogously to the case of a periodic system, we can refer
an increment of 2π to φ to a complex non-periodic
trajectory �x(t), when |�x(t+T )−�x(t)| ∼ 0, or equiv-
alently when |�x(t+T )−�x(t)| < ε, where ε is a prede-

fined threshold. That means, a recurrence R
(ε)
t,t+τ = 1

can be interpreted as an increment of 2π of the phase
in the time interval τ .
P̂ (ε)(τ) can be viewed as a statistical measure on how
often φ in the original phase space has increased by
2π or multiples of 2π within the time interval τ . If
two systems are in PS, in the mean, the phases of both
systems increase by k · 2π, with k a natural number,
within the same time interval τ . Hence, looking at the
coincidence of the positions of the maxima of P̂ (ε)(τ)
for both systems, we can quantitatively identify PS
(from now on, we omit (ε) and ·̂ in P̂ (ε)(τ) to sim-
plify the notation). The proposed algorithm consists
of two steps:
• Compute P1,2(τ) of both systems based on Eq. (5).
• Compute the cross-correlation coefficient between
P1(τ) and P2(τ)

CX1,2 =
< P̄1(τ)P̄2(τ) >

σ1σ2
, (6)

where P̄1,2 means that the mean value has been sub-
tracted and σ1 and σ2 are the standard deviations of
P1(τ) resp. P2(τ).
If both systems are in PS, the probability of recurrence
is maximal at the same time and CX1,2 ∼ 1. In con-
trast, if the systems are not in PS, the maxima of the
probability of recurrence do not occur simultaneously.
Then we observe a drift (Fig. 3b) and expect low val-
ues of CX1,2.
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Now we exemplify this algorithm for two topologi-
cally different regimes of the Rössler system (Eq. 1):
the phase coherent (a = 0.16) and the noncoher-
ent one, namely the funnel attractor (a = 0.2925).
First, we consider the phase coherent regime, where
for µ = 0.05 both systems are in PS [14]. If we com-
pute P (τ) for both systems in PS, we observe that
the local maxima occur at τ = n · T , where T is the
mean period of both Rössler systems (Fig. 3a). The

Fig. 3. P (τ) for the two mutually coupled coherent
Rössler systems with a = 0.16 for coupling strength
µ = 0.05 (a) and for µ = 0.02 (b). Solid line: system
1, triangles: system 2. .

heights of the local maxima are in general different
for both systems if they are only in PS and not fully
synchronized, but the positions of the local maxima
of P (τ) are the same. Thus a recurrence to a for-
mer neighborhood after τ time steps does not occur
with the same probability for the two systems, but the
conditional probability that a recurrence in the second
system occurs given that the first system has not re-
turned yet, is almost 0. For µ = 0.02 the systems are
not in PS and the positions of the maxima of P (τ)
do not coincide anymore (Fig. 3b), clearly indicating
that the frequencies are not locked. In addition, we
observe that the peaks of P (τ) become broader, as
the phase coherence of the oscillators decreases when
they are not in PS. We obtain CX1,2 = 0.0139 for
the coupling strength µ = 0.02 and CX1,2 = 0.998
for µ = 0.05. Hence applying this criterion, we con-
firm that for µ = 0.05 the oscillators are in PS and for
µ = 0.02 they are not in PS, in accordance with [14].
Now we regard the more complex case of two Rössler
systems in the noncoherent funnel regime (a =
0.2925) with added observational noise. Our aim is
to show, that also in more complicated cases, where
also noise is present, the recurrence approach is able
to detect CPS. We again consider two values of the
coupling strength: µ = 0.05, where the oscillators are

not in PS and µ = 0.2, where the oscillators are in PS,
according to [14]. We add 20% of independent noise
to each component of both oscillators and perform the
recurrence analysis (see Fig. 4). We observe that the
structure of P (τ) in the funnel regime (Fig. 4a and b)
is rather different from the one in the Rössler system
with standard parameters (Fig. 3a and b). The peaks
in P (τ) are not as well pronounced as in the coherent
regime, reflecting the different time scales that come
into play or the broad band power spectrum in the fun-
nel system. However, we see that for µ = 0.2 the loca-
tions of the local maxima coincide for both oscillators
(Fig. 4a), whereas for µ = 0.05 the positions of the
local maxima do not coincide anymore (Fig. 4b). We

Fig. 4. P (τ) for the two mutually coupled Rössler systems
with a = 0.2925 for coupling strength µ = 0.2 (a) and
for µ = 0.05 (b). Solid line: system 1, dashed line:
system 2. 20% of observational independent noise was
added to each component of both noncoherent oscilla-
tors.

obtain X1,2 = 0.9701 for coupling strength µ = 0.2
and X1,2 = 0.2095 for µ = 0.05, confirming that
both oscillators are in PS in the first case but are not
in the second one [14].
Next, we show that our algorithm is also valid for the
detection of PS in chains of weakly coupled oscilla-
tors. This extension to N oscillators is straightfor-
ward: we compute Pj(τ) for each oscillator j (Eq. 5)
and their respectively local maxima τ i

j according to

dPj(τ
i)

dτ i
� 0.

Then we choose the set of times of local maxima τ i
r

of an arbitrary oscillator r as reference and compute
∆τ i

j = τ i
j − τ i

r for each oscillator j. Now even clus-
ters of oscillators in PS are easily recognized, as the
mean slope of ∆τ i

j versus i is equal for all oscillators
j belonging to the same cluster.
We apply this algorithm to a chain of coupled non-
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Fig. 5. a) Difference between the local maxima of the
probability of recurrence for a chain of 50 Rössler os-
cillators diffusively coupled for µ = 0.18 and δ =
9 × 10−3. b) Slope of ∆τ i

j versus i for j = 1, . . . , 50

with µ = 0.18 and δ = 9 × 10−3

identical Rössler oscillators with a nearest-neighbor
diffusive coupling

ẋj = −ωjyj − zj ,

ẏj = ωjxj + ayj + µ(yj+1 − 2yj + yj−1), (7)

żj = 0.4 + zj(xj − 8.5),

where the index j = 1, . . . ,N denotes the position of
an oscillator in the chain, µ is the coupling coefficient
and ωj corresponds to the natural frequency of each
individual oscillator [15]. We consider a linear dis-
tribution of natural frequencies ωj = ω1 + δ(j − 1),
where δ is the frequency mismatch between neighbor-
ing systems. For the coupling strength µ = 0.18 and
δ = 9 × 10−3 we compute Pj(τ) for j = 1, . . . , 50
and the positions of the local maxima τ i

j for each os-
cillator. We choose the oscillator j = 1 as refer-
ence and compute ∆τ i

j for j = 1, . . . , 50 (Fig. 5a).
Furthermore, we represent the slope of ∆τ i

j versus
i given by a linear regression for j = 1, . . . , 50 in
Fig. 5b. We detect 9 clusters of oscillators in PS, in
accordance with [15]. We have also analyzed this
chain of Rössler oscillators with other values of the
coupling strength and we obtain the same results as in
[15]. Also the computation of the matrix CX i,j of the
cross-correlation coefficients between (Pi(τ), Pj(τ))
yields the same results as in [15].

IV. CONCLUSIONS

In this paper we have presented two different ap-
proaches to overcome the problem of defining the
phase in the case of noncoherent oscillators. The first
one is based on the general idea of curvature of an ar-
bitrary curve, and yields a new definition of the phase,
that is applicable to a broad class of oscillators, not
only to coherent ones. The second approach that we
have presented, is an indirect one. It does not compute
the phase explicitely, but it detects CPS by means of
the joint probability of recurrence in phase space. This
method can be also applied to detect CPS in noncoher-
ent oscillators and it is additionally very robust against
noise and can be easily implemented. Further, it also
allows the detection of clusters of phase synchronized
oscillators in distributed systems.
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Network dynamics: tools and examples
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Abstract—Some mathematical tools and results are pre-
sented which may be used to study the dynamics of agents
living on a network as well as the networks themselves as
evolving dynamical systems. They include decomposition
of differential dynamics, ergodic techniques, estimates of
invariant measures, etc. Some examples are discussed as
an application of the dynamical tools.

I. INTRODUCTION

The network concept appears quite often in the descrip-
tion of extended dynamical systems. The metabolic pro-
cesses of living beings are a network with the substrates
as nodes, linked together whenever they participate in the
same biochemical reaction. Protein-protein as well as gene
expression and regulation are also networks. Social, eco-
nomic and political networks are the backbone of human
society, the internet is a network, etc.[1] [2]. Most studies
deal with networks as statistical objects, with extensive use
of the tools of statistical mechanics [3]. Much less attention
has been paid to the dynamical phenomena taking place in
the networks or to the behavior of the evolving networks as
dynamical systems.

The main purpose of this paper is to describe some tools
for the treatment of networks (both regular and irregular)
as dynamical systems. Results from differential dynam-
ics and ergodic theory will be presented. For other useful
tools, namely, conditions for multistability, computational
mechanics and logical approaches, refer to [4].

II. DIFFERENTIAL DYNAMICS TOOLS

A. Describing dynamics by global functions

The node dynamics in many networks may be modelled
by ordinary differential equations of the form� � �� � � � � � � � � � � 	 
 � � � � � � � � � � � � � � � �

(1)

For a neural network, the
� �� �

might be firing rates and the� �� � �
synaptic intensities [5], for a genetic regulatory sys-

tem [6] [7] the variables
� �

would code for the concentra-
tions of RNA, proteins or other metabolic components and� � �

for the production constants (measuring the strength
of � on � ),

� � � �
being the regulation function and

� � � � �
a

degradation term, etc.

A.1 Symmetric systems

Eq.(1) is a particular case of the Cohen-Grossberg form
[8], used by these authors to describe continuous-time neu-

Supported by Fundação para a Ciência e Tecnologia
e-mail: vilela@cii.fc.ul.pt

ral networks,� � �� � � � � � � � � �� � � � � � � � � �
�  � � � � � � � � � � � � (2)

Cohen and Grossberg proved that, for the symmetric case
( � � � � � � �

), the following function! � � � � � � �
 �  � " # $ � � � % � � � &� � % � � � % � 	 '( �
� ) *  � � � * � � � � � � � * � � * �
(3)

is a Lyapunov function, that is�� � ! � � � � + ,
(4)

along the orbits if � � � � � � � &� � � � � - ,
. Hopfield’s[9] “en-

ergy” function is a particular case of this result.
The existence of a Lyapunov function is a useful device

to characterize the asymptotically stable states of the net-
work or for the synthesis of networks with a desired num-
ber of stable asymptotic solutions[10].

In the case of symmetric connections the continuous-
time result of Cohen and Grossberg has been extended to a
class of discrete-time systems ([11] and references therein).
For non-symmetric connections of particular form, namely. � � � � � . � � � �

(5). � - ,
, and time evolution of the connection strengths of

Hebbian type�� � � � � � � � � � � � � 	 � � � � � � � � � � � �
(6)

in [12] or � � � � � � - ,
and / 0 � � � � / 0 � � �

along
every cycle in [13], Lyapunov functions may also be con-
structed.

A.2 General systems

The Cohen-Grossberg result has been generalized for ar-
bitrary 1 �� � �

in Ref.[14], namely given

� � � � � 2 3 4� � 	 � 2 5 4� �
� 2 3 4� � � �6 � � � � 	 � � � �� 2 5 4� � � �6 � � � � � � � � �! 2 3 4 � � 7 ��  � 8 # $

� � � % � � � &� � % � � � % �	 �6 7 �� ) *  � � 2 3 4� * � � � � � � � * � � * �9 � 7 ��  � 8 # $ : $ 2 ; $ 4< $ 2 ; $ 4 � % �
(7)
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one has the following

Theorem [14] If � � � � � � � � �� � � � � � � � � � 	 and the matrix
 � � � �
has an inverse, the vector field �� �

in Eq.(2) decom-
poses into one gradient and one Hamiltonian component,�� � � �� � � �  � �� � � �  , with

�� � � �  � � �
� � � � �
�

� � � �  � � � 	 
�
� �

� � � � � � � � � � � � � 	 
�
�

��� � � �  � � � � � � � � � � � � � � � � � � � � � � � � � ��
�

�� � �  � � � � � � ��
�

� (8)

and � � � � � � � �
� � � � �
�

� � � �  � � �
� � � � � � � � � � � � � � � � � 
 � �  � � � � � � � � � � � � � � � �

(9)� � �  � � � � � � � � � �
.

� � � � � �
and � � � � � �

are the compo-

nents of the Riemannian metric and the symplectic form.

———

The conditions on � � � � � �
,

� �� � � � �
and � � � � �

insure that

�
is a well defined metric and that � is non-degenerate.

The decomposition (8) is useful, for example, on the
design of oscillatory networks and on the study of gated
learning rules[15]. The nature of the dynamics in the net-
work will depend on the relative strength of the gradient
and the Hamiltonian components. Howse, Abdallah and
Heileman[15] propose to measure this relative strength by
comparing � � � 	 
� � with � �� � . However, these quantities vary
in space and time and it is the compensation of the two ef-
fects that in particular regions of phase space lead to the
attractors of the dynamics, for example to limit cycles (see
below).

The identification, in the differential system (2), of just
one gradient and one Hamiltonian component, with explic-
itly known potential and Hamiltonian functions, is a con-
siderable simplification as compared to a generic dynami-
cal system. For a general dynamical system a representa-
tion by one or two functions is possible only locally[16]
and explicit forms for the functions are not easy to ob-
tain[17] [18]. Global decomposition for general dynamical
systems require one gradient and � � � Hamiltonian com-
ponents[16], namely

�� � � � � � � � � � � � � �� � � � � � ��� � � ��� � � � � � ��
�

 � � � � � � � � �
�

� � �
(10)� � �

�
 � � � �

being a set of canonical symplectic forms
adapted to each Hamiltonian component. This result is a
generalization to � dimensions of the 2-dimensional re-
sult of Roels[19]. The first term in (10) is the dissipative
component and the second one corresponds to a volume-
preserving dynamical system.

The above results lead to a convenient characterization
of dynamical systems of type (1) or (2). For the sym-
metric case the existence of a Lyapunov function guaran-
tees global asymptotic stability of the dynamics. However

not all vector fields with a Lyapunov function are differen-
tially equivalent to a gradient field. Therefore the fact that
a gradient vector is actually obtained gives additional in-
formation, namely about structural stability of the model.
A necessary condition for structural stability of the gradi-
ent vector field is the non-degeneracy of the critical points

of
� �   , namely � � � ��� � � � � 	 
�

� �
�

�
� ���  � �

at the points where� � � 	 
�
� �

� �
. In a gradient flow all orbits approach the

critical points as
! ! "

. If the critical points are non-
degenerate, the gradient flow satisfies the conditions defin-
ing a Morse-Smale field, except perhaps the transversality
conditions for stable and unstable manifolds of the criti-
cal points. However because Morse-Smale fields are open
and dense in the set of gradient vector fields, any gradient
flow with non-degenerate critical points may always be C

�
-

approximated by a (structurally stable) Morse-Smale gra-
dient field. Therefore given a symmetric model of the type
(2), the identification of its gradient nature provides a easy
way to check its robustness as a physical model.

Although Lyapunov functions may in some cases be con-
structed for discrete-time systems [11], the natural func-
tional representation of maps is through generating func-
tions. This is well known for canonical maps of symplectic
manifolds[20] and has been generalized in [21] for non-
canonical maps.

The representation of network dynamics by global func-
tion applies to neural networks of several types [5], to more
general networks [22] [23] and, in view of an established
correspondence [24], to a large range of connectionistic
systems.

B. Cycles

Existence of limit cycle oscillations in networks is an im-
portant issue [25] [26] [27]. The decomposition theorems
provide a tool to look for candidate orbits with limit cy-
cle properties. Many years ago Pontryagin [28], studying
small perturbations of Hamiltonian fields on the plane

�� � � �� # � $ % � � � # � $ � � �# � � � �� � � $ & � � � # � $ �
(11)

introduced the notion of generating cycle
" � ' �

, lying on a
level curve

� � '
, when the perturbed equation has a cycle

that depends continuously on
$
, for small ( $ ( , and tends to" � ' �

when
$ ! �

. Pontryagin’s result states that if
" � ' �

is
a generating cycle, then) � ' � � # * � + 

� & $ � � % $ # � � �
(12)

the integration being along
" � ' �

at
$ � �

.
Further results on the existence of cycles were later

proved both for weakly coupled oscillators and for more
general systems with parametrized families of solutions
(see [29], chapter 9 and references therein). A general-
ization of Pontryagin’s result to dynamical systems with
constants of motion [30], leads to a necessary condition for
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the existence of a cycle using the decomposition in (10),
namely

� �� � � � � � � � � � 	 � 
 � � � � � �
�

� � � � � � � � � � �
�

� � � �� � � � � �
(13)

the integration being along a closed level curve
� �

of
� �

.
A similar result holds for discrete-time maps which be-

long to a differentiable arc with constants of motion [31].
A constant of motion for a map

�
defined on a manifold�

is a differentiable function � � � � �
such that for

some orbit
�

, � � � � constant. It generalizes the notion
of first integral which would require this to hold for all or-
bits. A family of maps

�
� is called a differentiable arc with

constants of motion if (i) each

�
� has a constant of motion

� � for some orbit
� � ; (ii) The constant of motion � � of

�
�

is a first integral in a neighborhood of
� � ; (iii) the maps� � �

� � � � � � � � � � � are differentiable. Then

� 	 � ��� � �

 � � � � � � � 
 � � � � � � � � � � � � � � �

(14)

� � being the period of the orbit
� � .

Both (13) and (14) give only necessary equations for the
existence of limit cycles in the composite dynamics. Nev-
ertheless they are useful tools to identify limit cycle candi-
dates. Sufficient conditions may also be obtained in partic-
ular low-dimensional cases [32] [33].

In the same way as the Hamiltonian components of the
dynamics provide a tool to look for limit cycles, the sta-
tionary points of the gradient potential provide information
on the multistability of the dynamics and the nature of their
basins of attraction. It is also a tool for the construction of
the invariant measures of the dynamics (see below).

C. Network examples

C.1 A gene regulation network

The p53 gene was one of the first tumour-suppressor
genes to be identified, its protein acting as an inhibitor of
uncontrolled cell growth. The p53 protein has been found
not to be acting properly in most human cancers, due either
to mutations in the gene or inactivation by viral proteins or
inhibiting interactions with other cell products. Although
apparently not required for normal growth and develop-
ment, p53 is critical in the prevention of tumour develop-
ment, contributing to DNA repair, inhibiting angiogenesis
and growth of abnormal or stressed cells [34]-[38]. In ad-
dition to its beneficial anticancer activities it may also have
some detrimental effects in human aging [39].

The p53 gene does not act by itself, but through a very
complex network of interactions[40]. Here I will discuss a
simplified network, which although not being accurate in
biological detail, tends to capture the essential features of
the p53 network as it is known today. In particular, several
different products and biological mechanisms are lumped
together into a single node when their function is identical.

The network is depicted in Fig.1. The arrows and signs de-
note the excitatory or inhibitory action of each node on the
others and the letters

� � 	 � 
 � � �  � � � � denote their intensi-
ties (or concentrations).

Fig. 1. A simplified p53 network model

The p53 protein is assumed to be produced at a fixed
rate ( � � ) and to be degraded after ubiquitin labelling. The
MDM2 protein being one of the main enzymes involved
in ubiquitin labelling, the inhibitory node (

�
) is denoted

MDM2. There is a positive feedback loop from p53 to
MDM2, because the p53 protein, binding to the regulatory
region of the MDM2 gene, stimulates the transcription of
this gene into mRNA.

Under normal circumstances the network is “off” or op-
erates at a low level. The main activation pathways are
the detection of cell anomalies ( � ), like DNA damage, or
aberrant growth signals, such as those resulting from the
expression of several oncogenes (the p14 � � �

pathway,
�
) .

They inhibit the degradation of the p53 protein, which may
then reach a high level. There are several distinct activa-
tion pathways. For example, in some cases phosphoryla-
tion of the p53 protein blocks its interaction with MDM2
and in others it is a protein that binds to MDM2 and inhibits
its action. However, the end result being a decrease in the
MDM2 efficiency, they may both be described as inhibitory
inputs to the MDM2 node.

The p53 protein controls cell growth and proliferation,
either by blocking the cell division cycle, or activating
apoptosis or inhibiting the blood-vessel formation (

�
) that

is stimulated by several tumors. In our simplified p53 net-
work all these effects are coded on the following set of
equations

� �� � � � �  ! � �
�

� � � �
� �� � � ! � �

�
� �  �  ! � �

�
� � � �  ! � " �  � #� �

� �� � � ! � 
�

 � 
 �  ! � �
�

� �  �
� � � � !  �

	 
 !  �
�

�
� � �  !  �

�
� �  �

� �� � � ! � �
	  � � �

(15)

N  D  E  S        2  0  0  4

24



One should note that an increased level of cellular p53 is
not by itself sufficient for it to become a transcriptional ac-
tivator controlling cell growth. Conformational changes of
the protein are also needed which are stimulated by the ac-
tivation pathways or may be therapeutically induced. Also
some viruses produce proteins that inactivate p53. All this
means that in reality some of the coupling constants in
Eqs.(15), (for example � � � ) may also be dynamical vari-
ables.

The regulation functions

� � � �
are positive nonlinear

functions with a threshold and a saturation level. By shift-
ing variables to compensate for thresholds and rescaling the
coupling constants they may be normalized by the coeffi-
cient of the linear part, that is� � � � � � � � � � � � �

(16)

With a rescaling of
� � � � 	 � � � �

and redefinition of the
constants we may consider

� � � � � � � � � � � � � � � � � � � 
 (17)

Furthermore, from the last equation in (15)

� � � � � 
� �

� � � � �  � � �
� � � � � � � � (18)

Replacing
�

by its steady state value

� � � � , and rescaling� � � we are left with

� �� � � 
 � � � �
�

� � � �
� �� � � �

� � � � � � � �
� � � � � � � � � �

� �� � � �
�

� � � � � � �
�

� � � �
� �� � � � � � � �

�
�

� 	 � � � � �
�

� � � � (19)

a system of four dynamical variables and two control pa-
rameters

�
and � .

Using the dynamics decomposition discussed before one
obtains� � � � � � � �

� �
� � � � � � � � �

� �
�

� � � � �� � � � � � �
� � � � � � � � � � � � �

� � � � � �� �� �
� �

� �
�

�
�

�

�
� � � � ��  � � � � � � �  � �  �! � �

� �
� �

�
�

�
�

�
� � � �

� � � � � � �
(20)

� �  � 
� �� � � � � 	 �  
 �  � � � � " ��  
(21)

� # � $ � � � � ��  � � " ��  
� � �� � � � � � 
 � �� � � � � � 
 �

� 	 �� � � � � �� � � �� � �� � � � � �� � � �� 	  
� �  	 � � �� � � � �

� 
 � �� � � � �
� 
 �

(22)

The reaction of
�

and
�

to external stimuli (

�
and � ) and

the production rate of
�

are coded on the first three terms

of the potential function
� � � � . For coupling constants of

order unit, one sees from (22) the existence of a damped
Hamiltonian oscillation for the

� � �
system, and a danger-

ous runaway behavior of
	 � �

arising from its dominantly
gradient dynamics. The action of

�
on

	
and

�
is of mixed

gradient-Hamiltonian type. Hence, from inspection of the
nature of the global functions describing the dynamics, one
concludes that (at least in this model) the controlling action
of p53 may only be effective in particular circumstances.
That is, it will depend on the initial conditions. This con-
clusion is now checked by a detailed study of the solutions.
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Fig. 2. Time evolution of the network (19)
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Fig. 3. Same as Fig.2 with different initial conditions

Consider first the linear approximation to the system.
The solutions are, for the

� � �
system

� � � � � �� � � % � � �
� � � � � �� � � % � � � (23)

with

�� � � � �
� � � � � � � � �� � ��� � �� � � (24)
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� � � � �
� � 	 � � 
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� � � �
� � � � �

	 
� � � � � � � �� � � �� � � � � � � 
� � � �
� � � 	 � � 


(25)

and � � � � � � � � � � �
.

As expected, one sees a damped oscillatory behavior of
the

� � �
system and, in the absence of stimuli (  � � � �

)
the

�
level is small and controlled by the degradation of

�
.

For
�

and
�

one now obtains� � � � �� � � � � �
�
� � � �

��� � � � �� � � �� � �
� �
� � � �� � � � � � � �

� � � � � � � � �
� � � � � � � � � � �

	 � � �
� � � � � � � � �

��� � � � � � � � �� � �� � �
��

(26)

where
	

is the matrix

	 � � � �� � �
� � (27)

This matrix has eigenvalues � � � � � implying that� � � �
and

� � � �
are going to have terms proportional to
 � � � � � � � �

�
and 
 � � � � � � � � �

�
. Hence

�
(p53) will

only have a controlling effect on cell proliferation if the
coefficient of the exponentially growing terms becomes
negative. Multiplying (26) on the left by the matrix
� � � � � � �� � � � �

� � that diagonalizes
	

one obtains the

coefficient of the exponentially growing term

 � � � � � � � � � � � � � � �� � � � � � � � � �
�� �	 
� � � � � � � � � � �� � �� � � � 


� � �� � � � � � � � � � � � � � � �� � � � 	 
� � � �
�

� � � � � � �
(28)

The conclusion is that control of cell proliferation is ob-
tained only if � �

such that
 � � �  �

. Therefore it de-
pends strongly on the initial conditions. This conclusion,
inferred both from the dynamical decomposition and the
linear approximation is borne out by simulation of the non-
linear problem. Figs.2 and 3 show two time evolutions
of the equations (15) with

� � � � � � ! 	 " � � �
, � � � �� � � � � � � � � � � � � � � � � � � � � ,

� � � � # � � ,� �  � � and the vector field �� � � $ �
truncated to�� � � $ � �

OR
� � � � � � � � � � � � � � � $ � � �

, because concentrations
cannot become negative. The behavior depends strongly
on the value of the initial conditions. In conclusion, the

implication (of the model) is that unless p53 starts acting
soon enough its action is useless and other means have to
be used to control cell proliferation.

D. Evolving networks

In many networks found in Nature, as important as the
structure of the network, is the path that the network took to
reach that final state. Social or economic networks, indus-
trial, transportation and communication networks, ecologi-
cal webs, biological networks, all are examples of evolving
networks. In many cases their complex structure is a simple
consequence of the principles of their growth. Several net-
work growth schemes have been studied (see [1], [2] and
[3] for reviews).
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Fig. 4. Typical equilibrium configuration of network connections evolved
according to Eqs. (29)-(30) ( % & ' ( ) & * )
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Fig. 5. Degree distribution of the network in Fig.4

Network evolution occurs either by the addition or elim-
ination of interactions between existing nodes or by the ad-
dition of new nodes. In both cases, network evolution may
be looked at as a dynamical system in the space of network
connections. In the case of growing networks, this dynam-
ical point of view may also be used by considering the evo-
lution from zero of previously vanishing connections.

This dynamical approach will be explored here. Using
the global function description, discussed in Section 2.1,
two types of evolving networks will be considered. The

N  D  E  S        2  0  0  4

26



61

0.8

0.6

0.4

0.2

0
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100
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Fig. 7. Degree distribution of the network in Fig.6

simplest situation occurs when the dynamics of the con-
nections is derived from a potential. In this case, exact ex-
pressions for mean values and invariant measures may be
obtained.

Consider� � � � � � � � � � � �
	 � 
� 	 � � � 	 � � � 
  � �� �� 	 �� �

� � � 	 � � � 
 � 
	
�

(29)

with the network evolving according to� � � 	
� � � � � � �� � � 	

(30)

When � �� �
and

� � �
, the connections evolve either to

zero or to one, depending on the initial conditions. There-
fore the network (with

�
nodes), as a dynamical system, is

a multistable system with
� � � � � � � � 


different equilibrium
points. A typical configuration, obtained from random ini-
tial conditions, is shown in Fig.4 (

� � � � �
) to which cor-

responds the degree distribution shown in Fig.5.
When

� �� �
the behavior is quite different, as shown

in the typical configuration of Fig.6 and degree distribution
Fig.7. The degree � �

of a node � is defined to be

� � � � 	 � � 	
(31)

holding for all intermediate values of � � 	
.

One sees that for
� �� �

some nodes are more connected
than others.

� � � � � � �
with

� �� �
is a model for preferen-

tial attachment.
It is not be practical to obtain mean values and distribu-

tions directly from simulations. This being a multistable
system many different simulations with well distributed
initial conditions would be required to obtain accurate val-
ues. However, in this case, exact expressions may be ob-
tained from the unique invariant measure for the system
with small random perturbations, as discussed in Section
3.2

� � � � � 	 � � � � � 
 � � � � � � � �
(32)

As a second example consider� 
 � � � � � � � � � �
	

� 
� 	 � � � 	 � � � 

 � � � �

	 � � �� � � 	 �� � � 	
�

� � 
� �  � 
	 � �
� � � � � � � � 
  � �

	 � � � � 
 �
(33)

For
� �� �

a typical configuration is shown in Fig.8. The
main feature is the correlation between node connections.
For � � � ,

� � � 
 � 	
and

� � � � �
the sum of correla-

tions between the node connections is around
� �

whereas
for � � � ,

� � �
it is 
 � 
 	

. In conclusion,
� 
 � � � � �

is a
model for (approximate) node replication.
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Fig. 8. Typical equilibrium configuration of network connections evolved
by the potential � �  � � � � ( � � � � � � � � � � )

III. ERGODIC TOOLS

Topological and differential notions provide useful char-
acterizations of the overall structure of phase space. How-
ever, what is more important for the applications is the dy-
namics in the phase space regions most frequently visited
by the system. This is provided by the ergodic theory, in
particular by the classification of invariant measures and
their characterization by ergodic parameters.

Let a dynamical system evolve on the support of a mea-
sure � which is left invariant by the dynamics. An ergodic
parameter

	
�

� � �
, characterizing the measure, is obtained
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whenever the following limit

� � � � � � � � �� � �
��

��
� � � � � 	 � 
 � �

(34)

exists for � �
almost every


 � . For continuous-time dynam-
ics

	
denotes the time-one map.

A. Lyapunov and conditional exponents

Lyapunov exponents are the most widely used ergodic
parameters. More recently conditional exponents have also
been proposed as an useful characterization of the dynam-
ics.

Let

	
� � � �

, with
� � � � , � a measure invariant

under

	
and � a splitting of

�
induced by

�
�

	 � � �
�
. The

conditional exponents are the eigenvalues
 �

�
��

and
 � � �

�
��

of the limits

� � �� � � � �
� 	 � 
 � 
 � �

� 	 � � 
 � � �� � (35)

� � �� � � � � � �
� 	 � 
 � 
 � �

� 	 � � 
 � � �� �

where
�

� 	 � and
� � �

� 	 � are the � 	 � and
� � � 	 � � �

diagonal blocks of the full Jacobian. For � � �
,

 � � �� � �
are the Lyapunov exponents.
Proposed by Pecora and Carroll [41] to characterize syn-

chronization in chaotic systems, rigorous conditions for the
existence of these limits have been proven in [42]. Ex-
istence � -almost everywhere of both Lyapunov and con-
ditional exponents is guaranteed by the conditions of Os-
eledec’s multiplicative ergodic theorem, in particular the
integrability condition,

� � � � 
 � � �
� � � � � 
 � � � �

(36)

�
being either the Jacobian or its � 	 � and

� � � 	 � � �
diagonal blocks. The set of points where the limit is defined
has full measure and

� � �� � � �� � �
� � �

� 	 � � 
 � � � �  �
�

��
(37)

with
�

�� � � � �
�

� � � � �
�

,
� �

�
being the subspace of�

�
spanned by eigenstates corresponding to eigenvalues� � � � �  �

�
�� �

.
Based on the spectra of Lyapunov and conditional ex-

ponents, several global quantities have been defined to
characterize self-organization and creation of structures in
networks of multiagent systems with arbitrary connection
structures. I list here the definitions and refer to Refs. [43]
and [44] for proofs and examples.

A.1 Structure index related to the Lyapunov spectrum

A structure (in a collective system) is a phenomenon
with a characteristic scale very different from the scale of
the elementary units in the system. In a multi-agent sys-
tem, a structure in space is a feature at a length scale larger
than the characteristic size of the agents and a structure in

time is a phenomenon with a time scale larger than the cy-
cle time of the individual agent dynamics. A (temporal)
structure index may then be defined by

� � �	

 �� � � �

� � � �
� (38)

where
	

is the total number of components (agents) in
the coupled system,

	 �
is the number of structures,

� �
is

the characteristic time of the structure � and
�

is the cy-
cle time of the isolated agents (or, alternatively the charac-
teristic time of the fastest structure). A similar definition
applies for a spatial structure index, by replacing charac-
teristic times by characteristic lengths.

Structures are collective motions of the system. There-
fore their characteristic times are the characteristic times of
the separation dynamics, that is, the inverse of the positive
Lyapunov exponents. Hence, for the temporal structure in-
dex, one may write

� � �	


 �� � � �
�  � � � � � (39)

the sum being over the positive Lyapunov exponents
 �

.
 �

is the largest Lyapunov exponent of an isolated component
or some other reference value.

The temporal structure index diverges whenever a Lya-
punov exponent approaches zero from above. Therefore
the structure index diverges at the points where long time
correlations develop. Also, when in a multiagent network
the coupling between the agents increases, the positive part
of the Lyapunov spectrum contracts leading to an effec-
tive dimension reduction and to partial synchronization ef-
fects[45].

A.2 Exponent entropies and dynamical selforganization

Self-organization in a system concerns the dynamical re-
lation of the whole to its parts. The conditional Lyapunov
exponents, being quantities that separate the intrinsic dy-
namics of each component from the influence of the other
parts in the system, provide a measure of dynamical selfor-
ganization

� � � � �
� � � � � � 
�� � � � �

� � � � � �
� �

� � � � � � � � � �
(40)

the sum being over all relevant partitions �
� � �

�
	

� � �
�

and
�

� � � � � � � 	 � 

�

� �
 �

�
�� � �

� �
� � � �

� � � 	 � � � 

�

� �
 � � �

�
�� � � � � � � � �

�
� �

 �
are the exponent entropies, that is, the sums over positive
conditional and Lyapunov exponents.� � � � �

may also be given the following dynamical inter-
pretation: Lyapunov exponents measure the rate of infor-
mation production or, equivalently, they define the dynam-
ical freedom of the system, in the sense that they control
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8the amount of change that is needed today to have an effect
on the future. In this sense the larger a Lyapunov exponent
is, the freer the system is in that particular direction, be-
cause a very small change in the present state will induce a
large change in the future. The conditional exponents have
a similar interpretation concerning the dynamics as seen
from the point of view of each agent and his neighborhood
[43]. However the actual information production rate is
given by the sum of the positive Lyapunov exponents, not
by the sum of the conditional exponents. Therefore,

� � � � �
is a measure of apparent dynamical freedom (or apparent
rate of information production).

Being constructed as functions of well defined ergodic
limits, both

� � � � �
and

�
are also well defined ergodic pa-

rameters. They characterize the dynamics of multiagent
networks and, in addition, also provide some insight on the
relation between dynamics and the topology of the network
[46].

B. Construction of invariant measures

In general a deterministic system has a multitude of in-
variant measures. However, some of them have little prac-
tical interest, because they are not stable for small random
perturbations. Because systems in Nature are subjected to
perturbations, only the stable measures are physical mea-
sures. In some cases it is possible to use the properties of
the deterministic system to identify the physical measures.
For example, in Axiom A systems a unique physical mea-
sure may be identified with the Sinai-Bowen-Ruelle (SBR)
measure, a measure absolutely continuous along unstable
manifolds. However in most cases, for example in the mul-
tistable systems so frequent in natural networks, the SBR
characterization is useless. Instead, it is better to study the
stochastic differential equation that is obtained from (1) by
addition of a small noise term� � � � � � � � � � � 	 � � � � � � 
 � (41)


 � being a Wiener process and � � � �
a � �

dependent
diffusion coefficient. A great deal of information on the
invariant measure for this process may be obtained using
the theory of small random perturbations of dynamical sys-
tems[47] [48] [49].

If, in the decomposition (8), � � � �
has only a gradient

component, an explicit form for the invariant measure may
be obtained. If � � � � � � �

� �  � � � �
(42)

�

� �  being the gradient in the metric� � � � � � � � � � � � � � � � �
(43)

with � � � �
in (41) chosen such that

� � � � � � � � � � � � � � � � � � � �� � � � � � � � �
(44)

then, the density of the invariant measure is

� � � � � � � � � � � � � � � � � � � � � �
(45)

as may be easily checked from the forward Kolmogorov
equation. In this case, finding the stable minima and level
sets of

� � � �
one characterizes the multistability of the net-

work, their basins of attraction and, from the values of� � � �
in these sets, the relative occurrence probability of

each attractor.
For general � � � �

, small
�

estimates of the invariant
measure for (41) are also possible. Here the crucial role
is played by the functional

� � � � � � � �
�

�
� � � � � � � � � �� � �� �

� � � � � � � � � � ��
�
� � �

� � � � � � � �
(46)

and the infimum

� � � 	 
 � � � � � � � � � � � � � � � � � 	 � � � 
 	 � � � � 	 �

� �
(47)

taken over intervals � � 	 �

�
of arbitrary length.

An equivalence relation is established between points in
the domain by

� � 
 if
� � � 	 
 � � � � 
 	 � � � �

. Let
the domain be partitioned into a number of compacta

�
�

� �
with each � �

limit set of the deterministic dynamics con-
tained entirely in one compactum and

� � 
 inside each
compactum. Then, the (small

�
) asymptotics of the invari-

ant measure is obtained from the invariant measure of the
Markov chain of transitions between the compacta. For
sufficiently small

�
the measure of each compactum is ap-

proximated by

� � � � � � � � � 
 �
�

� � � � � �� 
 �
�

� �  �
(48)

where


 �
�

� � � � � �
� � � � � 

�
� � � �  � �

� �
� � 	

� � �
(49)

� �
� � 	

� � �
is the minimum of the function (47) between

points in compacta � � and � � and the sum runs over
graphs that have exactly one closed cycle and this cycle
contains the compactum �

�
. For proofs I refer to [47].

C. A family of ergodic parameters

Ergodic parameters like the Lyapunov and the condi-
tional exponents, are global functions of the invariant mea-
sure. However, the invariant measure itself contains more
information. Ergodic parameters being defined by infinite-
time limits, these quantities will fluctuate and, in general,
fluctuations will not be Gaussian. The quantity describing
the fluctuations is again an ergodic parameter and the same
reasoning applies in turn to its fluctuations, etc.[50]. There-
fore, to characterize the measure, a larger set of parameters
is needed. To construct this larger set from the fluctuations
is not very practical and a different approach will be fol-
lowed here, namely a variational approach.

In a restricted sense, a variational principle states that the
equations of motion may be written in the form

� � � �
,

where
�

is a functional of the dynamical variables and
�
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9is the Gateaux derivative. Only a limited set of dynamical
systems may be described by a variational principle in this
restricted sense. However, if one only requires that

� � � �
and the equations of motion possess the same set of solu-
tions, essentially all differential equation problems admit a
variational formulation[51]. Let

�� � � � � � � �
(50)

be a differentiable continuous-time dynamical system and�
be the functional

� � � � �
�

� 	 � � 
 � � �� � � 	 � � � � � � � 	 � � � � � 	 � � �
� �� � � � � � � � � � � � � � �

(51)

where

� � 	 � � �
is a symmetric kernel (

� � 	 � � � � � � � � 	 �
).

Let us compute the Gateaux derivative for variations in
space restricted by the boundary conditions

� � � � � � � � � � �
(52)

From� � � � � � � �
�

� 	 � � 
 � � 
�

 � 	 �� �  � � � � �
�

� �� �
� �

 � � � � � 	 � � � � 	 � � � �
� �� � � � � � � � � � � � � � � (53)

we have
Lemma: The equations of motion (50) and the critical

points of the functional (
� � � � �

) have the same set of
solutions if

�
� 	 � � � � �  � � � � 	 � � �� 	 � �

 � � � � � 	 � � � � 	 � � �
(54)

is invertible.
Remarks:
a) If �

� 	 � � �
is not invertible, the solutions of the equa-

tions of motion are still critical points of the functional, but
this one might have other solutions.

b) A variational principle, with only
� � � � � �

being
required, may also be obtained by choosing a kernel such
that

� � 	 � � � � �
.

The critical points of the
�

functional contain the same
information as the equations of motion. Therefore the dy-
namics may be characterized by the properties of the criti-
cal points, in particular by their Hessian matrix. Computing
the second Gateaux derivative on the orbits one obtains

� ��
�

�
� �

� � � � � � � �
�

�

� 	 � � � � � � � � � 	 � �
� � � � � � � � 	 � � �

(55)

with� � � � 	 � � � � 
 
� � � � �

�
� �� � �

� � � � � � � � � � � � �  � � � 	 � �� � 	 � � � �
� �  � � � � � � � � � � � �

�
� �� � � �

� � �
� � � � � � � � 	 � � � � � �

�
� �� �

�

(56)

Now assume that the symmetric kernel

� � 	 � � �
is a function

of finite support of
	 � �� � 	 � � � � � � 	 � � � � � �

� � � 	 � � � � �
(57)

Define

� � � ��

�
� � � �

�

�

� � � � � � 	 � � � � � 	 � �
(58)

as well as

� � � � �
�

�
� � � � � ��

�
� � � �

� � �

� 	 �
� � � � � � � 	 � � � � � � 	 � �

� � � �

	 �
� � � � � � � 	 � � � � � � 	 � �

Then
� � � � �

�

�
� � � � � � � � � � �

�

�
� �

� � � � � �� �

�
� �

and we are in the conditions of Kingman’s sub-additive
ergodic theorem. Taking limits, if both � �

and � � � 
are

bounded
� � � � �

�

�
� and

� � � ��

�
� differ only by a finite quantity and

one concludes:
Theorem: If � is an invariant measure of the dynamics in

(50), � �
and � � � 

are bounded and there is
� � �

such
that

� � � ��

�
� � � �

for sufficiently large
�

, then the limit


 � � � � � � � �
� � 	

�� � � � ��

�
� (59)

exists and

� � � �
� � 	

�� � � � ��

�
� � � � � � �

� � 	
�� � � � � ��

�
� � �


 � � � �
for � � � � � �    

is a family of ergodic parameters
for the � �

measure preserving dynamics.
A similar construction for discrete-time maps may be

found in [52] [53].

D. Synchronization, mode-locking and dynamical correla-
tions

The onset of correlated motions in coupled many-agent
systems is a phenomenon of widespread occurrence in
many scientific fields. The most dramatic effect is the
synchronization of assemblies of coupled dynamical sys-
tems which, when in isolation, may have quite different
rhythms [54]. Examples are biological rhythms [55] like
the pacemaker cells in the heart[56], neural systems[57],
synchronous metabolism [58], flashing fireflies[59], laser
arrays[60], even fads and social trends may be interpreted
as synchronization of distinct agent dynamics. The study
of the correlated behavior of many-agent dynamics is also
closely related to the problem of control in extended dy-
namical systems.

I will consider both the coupled behavior of non-chaotic
systems (oscillators with distinct individual frequencies)
and of systems with isolated chaotic dynamics. In both
cases one may distinguish between globally coupled sys-
tems and systems where each agent has a limited range or
number of interacting partners.
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For systems of oscillators the canonical example is the
Kuramoto model [61] [62],� � �� � � � � � �

� � �
��� 	 
 �

� � � � � � � � �
(60)

with �
 �

and the frequencies � �
randomly distributed

around a central value � � with the shifted Cauchy distribu-
tion

� � � � � �
� � � � � � � � � �

� � � (61)

A great deal of work has been done on this model (for a
review see [63]). The existence of a synchronized cluster
is characterized by the order parameter

� � � � �
�
�
�
�
�
�

�
�

��� 	 
 �

� � � � � �
�
�
�
�
�
�

(62)
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Fig. 9. A Kuramoto system below threshold
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Fig. 10. A Kuramoto system above threshold

It is found that in the
� � �

and
� � �

limit,
� � �

for �
� � �

and
� � � � � � � � �

�
�

for �
� � �

. That
is, there is a coupling threshold above which part of the

oscillators starts to synchronize. Figs.9 and 10 show the
nonsynchronized (at � � �

) and the synchronized (at
� � � �

) behavior for � � �
oscillators. The upper plot dis-

plays the color-coded values of the oscillator variables at
the end of each unit time interval. The lower plots show
the time evolution of the order parameter. Fig.11 compares
the numerically computed Lyapunov spectrum in the syn-
chronized and non-synchronized situations. One sees that
even below the synchronization threshold ( � � � �

), part
of the Lyapunov exponents becomes negative, meaning that
there are many contracting directions, implying an effective
dimension-reduction of the asymptotic behavior of the sys-
tem. This clearly suggests that synchronization is not the
whole story and that even before synchronization strong
correlations must develop between the dynamics of the in-
dividual oscillators.
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Fig. 11. Lyapunov spectrum below and above threshold for the Kuramoto
system

0

1

t

Syncnet     (k=0.1)

20 40 60 80 100 120 140 160 180 200 220

20

40

60

80

100

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

t

r

Fig. 12. Non-synchronized behavior of the discrete-time oscillators
(Eq.63)

A type of correlation, of which synchronization is a lim-
iting case is mode-locking. Mode-locking is the entrain-
ment of some integer combination of the frequencies to
zero. It also plays an important role in the dynamics of
coupled oscillators [64]. However even if all the effective
frequencies are incommensurable, the existence of negative
Lyapunov directions, implies the existence of dynamical
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correlations between the oscillators. What is important is
the dimension of the invariant measure and the correlations
may be characterized by the eigenvectors of the Lyapunov
spectrum. These notions are better clarified in a simple
model with exactly computable Lyapunov spectrum. Let
the dynamics of an assembly of discrete-time oscillators be

� � � � � � � � � � � � � � � � � �� � �
�	

� �


� � � 
 � � � �

(63)

with
� � �

�
� � � �

and


� � � 
 � � � � � � � � 
 � � � � � �

�
� � �

and the � �� �
distributed according to

� � � �
, as above.
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Fig. 13. Synchronized behavior of the discrete-time oscillators (Eq.63)
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Fig. 14. Correlations in the discrete-time oscillators system.

The Lyapunov spectrum is composed of one isolated

zero and � �
� � � � �� � � � �

�
(

� � � )-times. However, al-

though (for all � � �
)

� � � contracting directions are
always present, it is only for sufficiently large � that syn-
chronization effects emerge as shown in Figs.12 and 13.
Nevertheless dynamical correlations do exist for all � , no
matter how small and the Lyapunov dimension is always
one. In this case, the eigenvectors of the Lyapunov spec-
trum may be exactly computed and the correlations explic-
itly identified. This is illustrated in Fig.14.

So far I have dealt with coupled oscillators, that is,
with systems which have individual nonchaotic dynamics.
Another important field with many practical applications
refers to the case where the individual node dynamics is
chaotic. Synchronization of chaotic systems has been ex-
tensively studied (for a review see [65]) and is still a field
of current research [66]. However, as in the oscillators,
for networks of chaotic elements the interesting phenom-
ena go beyond synchronization effects. Correlations and
self-organization effects may be characterized by ergodic
parameters. I refer to [43] and [45] for illustrative examples
of networks of chaotic elements both globally connected
and with a limited range of interactions. The Lyapunov
spectrum and the entropies associated to the conditional
exponents provide a characterization of the emergent phe-
nomena. It should be noticed that dynamical correlations
play an important role in the organization of the dynamics
even when there is no reduction of the Lyapunov dimen-
sion [45]. As before these correlations are associated to the
eigenvectors of the Lyapunov spectrum.
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[46] T. Araújo, R. Vilela Mendes and J. Seixas; A dynamical characteri-
zation of the small-world phase, Phys. Lett. A319 (2003) 285-289.

[47] M. I. Freidlin and A. D. Wentzell; Random perturbations of dynam-
ical systems, Springer-Verlag, New York 1984.

[48] M. I. Freidlin and A. D. Wentzell; Random perturbations of Hamil-
tonian systems, Memoirs of the American Mathematical Society no.
523, 1994.

[49] Yu. I. Kifer; On small random perturbations of some smooth dynam-
ical systems, Mat. USSR-Izv. 8 (1974) 1083-1107.

[50] D. Ruelle; Theory and experiment in the ergodic study of chaos
and strange attractors, in Proc. VIII Int. Congress on Mathematical
Physics, pgs. 273-282, M. Mebkhout and R. Sénéor (Eds.), World
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Abstract—Ideal turbulence is a mathematical phe-
nomenon which occurs in certain infinite-dimensional
deterministic dynamical systems and implies that the
attractor of a system lies off the phase space and
among the attractor points there are fractal or even
random functions. A mathematically rigorous defini-
tion of ideal turbulence is based on standard notions
of dynamical systems theory and chaos theory.

Ideal turbulence is observed in various idealized
models of real distributed systems of electrodynam-
ics, acoustics, radiophysics, etc. In systems without
internal resistance, cascade processes are capable to
birth structures of arbitrarily small scale and even to
cause stochastization of the systems. Just these phe-
nomena are inherent in ideal turbulence and they help
to understand the mathematical scenarios for many
features of real turbulence.

I. INTRODUCTION

The term turbulence in the wide sense is used when
describing spatial-temporal chaos in parameters dis-
tributed systems. Many effects of turbulence can be
observed in deterministic infinitely-dimensional dy-
namical systems, induced, in particular, by boundary
value problems (BVP) for partial differential equa-
tions (PDE).

The distinguishing features of turbulence are cas-
cade processes of emergence of structures of decreas-
ing scales and chaotic mixing. In real distributed
systems, processes of reducing structures to smaller
and smaller size cannot go indefinitely because of
their internal resistance. In idealized systems, cascade
processes may produce structures of arbitrarily small
scale and even lead to stochastization of the systems
(when their long-term behavior should be described in
terms of probabilistic theory). These effects are real-
izable in mathematical models through certain ideal-
izations of real distributed systems.

Effective study of such models has became possible
only in the last 20-30 years due to development the
theory of difference equations with continuous time

based on the theory of dynamical systems given by
one-dimensional maps.

We present an original approach to modelling tur-
bulent processes, which was developed in our research
on chaotic dynamics in infinite-dimensional dynami-
cal systems and in boundary value problems for par-
tial differential equations [1-32]. These investigations
have led to the fixation of the term ideal turbulence
as a mathematical phenomenon, and now this term
is represented, in particular, in the “Encyclopedia of
Nonlinear Science” which is prepared to publication
(see, http://www.routledge-ny.com/nonlinsci).

This talk follows to our recent talks [29-31].

II. SPATIAL-TEMPORAL CHAOS

IN BOUNDARY VALUE PROBLEMS

We begin with several simple examples. Let us con-
sider the simplest BVP

wt − wx = 0, x ∈ [0, 1], t ∈ R
+, (1)

w(1, t) = f(w(0, t)), (2)

where f is a C1-smooth function. On substituting the
general solution of (1) w(x, t) = u(x + t), where
u is an arbitrary C1-smooth function, into the bound-
ary condition (2) we obtain the difference equation
(DE) with continuous argument

u(τ + 1) = f(u(τ)), τ ∈ R
+. (3)

Any initial condition for this BVP

w(x, 0) = ϕ(x), x ∈ [0, 1],

with ϕ being a C1-smooth function, gives the initial
condition

u(τ) = ϕ(τ), τ ∈ [0, 1), (4)

for the DE (3). Here it should be noted that both
the solution of the BVP, generated by the initial data
ϕ, and the corresponding solution of the DE (3) will
be C1-smooth if, and only if ϕ(1) = f(ϕ(0)) and
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ϕ (1) = f (ϕ(0))ϕ (0), that is a usual assumption
in BVP theory, so-called the C1-smooth consistency
conditions.

The solution u(τ) of the DE (3) with the initial con-
dition (4) can be written in the form

u(τ) = fn(ϕ({τ})), n ≤ τ < n + 1, n = 0, 1, ...,
(5)

where fn is the n-th iteration of f (i. e., fn = f ◦
fn− 1 and f0(x) ≡ x), and hence the corresponding
solution of the BVP can be written in the form

w(x, t) = f [t+x](ϕ({t + x})), t ∈ R
+, (6)

where [·] and {·} are the integral and fractional parts
of a number; in particular,

w(x, n) = fn(ϕ(x)).

Thus, the properties of solutions of both the BVP
(1), (2) and the DE (3) should be closely connected to
the properties of the difference equation with discrete
time

un+1 = f(un), n ∈ Z
+, (7)

or, what amounts to the same thing – to the properties
of the dynamical system given by the map

u �→ f(u). (8)

Every solution un, n ∈ Z
+, of the equation (7) is

determined uniquely by the value u0 ∈ R: un =
fn(u0). Every solution u(τ), τ ∈ R

+, of the DE
(3) is determined by its values on the interval [0, 1):
uϕ(τ) = f [τ ](ϕ({τ})), τ ≥ 0. Thus, every solution
of the DE (3) consists of a continual family of solu-
tions of (7). The dynamics of solution of the DE (3)
can be treated as dynamics of continuum of uncoupled
oscillators: at every point τ ∈ [0, 1), there is disposed
the same oscillator u �→ f(u); its oscillations are in-
dependent of oscillations at other points from the in-
terval [0, 1), and therefore, if the map f possesses so-
called sensitive dependence on initial data, the states
of oscillators that were very close in an initial mo-
ment, can be very different with time.

Typical evolution of a solution of the BVP (1), (2)
is shown on Fig. 1.

If it is necessary to investigate asymptotic behavior
of solutions of a BVP, it is usually convenient to trans-
fer to a dynamical system (DS) generated by shifts
along solutions of the BVP on the space of its initial
states. The BVP (1), (2) induces, on the space of its
initial states, dynamical systems of shifts

St : ϕ(x) �→ f [t+x](ϕ({t + x})), t ∈ R
+, (9)

Fig. 1. Typical behaviour of solutions of the BVP (1), (2)
if the corresponding one-dimensional map f has an at-
tracting cycle of the period �= 2i, i ≥ 0.

in particular, S[ϕ] = f ◦ ϕ.

An analogous investigation may be realized for
BVPs for the wave equation and related ones. A rep-
resentative example is the BVP

wtt − wxx = 0, x ∈ [0, 1], (10)

w(0, t) = 0, wt(1, t) = h(wx(1, t)), (11)

with h being a C1-smooth function on the real line
R. The initial conditions

w(x, 0) = ϕ(x), wt(x, 0) = ψ(x) (12)

specify the phase space for the DS of shifts, associated
with the BVP. Starting from the general solution for
the equation (10)

w(x, t) = u(t + x) + v(t − x),

with u, v being arbitrary functions, and the boundary
conditions (11), one can obtain the representation of
St in terms of the iterations of some one-dimensional
map (as, for example, in [13]), but the correspond-
ing formulas are too unwieldy to be given here. Note
only, that this map, labeled f : zn �→ zn+1, is defined
implicitly by

zn+1 − zn = h (zn + zn+1).

When (11) is replaced with w(0, t) = 0, wx(1, t) =
h(wx(0, t)), there arise a two-dimensional map de-
fined by zn+1 − zn− 1 = z(un).

There are many other one- and many-dimensional
BVPs whose dynamics is represented by one- and
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low-dimensional maps. For these BVPs, we come
across a situation similar to that considered in the
above examples. The turbulent properties of solutions
are displayed mostly impressively in case of two spa-
tial variables (Fig. 2).

Fig. 2. Evolution of flow lines for the vector field (w1, w2)
given by w1

t = −w1
x − w1

y, w2
t = w2

x + w2
y, 0 ≤

x ≤ 1,−∞ < y < +∞, and w2(0, t) =
w1(0, t), w2(1, t) = f(w1(1, t)) with f(z) = 2(1 −
z2) − 1.

Evolutionary BVP for PDE generally induce
infinite-dimensional dynamical systems on their
spaces of initial states. For parabolic PDE (such as
Navier-Stokes equation), the attractor of the associ-
ated DS is in many cases a finite-dimensional subset
of the phase space. Another situation occurs in prob-
lems for hyperbolic equations which we just consider
here: the phase space of the associated DS (which
consists of smooth functions), as a rule, does not con-
tain its attractor. Therefore, when analyzing evolu-
tions given by our BVP, we need to involve classes of
functions, which are wider than the class of smooth
functions, and to use special metrics in order to com-
plete the phase space of the original DS and to de-
scribe by this means the asymptotic behavior of tra-
jectories and, in particular, to construct the attractor
of the DS.

For a description of the asymptotic behavior of tra-
jectories it is expediently to use (as is accepted in the
theory of dynamical systems) the concept of the ω-
limit set of a trajectory. We use also a standard notion
of attractor but here we have to consider not only the
original space Ck but also a new space C obtained
via the completition of the space Ck, for example, by
the use some right metric ρ .

By the attractor A we mean the smallest closed

set in a phase space C which has the property that
ω[ϕ] ⊂ A for all ϕ ∈ Ck outside of a set of first Baire
category (with respect to Ck-topology).

For many DE and BVP, the attractor will consist
of discontinuous multivalent functions, which could
result on a very complicated long-time behavior of
(smooth) solutions. In this case, we typically observe
self-structuring phenomena, whose description calls
for the notions of self-excited structures, cascade pro-
cess of appearance of structures, self-similarity, frac-
tal structures and etc. Moreover, for these problems,
there may occur self-stochasticity phenomena, which
lie in the fact that the attractor of a deterministic DS
contains random functions.

III. IDEAL TURBULENCE: DEFININIONS

A mathematical definition of turbulence can be
given for dynamical systems on spaces of smooth or
piecewise smooth functions. Spatial-temporal chao-
tization in a DS is perceived as an evolution of such
functions which leads to that their behavior becomes
more and more intricate and the limit states of the
DS cannot be described with smooth functions (see
Fig. 1). The attractor of the DS is not contained en-
tirely in the phase space, and the DS needs to be ex-
tended on a wider functional space so that this new
space contains ω-limit sets of all or almost all trajec-
tories. The spaces of fractal and random functions are
particularly appealing for use as such wider space. By
a fractal function is meant a function whose graph is
a fractal (in the wide sense).

A. Spaces and Metrics

Let
{
Ck(D,E), T, St

}
be an infinite-dimensional

dynamical system with Ck(D,E) being the space of
Ck-functions ϕ : D → E, D ⊂ R

l, E ⊂ R
m

(k, l, m ≥ 1), T = R
+ or Z

+. The phase space
Ck equipped a priori with the “ordinary” Ck-metric is
noncompact. Therefore, for some or even for almost
all trajectories St[ϕ], ϕ ∈ Ck, the corresponding ω-
limit sets ω[ϕ] may be found empty.

To operate with the extended phase spaces, it is,
of course, necessary to use metrics which should sat-
isfy to certain physical considerations. If, for exam-
ple, we investigate asymptotic behavior of the func-
tion St[ϕ](x) as t → ∞ in the presence of large gradi-
ents in both x and t and, in particular, we have to anal-
yse the values of the function at some point x = x ,
we should consider the values of this function at some
ε-neighborhood of x too; if we have to analyse this
function at all x ∈ D then we should choose, by de-
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creasing ε, an “optimal resolving power” – small but
finite ε – depending on “objects” studied.

For a space containing fractal functions we take the
space of multivalent functions ζ : D → E, whose
graphs are closed sets (such functions are called upper
semicontinuous), and a metric is taken as follows

ρ∆ (ζ1, ζ2) = sup
ε>0

min
{

ε, sup
x D

dH

(
V ε

ζ1(x), V ε
ζ2(x)

)}
,

where dH (·, ·) is the Hausdorff distance between
sets, V ε

ζ (x) = ζ(Vε(x)), and Vε(·) is the ε-

neighborhood of a point. The metric ρ∆ is equivalent
to that given by the Hausdorff distance between the
graphs of functions.

A function ξ : D → E, deterministic or ran-
dom, can be interpreted as a collection of all its finite-
dimensional distributions. Whereas the metric ρ∆ al-
lows for the sets of values taken on by functions in
the vicinity of points from D, a metric in the space,
containing random functions along with deterministic
ones, should allow for the distributions of these val-
ues. Consequently, to obtain a desired metric starting
from ρ∆, the set ζ(Vε(x)) should be replaced with the
distributions of ξ on Vε(x). Thus we obtain the metric

ρ#(ξ1, ξ2) = sup
ε>0

min

{
ε,
∑
r=1

1
2r

sup
x Dr

d(ε, ξ1, ξ2)

}
,

where

d(ε, ξ1, ξ2) =
1

mes Er

∫
Er

∣∣F ε
ξ1(x, z) − F ε

ξ2(x, z)
∣∣ dz,

Dr and Er are the direct products of r copies D and
E respectively, and F ε

ξ (x, z), x ∈ Dr, z ∈ Er, is
the averaging of the r-dimensional distributions of ξ
over ε-neighborhood of a point x ∈ Dr. For a de-
terministic function ξ : D → E, all its distribu-
tions are defined uniquely by its distribution function
Fξ(x, z) = χ(− ,z)(ξ(x)), x ∈ D, with χA(·) being
the indicator of the set A.

B. Definitions

Let C∆ = C∆(D,E) be the completion of the
phase space Ck(D,E) via the metric ρ∆ with upper
semicontinuous functions and C# = C#(D,E) be
the completion of the phase space Ck(D,E) via the
metric ρ# with random and deterministic functions.

For an initial state ϕ : D → E, denote by ω∆[ϕ]
the set of the limit points of the trajectory St[ϕ] in the
space C∆ and by ω#[ϕ] the set of the limit points of
St[ϕ] in the space C#.

The initial state ϕ is said to generate ideal turbu-
lence (IT) if the set ω∆[ϕ] contains at least one
”point” that is a fractal function.

Along similar line, the initial state ϕ is said to gen-
erate stochastic turbulence (SIT) if the set ω#[ϕ]
contains at least one ”point” that is a random function.

If there is a great deal of initial states which gener-
ate IT or respectively SIT, then IT or respectively SIT
is said to occur in the DS.

This classification of turbulence can of course be
extended. For instance, let ζ ∈ C∆ and M(ζ) =
{x ∈ D : ζ(x) consists of more than one point}. The
initial state ϕ is said to generate weak ideal turbulence
(WIT) if ϕ does not generate IT but there exists at
least one function ζ ∈ ω∆[ϕ] such that the set M(ζ )
is infinite.

If we consider a BVP it is natural to say that IT,
or WIT, or SIT arises in a BVP if such a turbulence
occurs in the corresponding DS.

C. Simplest model for ideal turbulence

A simple example of DSs with turbulence is the
discrete DS acting on the space of smooth functions
ϕ : D → E according to the rule

S : ϕ �→ f ◦ ϕ, (13)

where f : E → E is a smooth function and the sym-
bol ◦ is for the composition of functions. The trajec-
tory through a ”point” ϕ can be written in the form

Sn[ϕ] = fn◦ϕ or Sn[ϕ](x) = fn(ϕ(x)), n ∈ Z
+,

herein the superscript n denotes the n-th iteration.
The last formula implies that the dynamics of almost
every trajectory Sn[ϕ], n ∈ Z

+, can be treated as the
dynamics of continuum of uncoupled oscillators: at
every point x ∈ D there is a ”pendulum” which oscil-
lates by the law zn �→ zn+1 = f(zn) with z0 = ϕ(x);
its oscillations are independent of the ”pendulums” at
other points of D. Just the independence of the os-
cillators causes IT in the DS (13). Moreover, when
f has the property of sensitive dependence on initial
data on some open set E ⊂ E, those ϕ such that
ϕ(D) ∩ E �= ∅ often generates SIT. In more general
situations, which just occur in applied problems, the
oscillation law depends on an initial data ϕ and/or a
point x ∈ D, and, finally, it can be time-dependent.

A description of long-term properties for the
DS (13) is most advantageous when f is a one-
dimensional map and D and E are intervals. In this
case, one has the following criterion (*):
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I. In the DS (13), there occurs
(1) weak ideal turbulence, if the map f has peri-

odic trajectories of periods 2i, 0 ≤ i ≤ l, with some
l > 1, and no other periodic trajectories;

(2) ideal turbulence, if the map f has a periodic
trajectory of period �= 2i, i = 0, 1, . . ..

II. In the DS (13), there occurs stochastic turbu-
lence, if the map f possesses a smooth (i.e., absolutely
continuous with respect to the Lebesgue measure) er-
godic invariant measure.

For quadratic and so-called quadratic-like maps f ,
criterion (*) can be sharpened. Namely, both the as-
sertions I and II remain valid when the words ”for ev-
ery ϕ from some open set of initial data” are replaced
with the words “for almost every ϕ” (“almost every”
is meant in a topological sense).

Let f in the DS (13) be the parameter-dependent
map fλ : z �→ λz(1 − z), z ∈ [0, 1], 0 < λ ≤ 4.
If the parameter λ varies in the interval (1 +

√
6, λ )

with λ ≈ 3.57 being the limit value for the period-
doubling bifurcation values of λ, there occurs WIT
and the progression of ideal turbulence follows the
period-doubling pattern. Where λ > λ , the map fλ

has a cycle with a period differing from the powers
of 2 and there occurs IT in the DS. Finally, there is
a set of positive Lebesgue measure Λ ⊂ (λ , 4] such
that the map fλ with λ ∈ Λ has an ergodic smooth
invariant measure and hence SIT in the DS is a non-
exclusive phenomenon. In particular, when λ = 4, the
map z �→ 4z(1− z) has an invariant measure with the
density p(z) = 1 / π

√
z(1 − z) and the support [0, 1].

Then for almost every ϕ, the set ω#[ϕ] consists of a
single point which is the pure random function with
x-independent distribution F (x, z) =

∫ z
0 p(z) dz =

(2/π) arcsin
√

z and the attractor of the DS consists
of just this one point.

Generally, functions that make up ω-limit sets may
appear to be deterministic on one subset of D and ran-
dom on the other. Such may take place where the map
f possesses several attractors and the initial values in-
terval ϕ(D) ”clings to” the basins of at least two at-
tractors.

It makes sense to note that the topological entropy
of the DS (13) is equal to 0 in case WIT and is equal
to ∞ in case IT.

IV. MATHEMATICAL FUNDAMENTALS

OF IDEAL TURBULENCE

If a BVP induces an infinite-dimensional DS whose
dynamics is specified by some interval map, then the
theory of one-dimensional maps allows one to un-

derstand why and how turbulence occurs in the BVP
and to present scenarios for self-structuring and self-
stochasticity phenomena. This is best demonstrated
by the BVP (1), (2) with quadratic map f : I → I .

For ideal turbulence, the main factor is the com-
plex topological structure of the set D(f) of points of
unstable trajectories of f , in particular, the local self-
similarity of D(f) at the points of repelling cycles and
at their preimages.

If the map f has a cycle whose period is differ-
ent from a power of 2, the Hausdorff dimension of
D(f) is positive and hence the graph of every solu-
tion wϕ(x, t), remaining a smooth surface, becomes
as t → ∞ more and more close to a certain fractal
surface of Hausdorff dimension > 2.

The cascade process of appearance of structures in
the solutions of the BVP is directly related to the in-
tricate topological and dynamical organization of the
basins of attracting cycles of f . As a rule such a basin
is of the form ∪i 0Bi, where Bi = f− 1(Bi− 1), i >
1, B1 = f− 1(B0) \ B0 with B0 being the domain
of immediate attraction of the corresponding cycle,
therewith the boundary points of the basin belong to
the set D(f). It is obvious that Bi′ ∩ Bi′′ = ∅ if
i �= i , every Bi consists of open (nonintersecting)
intervals (possible, Bi = ∅ for i greater than some
i0 > 0).

Let m(Bi) be the number of intervals Bij which
are components of Bi. If m is the period of the cy-
cle, then m(B0) = m. Let Bi′j′ and Bi′′j′′ , i < i ,
be intervals such that f i′(Bi′j′) = f i′′(Bi′′j′′) (and,
in addition, f i′ |Bi′j′ , f i′′ |Bi′′j′′ are one-to-one maps),
and let an initial state ϕ(x) be such that ϕ(D) ⊃
Bi′j′ ∪ Bi′′j′′ . Then whatever t̄ > 0, the solution
wϕ(x, t) “draws” the same “picture” (structure) on the
set Di′j′ = ϕ− 1(Bi′j′) at the moment t = t̄ + i
and on the set Di′′j′′ = ϕ− 1(Bi′′j′′) at the moment
t = t̄ + i . In this case, one can say that the solu-
tion wϕ(x, t) produces coherent structures on the sets
Di′j′ , Di′′j′′ ⊂ D. Since diamBij → 0 as i → ∞,
the scale of structures produced at a moment t de-
creases ad infinitum as t → ∞.

If m �= 2i, between any two intervals Bi′j′ and
Bi′′j′′ , i �= i , there is an interval Bi∗j∗ with i >
i , i . The process of structures production by the so-
lution is cascade and, moreover, the rate of structures
production during the cascade process is specified by
ci = m(Bi+1)/m(Bi), therewith log ci → ent f as
i → ∞, where ent f is the topological entropy of f .

For stochastic turbulence, of fundamental impor-
tance is both the occurrence of a smooth ergodic in-
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variant measure (s.e.i.m.) for the map f and the fact
that for interval maps, the availability of s.e.i.m. is
not extraordinary point (for wide classes of parameter-
dependent maps, the parameter values which result
in the map possessing s.e.i.m., form a set of posi-
tive Lebesgue measure). Where the quadratic map
f : I → I possesses s.e.i.m., it has the property of
sensitive dependence on initial data on the support
of s.e.i.m. and, moreover, almost every trajectory
fn(z), n ∈ Z

+, restores s.e.i.m. (that is, the resi-
dence time of the trajectory in a set A ⊂ I is equal
to the measure of A). In view of (9), such tempo-
ral stochasticity of trajectories of f transforms into
spatial-temporal stochastization of solutions for the
BVP and causes SIT via cascade processes of “birth
and crushing” structures up to infinitely small sizes.

V. VISUALISATION OF IDEAL TURBULENCE,
AND COMPUTER TURBULENCE

The visualisation of IT is connected with certain
difficulties in computing. These difficulties arise due
to the fact that IT is accompanied by cascade pro-
cesses of birth of structures of infinitely decreasing
scales. This raises the question of what one should
do with the precision of calculations. If mathemat-
ical models involving IT describe a real physical ob-
ject then decreasing the diameters of structures to zero
conflicts with the discrete nature of the physical ob-
ject. Thus these models can describe adequately real
processes only within certain space-time scales.

The discreteness brought in the models by calcu-
lation algorithms leads to that the results of numeri-
cal investigation of these models may be found more
close (in certain sense) to the reality than exact so-
lutions (not in spite of “incorrect” calculations but
owing to these). When IT occurs in a BVP, some-
times exact solutions “dictate”, nevertheless, laminar
dynamics and only their space-time discretization re-
sults in just turbulent dynamics. In such cases, we say
that “computer turbulence” takes place [21,26,28].

VI. A EXAMPLE: A TIME-DELAYED CHUA’S

CIRCUIT

We consider the BVP for a lossless transmission
line with tunnel diode (Fig.3)

vx = −Lit, ix = −Cvt, 0 ≤ x ≤ l, t ∈ R
+, (14)

v(0, t) = 0, i(l, t) = G(v(l, t)−E−Ri(l, t)), (15)

under the assumption C1 = 0. Here v(x, t) and i(x, t)
are the voltage and the current along the line, L and C
denote the inductance and capacitance per unit length,

and the function G specifies a v − i characteristic of
the diode:

G(u) =
{

m0 u, |u| ≤ 1,
m1 u − (m1 − m0)sgn u, |u| ≤ 1.

Fig. 3. (a) The time-delayed Chua’s circuit. (b) The vR −
iR characteristic of Chua’s diode.

Solution (10) under the condition v(0, t) = 0 is of
the form

v(x, t) = α(t − x/ν) − α(t + x/ν), (16)

i(x, t) = (1/Z)[α(t − x/ν) + α(t + x/ν)],

where ν =
√

1/LC, Z =
√

L/C, and α is an ar-
bitrary function. With the new variables τ = (νt/l −
1)/2, z(τ) = α(2lτ/ν), combining (16) and the sec-
ond boundary condition (15) gives the continuous
argument difference equation

z(τ + 1) + z(τ) = (17)

F (z(τ) − z(τ + 1)), τ ≥ −1.

Thus, the behavior of solutions of the BVP is de-
termined by the one-dimensional map f : zn →
zn+1, which is defined implicitly by zn+1 + zn =
F (zn − zn+1). In case of particular function G and
particular parameters, conditions to the occurrence of
IT can be formulated (Fig. 4, as given in [13]).

The shift operator St specifying a dynamical sys-
tem associated with the BVP can be expressed in
terms of the map f by reference to (16).

If G is a piecewise linear function, as in case of
Chua’s diode, then there usually exists a parameter
region where the map f has an invariant interval into
which f is equivalent to the map

g(z) =
{

p (z − a) + 1, [0, a],
q (1 − z), (a, 1],

(18)

p > 0, q > 1, a = 1 − 1/q.
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Fig. 4. Partition of R-Z parameter plane according to
asymptotic behavior of the one-dimensional map for
E < 1 + Rm0 when m0 = − 1

10 and m1 = 1
2 . Rep-

resentative maps in each region where simple behavior
occurs are shown.

For any integer m > 1, the map g has an attracting
cycle of period m if and only if

∑m− 2
i=0 p− i ≤ q <

p−m+1. For other values of parameters (p, q) from the
domain 0 < p < 1, the map g has a “smooth” invari-

Fig. 5. Bifurcation diagram for the family (18) in the plane
(p, q). Parameter values from the “white” region result
in SIT, and these from the “grey” regions result in IT
without stochastization.

ant measure (see Fig. 5 and Fig. 6), which means
that SIT appears in the BVP just when the parame-
ters of the BVP are reduced to this part of the domain
0 < p < 1. In case the map g has an attracting cycle
with period m > 2 (in the domain 0 < p < 1) the

BVP generates IT only (without stochastization).

Fig. 6. Bifurcation diagram for the family (18) in the plane
(z, p) with q = 10 (left) and q = 20 (right).

* * *

In conclusion, it should be noted that the creation of
a perturbation theory which will allow to analyse not
only idealized models but also non-idealized ones, is
not only important but also very difficult mathematical
problem.
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Abstract—We present an overview of recent re-
search applying ideas of statistical physics to try to
better understand puzzles regarding economic fluctu-
ations. One of these puzzles is how to describe out-
liers, phenomena that lie outside of patterns of statis-
tical regularity. We review evidence consistent with
the possibility that such outliers may not exist. This
possibility is supported by recent analysis by Plerou
et al. of a database containing the bid, ask, and sale
price of each trade of every stock. Further, the data
support the picture of economic fluctuations, due to
Plerou et al., in which a financial market alternates
between being in an “equilibrium phase” where mar-
ket behavior is split roughly equally between buying
and selling, and an “out-of-equilibrium phase” where
the market is mainly either buying or selling.

I. INTRODUCTION

Interactions between economists and physicists
have begun to make progress in answering signifi-
cant questions. In particular, these collaborations have
the potential to change the paradigm for understand-
ing economic fluctuations. Until relatively recently,
theories of economic fluctuations invoked the label
of “outlier” (bubbles and crashes) to describe fluctua-
tions that do not agree with existing theory. These out-
liers are of interest, as they correspond to extremely
large and unpredictable changes of sufficient magni-
tude to wreak havoc.

The paradigm of “statistical regularity plus out-
liers” does not exist in the physical sciences. Indeed,
if events occur that do not conform to predictions of
the appropriate theory, then that theory is immediately
relegated to the dust bin and new theories are sought.
An example are the “outliers” that led to the demise of
classical mechanics, eventually replaced by the theory
of relativity.

Traditional economic theory does not predict out-
liers, but recent analysis of truly huge quantities of
empirical data suggests that classic theories not only

fail for a few outliers, but that there occur similar
outliers of every possible size. In fact, if one ana-
lyzes only a small data set (say

� � �
data points), then

outliers appear to occur as “rare events.” However,
when orders of magnitude more data (

� � �
data points)

are analyzed, one finds orders of magnitude more
outliers—so ignoring them is not a responsible op-
tion, and studying their properties becomes a realistic
goal. One finds that the statistical properties of these
“outliers” are identical to the statistical properties of
everyday fluctuations. For example, a histogram giv-
ing the number of fluctuations of a given magnitude �
for fluctuations ranging in magnitude from everyday
fluctuations to extremely rare fluctuations (“financial
earthquakes”) that occur with a probability of only

� � � �
is a perfect straight line in a double-log plot.

An analogy with earthquake research is perhaps not
entirely inappropriate. If one studies limited data sets,
a paradigm arises in which there are everyday (unno-
ticeable except by sensitive seismometer) “tremors,”
punctuated from time to time by rare events (“earth-
quakes”). Thanks to the empirical work, we now
know that the partition of shocks into “tremors” and
“earthquakes” is not valid. Rather, if one examines
enough data, one sees that the shocks occur for all
possible magnitudes. The law named after Gutenberg
and Richter refers to a statistical formula that gives all
the data from the smallest tremors to the “big ones.”
This law is that the histogram giving the number of
shocks of a given size is a straight line in a log-log
plot [1], [2], [3]—there are no outliers.

Thus, an inappropriate paradigm can arise when a
limited quantity of data are considered in which data
are partitioned into everyday events (often describable
by one statistical law) and rare events which, since
they are not described by the law are terms outliers.
Has an inappropriate paradigm arisen in economic re-
search? In economic research, there are fluctuations
in stock prices, number of shares trading hands, and
total number of fluctuations. Recent empirical studies
calculating histograms for all three quantities are lin-
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ear on log-log plots (albeit with different slopes). In
mathematical language, the occurrence probability of
such quantity’s fluctuations appear to be described by
a power law.

In economics, neither the existence of power laws
nor the exact exponents has any accepted theoreti-
cal basis. Professionally, empirical laws such as the
aforementioned power laws are called “stylized facts,”
a term that to my ear always sounds dismissive. Ac-
cordingly, some theoretical understanding is urgently
needed or else these laws will continue to be largely
irrelevant. Of course facts, even facts without any in-
terpretation, may have practical value. For example,
the Gutenberg-Richter law enables one to calculate
the risk of a shock (tremor or earthquake) of a given
magnitude, and hence informs the building codes of
Los Angeles and Tokyo. Similarly, the empirical laws
governing economic fluctuations enable one to calcu-
late the risk of an economic shock of a given magni-
tude.

The lack of a coherent theory is unfortunate, es-
pecially in economics where facts without theoretical
foundation is considered a deplorable situation. Ac-
cordingly, my collaborators and I have been seeking
to develop a theoretical framework within which to
interpret these new empirical facts, and recently some
progress is beginning to occur [4], [5]. This work is
potentially significant since it provides a theoretical
framework within which to interpret the new empiri-
cal laws. Specifically, the model fulfills these require-
ments for such a basic “microscopic” model of the
stock market. It is founded on realistic features of the
stock market, and reflects the view that market partic-
ipants have of the functioning of the market, as well
as the main determinants of their trading behavior.

II. FIRST DISCOVERY OF SCALING AND

UNIVERSALITY

That at least some economic phenomena are de-
scribed by power law tails has been recognized for
over 100 years since Pareto investigated the statisti-
cal character of the wealth of individuals by modeling
them using the scale-invariant distribution

� �
� � � �

� � �
(1)

where
� �

� � denotes the number of people having in-
come � or greater than � , and � is an exponent that
Pareto estimated to be 1.5 [6], [7]. Pareto noticed that
his result was universal in the sense that it applied to
nations “as different as those of England, of Ireland,
of Germany, of the Italian cities, and even of Peru”.

A physicist would say that the universality class of the
scaling law (1) includes all the aforementioned coun-
tries as well as Italian cities, since by definition two
systems belong to the same universality class if they
are characterized by the same exponents.

In the century following Pareto’s discovery, the
twin concepts of scaling and universality have proved
to be important in a number of scientific fields [8],
[9], [10]. A striking example was the elucidation of
the puzzling behavior of systems near their critical
points. Over the past few decades it has come to be
appreciated that the scale-free nature of fluctuations
near critical points also characterizes a huge num-
ber of diverse systems also characterized by strong
fluctuations. This set of systems includes examples
that at first sight are as far removed from physics as
is economics. For example, consider the percolation
problem, which in its simplest form consists of plac-
ing pixels on a fraction � of randomly-chosen plaque-
ttes of a computer screen. A remarkable fact is that
the largest connected component of pixels magically
spans the screen at a threshold value � � . This purely
geometrical problem has nothing to do, at first sight,
with critical point phenomena. Nonetheless, the fluc-
tuations that occur near � 	 � � are scale free and func-
tions describing various aspects of the incipient span-
ning cluster that appears at � 	 � � are described by
power laws characterized by exponent values that are
universal in the sense that they are independent of the
details of the computer screen’s lattice (square, trian-
gle, honeycomb). Nowadays, the concepts of scaling
and universality provide the conceptual framework for
understanding the geometric problem of percolation.

It is becoming clear that almost any system com-
prised of a large number of interacting units has the
potential of displaying power law behavior. Since
economic systems are in fact comprised of a large
number of interacting units has the potential of dis-
playing power law behavior, it is perhaps not unrea-
sonable to examine economic phenomena within the
conceptual framework of scaling and universality [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19]. We will discuss this topic in detail below.

III. INVERSE CUBIC LAW OF STOCK AND

COMMODITY PRICE FLUCTUATIONS

So having embarked on a path guided by these two
theoretical concepts, what does one do? Initially, crit-
ical phenomena research—guided by the Pareto prin-
ciples of scaling and universality—was focused find-
ing which systems display scaling phenomena, and
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on discovering the actual values of the relevant expo-
nents. This initial empirical phase of critical phenom-
ena research proved vital, for only by carefully obtain-
ing empirical values of exponents such as � could sci-
entists learn which systems have the same exponents
(and hence belong to the same universality class).
The fashion in which physical systems partition into
disjoint universality classes proved essential to later
theoretical developments such as the renormalization
group [10]—which offered some insight into the rea-
sons why scaling and universality seem to hold; ulti-
mately it led to a better understanding of the critical
point.

Similarly, our group’s initial research in economics—
guided by the Pareto principles—has largely been
concerned with establishing which systems display
scaling phenomena, and with measuring the numer-
ical values of the exponents with sufficient accuracy
that one can begin to identify universality classes if
they exist. Economics systems differ from often-
studied physical systems in that the number of sub-
units are considerably smaller in contrast to macro-
scopic samples in physical systems that contain a
huge number of interacting subunits, as many as Avo-
gadro’s number � � � � � �

. In contrast, in an economic
system, one initial work was limited to analyzing time
series comprising of order of magnitude

� � �
terms,

and nowadays with high frequency data the standard,
one may have

� � �
terms. Scaling laws of the form

of (1) are found that hold over a range of a factor
of � � � �

on the � -axis [20], [21], [22], [23], [24].
Moreover, these scaling laws appear to be universal in
that they, like the Pareto scaling law, hold for differ-
ent countries [25], for other social organizations [26],
[27], [28], and even for bird populations [29].

Recent attempts to make models that reproduce the
empirical scaling relationships suggest that significant
progress on understanding firm growth may be well
underway [30], [31], [32], [33], leading to the hope
of ultimately developing a clear and coherent “the-
ory of the firm.” One utility of the recent empirical
work is that now any acceptable theory must respect
the fact that power laws hold over typically six orders
of magnitude; as Axtell put the matter rather graphi-
cally: “the power law distribution is an unambiguous
target that any empirically accurate theory of the firm
must hit” [20].

With this background on power laws and scale
invariance in geometry and in economics, we turn
now to the well-studied problem of finance fluctu-
ations, where a consistent set of empirical facts is

beginning to emerge. One fact that has been con-
firmed by numerous, mostly independent, studies is
that stock price fluctuations are characterized by a
scale-invariant cumulative distribution function of the
power law form (1) with � � � [34], [35], [36]. This
result is also universal, in the sense that this inverse
cubic law exponent is within the error bars of results
for different segments of the economy, different time
periods, and different countries—and is the same for
stock averages as different as the S&P and the Hang
Seng [37].

This “inverse cubic law” disagrees with the clas-
sic work of Ref. [8] on price fluctuations of cotton,
which appear to have display scale free behavior (“no
outliers”) but with much fatter tails characterized by

� � � � �
; this work is of interest because if � � 	 ,

then the distribution is of the Lévy form. To under-
stand this discrepancy, Matia and collaborators have
wondered if the reason for the fatter tails of cotton
is that cotton is a commodity, and commodities ex-
ist in limited supply so that when a commodity is
needed one must sometimes pay exhorbitant prices
(e.g., electricity in California). Accordingly, they an-
alyzed a large number of commodities, but they found
that these commodities have tails described not by

� � 	 but rather by � � � [38], [39]. Another possi-
ble reason is that Mandelbrot analyzed three data sets,
each containing only about 2000 points, while the re-
sults on stocks typically contain about 40,000 points
per stock (and 1000 stocks, or 40,000,000 total data
points). This possibility was tested by choosing ran-
domly 2000 points to analyze, but again one cannot
obtain � � 	 . A third possible explanation of this dis-
crepancy is that the cotton market was “out of equilib-
rium”, and that such out-of-equilibrium markets have
fatter tails—a possibility consistent with recent analy-
sis of stock price fluctuations [40], [41]. A fourth pos-
sible explanation is that at the time period in which the
cotton data were collected, commodities were intrin-
sically different than they are today when the Matia
data were collected, as today commodities are traded
in ways not entirely dissimilar to the way that stocks
are traded. Still another possibility is that the cotton
distribution has � � 	 in the central region analyzed
in 1963, but ultimately crosses over to power law in
the distant tails (not analyzed in 1963. This disagree-
ment led to the development of a class of mathemat-
ical processes called truncated Lévy distributions—
which has attracted the attention of a number of math-
ematicians and is actually taught in Columbia Univer-
sity’s graduate school of finance [42], [43], [44], [45],
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[46], [47], [48], [49]. In any case, one of the chal-
lenges of econophysics is to resolve current results
with the classic 1963 analysis of Mandelbrot.

Newcomers to the field of scale invariance often
ask why a power law does not extend “forever” as
it would for a mathematical power law of the form� �

� � � �
� �

. This legitimate concern is put to rest
by by reflecting on the fact that power laws for natural
phenomena are not equalities, but rather are asymp-
totic relations of the form

� �
� � � �

� �
. Here the

tilde denotes asymptotic equality. Thus
� �

� � is not
“approximately equal to” a power law so the nota-
tion

� �
� � � �

� �
is inappropriate. Similarly,

� �
� �

is not proportional to a power law, so the notation� �
� � � �

� �
is also inappropriate. Rather, asymptotic

equality means that
� �

� � becomes increasingly like a
power law as � � � . Moreover, crossovers abound
in financial data, such as the crossover from power
law behavior to simple Gaussian behavior as the time
horizon

� �
over which fluctuations are calculated in-

creases beyond about a year (i.e., the power law be-
havior holds for time horizons up to a month or even a
year, but for horizons exceeding a year there is a dis-
tinct crossover to Guassian behavior. Such crossovers
are characteristic also of other scale-free phenomena
in the physical sciences [9], [10], where the Yule dis-
tribution often proves quite useful.

For reasons of this sort, standard statistical fits to
data are inappropriate, and often give distinctly erro-
neous values of the exponent � . Rather, one reliable
way of estimating the exponent � is to form succes-
sive slopes of pairs of points on a log-log plot, since
these successive slopes will be monotonic and con-
verge to the true asymptotic exponent � . One finds
that successive slopes for the empirical data converge
rapidly to a value � � � while successive slopes for
the model diverge. While it is clear that a simple
three-factor model [50] cannot generate power law
behavior, it is less clear why the empirical data ana-
lyzed appear at first glance to be well approximated
by the model. The first fact is that the region of lin-
earity of the data is not so large as in typical modern
studies because the total quantity of data analyzed is
not that large, since only a low-frequency time series
comprising daily data is used. Only 28,094 records
are analyzed [50] (not � �

� � �
as in recent studies

[36], [37]) and the model simulations are presented
for limited sample size. The second fact is that when
one superposes a curved line (the model) on a straight
line (the data), the untrained eye is easily tempted to
find agreement where none exists—and closer inspec-

tion of Figs. 2–5 of Ref. [50] reveals actually a rather
poor agreement between model and data due to the
pronounced downward curvature of the model’s pre-
dictions [51].

IV. OTHER SCALE-INVARIANT QUANTITIES

DESCRIBING ECONOMIC FLUCTUATIONS

Other quantities characterizing stock movements
(such as the volatility, share volume traded, and num-
ber of trades) also display a range of power law be-
havior over a range of typically �

� � �
[52], [53], [54],

[55]. The exponents characterizing the power law de-
cays are different for different quantities; it is tempt-
ing to conjecture that in finance there may exist a set
of relations among the power law exponents found,
just as there exist relations among the exponents char-
acterizing different quantities near the critical point.
Finally, it is well-known that while the autocorrela-
tion function of price returns decays rapidly, the au-
tocorrelation function of the absolute values of price
returns is power-law correlated in time (see [52] and
extensive earlier work cited therein).

Consider, for example, the volatility. There are sev-
eral possible definitions of this quantity, all of which
seem to give the same scale invariant properties. But
why care about volatility at all? On the cover of the
15 May 2000 issue of Forbes magazine is a large pho-
tograph of Henk Paulson, CEO of Goldman Sachs,
and the headline quotation “Volatility is Our Friend.”
Why is this the case? Because it is known that volatil-
ity clusters, i.e., there are time correlations in this
quantity. Our group has attempted to quantify these
correlations, and found evidence of power law behav-
ior [52], [56], [57], [58]. If we plot an economic earth-
quake such as Black Monday (19 October 1987) on
which date most worldwide stock indices dropped 30-
50 percent, and then plot and compare the volatility
(the absolute value of the fluctuations), we see a big
peak in the volatility curve on Black Monday. But
even prior to Black Monday the value of the volatility
on our graph seems to be particularly unstable; there
is some precursor to Black Monday evident in its be-
havior. One can imagine a computer program that
would monitor volatility, not necessarily for the en-
tire market but certainly for an individual stock, and
the volatility calculation would need to be updated in
real time.

There are correlations in the stock price change, but
those correlations have a very short range—on the or-
der of a few minutes—and they decay exponentially in
time. Our group calculated the autocorrelation func-
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tion of stock-price changes and plotted the logarithm
of the function linearly in time; since the logarithm of

� � �
is � � , we get a straight line. In contrast, for the

volatility we find that the autocorrelation function is
linear on log-log paper, meaning that the correlations
in the volatility are power-law in nature. That, in turn,
translates to mean they are much, much longer-range
in time.

In order to quantify long-range power law volatil-
ity correlations, we developed a method of analyzing
a non-stationary time series. The volatility of a finan-
cial market is non-stationary: there are days when the
volatility is quiet and days when it is active. The sta-
tistical properties of a volatility time series are chang-
ing in time. The standard deviation of that time se-
ries is fluctuating wildly on every scale, which is the
reason conventional methods are not effective. The
method our group has been developing—detrended
fluctuation analysis (DFA)—gets rid of trends in the
raw data [59], [60], [61], [62]. We take a graph of the
volatility expressed in absolute values (i.e., it is al-
ways positive) in which we see the peaks that indicate
it is a very “noisy” or non-stationary time series, we
integrate this time series, and we subtract the mean.
This produces an up-and-down “landscape.” We then
look for correlations in this landscape. We do this
by partitioning the landscape into “windowboxes” of
a fixed size, e.g., 200—does the regression fit to the
fluctuations in that windowbox? We then calculate for
each box the RMS fluctuation around the regression
line. Finally, we average the RMS fluctuation for all
40,000 windowboxes of the entire series. With that
many windowboxes, we get a very accurate measure-
ment. We call the quantity

�
. We repeat the entire cal-

culation for windowboxes one-half as big (size 100).
Obviously, the smaller the windowbox, the less the
fluctuation. This give us the circle for size 100. We
repeat this a number of times. When that fluctuation is
plotted as a function of windowbox size we find, con-
trary to what we might expect—that in almost all cor-
related signals the fluctuations increase as the square
root of the windowbox size—the fluctuations instead
increase more rapidly than that. That means there is
some positive correlation in the signal. This analysis
method produces results with very little noise. The
data fall very close to the straight line, and the expo-
nent can be obtained with a high degree of accuracy.
All this allows us to analyze quantitatively the behav-
ior of the volatility as a function of time and elucidate
its correlations. This could be very useful information
for people actually working in financial markets.

The distribution of volatility fluctuations has also
been the object of extensive study. It was at one
time believed by many that the volatility follows a
log-normal distribution—i.e., the number of times the
volatility has a certain value follows not a Gaussian
but a log-normal distribution, i.e., one has � � � � � � � � �

not � � � �
. But until our group’s work, no one had stud-

ied all the data: every trade [52]. Our doing it meant
we could study relatively rare events, those occur-
ring much less frequently than everyday events. What
we find is that the log-normal part of the curve—the
middle—though true for the middle, does not describe
the tails. The huge volatilities in the tails are described
by a different exponent 	 . We also see that volatility
clusters—i.e., that volatility is correlated in time.

V. CROSS-CORRELATIONS AMONG

FLUCTUATIONS OF DIFFERENT STOCKS

Another capability of such a software package
could be the ability to determine how the fluctuations
of one stock price correlate with those of another.
This question of cross-correlation is one we have been
studying [63], [64], [65], [66], [67], [68], [69], [70].
To quantify cross-correlations,we draw a circle corre-
sponding to the stock price � and draw a second circle
corresponding to the stock price � , say, five minutes
later. If we make the difference in the radii propor-
tional to 
 , the stock price change, then we can think
of the market as thousands of circles, each growing
and shrinking—a kind of pulsation that is a function of
time. The key is that these correlations change in time.
Car sales by Ford and GM may be anti-correlated dur-
ing some time periods and positively correlated during
others.

The standard approach to this problem is to cal-
culate, by brute force, a huge square matrix that has
as many rows as there are companies in the database.
Each element of the matrix is the correlation between
the price change of company � and the price change of
company � , but to find a genuine correlation we have
to be able to distinguish between correlations from co-
incidences. In order to do that we draw on something
developed by Wigner in his work in nuclear physics—
random matrix theory. Random matrix theory com-
pares the matrix calculated by brute force from stock
market data with a random matrix that also has 1000
rows and 1000 columns—but with every number gen-
erated randomly. Somewhere hidden in the huge ma-
trix calculated by brute force from stock market data
are the true correlations. To uncover them, we first
diagonalize the matrix in order to determine its eigen-
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values, and then make a histogram that gives the num-
ber of times each given eigenvalue is found. The his-
togram curve of a random matrix, unlike this one from
real data, can be predicted exactly. For a random ma-
trix there is never an eigenvalue � �

� �
. The histogram

of the empirical stock price data, on the other hand,
contains a significant number of eigenvalues � � � �

.
Some are as big as 5.0. These eigenvalues of neces-
sity must correspond to genuine correlations.

The eigenvalue of a matrix has a corresponding
eigenvector—a column matrix of 1000 elements—
each element of which is a different weight from each
of the 1000 stocks. So we can look at the column
vectors that correspond to these deviating, genuinely-
correlated eigenvalues and ask: what kind of stocks
entered into each of these eigenvectors? What we
found, fortunately, has implications for portfolios. If
we restart the graph at 2.0—removing the distortions
of the random values—and look at the 20 eigenvalues

� �
� �

, we see that the stocks that make up most of the
weights in the corresponding eigenvectors are almost
entirely transportation stocks in the first case, almost
entirely paper in the second, almost entirely pharma-
ceuticals in the third, and so on. In other words,
the market automatically partitions itself into separate
business sectors [69], [70], [71]. Thus a physicist who
know nothing about the stock market can mathemati-
cally partition the economy into separate business sec-
tors!

The sectors and the quantitative degree to which
each constituent firm conforms to the sector can be
monitored and updated as a function of time, e.g., ev-
ery 15 minutes. Firms that belong to the same busi-
ness sector can be monitored in a kind of rainbow
spectrum. The “good” firms sticking to the business
sector are assigned to the “violet” end of the spectrum,
and the “bad” firms deviating from the sector are as-
signed to the “red.” When a firm first starts to move to
the red end of the spectrum start to deviate, this alerts
the trader to consider action.

VI. EQUILBRIUM VS. OUT-OF-EQUILIBRIUM

MARKET PHASES

Before concluding, we ask what sort of understand-
ing could eventually develop if one takes seriously the
power laws that appear to characterize finance fluctu-
ations. It is tempting to imagine that there might be
analogies between finance and known physical pro-
cesses displaying similar scale-invariant fluctuations.
One initially promising analogy was with turbulence:
In turbulence, one adds energy at a large scale and this

energy is dissipated at smaller and smaller scales in
a scale-invariant fashion. Similarly, if external news
is added at a large scale, then this news is dissipated
by traders at smaller and smaller scales in a scale-
invariant fashion. Despite some initial claims [72],
these similarities are not borne out by quantitative
analysis—although one finds non-Gaussian statistics,
and intermittency, for both turbulence fluctuations and
stock price fluctuations, the time evolution of the sec-
ond moment and the shape of the probability density
functions are different for turbulence and for stock
market dynamics [73], [74].

More recent work pursues a rather different anal-
ogy, phase transitions in spin systems. It is not new
to say that the set of all firm fluctuations is like a
set of subunit fluctuations in a physics system such
as a spin glass. Each fluctuation can be up or down,
or any magnitude, and fluctuations interact with one
another via interactions that are certainly long-range
and of both signs. Further, the interactions change
with time. A given subunit fluctuation is influenced
(a) by other fluctuations (so the exchange interactions
among spins is somewhat like the “herd effect”), and
(b) by forces external to the system (so the external
field is somewhat like “news” which plays a role in
determining the sign and magnitude of fluctuations).

If this crude analogy were to hold even approxi-
mately, then a first step should perhaps be to seek
to identify the analogs for the price fluctuation prob-
lem of field and temperature in the magnetic problem.
Stock prices respond to demand, just as the magneti-
zation of an interacting spin system responds to the
magnetic field. Periods with large number of mar-
ket participants buying the stock imply mainly posi-
tive changes in price, analogous to a magnetic field
causing spins in a magnet to align. Recent work [75]
quantifies the relations between price change and de-
mand fluctuations, and finds results reminiscent of
phase transitions in spin systems, where the divergent
behavior of the response function at the critical point
(zero magnetic field) leads to large fluctuations [9].
More precisely, buying and selling behavior in com-
plex financial markets are driven by demand, which
can be quantified by the imbalance in the number of
shares transacted by buyers and sellers over a time in-
terval

� �
.

If demand is the analog of magnetic field, then what
is the analog of temperature? To answer this ques-
tion, Plerou et al. [40], [41] analyze the probability
distribution of demand, conditioned on its local noise
intensity � , and find the surprising existence of a crit-

N  D  E  S        2  0  0  4

47



ical threshold � � separating two market phases. Their
findings for the financial market problem are identical
to what is known to occur in all phase transition phe-
nomena, wherein the behavior of a system undergoes
a qualitative change at a critical threshold � � of some
control parameter � . Plerou et al interpret these two
market phases as corresponding to two distinct condi-
tions of the financial market: (a) The “ � � � � mar-
ket phase”, where the distribution of demand is single
peaked with the most probable value being zero, they
interpret to be the market equilibrium phase, since
the price of the stock is such that the probability of a
transaction being buyer initiated is equal to the prob-
ability of a transaction being seller initiated, and (b)
the “ � � � � market phase”, where the distribution
of demand is bimodal, they interpret to be the out-of-
equilibrium phase, since the price of the stock is such
that there is an excess of either buyers or of sellers and
there is a non-zero net demand for the stock.

It should be possible to design a software package
that could be on every trader’s desk allowing instant
access to data on any firm in which time is partitioned
into two different phases: equilibrium and out-of-
equilibrium. Qualitatively and informally many peo-
ple use those terms in reference to the stock market,
but in this case we would be actually quantifying the
extent to which the market is in or out of equilibrium.
If we graph the price-change of a particular stock as a
function of time for a sequence of 15-minute intervals
and use two different symbols for data points when
the market is in equilibrium and for those for when it
is out of equilibrium, we notice that in general a stock
price is not changing when the market is in equilib-
rium and is changing when the market is out of equi-
librium. This could be useful in that it could be an in-
dicator of the relative stability of an individual stock.
When the market is out of equilibrium, the probabil-
ity that a stock price is going to change is higher than
when the market is in equilibrium.

VII. DISCUSSION

Since the evidence for an analogy between stock
price fluctuations and magnetization fluctuations near
a critical point is backed up by quantitative analysis
of finance data, it is legitimate to demand a theoretical
reason for this analogy. To this end, we discuss briefly
one possible theoretical understanding for the origin
of scaling and universality in economic systems. As
mentioned above, economic systems consist of inter-
acting units just as critical point systems consist of
interacting units. Two units are correlated in what

might seem a hopelessly complex fashion—consider,
e.g., two spins on a lattice, which are correlated re-
gardless of how far apart they are. The correlation
between two given spins on a finite lattice can be par-
titioned into the set of all possible topologically lin-
ear paths connecting these two spins—indeed this is
the starting point of one of the solutions of the two-
dimensional Ising model (see Appendix B of [9]).
Since correlations decay exponentially along a one-
dimensional path, the correlation between two spins
would at first glance seem to decay exponentially.
Now it is a mathematical fact that the total number
of such paths grows exponentially with the distance
between the two spins—to be very precise, the num-
ber of paths is given by a function which is a product
of an exponential and a power law. The constant of
the exponential decay depends on temperature while
the constant for the exponential growth depends only
on geometric properties of the system [9]. Hence by
tuning temperature it is possible to achieve a thresh-
old temperature where these two “warring exponen-
tials” just balance each other, and a previously negli-
gible power law factor that enters into the expression
for the number of paths will dominate. Thus power
law scale invariance emerges as a result of cancel-
ing exponentials, and universality emerges from the
fact that the interaction paths depend not on the in-
teractions but rather on the connectivity. Similarly, in
economics, two units are correlated through a myriad
of different correlation paths; “everything depends on
everything else” is the adage expressing the intuitive
fact that when one firm changes, it influences other
firms. A more careful discussion of this argument is
presented, not for the economy but for the critical phe-
nomena problem, in Ref. [10].

VIII. SUMMARY

In summary, physicists are finding this emerging
field fascinating. For a long time, physicists did rel-
atively little in economics. A major reason for this
is that, until recently, the amount of data routinely
recorded concerning financial transactions was insuf-
ficient to be useful to physicists. That fact is no longer
true. Now every trade is recorded, along with bid-ask
quotes for every trade, and these data are made avail-
able.

Part of the reason for the invention of the neolo-
gism “econophysics” (in the tradition of the neolo-
gisms “biophysics,” “astrophysics,” “geophysics”

� � �
)

was to enable our physics students to persuade the
departmental administrators that their dissertation re-
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search topics actually belonged in the physics depart-
ment. The neologism seems to have caught on, and
there are now several conferences each year with the
word “econophysics” in the title.

Finally, a word of humility with respect to our es-
teemed economics colleagues is perhaps not inappro-
priate. Physicists may care passionately if there are
analogies between physics systems they understand
(like critical point phenomena) and economics sys-
tems they do not understand. But why should anyone
else care? One reason is that scientific understand-
ing of earthquakes moved ahead after it was recog-
nized [1], [2] that extremely rare events—previously
regarded as statistical outliers requiring for their inter-
pretation a theory quite distinct from the theories that
explain everyday shocks—in fact possess the identical
statistical properties as everyday events; e.g., all earth-
quakes fall on the same straight line on an appropri-
ate log-log plot. Since economic phenomena possess
the analogous property, the challenge is to develop a
coherent understanding of financial fluctuations that
incorporates not only everyday fluctuations but also
those extremely rare “financial earthquakes”.
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Abstract— We present first results using nonpara-
metric functions for embedding. The method works
using an iterative nonparametric regression proce-
dure to estimate functional dependencies; it is robust
against noise. A quantitative measure for the impor-
tance of terms is given by the individual correlation of
terms with their residuals. We illustrate the function-
ing by the well-known example of the Lorenz-system
numerically. This way we work out the basis for the
application to experimental data.

I. INTRODUCTION

In time-series analysis, one of the main question is
the construction of a model in embedding space, min-
imal in mathematical complexity but maximal in its
ability to reproduce the dynamics of a measured sys-
tem. In experimental analysis the information about
the process dynamics is usually obtained by measur-
ing of one dynamical variable at discrete times. From
these measurements, the dynamics of the system can
in principle be reconstructed from a scalar time se-
ries using time–delayed coordinates [1]. The set of
equations in embedding space can be estimated and
approximated. In this paper we present an estimation
procedure of the dynamical system in phase space by
an additive functional structure of state variables. We
show first results concerning functional dependencies
in reconstruction space. Ongoing work [7] includes
a full nonlinear analysis of the reconstructed dynami-
cal system (stability, Lyapunov-exponents, etc.). The
nonparametric estimation has been developed in sta-
tistical sciences [3] and it is robust against noise. Basi-
cally, a multidimensional function relation is mapped
to a sum of nonlinear functions. The motivation for
such modeling is that many chaotic systems which
are described by ODE(s) possess an additive struc-
ture. We give an outline of the method by means of
numerically simulated data from the Lorenz system
as a standard example.

Many of the results shown are in the first stage of
research. We decided to present them anyway to spark

a scientific discussion about the possible use of statis-
tical approaches in nonlinear dynamics. To our opin-
ion the joint application of statistical and nonlinear
dynamical methods bears much potential to find very
general descriptions of dynamical systems with data
analysis.

II. MODELING IN EMBEDDING SPACE

There exist several excellent reviews and books to
the topic [2], [1]. Therefore, we only briefly repeat
some basics which are necessary below. Hereafter we
consider an attractor A of a dynamical system with
dimension r. An embedding is a smooth diffeomor-
phism from A to some space Rm; thus the differen-
tial structure of A is preserved under transformation.
In real experiments, the state space variables are ac-
cessed by a measurement function; we will not treat
this issue here, since our aim is to check the general
functioning of our method for the best-possible case.
So, we perform numerical simulations for a model
system to obtain time series of various variables in
“continuous” time. We then discard all but one vari-
ables and construct a dynamical system in embedding
space.

The goal of many research groups is the identifi-
cation of geometrical and dynamical system proper-
ties, as fractal dimensions of any kind, information,
Lyapunov exponents, fixed points, stable and unsta-
ble manifolds etc.. We will show first steps towards a
modeling by nonparametric additive embedding [3].

We consider a system governed by a set of ODE’s:

�̇x = �F (�x) , (1)

where x ∈ Rn, F : Rn �→ Rn. This set of equations
defines the flow Ft in phase space. We assume that
there exists an attractor A ⊂ Rn with box-counting
dimension d , k ≤ n. In [1] it has been shown that
almost every smooth map Ψ : Rk �→ Rm, m > 2d, is
an embedding, i.e. a smooth diffeomorphism from A
onto its image Ψ(A).

Due to differentiability, the whole dynamics is
mapped and the trajectory ξ(t) = Ψ(x(t)) obeys an
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ODE in embedding space:

�̇ξ = �Φ(�ξ) , (2)

with ξ ∈ Rm, F : Rm �→ Rm. In this article, we fo-
cus on additive models for Φi and show how to obtain
them by numerical analysis.

The standard embedding uses the delay-coordinate
map H(f, τ) with f a smooth function on M ⊂
Rk �→ R, and τ ∈ R some real number [1] . One
obtains

H(f, τ) = (f(x), f(F−τ (x)), f(F−2τ (x)),
. . . , f(F

−(m−1)τ (x))
)

. (3)

The particular case of f the identity is included (which
is used below). We identify above the embedding map
Ψ with H , the coordinates in embedding space are
then ξ0 = f(x), ξ1 = f(F−τ (x)), etc. . We test
our ideas about nonparametric, additive embedding by
means of the delay-coordinate embedding on the well
understood Lorenz-system.

III. NONPARAMETRIC EMBEDDING

To find a dynamical system in embedding space,
several approaches exist. [2]. The probably most gen-
eral one is the concept of locally linear fits, paramet-
ric procedures use polynomial fits or neural networks.
The problem with local linear fitting is that one can-
not find a general analytic expression nor is it possible
to visualize the results in dimensions D > 2. Polyno-
mial ansatzes tend to involve too many terms for accu-
rate reproduction and analytical treatment; for neural
networks a physical interpretation is very hard.

Let us assume the time derivatives ξ̇ in embedding
space as given. Assuming ergodicity, each measure-
ment in time can be considered as a different realiza-
tion of the flow. The best estimator in the least-square
sense [2], [4] is:

Φi = E
[
ξ̇i | ξ0, . . . , ξm

]
, (4)

with E[] the expectation value operator. This is the
basis for local linear fitting and other nearest neighbor
methods. The neighbors of the point x are used for an
estimate of the above expectation value. In an additive
model (AM)

Φi =
m∑

j=1

φij(ξj) + εi , (5)

the functions φij are given in general, nonparamet-
ric form, εi is the modeling error. An estimate for the

constituents φij is found using the iterative backfitting
procedure, where the expectation value operator is ap-
plied alternately on each variable to obtain a better
estimate for the next iteration step [3]. For the appli-
cation of this statistical approach to spatio-temporal
data analysis, see [5], [4]. We have implemented a
moving average and the more convenient smoothing
spline procedure, the functions are given in numerical
form accordingly. The results below are obtained by
spline smoothing [8].

Equivalent to the minimization of the least-square
error is the maximization of the correlation between
rhs and lhs in Eq. 5. The correlation Cij between
the jth term in the sum (5) with sum of the re-
maining terms gives an indication of its significance
for the model, e.g. for j = 1, calculate Ci1 =
C
[
φi1 ; Φi −

∑m
j=2 φij

]
. If the correlation is close

to one the model is good, for correlation close to zero
the model is not capable to approximate the dynamics,
for intermediate values it can be suitable to estimate a
stochastic model using the residual error ε.

The additive model approximates best the hypersur-
face in phase space defined by the flow Φ in a statisti-
cal sense. The dynamical and geometrical properties
can be checked by a nonlinear analysis of the model.
Predictions are be possible on the basis of the obtained
model.

One drawback of the method is that the functions
φij are given in purely numerical form. Asymptotic
properties and errors due to missing data have to be
treated with great care. If one fits analytical func-
tions to the estimated φij after the backfitting proce-
dure, one can arrive at useful dynamical equations in
embedding space, where the φij can be visualized di-
rectly. Consider, e.g., a function like exp(ξ) which is
badly represented by a polynomial, but rather recog-
nizable in a 2D graph - fitting a 1D function is much
easier that fitting in higher dimensions.

A natural criticism to an additive model is the ab-
sence of “mixing” terms like products ξiξ̇j . In prin-
ciple it is not excluded that a transformation exists
which transforms products to a pure additive structure,
as e.g. the logarithmic transform. Problems seem to
arise if products and sums are mixed like in ξiξ̇j + ξk.
We find that functions with two arguments approxi-
mate well the geometry in embedding space, this co-
incides with observations from neural networks [6] (a
two-layer perceptron seems to suffice to approximate
the dynamics), we consequently do not go beyond.
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IV. RESULTS

As many others, we use the Lorenz system

ẋ = −σ(y − x) (6)

ẏ = −xz − r x − y (7)

ż = xy − bz (8)

with σ = 10, b = 8/3, r = 28. With these parame-
ters, the attractor of the system has box-counting di-
mension d = 2.01 and to almost certainly find an em-
bedding, one should use m = 5. At this point we
recall that already mappings with m ≤ 2d can be an
embedding. We present results for m = 3 and dis-
cuss some for m = 4, a detailed presentation is given
elsewhere [7].

The data have been generated by fourth order
Runge–Kutta integration with time step t = 0.01.
The first variable is used for the delay-coordinate map
with the standard value τ = 0.18. Using different
delays in each delay coordinate, did not change re-
sults substantially. Since we are given the derivative
ẋ, we automatically have the derivative of the em-
bedding coordinates – in real experiments derivatives
have to be calculated from data [4]. We have assem-
bled N = 150000 data points, including transients.
The latter can be used for the estimation since they
contain information about the system, too. A depen-
dence of the results on N is not discussed here, the
main change for fewer data is seen in the tails of the
functions with higher error bars.

First, an estimate for the embedding dimension is
determined using the correlations of local linear es-
timation (this corresponds to a crude approximation
of the correlation dimension). So, the general model
�̇ξi = F (�ξi) is estimated yielding an almost perfect
correlation C = 0.998 and C = 0.9995 for em-
bedding dimension three and four, respectively. In
a statistical sense, we consequently do not expect
much better modeling in four dimensions, dynami-
cally it may well be the case that the fourth dimension
is crucial; a detailed inspection is subject of current
research. Below, we illustrate the method showing
results for the probably imperfect three dimensional
case.

A straightforward application of backfitting to
a three-dimensional delay coordinate vector plus
derivatives yields for the first embedding equation
ξ̇i =

∑m
j=1 φij(ξj) the functions displayed in Fig. 1.

The correlation C0 = C[ξ̇1 ;
∑4

j=1 Φj(ξj)] = 0.998
indicating a very good model, the same holds for
the second coordinate. In contrast to this, we ob-
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Fig. 1. Typical result for nonparametric, nonlinear
functions obtained by the backfi tting algorithm using
smoothing splines, the three functions for the fi rst com-
ponent ξ1, φ11(ξ1), f12(ξ2), and φ13(ξ1) are shown.
Note the strongly nonlinear form of the functions.

tain C0 = 0.92 for the third coordinate showing that
some dynamics is missing. To obtain better correla-
tions, one can generalize the model to functions de-
pending on two variables [8]: there exist three pos-
sibilities, e.g. for ξ1: ξ̇1 = φ12(ξ1, ξ2) + φ3(ξ3) ,
ξ̇1 = φ13(ξ1, ξ3)+φ2(ξ2) , ξ̇1 = φ23(ξ2, ξ3)+φ1(ξ1) .
For each combination the correlations are calculated
and the resulting functions are inspected. On this ba-
sis one finds the best correlation for the model ξ̇3 =
φ1(ξ1) + φ23(ξ2, ξ3) (Fig. 2). For a prediction of the

Fig. 2. Thin-plate spline estimate for the function
φ23(ξ2, ξ3) for the third component in embedding
space. An approximation with polynomials is diffi cult.

dynamics, one has to integrate the dynamics with the
found functions, as given in terms of splines. We did
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so for the additive model (5). As a basic test, we ana-
lyzed the fixed points to successfully recover the fixed
points as found by simply plotting the delay coordi-
nate vector. The integration with a Runge-Kutta 4th
order scheme yeld for a three dimensional embedding
two limit cycles about the elliptic fixed points. That
means that either the dynamical system is not com-
plete and one has to go to higher embedding dimen-
sions or the fitting procedure is not very good. In-
deed, for embedding dimension five, we find in the
projection to the first 3 coordinates a set of limit cy-
cles lying on the orbits of the embedded chaotic at-
tractor, see Fig. 3. For higher dimensions, no chaos
is found either. The reason probably lies in the re-
striction one imposes by the additive structure of the
model. The consequences a given structure of a dy-
namical system has on the topology of the attractor
are an open research field. It seems that at least for the
procedure we use, the structure of a low dimensional
dynamical system in embedding space has to be sim-
ilar to the original one. Consequently, the next step

Fig. 3. Plot of a set of trajectories in embedding space on
top of the embedded attractor (grey dots, ξi = x(t−(i−
1)∗ τ). The evolution for 19 different initial conditions
is shown (fi lled squares).

is to integrate functions of two arguments, as shown
above, this work is ongoing. A quick fit with ana-
lytical expressions did not yield satisfying results, the
integrated system was globally unstable.

V. CONCLUSIONS

We have presented a consequent approach to find
numerical and analytical model systems in embed-
ding space. The basic idea is to reduce the multi–
dimensional local linear model to an additive one.
This is achieved by projection of the embedding vari-
ables onto some 1 or two dimensional subspaces

where we can estimate the involved nonlinear func-
tions numerically in a nonparametric way. This non-
parametric approach has the major advantage that one
does not need to choose beforehand a certain basis in
which the functions are given (like, e.g., polynomi-
als). Thus combinations of, e.g., polynomials, expo-
nentials, and trigonometric functions are possible to
be estimated a posteriori.

The method has been applied to the Lorenz-system
with standard parameters. Transients can be used
and are even useful to cover the whole space investi-
gated, leading to a more homogeneous data base. The
reconstruction of the time-continuous system yields
promising results: the fixed point structure has been
recovered almost perfectly; the local toplology of the
embedded system could be reproduced in a low di-
mensional space. Global quantities, like Lyapunov ex-
ponents, are not yet determined correctly. One could
interpret the findings as an “effective” Lorenz system
with smaller parameter r. Ongoing research concerns
the analysis of functions dependent on two variables
and the general problem of the topology of dynam-
ical systems. Future investigations will concern sta-
bility analysis and Lyapunov exponents in embedding
space for a full and quantitative characterization of the
found dynamical systems. We think that the develop-
ment and the application of such a kind of analysis
can guide towards a systematic procedure to identify
dynamical systems of simple structure and analytical
value in embedding space.
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Abstract—In 1994, a new earthquake forecasting
method was developed, that integrated in a neural
network several forecasting tools that had been
originally developed for financial analysis. This
method was tested with the seismicity of the Azores,
predicting the July, 1998, and the January, 2004,
earthquakes, albeit within very wide time and loca-
tion windows. Work is beginning to integrate physi-
cal precursors in the neural network, in order to
narrow the forecasting windows.

I. INTRODUCTION

When looking for analytical tools designed to
forecast time-series, it was found that the practical
domain in which they are most commonly used is
financial forecasting – especially for the prediction
of trends in the stocks, bonds, commodities and
currencies markets [1] – where these tools take the
name “financial oscillators”.

Time-series of earthquake parameters are also of a
chaotic nature, often with comparable fractal dimen-
sions, and testing the financial oscillators on seis-
micity was a natural step.

The transposition of scenery appears to be fairly
straightforward. Instead of analysing a series of
quotes in order to predict the next quote, one has to
analyse a series of seismic quiescences (periods of
time between observed earthquakes), effects and
epicentral locations in order to predict the next qui-
escence, effects and local.

A natural doubt can arise by now: if a predictive
model must be related to the process it tries to pre-
dict, and there is no relationship between the fluctua-
tion mechanisms of markets and seismic mecha-
nisms, why and how should this approach work?

Indeed, there is an important relationship because
both are deterministic non-periodic processes - cha-
otic processes.

But there is still a more important reason for using
these "financial" tools: they reduce the degree of
chaos in the analysed sequence, making it more
predictable.

The fractal dimension of a system is a measure of

its degree of chaoticity. The movement of a particle
in the real plane can take dimensions between 1
(completely deterministic) and 2, in the case of
Brownian movement (completely random). We
expect that a sequence of, say, earthquake magni-
tudes, will have a fractal dimension between 1 and 2.
If we calculate that dimension and then the dimen-
sion of the sequence of moving averages (the sim-
plest oscillator, in which most others are based) we
find such a reduction of fractal dimension - a reduc-
tion of chaos [2].

The evaluation of the effects of an earthquake can
be made resorting to seismic magnitudes or intensi-
ties. The first one has the natural advantage of being
quantitative and directly proportional to the liberated
energy but has a serious shortcoming: the available
data-series only begin in the 20th century. If one is
to forecast damaging earthquakes, one needs to
study very long time series – historical seismicity –
hence resort to semi-quantitative intensity data.

This, and the need to predict those earthquakes
that are effectively damaging, led us to work with
Modified Mercalli Intensities and to try and find a
method that would deal with semi-quantitative data.

II. THE OSCILLATORS

Since these are intended to be periodic functions,
one must first choose a time-sequence

xi, i = 1, 2, ..., n (events), and a period P.
The following formulas intend to represent the de-

veloped computational algorithms, rather than being
a rigorous mathematical description of each function
[1]. The chosen oscillators were:

A. Moving Averages (MA)

MA(P)i = (xi+xi-1+...+xi-P+1) / P

B. MA Convergence-Divergence (MACD)

Let there be two MA's of different periods, P and Q,
such that P > Q. Then,
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MACD(P, Q)i = MA(P)i – MA(Q)i

C. Relative Strength Index (RSI)

Let u be the average of positive variations in the
considered period P and let d be that of negative
variations. Then,

RSI(P) = 100 - (100 / (1 + (u / d))).

D. Real-Modulated Index (RM)

RM(P)i = xi / MMPi

E. Optimised Decision Index (ODI)

ODI(P)i = [RM(P)i + RM(P)i-1 +...+ RM(P)i-P+1] / P

F. Stochastic Oscillator (SO)

Let m be the minimum and M the maximum of xi

in the considered period P. Then,

SO(P)i = (xi - m) / (M - m).

G. Momentum (MOM)

MOM(P)i = xi - xi-P+1

H. Pattern matching.

This was another very simple analytical tool was
added to the six "financial" oscillators, to calculate
the minimal algebraic difference pattern-matching
with the last sequence of 20 values.

Let there be a sequence xi ; i = 1, 2, ..., n, we in-
tend to find the most probable value for xn+1.

Take the vector of the last 20 values,
[xn, xn-1, xn-2, ..., xn-19]

and the immediately previous one,
[xn-1, xn-2, xn-3, ..., xn-20]

and add their absolute termwise differences:
S1 = |xn-xn-1| + |xn-1-xn-2|+ ... + |xn-19-xn-20|.

Iterate the process,
S2 = |xn-xn-2| + |xn-1-xn-3| + ... + |xn-19-xn-21|

...
Sn-20 = |xn-x20| + |xn-1-x19| + ...+ |xn-19-x1|.

The most similar vector will be the one for which
that sum is minimal, for instance

Sm = |xn-xn-m| + |xn-1-xn-m-1| +...+ |xn-19-xn-m-19|
and so the next most likely value will be

xn+1 = xn-m+1.

As was demonstrated elsewhere [3] there are peri-
ods P which yield optimal results in the analysis of
seismic sequences. These are of 4 occurrences for
RSI and RM, 7 for SO, 21 for ODI and 28 for
MOM.

Since the computational algorithm for ODI21 im-
plies the calculation of RM21, and the calculation of
RM21 that of MA21, we have to calculate in all nine
oscillators, namely, MA4, MA21, MACD21-4,
RSI4, RM4, RM21, ODI21, SO7 and MOM28. Of
these, only RSI4, RM4, MACD21-4, SO7, ODI21
and MOM28 will be used as input to the neural net.
Tests showed that the extended training time is not
compensated by a better accuracy if one was to use
all the computed oscillators.

The first applications of these tools for seismic
prediction, though encouraging, had two shortcom-
ings: first, their outputs are qualitative, since the
oscillators only indicate if a trend is rising, declining
or stable (“buy”, “sell” or “hold”); then, when we
apply several oscillators to the same sequence the
results are not always consistent.

Both quantitative output and consistency were
achieved by integrating the oscillators in an artificial
neural network (ANN).

III. THE NEURAL NETWORK.

ANN’s are software emulators of the nervous sys-
tem and seemed adequate because of their mathe-
matical universality, fault-tolerance, and ability to
deal with semi-quantitative data such as the modi-
fied Mercalli intensity (MMI).

In [4] it was shown that a neural network can be-
have as a model for the seismic process. That, to-
gether with the extensive use of neural nets in pre-
diction tasks – mainly, again, in finance – indicated
that these tools could be successful in integrating the
oscillators to produce quantitative results.

Neural networks are distributed parallel processing
systems (software programs) that emulate the behav-
iour of natural neurones in the animal nervous sys-
tem.

Figure 1 illustrates the particular kind of neurodes
(artificial neurones) chosen for this task, of the many
available – Rosenblatt's perceptron [5].

The input of a neurode is the sum S of the products
of the outputs of other neurodes xi by the so-called
connection-weights, wi:
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The output of a neurode is a function f(S) of that
sum; in this case, the sigmoid function was chosen:

)1(
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Figure 1 – Rosenblatt’s perceptron.

The complete neural network is a set of neurodes,
arranged in layers, three in this case: an input layer
(IL), a middle or hidden layer (HL) and an output
layer (OL).

Neurodes are arranged in such a way that the ones
in the same layer are not connected among them-
selves, but are connected to all the neurodes in the
previous and next layers - the network is said, thus,
to be partially connected.

The learning process is quite simple. The network
is fed with an array of three columns (time, intensity
and location) and as many lines as there are regis-
tered seismic occurrences.

The input layer neurodes are the input data: the
oscillators. Since we intend to predict three variables
(time, intensity and location), we shall have seven
oscillators times three, twenty-one, input neurodes.

The best hidden layer's size was found to be four
neurodes.

The output layer will have as many neurodes as
the variables we try to predict: three.

Then we have in all (21 x 4) + (4 x 3) = 96 con-
nections. This architecture is illustrated in figure 2.

The program calculates the oscillators for each
variable until the 29th occurrence (remember that
one oscillator, MOM28, only yields results from the
29th value onwards) and, beginning with random
weights, propagates the weighed sums to the hidden
layer and from there to the output layer, where the
output values are compared with the real values for
the next (30th) occurrence.

etc...

OL = 3

HL = 4

IL = 21

etc...

etc...

RM4 RSI4 SO7 ODI21 MACD21-4 MOM28 pattern

T

I

X

T I X

Figure 2 – Architecture of the neural network. IL: input
layer. HL: hidden layer. OL: output layer. T: times
of pause. I: intensities. X: locations. Abbreviations
for the oscillators are in the text.

Using the algorithm of backpropagation of errors
[6], the error is used to adjust the weights OL-HL
and then HL-IL. The process is repeated for all the
data and that concludes what is called one training
epoch. Then, all these steps are repeated for as many
epochs as are necessary to obtain an acceptable
minimum training error - in our case, 2% - when the
net is considered to be trained. (The training algo-
rithm was adapted from [7].)

The net being trained, we can use the last set of
connection weights - the one that yields minimal
errors - and the oscillators that were calculated for
the last observation, and propagate the weighed
sums from IL to HL and from there to OL where we
get the prediction of the time, intensity and location
of the next, unknown occurrence.

IV. RESULTS

A computer program was built that calculates the
oscillators, trains the neural network and predicts the
next occurrences using the calculated connection-
weights [3].

Since it would probably not be realistic to try and
predict the exact geographical co-ordinates of the
next epicentres, these were divided in major groups
of one-degree latitude, between 24º W and 31º W.

In order to optimise both characteristics of neural
networks, memory and generalisation, training sets
with 100 examples were used. This number was
chosen to be roughly equal to the number of connec-
tions, so that the network would be neither strongly
overdetermined nor strongly underdetermined.

The ANN was trained with historical and instru-
mental seismic data from the Azores, between 1912
and 1993, for earthquakes with MMI≥V. It fore-
casted an earthquake to be felt in the Azores Central
Group with VI≤MMI≤VII in February 1998±5
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months [8].
In July 9, 1998, an earthquake struck the Azores,

being mostly destructive in the island of Faial, in the
Central Group (MMI=VII).

When this last earthquake was included in the
ANN training set, the net forecasted an earthquake
to be felt in the Azores Central Group with
VI≤MMI≤VII in February 2004±6 months [9].

Between December 2003 and February 2004 the
Azores have been experiencing an earthquake
swarm. The maximum intensity (MMI=V) was felt
in the island of Graciosa, Central Group, on January
28, 2004[10], the strongest since 1998.

These results are encouraging, but more needs to
be done.

V. FUTURE WORK

Historically, there have been two major ap-
proaches to seismic forecasting. The approach that
was followed in the preceding paragraphs is based
on a mathematical analysis of earthquake catalogues.
The other one is based upon the understanding of
earthquake-triggering mechanisms and on the moni-
toring of well-known earthquake physical precursors
[for example 11, 12, 13].

Now, a research group is beginning work on pro-
ject DESIRE (Dynamic Evaluation of Seismic Risk).

In this project, three permanent stations will be
deployed in Coimbra, Porto and Vila Real, continu-
ously monitoring seismic waves, water piezometry,
ground self-potential and EM piezoelectric emis-
sions. Periodically, profiles of the anomaly of mag-
netic susceptibility will be made across the relevant
seismogenic structures in Northern Portugal.

These data, recognised seismic precursors, will be
added as input nodes to a similar ANN to the one
that was described above, together with the pre-
processed catalogue data as in the previous strictly
mathematical method. The much more complete
catalogue in Continental Portugal, as compared to
that of the Azores, will allow us to work this time
with seismic magnitudes.

We expect that this mixed approach will succeed
in narrowing the time forecast window – that is, to
achieve the goal of mid- to short-term prediction.
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Abstract—Cellular Neural Networks (CNNs) con-
stitute a powerful paradigm for modelling complex
systems. Innovation systems are complex systems in
which small and medium enterprises play the role of
simple units interacting each other. In this paper in-
novation systems based on CNN are investigated. It
is shown how a model based on CNN can reproduce
the main features of innovation systems and how this
model can be generalized to include different aspects
of the actors of the financial market.

I. INTRODUCTION

Complex systems are often defined as systems
made of elementary units interacting with simple laws
and able to allow the emergence of an holistic global
behavior. Recently the theory of complex systems,
intended as systems that intrinsically retain the possi-
bility to respond to the environment in different ways,
has been applied to innovation systems [7].

The key point is that industrial network have to be
adaptive to respond to the complex unpredictable be-
havior of the market and that innovation plays a fun-
damental role to achieve adaptability. Survival and
success are possible if the elements of the network are
able to learn and change.

In this work Cellular Neural Networks (CNNs) [3],
[4], [5] modelling innovation systems are introduced.
CNNs have been already used to model complex non-
linear phenomena in spatially distributed systems. In
fact an n-dimensional CNN may represent any com-
plex system in which interactions among the elements
of the system are ruled by local connections and where
the main features of the basic unit are reflected by the
model assumed for the elementary CNN cell.

The main idea of the approach here presented is to
use each layer of a multi-layer CNN to model a par-
ticular variable of the financial system. Complexity

can be added by adding further layer in the model, i.e.
increasing the dimension of the basic cell.

In particular this paper focuses on a very sim-
ple model of innovation in systems of interconnected
agents. As introduced before this can be extended
to account for other characteristics of the elementary
agent by adding other CNN layers.

The model for innovation examined in this paper is
based on the simple rules discussed in a recent paper
by Watts [8]. This model accounts for the presence
(and the absence under certain conditions) of global
cascades in networks of agents.

Global cascades represent the spread of the inno-
vation along the whole network and are common in
many social and economic phenomena. For example
it accounts for the fact that some books, movies or
songs become very popular despite their initial small
marketing budgets [1].

This is an example of what often happens in eco-
nomic and social systems in which the knowledge of
the problem or the ability to process the available in-
formation are limited and the decision makers have to
pay attention to each other [2].

In the example of a popular hit recommendations
of friends and neighbors can play a fundamental role
in the choice of a movie, a book or a song. This phe-
nomenon in economics is known as information cas-
cade: individuals make decision on the basis of the
action of other individuals of the population, thus al-
lowing the possibility that the whole system exhibits
a herd-like behavior.

The model proposed by Watts [8] and here imple-
mented by the CNN paradigm provides a possible ex-
planation for this phenomenon in terms of a binary-
state decision random network.

This model is detailed in Section 2. Section 3 deals
with the CNN model, while Section 4 presents the re-



sults of the simulation of the CNN model, showing
how the CNN model can reproduce the main features
of the innovation model. Section 5 draws the conclu-
sions of the paper.

II. CELLULAR AUTOMATA MODEL

In this Section the model for innovation proposed
by Watts [8] is briefly reviewed. This model extends
the model introduced by the sociologist Granovetter
[9], which illustrated his results on the brink of rioting
and assumed that each person’s decision is dependent
on what everyone else is doing.

This model described a population of agents which
must decide between two actions: adopt or not a new
technology. Watts used a model based on a cellular
automaton (CA)[6] to model this system.

Individuals are represented by binary variables that
can adopt or not the innovation. If the individual adopt
the innovation the cell state of the cellular automata is
0, if don’t adopt the innovation the state of the cellular
automata state is 1. Connections among individuals
are assumed random.

Each individual is characterized by a threshold.
In fact, each individual adopts the innovation if the
percentage of connected individuals that has already
adopted the innovation is greater than its threshold.
The threshold is different for each agent and repre-
sents the attitude to innovation of the given agent.

This simple model is able to account for the emer-
gence of global cascades, in which innovation spread
in the whole network. However global cascades are
possible only under particular conditions.

The main result is that the presence of cascades de-
pends on the average number of connections between
individuals. When the number of connections is too
small there is no room for cascades. When the num-
ber of connections increases, the attitude to innova-
tion increases until global cascades become possible.
However if the network is very connected global cas-
cades become rare events.

The reason of this behavior is that each individual
makes its decision on the basis on a percentage of
the individuals with which he is connected and that
adopted innovation. Thus increasing the connectivity
level two bifurcation points are evident: cascades are
therefore possible only if connectivity is neither small
or too large.

More in detail some simulation results are here dis-
cussed. The number of initial innovators is kept con-
stant (as in Fig. 1), and the behavior with respect to
different average numbers of connections is investi-

Fig. 1. The initial condition of the CA model represents
the initial innovators (black pixel indicate that the cell
status is 1, thus the individual is an innovator).

gated.
There is no cascade if the number of connections

is too small: in this case innovation does not spread
(Fig. 2(a) shows an example).

If the connection is increased, cascade propaga-
tion becomes possible, innovation does spread in the
whole network. Fig. 2(b) shows an example of this be-
havior. If the number of connections is too high, the
attitude to innovation of the network decreases, since
each agent is connected with many other individu-
als and so needs many innovators to be convinced.
Fig. 2(c) is an example of this last case.

The results highlight the presence of two phase
transitions when the mean number of connections is
increased.

III. INNOVATION MODELS BASED ON CNNS

The simple model of cascade propagation is an ex-
ample of how CNN can be used for modelling com-
plex financial systems.

In this Section we show how CNN can be used to
reproduce the main features of the CA model intro-
duced by Watts. Moreover they allow the general-
ization of the random network to a generic grid of
connected units and the extension of the discrete time
model to a continuous one.

Different grids can therefore be studied and connec-
tions can be assumed local or mostly local leading to
the possibility of studying innovation propagation in
different topologies.

In the following a regular grid (shown in Fig. 3) is
taken into account and standard 1-layer templates are
used. In fact each innovator can be modelled by the
state of a cell of a 1-layer CNN. Now the decision to
adopt or not the innovation takes place as a continuous
process. The saturation points +1 and -1 represent the
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Fig. 2. Innovation propagation in a random network with
respect to different connectivity levels, the mean num-
ber of connections is: 5 (a), 30 (b) and 50 (c). Cascade
propagation is possible only in case (b).

Fig. 3. Scheme of a CNN.

decision to adopt the innovation or not, respectively.
The state equation of the cell C(i,j) is the following
[4], [5]:

ẋ = − xij

Rij
+ i1 +

∑
(Aij:klykl + Bij:klukl) (1)

where:

Nr(i, j) = C(k, l) : max(|k − i|, |l − j| < r) (2)

r is the size of the neighborhood, A and B are the
feedback and control template, respectively, and:

i = 1..N, j = 1..M (3)

To completely specify the model templates have to
be designed in order to reproduce the features of the
decision maker unit. This step implies a sort of trans-
lation between CA rules and CNN templates.

Recently great advances have been done in the di-
rection of an analytical universal method to accom-
plish this step [11], but until now this step still requires
trial and error.

However in this case this step can be accomplished
by adapting templates already known. The behavior
of each cell depends on the neighbor states in such a
way that if the percentage of neighbor innovators is
greater than a threshold the cell itself should become
an innovator.

This resembles the rules for game of life, and there-
fore similar templates have been adopted [10]. In par-
ticular the bias value has to be changed to account for
the condition on the threshold. In fact it is the bias that
mimics the threshold of the individual.

Finally the neighborhood radius r has to be chosen.
Since we want to study the effects of different connec-
tivity levels, three different neighborhood radius have
been chosen: r=1, r=2 and r=3.

The A and B templates remain qualitatively the
same in the three cases, but the bias has to be prop-
erly scaled in order to represent a percentage thresh-
old. In particular the bias has been chosen so that it
represents a percentage threshold equals to 44 in all
the three cases discussed in the following.

In particular, for example in the case of r=1 the tem-
plates that we considered are:

A =

⎡⎣ 0 0 0
0 1 0
0 0 0

⎤⎦ ;B =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ (4)

and the bias is I=4. For r=3 the A template is a 7x7
matrix with only the central element different from
zero, the B template is a 7x7 matrix with all unitary
elements and the bias is I=22.

The final output of the CNN model for innovation
is the logic OR between the result of the processing of
these templates and the input representing the initial
state of innovators.

IV. SIMULATION RESULTS

As initial distribution of innovators the same initial
condition of the CA model represented in Figure 1 has
been considered.

The simulation results shown in Fig. 4 confirm that,
even in the case of regular grids, cascade propagation
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Fig. 4. Simulation result of a CNN with: (a) r=1, (b) r=2
and (c) r=3.

does not depend on the number of initial innovators,
but on the mean number of the connections.

In particular Fig. 4 shows simulation results for a
CNN with r=1, r=2 and r=3.

The same scenario depicted by Watts appears, there
are two phase transitions: when the connectivity is
low (r=1) there are no global cascades; for r=2 global
cascades are possible, and for r=3 global cascades oc-
curs rarely.

Similar results can be obtained with different initial
conditions. This allows us to conclude that cascade
propagation does not depend on the number of initial
innovators but on individual thresholds and connectiv-
ity levels.

V. CONCLUSIONS

In this paper it is shown how CNNs can be used
to model complex system models arising in the field
of financial and innovation systems. In particular a
suitable CNN implementation of a simple model of
innovation [8] has been illustrated.

The use of CNN allows to consider continuous time
instead of discrete time models and provides a gener-
alization of the paradigm of connectivity.

In fact by using CNNs different kinds of connec-
tions (either regular or almost locally connected sys-

tems) can be studied.
Moreover, CNN models can be easily simulated on

parallel hardware, thus allowing real-time simulation
of complex financial systems.

Another methodological aspect of the CNN ap-
proach is the possibility of adding complexity to the
basic cell model by adding new CNN layers modeling
other interest variables of the elementary agent.

The CNN model for innovation presented as a case
study shows the effectiveness of the approach con-
firming the presence of two phase transitions in the
model of innovation.

If the network is poorly connected no global cas-
cade may occur, if the network is too largely con-
nected global cascades become rare events.
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Abstract We study numerically and experimen-
tally the behavior of the autocorrelation function and
the power spectrum of spiral attractors without and in
the presence of noise

I. INTRODUCTION

The problem of decay of autocorrelation functions
(ACF) in continuous dynamical systems with dimen-
sion

� � �
is one of the fundamental and still

unsolved tasks of the theory of chaos. For two-
dimensional discrete systems that satisfy the Smale
axiom-A it has been only proven that the ACFcan be
bounded from above by an exponentially decreasing
function [1], [2], [3], [4]. In certain cases the ACFde-
cays exponentially with the exponent that is de ned
by the inverse of the Kolmogorov entropy � � � � ,
where � � is the positive Lyapunov exponent [3]. In
a common case, such statements are not ful lled for
even hyperbolic maps. Regularities of the ACFdecay
in differential systems with chaotic attractors of both
hyperbolic and nonhyperbolic types are even more
complicated from a viewpoint of their theoretical de-
scription. As was shown in [5], [6], [7], the rate of the
ACFdecay in differential systems depends essentially
on the structure of an attractor and on the in uence
of noise. Moreover, the positive Lyapunov exponent
does not de ne the regularities of decay of autocor-
relations [6], [7]. In the present paper we substan-
tiate numerically and experimentally that for typical
nonhyperbolic attractors of the spiral type in � � , the
autocorrelations decay exponentially. With this, two
time scales can be distinguished, i.e., 	 
 	 � �  and

	 � 	 � �  . In the rst case the exponential decay is
de ned by uctuations of the instantaneous amplitude
and in the second case it depends on the effective dif-
fusion coef cient � � � . The power spectrum of spiral
or phase-coherent chaos exhibits a pronounced peak
at the basic (average) frequency and, consequently,
the envelope of the ACFdecreases relatively slow [8],

[9], [10], [11]. Spiral attractors can be observed in
suchwell-known systems as the Rössler oscillator, the
Anishchenko Astakhov oscillator [10], or the Chua
circuit [12]. The self-sustained oscillations in these
systems can remind the dynamics of noisy periodic
oscillators of a Van der Pol oscillator type [13], [14],
[15], [16], [17].
From the classical theory we know the analytic so-

lution for the ACF of oscillations which represent a
narrow-band random process � � � � � � � � � � � � � � � � �� � � � � :

 ! � 	 � � " � � � � � � � � 	 � # $ " � � � � # % (1)

�
&

' �  ( � 	 � � � %� � ) * + � $ � 	 � � � � � � 	 ,

where
 ( � 	 � is the ACF of amplitude uctuations,

� � � " � � � � # , and � is the instantaneous phase diffu-
sion coef cient. � � � � and � � � � are assumed to be the
slow random functions of time, and the phase dynam-
ics can be described by aWiener process:

-� � � � � ' � . � � � , � � � � / ' 0
' � � , (2)

where . � � � is the white noise with intensity 0
.

As seen from expression (1), the ACF is repre-
sented as a sum of two terms. The rst one is deter-
mined by the ACF of the amplitude uctuations and
the second term depends on the phase uctuations.
According to the Wiener-Khinchin theorem the power
spectrum will consist of two terms too, namely, a
broad-band noise pedestal 1 2 � � � stipulated by a small
correlation time of

 ( � 	 � and a Lorenzian:

1 � � � � 1 2 � � � � �
� % � � � $ � � � % 3 (3)

As we have shown in [18], the expressions (1) and
(3) hold not for the stochastic dynamics of the Van
der Pol oscillator only. They appear to be valid in a
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more general case when the process of stochastic os-
cillations can be described in the form of harmonic
noise � � � � � � � � � � � � 	 
 � � �  � � � � with slowly vary-
ing amplitude and phase. Now we use this concept to
characterize the spiral chaos.

II. NUMERICAL AND EXPERIMENTAL RESULTS

Let us consider the well-known Rössler system:

�� � � � � � � � � � � � � � � �� � � � � � ��� � � � � � � � � � � (4)

where � � � � is the normalized Gaussian source of � -
correlated noise with zero mean and

�
is the noise

intensity. We x � � � � � �
�
and � � � �

�
. Let us

introduce the change of variables

� � � � � � � � � � � � 	 � � � � � � � � � � � � � � 
 � 	 � � � � (5)

which determines the amplitude � � � � and the full
phase 	 � � � of the chaotic oscillations. Substituting
(5) Eqs. (4) can be re-written as follows:

�
� �

�
� � � � � � � � � � 	 � � � � � � 	 � � � � � � � � � � � 	 �

�
	 � � �

�
� � � 
 � � 	 �

�
� � � 
 � 	 � � � �

� � � � � � 
 � 	 �
�� � � � � � � � � � 	 � � � � (6)

In our numerical calculations we use both systems (4)
and (6).
In [7] it has been recently shown that for spiral

chaos in the Rössler system the variance � � � � � of the
instantaneous phase grows linearly in time both with-
out noise (

� � � ) and when � �� � . The vari-
ance of the total phase is equal to the variance of
its non-regular component

 � � � � 	 � � � � �
 � , where
�
 � �

�
	 � � � � is the mean frequency of the chaotic os-

cillations. This linear dependence of variance � � � � �
on time allows us to introduce the effective phase dif-
fusion coef cient

� � � � �
�

�
� � � � � �� � � � (7)

In our numerical simulation of system (4) we cal-
culate the normalized ACF of chaotic oscillations� � �  � � � � �  � � � � � � � . Using Eqs. (6) we compute
the ACF

� ! �  � and the effective phase diffusion coef-
cient � � � . We use the time-averaging procedure for
calculating

� � �  � and � ! �  � . The coef cient � � �
is computed by averaging over an ensemble of real-
izations [7]. Figure 1 shows the calculation results
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τ

−1.0

−0.5

0.0
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Fig. 1. Calculation results for the Rössler system (4)
with � � � � � � � and � � � � � . Normalized ACF� � � �  

(curve 1) and the approximation of its envelope
(8) (curve 2) for (a) ! � � , " # $ � � � � � � % & and (b)

! � � � � � % , " # $ � � � � � � ' �

for
� � �  � in system (4). The ACFdecays almost ex-

ponentially both without noise (Fig. 1(a)) and in the
presence of noise (Fig. 1(b)). For  ( � � there is
an interval on which the correlations decrease much
faster.
Using Eq. (1) we can approximate the envelope of

the calculated ACF
� � �  � . To do this, we substitute

the numerically computed characteristics
� ! �  � and

� � � � � into an expression for the normalized enve-
lope ) �  � :

) �  � �
�

� 	 � ! �  � � � �� �
	 � ! � � � � � �� � " # $ � � � *  * � � (8)

The calculation results for ) �  � are shown in
Fig. 1(a,b) by black dots (curves 2). It is seen that the
behavior of the envelope of

� � �  � is described well
by Eq. (8).
As can be seen from Fig. 1, for small correlation

time  % � the ACF � � �  � demonstrates a sharp de-
crease and then decays exponentially. This fact can
be explained by calculating

� ! �  � that is shown in
Fig. 2. As seen from the graph, the nonnormalized
ACF

� ! �  � decreases abruptly in time resembling a
� -function. As follows from expression (1), this de-
crease will form the behavior of

� � �  � near zero.
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Fig. 2. The autocorrelation function
� � � � �

of amplitude
uctuations for the Rössler system (4) with � � � �

� � 	 and 
 � � � �

Now we compare the numerical results with ex-
perimental data obtained for an analog model of the
Rössler oscillator, that corresponds to Eqs. (4) and the
control parameter values as in Fig. 1. Figures 3 5
show the experimental results that con rm completely
the ndings of numeric simulation. As seen from
Fig. 3, variance  �� � � � grows practically linearly in
time. In this case we can estimate experimentally the
value of the effective phase diffusion coef cient � � �
as the tangent of the slope angle of the approximating
straight line � � � � � � � 	 � � � � � � 
 � � . Figure 4 repre-
sents ACF

 � � � � calculated on experimental realiza-
tion � � � � of the analog model of the system (4). There-
in we also plot envelope � � � � that is determined from
(8) by using the calculation data of

 � � � � (Fig. 2) and
� � � (Fig. 3). As seen fromFig. 4, the experimental re-
sults are in a very good agreement with the numerical
ndings presented in Fig. 1. Figure 5 illustrates the
measurement results for the power spectrum of spi-
ral chaos. The spectrum exhibits a well-pronounced
peak whose shape is well approximated by Lorenzian
(3) with the spectral linewidth de ned by the diffusion
coef cient � � � � � � � 	 � � � � � � 
 � � .

III. CONCLUSIONS

It has been experimentally established that in the
regime of spiral chaos the instantaneous phase vari-
ance of chaotic oscillations grows, on average, lin-
early with the diffusion coef cient � � � . Without
noise this coef cient is de ned by the chaotic dy-
namics of the system. In the presence of noise the
growth of the phase variance is also linear but the � � �
value increases.The ACFof the spiral chaos decays in
time according to the exponential law � � � � � � � � � � .
The spectral linewidth of oscillations at the basic fre-
quency is de ned by the effective phase diffusion co-
ef cient from the expression (3).
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Fig. 3. The experimental temporal dependence of the vari-
ance for the Rössler system with � � � � � � 	 and

 � � � �
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Fig. 4. The experimental ACF
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of spiral chaos in the
Rössler system and its envelope (thick line)
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Fig. 5. The experimental power spectrum for the Rössler
system and its approximation by the Lorenzian (thin
line)
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Abstract— This paper presents an analog inte-
grated circuit (IC) that implements the Lotka-Volterra
(LV) chaotic oscillator. The LV system describes
periodic or chaotic behaviors in prey-predator sys-
tems with a simple mathematical form. The proposed
circuit consists of a small number of metal-oxide-
semiconductor field-effect transistors (MOS FETs)
operating in their subthreshold region, which is very
suitable for large-scale IC implementation. A general
method for implementing the LV system on analog ICs
is also presented.

I. INTRODUCTION

The design of chaotic oscillators has been a sub-
ject of increasing interest during the past few years
[1]. Indeed, analog integrated circuits that implement
chaotic oscillatory systems provide us important cues
for exploring and discovering novel forms of infor-
mation processing. Many designs of chaotic oscilla-
tors were introduced starting from the use of a coil in
Chua’s circuit to the use of large blocks such as oper-
ational amplifiers. In both cases, the fabrication area
was very large. These designs were also dependent
on the use of floating capacitors, the use of high sup-
ply voltage and high power dissipation, which is not
preferred in fabrication due to the demanding need for
portable devices in our world today. In this paper, we
propose micropower analog MOS circuits that exhibit
chaotic behaviors with very simple circuit construc-
tion.

II. ANALOG MOS CIRCUITS FOR THE

LOTKA-VOLTERRA MODEL

The Lotka-Volterra (LV) model is one of the earli-
est predator-prey models to be based on sound mathe-
matical principles. It forms the basis of many models
used today in the analysis of population dynamics. We
here employ a LV model that describes interactions
between three species in an ecosystem, i.e.; one preda-
tor and two preys [2]. In addition to the predation of
the preys, the two preys compete with each other for

their feeding ground. The dynamics are given by

τ ẋ1 = (1 − x1 − x2 − k y)x1, (1)

τ ẋ2 = (a − b x1 − c x2 − y)x2, (2)

τ ẏ = (−r + α kx1 + β x2)y, (3)

where x1 and x2 represent the prey population, y the
predator population, τ the time constant, the rests (k,
a, b, c, r, α and β) are control parameters.

By introducing three new variables:

X1 = lnx1, X2 = lnx2, Y = ln y, (4)

Eqs. (1), (2) and (3) can be transformed into:

τẊ1 = 1 − exp(X1) − exp(X2) − k exp(Y ),(5)

τẊ2 = a − b exp(X1) − c exp(X2) − exp(Y ),(6)

τ Ẏ = −r + αk exp(X1) + β exp(X2). (7)

This transformation has two merit for analog MOS
implementation: i) the resultant equations [(5), (6)
and (7)] do not have multiplying terms of system vari-
ables and are described by linear combination of ex-
ponential functions, which enables us to design the
circuit without any analog multiplier; ii) the exponen-
tial nonlinearity is essential characteristics of semi-
conductor devices, which enables us to design a cir-
cuit based on the intrinsic characteristics of semicon-
ductors. We here use the exponential current-voltage
characteristics of subthreshold MOS FETs [3].

In the subthreshold region of operation without
body effect, the drain-source current of a saturated n-
type MOS FET is given by

Ids = I0 exp(
κ

VT
Vgs) (8)

where Ids represents the drain-source current, Vgs the
gate-source voltage (≥ 4VT for saturation), κ the ef-
fectiveness of the gate potential, and VT ≡ kT/q ≈
26 mV at room temperature (k is Boltzmann’s con-
stant, T the temperature, and q the electron charge),
and I0 the fabrication parameter. Typical parameter
values for minimum-size devices fabricated in a stan-
dard 1.5-µm n-well process are I0 = 0.5 × 10− 15 A
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Fig. 1. Construction of LV circuit.

and κ = 0.6. Note that Eq. (8) is valid only when the
MOS FET is saturated; i.e., Vgs ≥ 4VT .

Figure 1 shows construction of the LV circuit. Ap-
plying KCL at node (a) and (b) in Fig. 1, we obtain

CV̇1 = I1 − I
(M1)
0 exp(

κ

VT
V1) − I

(M1)
0 exp(

κ

VT
V2)

− I
(Mk)
0 exp(

κ

VT
V3) (9)

CV̇2 = I2 − I
(Mb)
0 exp(

κ

VT
V1) − I

(Mc)
0 exp(

κ

VT
V2)

− I
(M1)
0 exp(

κ

VT
V3) (10)

where I
(M )
0 the fabrication parameter. The node volt-

ages V1 and V2 are also given to the gates of MOS
FETs Mαk and Mβ , respectively. Because the cur-
rents of Mαk and Mβ are copied to node (c) by two
pMOS current mirrors (PCMs in Fig. 1), the node
equation is represented by

CV̇3 = −I3 + I
(Mαk)
0 exp(

κ

VT
V1) +

I
(Mβ)
0 exp(

κ

VT
V2). (11)

Equations (9) to (11) become equivalent to Eqs. (5)
to (7), respectively, when

Vi =
VT

κ
Xi, (i = 1, 2, 3), τ =

CVT

i0κ
,(12)

I1

i0
= 1,

I2

i0
= a,

I3

i0
= r, (13)

I
(M1)
0

i0
= 1,

I
(Mk)
0

i0
= k,

I
(Mb)
0

i0
= b, (14)

I
(Mc)
0

i0
= c,

I
(Mαk)
0

i0
= αk,

I
(Mβ)
0

i0
= β, (15)

where i0 represents the normalized current.
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Mb Mc

Mαk Mβ
PCM

PCM

75 µm

Fig. 2. Chip micrograph of a fabricated LV circuit (MO-
SIS, vendor: AMIS, n-well single-poly double-metal
CMOS process, feature size: 1.5 µm, total area: 75 µm
× 40 µm).

MOS FET W (µm) L (µm)
M1 4 1.6
Mb 12 3.2
Mc 4 1.6
Mk 40 1.6

Mαk 20 1.6
Mβ 4 3.2

TABLE I
SIZE OF NMOS FETS ON LV CHIP.

III. EXPERIMENTAL RESULTS

We fabricated a prototype circuit using a 1.6-µm
scalable complementary-MOS (CMOS) rule (MO-
SIS, vendor: AMIS, n-well single-poly double-metal
CMOS process, λ = 0.8 µm, feature size: 1.5 µm).
Figure 2 shows a micrograph of the LV circuit. We
employed the same parameter set of the LV system
(k = 10, b = 1.5, c = 1, αk = 5, β = 0.5) as in
[2] where a stable focus bifurcates into chaotic oscil-
lation via stable period-n cycles. The resultant size
of nMOS FETs are listed in Tab. 1. The pMOS cur-
rent mirrors (PCM) were designed with a dimension
of W/L = 4 µm / 1.6 µm. The circuit took up a total
area of 75 µm × 40 µm.

In the following experiments, we added external ca-
pacitors (C = 0.1 µF) out of the chip due to the time
resolution of our measurement systems. We used Ag-
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Fig. 3. Experimental results of fabricated LV circuit. (a) and (c) show time course of system variables (V1, V2 and V3).
(b) and (d) show trajectories on a V1-V3 plane. (a) and (b) represent results for I3 = 320 nA, while (c) and (d) results
for I3 = 360 nA.

ilent 4156B as external current sources for the input.
Time courses of V1, V2 and V3 were sampled simulta-
neously by Agilent 4156B. The supply voltage (VDD)
was set at 2.5 V. The input currents (I1, I2) were fixed
at (250, 287) nA. We examined dynamic behaviors of
the fabricated LV circuit by changing the rest input
current I3 that corresponds to the control parameter r
in (3).

Figure 3 shows the measurement results. Figures
3(a) and 3(b) show the time course of the system vari-
able (V1, V2 and V3) and trajectories on a V1-V3 plane,
respectively. In this experiment, I3 was set at 320
nA. The LV circuit exhibited stable oscillation with
period-1 cycles. In Figs. 3(c) and 3(d), which repre-
sent the time course of the system variable and trajec-
tories on a V1-V3 plane, respectively, I3 was set at 360
nA. The LV circuit exhibited stable oscillation with
period-2 cycles. Figures 4(a) and 4(b) show the time

course of the system variable and trajectories on a V1-
V3 plane, respectively. In this experiment, I3 was set
at 420 nA. The maximum value of the Lyapunov ex-
ponents was 10.1, which indicated that the LV circuit
exhibited chaotic oscillation.

We confirmed whether the qualitative behavior of
the circuit is consistent with the theoretical analysis.
According to [2], as the value of the control param-
eter r increases from r1 to r2, the Hopf bifurcation
occurs at r ≡ rα and r ≡ rβ where the stable focus
bifurcates (r1 < r < rα) to the unstable focus with
enclosing limit cycle (rα < r < rβ). Then the unsta-
ble focus bifurcates to the stable focus (rβ < r < r2).
We confirmed this transition (stable focus → unstable
focus with enclosing limit cycle → stable focus) in the
LV circuit during the increase of I3 (∼ r). Figure 5
shows the bifurcation diagram obtained from the LV
circuit. The diagram was created as follows: 1) when
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Fig. 4. Experimental results of fabricated LV circuit.
(a) and (b) show time course of system variables (V1,
V2 and V3) trajectories on a V1-V3 plane, respectively,
when I3 = 420 nA.

the circuit had stable focus with a given I3, the stable
value of V3 was plotted, 2) when the circuit oscillated
with a given I3, the value of V3 at which V̇3 = 0 was
plotted. When I3 < 182 nA, the LV circuit did not
oscillate (stable focus). The stable focus bifurcated
at I3 ≈ 182 nA to stable period-1 cycles. Increasing
the value of I3, further bifurcations to period-2 cy-
cles, period-4 cycles, chaotic cycles occurred around
370 nA < I3 < 450 nA. Finally, the unstable focus
bifurcated to a stable focus again at I3 ≈ 580 nA.

The results in Fig. 5 indicates two important prop-
erties of the proposed LV circuit: 1) although we
used practical subthreshold MOS FETs, the bifurca-
tion property is qualitatively consistent with the result
of theoretical analysis; 2) the LV circuit exhibits sta-
ble oscillation with period-n and chaotic cycles over
a wide range of I3; i.e., 182 nA < I3 < 580 nA,

I3 (µ )

V
3

Fig. 5. Bifurcation diagram of LV circuit.

which allows the LV circuit to keep stable oscillation
under noisy environment, even though the subthresh-
old MOS FETs were used in the circuit.

IV. SUMMARY

We proposed an analog integrated circuit (IC) that
implements the Lotka-Volterra (LV) chaotic oscillator.
We designed very simple (just 12 transistors) circuit
for the LV oscillator where all transistors operated in
their subthreshold region. The LV oscillator was fab-
ricated using a 1.6-µm scalable rule (MOSIS, vendor:
AMIS, n-well single-poly double-metal process, λ =
0.8 µm, feature size: 1.5 µm). The circuit took up a
total area of 75 µm × 40 µm. Although the quantita-
tive results of the fabricated circuit were inconsistent
with the theoretical analysis, the qualitative behavior
(bifurcation property) agreed well with the result of
theoretical analysis. Furthermore, the LV circuit ex-
hibited stable oscillation with period-n and chaotic
cycles over a wide range of control current, which en-
ables us to design a stable oscillator that can operate
under noisy environment, even though the subthresh-
old MOS FETs were used in the circuit.
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Abstract—Operation of log-domain filters 

revolves around the large-signal exponential 
current-voltage relationship of the bipolar junction 
transistor (BJT), which is used to map the input 

currents to the logarithmic domain, where the 
analog processing takes place, and to convert the 

resulting filtered voltage waveforms back to the 
linear domain. Sometimes, the inherent internal 

nonlinearity of such circuits is the cause of 
unwanted externally-nonlinear effects. In this paper 
a differential third-order log-domain Chebychev 

low-pass filter is designed by applying the method of 
operational simulation of doubly-terminated LC 

ladders. When the six grounded shunt capacitors of 
this filter are properly replaced with three half-sized 
floating capacitors, as is common practice in 

internally-linear fully-differential capacitively-
loaded circuits, under particular conditions the 

resulting system exhibits limit-cycle oscillations, 
period-doubling bifurcations and chaotic behaviour 
for zero-input. The presence of chaos is confirmed 

by extracting the spectrum of Lyapunov exponents of 
the system from the time series of the output voltage.

I. INTRODUCTION 

The large-signal exponential relationship between 

the collector current and the base-emitter voltage of 

the BJT is used in log-domain filters [1]-[2] to 

logarithmically compress the input currents before 

any analog processing is applied to them. The 

resulting nonlinear voltages are then appropriately 

filtered and finally converted to output currents 

using the exponential mapping once again. Due to 

the compressing and expanding actions, log-domain 

filters are less sensitive to noise, show lower levels 

of distortion and exhibit higher dynamic range than 

conventional analog electronic circuits. For the same 

reason low-power and high-speed operation are key 

features of such circuits. 

Ideally the output currents of log-domain filters 

are linearly filtered versions of the input currents. 

However, the intrinsic internal nonlinearity of such 

circuits is sometimes responsible for the appearance 

of unexpected externally-nonlinear behaviour.  

Application of the method of operational 

simulation of doubly-terminated LC ladders [2] 

allows us to design a differential third-order log-

domain Chebychev low-pass filter (section II). 

A common practice in internally-linear fully-

differential capacitively-loaded circuits is to replace 

each pair of equal-value shunt capacitors, connected 

between two output nodes and ground, with a half-

sized floating capacitor placed between those nodes. 

However, application of such technique to 

internally-nonlinear circuits, such as log-domain 

filters, may result in the loss of external linearity [3]. 

Section III describes the main results of this 

paper. The differential third-order log-domain 

Chebychev LC ladder low-pass filter designed in 

section II is stable. On the other hand, when the six 

grounded shunt capacitors of this filter are 

appropriately replaced with three half-sized floating 

capacitors, for zero input and under special 

conditions limit-cycle oscillations, period-doubling 

bifurcations and chaotic behaviour are observed at 

the output of the resulting circuit. The occurrence of 

chaos in this third-order autonomous system is 

confirmed by computing the corresponding spectrum 

of Lyapunov exponents, extracted from the time 

series of the output voltage using the algorithm 

presented in [4]. 

Finally conclusions are drawn in section IV. 

II. BALANCED 3
RD

-ORDER LOW-PASS FILTER 

This section presents the log-domain filter which 

shows the nonlinear behaviour described in section 

III. We first apply the method of operational 

simulation of doubly-terminated LC ladders [2] to 

design a single-ended third-order log-domain 

Chebychev low-pass filter with a pass-band ripple of 

1 dB and a cut-off frequency of 1 MHz. The LC 

ladder passive prototype implementing a third-order 

Chebychev low-pass filter is shown in Fig. 1. The 
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values of the passive components are first chosen to 

obtain a pass-band ripple of 1 dB and a cut-off 

frequency of 1 rad/sec. The frequency scaling 

transformation is then applied to the values of the 

inductor and of the capacitors so that the cut-off 

frequency of the passive low-pass filter is 1 MHz.

−
+

2l

iV
1r

1c 3c
2r

−

+
oV

Fig. 1 LC ladder passive prototype of a third-order 

Chebychev low-pass filter. The input and output voltages 

are Vi and Vo respectively. 

Table 1 shows the values of the parameters of the 

passive prototype satisfying the given specifications. 

Name r1

[Ω]
C1

[µF]

l2

[µH]

c3

[µF]

r2

[Ω]

Value 1 0.32 0.16 0.32 1 

Table 1 Names and values of the circuit elements of the 

LC ladder passive low-pass filter of Fig. 1 for a passband 

ripple of 1 dB and a cut-off frequency of 1 MHz.

cI

(a)

cIxV

yI
yI

(b)

xVyV

yV

 Fig. 2 Log-domain cells with opposite polarities: a) 

positive cell and b) negative cell. For each cell Vx and Vy

represent the input and output voltages respectively, Iy is 

the output current and Ic a constant current source. 

Application of the technique of operational 

simulation of doubly-terminated LC ladders [2] to 

the passive prototype of Fig. 1 allows us to derive 

the nodal equations for the log-domain counterpart: 
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where {C1, C2, C3} = Io (2VT)
-1 {c1, l2, c3} denote the 

shunt capacitors connected between nodes at 

voltages Vi (i = 1, 2, 3) and ground, VT is the thermal 

voltage of the BJTs, Iin the input current and Io a 

constant current source. 

The log-domain positive and negative cells shown 

in Fig. 2 [2] are used to implement each term in the 

right-hand sides of eqns. (1). Applying the 

Translinear Principle [2] to each log-domain cell of 

Fig. 2, the expression of the corresponding output 

current is found to be:  

T

yx

V

VV

cy eII
2

−

=  (3) 

Then, adding to the resulting circuit a 

compressing stage at the input and an expanding 

block at the output, as shown in Fig. 3, where  

( )
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 (4) 

we obtain the circuit shown in Fig. 4, which 

implements a single-ended third-order log-domain 

Chebychev LC ladder low-pass filter with a pass-

band ripple of 1 dB and a 3-dB cut-off frequency of 

1 MHz, as confirmed by a PSpice AC analysis. 

xc II +

cI

xV

(a)

cI

(b)

yc II +
yV

Fig. 3 Signal companding blocks: a) input LOG stage and 

b) output EXP stage. Ic is a constant current source, Vx the 

compressed version of input current Ix and Iy the expanded 

form of output voltage Vy.

In all the PSpice simulations described in this 

paper the supply voltages are set to �1.5 V, the 

values of the circuit elements in Fig. 4 are given in 

Table 2 and the devices modeling the npn and pnp 

BJTs are perfectly matched with parameter values as 

those of device 2N3904 except for the forward-

current gain, which is set to the typical value of 100. 

 A balanced version of the low-pass filter of Fig. 4  
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Fig. 4 Single-ended third-order log-domain Chebychev 

LC ladder low-pass filter. 

Name Io

[µA]

C1

[nF]

C2

[nF]

C3

[nF]

Value 100 0.62 0.31 0.62 

Table 2 Names and values of the circuit elements of the 

circuit of Fig. 4. 

is synthesized by adopting a procedure similar to 

that used in [2] to derive the differential log-domain 

integrator from the single-ended one. 

The resulting filter is shown in Fig. 5, where Vopi

and Voni (i = 1, 2, 3) denote the voltages across the 

six grounded shunt capacitors (that need to be two 

times larger than those of the single-ended low-pass 

filter with the same cut-off frequency), Iip and Iin are 

the positive and negative input currents, while Iop

and Ion the positive and negative output currents 

respectively. Again, a PSpice AC analysis of the 

circuit confirms that the design requirements, earlier 

specified, are indeed satisfied. 

III. CHAOS IN FLOATING-CAPACITOR FILTER 

The total circuit capacitance is reduced by a factor of 

4 if we properly replace the six grounded shunt 

capacitors in the circuit of Fig. 5 with three half-

sized floating capacitors. However, the resulting 

circuit topology loses external linearity: a brief 

perturbation of the floating-capacitor filter with zero 

input can give rise to sustained nonlinear 

oscillations.  
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oI

oI

oI

oI

Fig. 5 Differential version of the third-order log-domain 

Chebychev LC ladder low-pass filter of Fig. 4. 

Interesting nonlinear behaviour is observed if the 

values of floating-capacitors C2 and C3  are set to 0.1 

nF and 0.2 nF respectively and that of C1 is adjusted 

in small steps. The state variables of this 

autonomous third-order system are defined as the 

voltages across the three floating capacitors: 

VCi = Vopi-Voni (i = 1, 2, 3). A period-two limit cycle 

is detected for C1 equal to 0.55 nF. Fig. 6 shows the 

projection of this cycle on the VC3 – VC2 plane. 

Increasing the value of C1 further, when this 

floating-capacitor equals 0.59 nF a period-doubling 

bifurcation takes place: the period-two limit cycle 

becomes unstable and a period-four limit-cycle is 

born. This is clear from Fig. 7. Further increases in 

the value of C1 do not cause any change in the 

attractor of the system until a chaotic attractor 

appears for C1 = 0.6 nF (Fig.8). Use of the algorithm 

presented in [4] allows us to extract the Lyapunov 

exponents (�1 � 0.01, �2 � 0 and �3 � -0.015) from 

the time series of output voltage VC3. The robustness 

of this computation is clear from Fig. 9, that shows 

the fluctuation in the values of the Lyapunov 

exponents as the time delay is varied in the phase 

space reconstruction technique of delays [4]. 
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Fig. 6 Projection of the period-two limit cycle on the 

VC3 – VC2 plane. Capacitor C1 is set to 0.55 nF.
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Fig. 7 Projection of the period-four limit cycle on the 

VC3 – VC2 plane. Capacitor C1 equals 0.59 nF.
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Fig. 8 Projection of the chaotic attractor on the VC3 – VC2

plane. The value of capacitor C1 is 0.6 nF.

It is worthy to note that for each value of the time 

delay in Fig. 9 the largest Lyapunov exponent �1 is 

positive and the sum of �1, �2 and �3 is negative. At 

this point we are neither able to detect the period-

one limit-cycle nor other period-doubling 

bifurcations before the occurrence of chaos. Future 

work will aim at understanding whether or not this is 

a new route to chaos. 
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Fig. 9 Variation of the spectrum of Lyapunov exponents 

with respect to the time delay. 

IV. CONCLUSIONS 

The internal nonlinearity of log-domain filters is 

sometimes responsible for the occurrence of 

undesired externally-nonlinear behaviour. In this 

paper we apply a standard linear design technique to 

a differential third-order log-domain Chebychev LC 

ladder low-pass filter and we show the instability of 

the resulting circuit. In particular we detect limit-

cycle oscillations, period-doubling bifurcations and 

chaotic behaviour for special choices of capacitors. 

It is the first time a simple third-order log-domain 

filter is found to behave chaotically. 
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Abstract—In this paper we generalize the calculus
of the Power Density Spectrum (PDS) of a Constant-
Envelope Spread-Spectrum (CE-SS) signal obtained
by means of a frequency modulation (FM) using a ran-
dom Pulse Amplitude Modulated (PAM) signal as the
modulation law made by a generic pulse function. We
choose two possible profile of such pulses aiming to
approximate those generated by the analog circuit im-
plementing the chaotic map and we present both ana-
lytical and numerical results that show how the pulse
shape affect the PDS shape of the modulated signal.

I. INTRODUCTION

Spread-spectrum signal processing techniques are
encountering a growing interest as they pair or out-
class the performance of conventional approaches; for
instance, most of the next generation communica-
tion systems based on spread-spectrum schemes can
achieve both good robustness to noise and low co-
channel interference.

Furthermore, the ability to operate with low elec-
tromagnetic interference to narrowband neighbour
equipment is appealing in designing systems like DC-
DC converters, power actuators, clock-signals, etc.
Indeed, as the emitted energy is dangerous because
it is very concentrated in spectrum [1], some spread-
spectrum techniques were proposed to redistribute the
power over a wide frequency range [1] [2] [3] [4]. In
fact, as Federal Communication Commission (FCC)
regulations constrain peak power density spectrum of
all signals in the electronic equipment [5], the key idea
is to shape time-switching function to spread its power
density spectrum to reduce the corresponding peak
value, thus providing a more Electromagnetic Com-
pliant (EMC) equipment, without compromising the
proper operation of the circuit.

Among the several techniques proposed so far
which relies on this principle, in this paper, we deal
with Constant Envelope Spread-Spectrum (CE-SS)

signals constructed via frequency modulation, using a
random PAM waveform as the driving signal and we
propose a generalization of the mathematical tool pro-
vided in [11] for the PDS estimation, by generalizing
the frequency modulation law by means of a generic
pulse.

We then apply such analytical result in modelling
non-ideal behavior of circuit that produces the modu-
lation law sequence, aiming to determine the impact
on the PDS of such non-ideal pulses.

This study can be of interest for example in EMC
applications, where altering the modulation law may
result in a significant loss of performances (in terms
of PDS peak reduction). Although the pulse imper-
fection cannot be corrected or compensated in hard-
ware, knowing how such irregularities act on the PDS,
should lead to a different choice of the modulation
parameters aiming at restore the performances of the
ideal modulation scheme.

In section II we present a mathematical tool to deal
with the PDS of signal generated via the frequency
modulation of random sequences forming the modu-
lation law by means of a generic pulse. This is an ex-
tension of the mathematical results provided in [11].

In section III we apply the analytical result using
an approximation of the PAM pulse by means of sim-
ple functions. We approximate two usual behavior of
such a pulse in real applications and we estimate the
PDS of a particular spread spectrum FM waveform
which shows high EMC performances when an ideal
PAM driving signals is used [6]. We then compare the
analytical results with those obtained by simulation
and derive some conclusions.

II. POWER DENSITY SPECTRUM

GENERALIZATION

Let us consider a frequency modulated (FM) sinu-
soidal carrier s(t) which is formally described as:

s(t) = cos
[
2π

(
f0t + ∆f

∫ t

−∞

ξ(τ)dτ

)]
(1)
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Fig. 1. Modulation scheme.

where f0 is the carrier frequency, ∆f is the frequency
deviation and ξ(t) is the modulation law. In the fol-
lowing, we shall indicate the PDS of s(t) as Φss(f).
In our discussion we follow [10][11] and we assume
that the structure of ξ(t) is defined on a sequence of
discrete-time symbols {xk} as sketched in figure 1.

More formally we have ξ(t) =
∑

∞

k=−∞
xkg(t −

kT ), where T is the symbol update period and g(·) is a
generic function that can assume non-null values only
in ]0, T ]. Notice that is possible that |g(t)| > 1 thus
violating the ∆f constraint for the frequency modula-
tion. However, we restrict ourselves to functions that
represent a good approximations of feasible non-ideal
behaviors of the analog circuit that produces ξ(t).

To better express the modulation characteristics
let us introduce a modulation index m = ∆fT
and consider the low pass equivalent s̃(t) =
ei[2π∆f

∫ t

−∞
ξ(τ)dτ ] of the signal s(t).

If we assume that the symbols {xk} are generated
by an ergodic process, then s̃(t) is cyclo-stationary
[7][8] and Power Density Spectrum Φss(f) of the sig-
nal s(t) is well defined. The relation among Φss(f)
and Φs̃s̃(f) is given by[7]:

Φss(f) =
1
2
[Φs̃s̃(f − f0) + Φs̃s̃(−f − f0)]

which, considering only positive frequencies, can be
approximated by

Φss(f) ≈ Φs̃s̃(f − f0)

From the PDS definition:

Φs̃s̃(f) = lim
M→∞

1
2MT

E
[
|S̃M (f)|2

]
(2)

where

S̃M (f) =
∫ MT

0

s̃(τ)e−i2πfτdτ

and E[·] indicates the expectation with respect to the
process generating the modulating sequence.

By defining

σ̃n(f) = e−i2πfnT

∫ T

0
s̃(ξ + nT )e−i2πfξdξ

we can write S̃M (f) =
∑M−1

n=0 σ̃n(f), and so we ob-
tain[9]:

|S̃M (f)|2 =
M−1∑
k=0

M−k−1∑
n=0

σ̃n+k(f)σ̃∗

n(f) = (3)

=
M−1∑
n=0

σ̃n(f)σ̃∗

n(f) + 2Re

{
M−1∑
k=1

M−k−1∑
n=0

σ̃n+k(f)σ̃∗

n(f)

}

where ·∗ denotes complex conjugation operation.
With this, (2) can be written as

Φs̃s̃(f) = K1(f) + 2Re{K2(f)} (4)

By defining

H(xn, f) =
∫ T

0
ei2π∆fxnG(ξ)e−i2πfξdξ (5)

where

G(ξ) =
∫ ξ

0
g(τ)dτ (6)

we have

σ̃n(f)σ̃∗

n(f) = |H(xn, f)|2

From now on, we assume the {xk} as a sequence
generated by a process of independent random sym-
bols; taking the expectation of the first term of (3) we
can write:

K1(f) =
1

2T
Ex[|H(x, f)|2] (7)

With the assumption of independence of the sym-
bols we can write, for k > 0:

Ex

[
σ̃n(f)σ̃∗

n+k(f)
]

= Ex

[
e−i2π(fT−∆fGx)

]k−1

·

·Ex

[
e−i2π(fT−∆fGx)H∗(xn, f)

]
Ex [H(xn, f)] (8)

where G = G(T). Thus, if (fT − ∆fGx) �= 0 and
assuming

∣∣E [e−i2π(fT−∆fGx)
]∣∣ < 1 we easily get

K2(f) =
Ex

[
e−i2π(fT−∆fGx)H∗(x, f)

]
Ex [H(x, f)]

2T (1 − Ex[e−i2π(fT−∆fGx)])
(9)

Notice that by replacing g(t) with a function which
is 1 in ]0, T ] and 0 elsewhere in (5)-(9), (4) reduces to
the formulas (9)-(10) in [11].
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III. PDS ESTIMATION

Evaluation of equations (4) (7) and (9) for a generic
function g(t) could be a hard task. We then approxi-
mate g(t) by means of N simple functions of ampli-
tude an, such as g(t) =

∑N−1
n=0 anχ(t− n∆T ) where

∆T = T/N and χ(·) is 1 in ]0, ∆T ] and 0 elsewhere.
Furthermore, we consider a binary process for {xk}
such as we constrain the sequence xk to assume only
two values with the same probability (Binary modu-
lation) (i.e. xk ∈ {−1, +1}). For such modulation
the value of the index modulation that gives the lower
PDS peak is m ∼= 0.318 [6], which is one of the lowest
achievable by FM modulation schemes when dealing
with sinusoidal carriers [6].

With this assumption, equation (7) and (9) can be
calculate as follow:

K1(f) =
∆T 2

2T

N∑
l= 1

N∑
h= 1

e
−i2πf T(l−h)

1∑
p= 0

Al,p(f)Ah,p(f)

(10)

K2(f) =
∆T 2B(f)

4T

N∑
l=1

N∑
h=1

e−i2πf∆T (l−h) ·

·
1∑

p=0

1∑
q=0

Al,p(f)Ah,q(f) (11)

where

Ak,r(f) = e(−1)riπ∆f∆T (2
∑k−1

j= 1 aj+ak) ·
·sinc(π∆T (f + (−1)r+1ak∆f)) (12)

B(f) =
1

ei2πfT − cos(2πG∆f∆T )
(13)

and sinc(x) = sin(x)/x, G = ∆T
∑N−1

j=0 aj .
In this simple case, we can evaluate the spectrum

even when
∣∣E [e−i2π(fT−∆fGx)

]∣∣ = 1. For this pur-
pose, we are interested in the behavior of the power
series

R(f) =
+∞∑
k=1

e−i2πfkT cosk(2π∆f G) (14)

It is clear that, when the condition cos(2π∆fG) <
1 holds, (14) may be written in the close form

R(f) =
1

ei2πfT + cos(2π∆fG)
(15)

On the other hand, when cos(2π∆fG) = 1, the
series R(f) fails to converge in the space of the con-
tinuous functions over the real axis. So, a different

kind of convergence has to be considered. First of all,
it is convenient to split real and imaginary part of (14)
according to Euler formula. We obtain

R(f) =
+∞∑
k=1

{cos(2πfkT ) + i sin(2πfkT )} (16)

We separately consider the real and the imaginary
part. For the real part, notice that

1 + 2
+∞∑
k=1

cos(2πfkT ) =
∞∑

k=−∞

ei2πkfT =

=
1
T

∞∑
k=−∞

δ

(
f − k

T

)
(17)

where δ (·) is the Dirac Delta distribution. With this,
we obtain

+∞∑
k=1

cos(2πfkT ) =
1
2

{
−1 +

1
T

∞∑
k=−∞

δ

(
f − k

T

)}
(18)

For the imaginary part, we consider the series

+∞∑
k=1

sin(2πfkT ) = cot(πfT ) (19)

where the equality can be verified taking the Fourier
series of cot(·) function.

So, in this case, equation (11) holds with B(f) =
B̂(f) where

B̂(f) =

({
−

1

2
+

1

2T

∞∑
k= −∞

δ

(
f −

k

T

)}
+ i cot(πfT )

)

To study the impact on the PDS of a modulation law
ξ(t) constructed by means of a non ideal pulse behav-
ior, we consider g(t) to be the step-response of a sys-
tem with one or two poles. For the two-poles system,
we here consider a conceivable underdamped second-
order response with damping coefficient of ζ = 0.2.
Poles of both one-pole and two-poles systems has the
same real part for comparison purposes. We assume
these systems to be a good approximation of non-
ideality in real modulation systems.

The approximation by means of simple functions
of the two step-response are shown in figure 2, where
N = 40. If the modulation law ξ(t) is made by means
of this pulses, equations (4), (10), (11) and (12) per-
mit to compute the analytical PDS on both cases as
shown in figure 3. Exploiting normalization, these re-
sults matches those obtained via simulations (shown
in figure 4).
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The PDS obtained with a 2nd order step-response
pulse has almost no difference from the one obtain
with an ideal unity pulse, while the spectrum achieved
with a 1st order step-response pulse present a differ-
ent profile with consequent greater power peak. Al-
though this slightly loss of performance for example
in the EMC environment, can be reduced by increas-
ing the value of the modulation index m, this result
shows that the profile of the pulse g(t) might have a
non negligible impact on the PDS and should be taken
in account while designing the modulation system.

IV. CONCLUSIONS

In this paper we have generalized the calculation of
the PDS of a frequency modulated carrier presented
in [11], by considering a generic pulse by which to
construct the modulation law. Although the analytical
solution of equations (4) (7) and (9) is not easy to de-
rive for a generic pulse function g(t), we can obtain
a mathematical expression for the PDS by consider-
ing an approximation by means of simple functions
of the pulse itself. We showed that the impact of the
non-ideality of g(t) should be consider in the design
phase since the impact of the pulse shape on the PDS
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Fig. 4. PDS of the signal modulated by means of non-ideal
pulses via simulations ( f0 = 250kHz, ∆f = 20kHz,
m = 0.318).

could be compensated by acting on the others degrees
of freedom of the system, such as the modulation in-
dex m or the statistics of the symbols {xk}[11].
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Abstract—This paper is principally concerned with 

the effect of splitting and permuting the branches of 

a fully stretching piecewise linear map, with 

particular regard to the effect on the autocorrelation 

of the associated chaotic sequence. The 

autocorrelation function is shown to be a chaotic 

function of the shift parameter of the map.  The 

implication is that slight variations in this parameter 

lead to very different statistical dependency 

properties of the map, maybe of considerable 

practical importance.  This sensitivity is 

conceptually distinct from the well known sensitivity 

concerned with initial conditions and traditionally a 

signature of chaos.  The present notion is one of 

parameter sensitivity, being termed here parameter 

chaos and apparently not explored previously and 

indeed is not evident with many types of parameters.  

This suggests speculatively that the sensitivity is 

associated with the shift operation and the slopes of 

the map’s branches being preserved.  The paper 

presents both analytical and computational studies 

of the phenomena.  

I. AIMS AND BASIS

We explore a class of maps which is produced by 

a special type of permutation and division 

transformation of piece-wise linear fully stretching 

chaotic maps; the class of maps produced is itself 

piece-wise linear but not fully stretching.  We 

explore the chaotic structure and the statistical 

properties of the new class, both generally and 

through exemplification with well-known maps.  A 

key feature revealed is that the autocorrelation 

function is extremely sensitive to a parameter 

involved in the division process and this new effect 

thereby suggests a notion of parameter chaos which 

is explored in the paper, both analytically and 

computationally.   

The paper draws on  two works [4,5].   

Consider the class  of fully stretching 1-

dimensional m-branch piece-wise linear maps 

: X X  given by 

( ) ,i i i ix x a x b x C   (1) 

where 1, , 1, 2,...,i i iC c c i m  is a mutually 

exclusive and exhaustive partition of the interval 

0 1, 1mX c c  into m sub-intervals.  Each 

element of the partition is mapped by  on to X.

This class of maps is illustrated in Figure 1.  In 

Section 2 they will be transformed by a permutation 

and division operation to be described. 

Figure 1  Illustration of a 4-branch piecewise linear fully 

stretching map 

The natural invariant probability density function 

( )Xf x of the map x  follows from the standard 

Perron–Frobenius equation in the form  

1 1

1

( ) { ( )} | ( ) |
m

X X i i

i

f x f x x    (2) 
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where the pre-image functions of x  are denoted 

as
1( )i x  with derivative function 

1 ( )i x ; they 

satisfy the equation 
1( )i x x .  Since 

1 1( ) ( )/ ,| ( ) | 1/| |i i i i ix x b a x a , and 

hence that the uniform distribution over ( 1, 1) is

the required solution. 

The Lyapunov exponent of a map, measuring its 

chaotic divergence behaviour, is given by  

ln | ( ) |E X               (3) 

and for the class  of maps is given by  

1
1

1

1
0 ( ) ln

2 2

m
i i

i i

i

c c
c c . (4) 

From this it may be seen how the number and 

positions of the branches affect the chaotic 

behaviour of the map and that  is upper bounded 

by ln( )m  which occurs for equi-spaced branches. 

The autocorrelation function of fully stretching 

piece-wise linear maps, as given by [1,2] is

1
n

C n C ,
1

1
1

m

i i i

C
a a

.  (5) 

One focus of the present paper is the effect of 

permuting and splitting the branches of such maps 

and its effect on the autocorrelation function (5). 

II. A DIVISION AND PERMUTATION TRANSFORMA-

TION CLASS OF MAPS

Imagine the class  of maps in m strips accord-

ing to its branches defined by the inter-

vals 1 2, ,..., mC C C .  Now imagine that the ith branch 

is further sub-divided into ( 1)in  vertical strips at 

the arbitrary ordered points 

1 2 ... , 1, 2,..,
ii i inc c c i m  creating the inter-

vals 1 2, ,..., , 1, 2,..,
ii i inC C C i m .  Thus the new 

map can be thought of as having 1 ... mn n n

sub-branches over the intervals

1 21 1 21 2 1,..., , ,..., ,......, ,...,
mi n n m mnC C C C C C .  (6) 

The new class of maps K , called the split-

shift class, consists of those maps formed by permut-

ing the locations of the n  sub-branches of (6) and so 

gives a piece-wise linear but not fully stretching map 

of n  branches.  It is clear that there can be 2 !n n
such maps since each branch can have positive or 

negative slope and there are !n  permutations.  A 

smaller class of maps, 1K , is produced when all 

1in  and hence the original branches are permuted 

undivided; this class has 2 !m m  members.  Important 

mathematical aspects of these maps are the simple 

forms of their invariant distributions and Lyapunov 

exponents.  The class is illustrated in Figure 2 by 

permutation and division applied to the map in Fig-

ure 1. 

Figure 2  A map from the K -class

Invariant Distribution of the K -Class. After

permutation, the value of the slope of the ijC th

branch remains the same but its intercept depends on 

its position.  This implies via the argument after (2) 

which does not depend on intercept terms, that the 

uniform distribution over ( 1, 1) is still the 

invariant distribution, essentially from a permutation 

of the terms in this equation with m n .

Lyapunov Exponent of the K -Class. From

the result (3), it is first clear that for members of the 

-class which involve only permutation of the 

original branches, the Lyapunov exponent remains 

the same.  However, this is actually true for the 

division members as well since the lengths of 

intervals associated with given constant slope values 

do not change, only their locations, and so the 

Lyapunov integral expression remains constant.  

Statistical Dependency of the K -Class. 

Statistical dependency behaviour is not maintained 

between corresponding maps in the class when 

splitting is involved.  However, for permutation 

only, the result (5) indicates that the class 1K

does maintain autocorrelation.

It can be also shown that an arbitrary piece-wise 

linear map with an invariant measure is 

topologically conjugated with a map from an 

N  D  E  S        2  0  0  4

84



extended class K( ).  This extended class is 

structured as a chain of square bricks lying on a 

diagonal from left top to right bottom, each of them 

containing a map from K( ).

A. Sub-class of the Split-Shift Class of Maps 

 A particular sub-class SK  of K  is 

obtained by splitting only the last branch of  into 

two at a point 1(0 1 )mc  from its end and 

then permuting the second half-branch to be the first 

branch of the new map;  is called the shift 

parameter in this case, and SK  will be called 

the split-shift class.  An illustration is given by 

Figure 3 for a Bernoulli map where 0.75 .  In 

general, the branch boundaries for the split-shift 

class are thus at the points 0 0 1 0, , ...,q c q c

1 1,m m m mq c q c                

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 3 The split-shift Bernoulli map 

which define intervals 1, , 1,..., 1i i iQ q q i m .

The corresponding map slopes over these intervals 

are 1 1( , ,..., , )m m ma a a a  where 0 1( , ,..., )ma a a are 

defined in terms of 0 1, ,..., mc c c .

 The split-shift maps of the class SK  thus take 

the form 

1 1

1

( 2)m

i i i

x x x Q
x

x x x Q
  (7) 

Maps in this class have the property 

1 1  which follows form the division of 

the last interval of a map in class  and its shift to 

be the first interval. 

Maps in class SK  have the same invariant 

distribution as those in  and the same Lyapunov 

exponent as the maps in .

Maps in SK  are also ergodic except when 

 is the tent or skew tent map [1]. 

The difference in capacities of the introduced 

classes is in the order SK K .

II. AUTOCORRELATION OF THE SPLIT-SHIFT CLASS

OF MAPS

Considering a general ergodic map  over X

with  uniform invariant distribution of mean zero 

and variance 
2

, a general expression for its 

autocorrelation at lag n  given by 

          
1

2 1

1
( )

2

n

y
C n y y dy      (8) 

where
n

 is the n-fold convolution of the map 

function ,
2 1 3/  and 0 1C .

The integral (8) can be evaluated analytically by 

sub-dividing its range over each branch of the map 

and applying the pre-image transformation 
1( )iy z  appropriate to each branch.  This is 

effectively a Perron -Frobenius operation, as set out 

in [3] for the calculation of dependency.   

The resulting expression can be written in simply 

structured form 

12

1
1 1 ,n

m

C n C C n I
a

      (9) 

where 1C  has been defined at (5) and 

1 0 1 mq a ,

1

1 2
1

2 1

2

1

1

1

1
, 2,..., 1.

n

n n

m

n

m

n i

i

I z dz I
a

I Q
a

I Q i m
a

   (10) 

The initial function 0I  enabling (10) to be 

solved explicitly is 

2

0

1
1

2
I .

The important implications of (9)-(10) will be 

developed in the rest of the paper, focussing on the 

sensitivity which it implies of the split-shift map's 

autocorrelation function to the value of its shift-

parameter .  Note, however, if  was a fixed 

point of the map ( ) , as it is in the tent map case of 

, there would be no sensitivity, except perhaps 

computational. 
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A. Autocorrelation of the Split-Shift Bernoulli Map  

To exemplify the sensitivity result, the Bernoulli 

map is taken as the initial map in class  as was 

illustrated in Figure 3 for 0.75 .  Then the first n

iterations of (9)-(10) lead to the explicit result for the 

autocorrelation function of the split-shift Bernoulli 

map

1 2

, 1

1

2 1 , 1,2,...
n

n

n j j

j

C n d n   (11) 

where ,1 1id , ,2

3

0
i

i odd
d

i even
;

1, 1 , , 1, 6, 2i j i j i jd d d i j ;

1 1( ), 1, 2,..., 1,j j j n .   (12) 

Two illustrations of this autocorrelation function 

are displayed in Figure 4. 

2 4 6 8 10

n

-0.2

-0.1

0.1

0.2

C_gamma n

Figure 4  The autocorrelation function of the split-shift 

Bernoulli map illustrated by the two cases of the shift 

parameter  =1/3 and =1/3+0.001 

To appreciate the chaotic nature of the 

autocorrelations, first note from (12) that the 

sequence of iterations 1 2, ,...  evolves via the 

chaotic Bernoulli split-shift map function itself.  

More over it starts with 1 1 2  which is 

linearly related to the map’s shift parameter  and 

must therefore be extremely sensitive to .  This is 

not quite the usual meaning of sensitive dependence 

on initial value because the map parameter itself is 

involved and not fixed.  A consequent chaotic aspect 

of the autocorrelations follows from the equations 

(11) showing that C n  depends on the chaotic 

sequence 1 2, ,..., n , 1, 2,...n .  Thus, the 

sense in which the autocorrelations are chaotic is 

that they are extremely sensitive to the value of the 

map parameter , as tentatively illustrated in Figure 

4.  This will be termed parameter chaos.  There are 

possible serious implications to computational 

robustness here, particularly in engineering 

applications of chaos.  The actual chaotic process of 

, 1, 2,...C n n  is too high dimensional to 

specify autonomously, but a useful basic description 

in relation to  is given by their individual and 

stationary marginal density functions: in a sense, this 

is parallel to the uniform invariant distribution for 

the sequence 1 2, ,... . We show [4,5] that there 

is fast convergence as n  becomes large of the 

distribution of C n  to Gaussian form, although it 

should be noted that it is not an invariant distribution 

of C n  in the usual sense.

III. CONCLUSIONS

The paper has identified and explored the notion 

of parameter chaos, where by an important 

dynamical or statistical aspect of a map is very 

sensitive to the value taken by a parameter.  

Although it seems plausible that the effect arises 

from the shift operation on the branches, 

investigation of the generality of the effect is 

currently being continued.  What is known is that for 

most piecewise linear and not necessarily fully 

stretching maps, the autocorrelation function varies 

smoothly with parameters.  When it does not, as 

here, there will be computational lack of robustness 

with possibly unwelcome effects in applications.  

This makes the topic an important one to peruse 

further.
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Abstract—Oscillations under constant external 

influence in high-pass and low-pass filters are 

considered. Numbers represent using the fixed point 

arithmetic and additional code. The method of one-

dimensional point mapping is applied. Dynamic 

modes are characterized by probability diagrams. 

Expressions for the most probable oscillations on 

the filters output are received at any quantity of 

quantization levels. 

I. INTRODUCTION

Basic difference of the digital filters from analog 

one’s is limited accuracy of performance the 

arithmetic operations and set of filter’s parameters 

caused by the limited number of used bits. Therefore 

digital oscillatory system generally is essentially 

nonlinear, and have the undesirable phenomena 

named quantization effects [1]. At enough quantity 

of bits these effects are insignificant and for the 

analysis of their influence the linear model of system 

behaviour  is used. If the amount of bits is not 

enough (it is necessary for increase the 

computational speed), and also under constant or 

sine influence sampled with frequency, divisible the 

frequency of a sinusoid, the linear model is 

inapplicable [2-4]. In work [5] the effects of 

quantization in the digital first order recursive filter 

with the rounding off the results of addition and 

representation of numbers in a direct code are 

investigated.

Let's consider oscillations under constant external 

influence A in digital high-pass and low-pass filters 

realized at the basis of recursive first order circuits at 

any quantity of bits, i.e. levels of quantization L, in 

representation of addition results. We assume that 

numbers represent with fixed point, the filter 

parameter a is given without an error, quantization is 

performed with magnitude truncation, variables are 

represented in the form of numbers with justification 

to the right (as integer numbers), and the adder has 

the transfer characteristic with saturation (without 

regard for quantization effects). 

Magnitude truncation is realized for the binary 

numbers represented in an additional code. Thus the 

quantity of quantization levels – is the even number, 

and the adder characteristic in the case of saturation 

is expressed by function 

,

,0][

,

,0][

)(
11

1

NbyN

NbyNN

NbyN

Nby

f

where [ ]  - the integer part of number, N1=N-1,

N=L/2.. In the case 0  segments of the 

characteristics corresponding to values ][ , we will 

designate 0, I, II,…, N1, and for 0  the segments 

designated -I,-II,…,-N, correspond to values 

NN ][ . 

Oscillations in the filters under investigation are 

described by the difference equation 

x(n+1)=f(ax(n)+A).

Because using of integer arithmetic the step of 

quantization is equal to unit, A - integer. 

Let us introduce the function y(n)=x(n+1). 

Processes will be considered on the plane of states 

(x, y)  by the point mapping technique [6]. In this 

case, the first return function takes the form 

y=f(ax+A).

We have in view, that because of quantization in 

system of the first order are probable L conditions. 

Generally depending on an initial condition x(0) in 

system the various established movements are 

possible. Because all L probable initial conditions 

are independent, equiprobable, let’s determine 

concept of probability P of established movement B

as ratio P(B)=m/L, where m – the quantity of the 

initial conditions corresponding to this movement. 
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The parameter of the filter a gets out from the 

field of stability without taking into account effects 

of quantization, i.e. 0 <|a | <1.

As well as in [5], let’s break the plane of 

conditions into the areas according to segments of 

the adder characteristic. We will designate these 

regions, as well as corresponding segments. The 

border of areas ][ , 1][   is expressed by 

dependence aAx /)1]([ . The border belongs 

to area 1][ .

II. OSCILLATIONS UNDER CONSTANT INFLUENCE

At the presence of constant external influence A,

the plot of the first return function intersects the 

ordinate axis at the point y=A; in this case, A .

Let’s consider the case A>0.

Let a>0. At A=1 for all values 0< a <1 for border 

of areas I, II we have x > 1, therefore the least values 

of abscissa point of crossing the first return function 

and bisectrix always equally 1 and the most probable 

established is movement with period T=1 and 

amplitude X=1. Below it is designated T=1(1). We 

will consider case A=2. Lamere diagram for L=12,

a=7/11 is shown on Fig. 1a. Here, the first return 

function intersects the bisectrix at }5,4,3{x .

Hence, at start from the points ]3;6[][x

oscillation T=1(3) is established. Therefore the 

probability of this oscillation is equal 10/12. Below 

it is designated P(3)=10/12. At start from the points 

}5,4{x  we have accordingly movements T=1(4),

T=1(5) with probabilities P(4)=P(5)=1/12

accordingly. Consideration of movements at 

)1,0(a  allow us to construct bifurcation and 

probability diagrams. Last is shown on Fig. 2a. 

The investigation of oscillations for a number of 

values L and A makes it possible to ascertain the 

following relationships for the most probable values 

of x=X. At A=1 on the filter’s output always we 

have T=1(1). If external influence satisfies to a 

condition 1<A<N1 in the low-pass filter the most 

probable movement T=1(X) where A X<N1 is 

established if on Lamere diagram points X and X-1

belong to the areas X. It means the performance of a 

condition

1)1(1 XAXaXXAaXX ,

therefore

XAXaXAX /)1()1/()( .

In the case X=N1 it is necessary, that the point

x=N1-1 on Lamere diagram belonged to area N1.

 Using stable condition we receive 

1> )1/()( 11 NANa ,

Notice, that thus movement T=1(N1) is unique. At

A=N1, )1,0(a  the filter’s output we have unique 

established oscillation T=1(N1).

0 2

2

4

-4

-2

-2

-II -I I II III

x

y

0

-6

4

IV V

a) 

IIIIIIIV

x

y

V

-4 -2-6 0 2 4

2

4

b)

Fig. 1. Lamere diagrams for L=12 

a) low-pass filter A=2, a=7/11;

b) high-pass filter A=4, a=-4/7.

The received laws allow us to find dependence

X(a) for any L and A.

Let a<0. At A=1 for all values L and -1<a <0 plot 

of first return function is not crossed with the 

bisectrix, points x=0 and x=1 on Lamere diagram 

belong according to areas I and 0, in the filter there 

are only parasitic oscillations with period T=2 and 

instant values }1;0{x . Below it is designated

T=2(1/0). At A>1 picture varies. Let’s consider case

A=4. As an example on Fig. 1b Lamere diagram for

L=12, a =-4/7 is shown. Here the plot of the first 

return function is crossed with the bisectrix in a 

unique point at x=2. It means, that at start from the 

points ]5;6[][x  in the filter oscillations T=1(2)
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are established. At other values of parameter a there 

can be movement T=1(3), and also parasitic 

oscillations with period T=2 and various instant 

values. Consideration of movements at )0;1(a

allow us to construct bifurcation and probability 

diagrams. Last is shown on Fig. 2b. 

0
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2(4/0)

2(3/1)
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Fig. 2. Probability diagrams for L=12

a) low-pass filter A=2;

b) high-pass filter A=4.

The investigation of oscillations for a number of 

values L and A>1 makes it possible to ascertain the 

following relationships for the most probable values 

of X. Generally for any 1<A N1 on the high-pass 

filter’s output we have T=1(X), where 1<X<A if on 

Lamere diagram point X and X-1 or points X and

X+1 belong to area X. It means the performance of 

the condition 

1)1(1 XAXaXXAaXX

or

1)1(1 XAXaXXAaXX .

Therefore

)1/()1(/)( XAXaXAX   (1) 

or

XAXaXAX /)1()1/()( .  (2) 

In the same range of values A on the filter’s 

output we have T=1(1) if (2) is carried out. In 

comparison to another with determined (1), (2) areas 

of parameter a<0 there correspond the most probable 

parasitic oscillations with period T=2.

The received laws allow us to establish 

dependence X(a) for any L and A.

Let's consider the case A<0. Using the technique 

described above, we receive the following laws for 

the most probable established oscillations for any L

and A.

At a>0, -N+1<A<0 on the filter’s output we have 

oscillation T=1(X), where -N<X<A if on Lamere 

diagram  point X and X+1 belongs to the area X . It 

means the performance of the condition 

1)1(1 XAXaXXAaXX ,

therefore

XAXaXAX /)()1/()1( .

In the same range of values A in the case X=-N it 

is necessary, that point X+1 belonged to the area –N.

Using stable condition we receive 

)1/()1( NANa ,

At }1,{ NNA  we have unique established 

movement T=1(-N).
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If a<0, A=-1 on the filter’s output there is always 

unique oscillation T=1(-1) since on a plane of 

conditions for border of areas -I, 0 we have x<-1 and 

a unique point of crossing of the first return function 

and corresponds bisectrix x=-1. For -N A<-1 in the 

high-pass filter we have the most probable 

established oscillation T=1(X), where A X<-1 if on 

Lamere diagram point X and X-1 or points X and 

X+1 belong to the area X. Resulting ratio turn out 

from (1), (2) by only replacement of signs  and <on 

  and > accordingly. 

Theoretical results were verified by computer 

simulation. The obtained relationships can be easily 

extended to cover the case where variables are 

represented in the form of numbers with justification 

to the left (that is, in the form of fractional numbers). 

To do this, it is sufficient to introduce another 

variable xqx , where q=1/N is the quantization 

step.

III. CONCLUSIONS

The digital high-pass and low-pass filters realized 

on the basis of the first order recursive circuit with 

any quantity of quantization levels with amplitude 

truncation of addition results when the adder without 

taking into account effects of quantization has the 

characteristic with saturation are considered. For the 

characteristic of nonlinear dynamic modes 

probability diagrams are offered. By the method of 

dot mapping oscillations under constant external 

influence of two signs are investigated. Expressions 

for calculations of the most probable established 

modes are received. The results may be used in 

creating the information transmission systems with 

digital processing of signals. 
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Abstract - The purpose of this study is to define 

a suitable strategy that, based on supervised 

clustering, allows developing system to forecast 

the market demand of products of a worldwide 

semiconductor firm, STMicroelectronics. In 

particular market demand is related to 

semiconductor devices belonging to Discrete and 

Standard Group that covers a wide product 

portfolio. To face the complexity due to identify 

each product, the modelling strategy has been

based on the results of a clustering phase. The 

clustering approach allows to group the time 

series carrying on the same qualitative 

information;, therefore the modelling phase has 

been performed on classes and not series by series 

The final target is to have a single model that can 

be representative for all the elements of a class. 

I. INTRODUCTION

The aim of this study is to develop a strategy to 

cluster and to model the market demand of 

semiconductor devices [3]. 

The case study is related to the Discrete and 

Standard Product Group (DSG) of the 

semiconductor firm STMicroelectronics. The 

group is managed trough 15 product families that 

cover a wide product portfolio of about 12.000 

products; sales are spread world wide on different 

sales channel. 

The considered data set has been described in 

details in Section II. 

The purpose is to develop an effective 

methodology to reduce the complexity inner the 

system and to overcome problems arising from 

the limited number of available points. In this case 

the demand forecasting is not a pure mathematical 

exercise because it is strictly related with the 

economic projection of the problem. For those 

reasons the strategy has been carried on trough 

two phases: the clustering phase and the 

modelling one. 

The clustering phase is described in Section III 

and is based on a Multivariate Analysis that 

allowed to group the time series with similar 

qualitative information like yearly growth 

evolution, same cyclic behaviour, stochastic or 

deterministic nature. The multivariate analysis is 

based on the composed study of the variables by 

moving from statistical analysis to signal analysis. 

In Section IV the modelling phase, driven by the 

results obtained in the clustering phase, is 

reported; the modelling approach is developed by 

looking at the class as a whole unit all through its 

representative element, and not to each element, 

and then the identified model is applied to all the 

class elements. 

The modelling phase has been carried on trough 

nonlinear NARMA models. 

II. DATA SET

Data analysis is related to the Booking Orders for 

the product families belonging to the DSG group 

in the period from January 1991 to November 

2002; data has been sampled with a monthly 

frequency; therefore the number of points 

available is 132. The Booking has been 

considered in terms of Book Value: customer’s 

orders quantity of dollars registered in the 

observation month. 

The 15 product families that, here, have been 

indicated with the prefixes from T1 to T15 

manage the products of DSG group; moreover the 

prefix T16 is referred to the variable that 

represents the evolution of the orders for the DSG 

group.

III CLUSTERING STRATEGY BASED ON 

MULTIVARIATE ANALYSIS

This clustering strategy has been based on a 

supervised multivariate analysis. In order to 

highlight different aspects of information, the data 

set has been processed by using different 

techniques. The process flow consists of two main 

steps. In the first the step multivariate analysis has 
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been structured by choosing different 

mathematical techniques, which have allowed to 

underling particular characteristic of the Book 

trends. In the second step, all the characteristics 

that have been extracted from each variable have 

been compared to each other in order to create a 

classification. The mathematical methods that 

have been applied are related to both the statistical 

analysis and the signal processing analysis. 

A Statistical Analysis 

The statistical analysis has been performed in 

order to characterize the evolution of market 

demand by looking for criteria to evaluate the 

quantitative growth of the market demand. The 

parameters that have been computed are the 

average, the variance, and the ratio variance over 

average.

As the variables reflect the life of products, the 

characterization of a family by an average value 

evaluated during all its lifetime can not give a 

satisfying information, therefore statistics have 

not been computed on the total life time of 

product families but with different time windows: 

three, six and twelve months. For each product 

family and for each analysis three curves have 

been built. 

The complete analysis, therefore, have brought to 

a characterization of this average trends, variance

trends and variance versus average ratio trends

computed by quarters, half years and years. 

All these time windows selected are particularly 

relevant from an economic point of view. 

To realize the classification the adopted criteria 

have based on range variation of all the obtained 

curves, for each single type of analysis. 

Following, for each analysis, the economic 

meaning and the criteria selected to build classes 

are reported. 

The Average Trends allows to remark how the 

average volume is evolving by compressing the 

time in fixed window of three, six and twelve 

months. It has been possible to highlight how the 

average trend is always growing as group reach 

more and more business volume. 

The Variance Trends characterize how the signal 

changes versus the average. The trend is related, 

in this case, to the considered window. The last 

two years that have been characterized by a 

market contraction, show a greater variance. 

The Variance versus Average ratio Trends are a 

way to quantify the volatility of the signals as they 

measure how much the variance fluctuates around 

the average. It is possible to highlight that 

volatility seems to growth in relation with average 

growth especially for some product families. 

B Signal Analysis 

The signal analysis allows to track the qualitative 

information that time series bring. It is not 

expected the results have to be always the same. 

As already pointed out the time series reflect the 

evolution, in time, of the products market request 

to the company and it is a function of the complex 

dynamics among the firm, its environment and the 

market. The mathematical techniques that have 

been carried on are the correlation analysis, the 

frequency analysis and a test to evaluate the 

determinism of a time series, the Kaplan’s test. 

The time series have been pre-processed in order 

to filter spurious and exceptional events trough a 

moving average filter on 3 months. 

Measuring how much time series related to the 15 

P&L are correlated to the time series of the group 

DSG (T16) has performed the Correlation 

Analysis. The correlation degree with T16 has 

been analysed under two different points of view, 

one by taking in account the value of maxim 

amplitude of the correlation function and the other 

by considering the time window that allows to 

obtain this maximum. These two parameters, 

respectively, allow us to underline the trend 

similarity of two curves and at which time shift 

that occurs. To obtain the different classes the 

criteria adopted are related to the correlation 

degree; the threshold has been fixed at 0.5.

The aim of the Frequency Analysis is to find the 

characteristic periodicities in the series. The 

classes have been distinguished trough a set of 

base frequencies that have been selected in 

relation to the highest value of the power 

spectrum; the selected frequencies are 3, 12 and 

24 months. 

The Kaplan’s Test [5] is, particularly, suitable for 

short time series where exceptional events can 

occur. This test has been applied to investigate 

about the nature of the system represented by the 

time series. It allows to characterize if the nature 

of dynamics under consideration are more close to 

the deterministic or stochastic behaviour. Time 

series have been aggregated in function of the 

results of the test. 

C Clustering Results 

At this point, the obtained six sets of classes are 

based on criteria selected ad hoc for each analysis. 
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In this phase the results coming from each step 

have been compared in order to find a unique, 

most meaningful and complete set of classes. 

The global set of classes has been identified 

comparing the results coming both from statistical 

and signal analysis. Moreover the results have 

been compared in order to find the classes that are 

homogeneous in both analyses. 

In Table 1 the final set of four classes is reported, 

for each class the P&L that have been associated 

are indicated. As it can be noticed the P&L 

indicated T1, T4, T7, T8, T13 and T14 are not 

included because through the parameter selected 

not enough strong similarity with the other 

families has been found. 

In Figs 2-3, respectively, the class 1 and class 2 

are shown. It can be considered the qualitative 

similarity of the trend related to the booking for 

the product families T2 and T9 included in class 1 

and for product families T10 and T11 in class 2. 

Table 1: Global set of classes. 

Classes Time Series 

Class 1 T2 – T9 

Class 2 T5 – T6 

Class 3 T10 – T11 

Class 4 T12 – T3 

Fig.2: Class 1: T2 (blue) – T9 (green). 

VI. MODELING STRATEGY

The purpose of this phase of study is to answer the 

following question: “it is possible after grouping 

“homogeneous” elements in class, to model a 

class be considering the trend of only one element 

with satisfactory performance”.

Fig.3: Class 3: T10 (blue) – T11 (green). 

To face this task the modelling phase has been 

structured in the following steps: 

‚ to smooth peaks, the data have been 

normalized with 3 months moving 

average;
‚ inside the class, the booking of one 

element has been chosen as training 

pattern , meanwhile, the trend of the other 

one has been considered as test pattern;
‚ structure of the model selected is the 

NARMA model; 
‚ The choice of best model has been 

evaluated in relation with the minimum 

RSME on the test pattern. 

A Model Structure 

The models have been developed with nonlinear 

NARMA structure as follows: 

)-(),-(),-(()( 321 tytytyfty =

where f is a nonlinear function, three regression 

time samples are considered. 

NARMA models have been implemented by using 

MultiLayerPerceptron (MLP) paradigm; the main 

features of the adopted structure are the following: 
‚ the firing function of the neurons in 

hidden layers is sigmoid; 
‚ the firing function of the neuron in the 

input layer is linear; 
‚ the initial conditions for the weights and 

biases are random variables in the range 

[0.1, 0.9]; 
‚ the learning Delta Strategy is single step. 

The topology of the network consists of: 
‚ the number of input neurons are varying 

are three; 
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‚ the number of hidden neurons is chosen 

in the range [1:6]during the test phase in 

relation with the minimum value of the 

performance index selected; 
‚ the output neuron is one. 

B Modeling Results 

The results show, globally, the meaningfulness of 

the followed approach. For each class it has been 

proved that the clustering strategy could drive the 

modelling phase. Moreover the NARMA structure 

allows to obtain good tolerance of error. Table 2 

reports the error measured with RSME index both 

for the training and test phase. The value of the 

error is always below 8 * 10-3.

Classes RSME Train RSME Test 

   

Class 1 7.2 * 10-3 5.5 * 10-3

Class 2 3.6 * 10-3 5.9 * 10-3

Class 3  5.0 * 10-3 5.4 * 10-3

Class 4 3.0  * 10-3 7.7 * 10-3

Table 2: Class modelling, RSME in traning and test.

In Figs. 4-5 there are reported, respectively, the 

results obtained for Class 1 and Class 3. In Fig. 4 

the trend of the test pattern (T9) that has been 

evaluated by the selected model is plotted in green 

solid line, meanwhile the real value of the variable 

T9 are in blue solid line. The trend of the variable 

(T2) chosen as training pattern is reported in a red 

dot line. 

In Fig. 5 the trend of the test pattern (T11) that has 

been evaluated by the selected model is plotted in 

green solid line, meanwhile the real value of the 

variable T11 are in blue solid line. The trend of 

the variable (T10) chosen as training pattern is 

reported in a red dot line. 

It is, clearly visible how the variable obtained by 

the model follows the original one, nerveless the 

model has been built by using a different variable 

as training pattern. 

V CONLUSION

The DSG group is managed trough 15 product 

families that cover a wide product portfolio of 

about 12.000 products. To face with the inner 

complexity of this system the strategy that has 

been developed consists in two phase: the 

clustering phase and the modelling one. It has 

been proved that the clustering strategy could 

drive the modelling phase 

Fig. 4: Class 1 – Evaluated test pattern ( Blue ), tr aining 

pattern (T2) and test pattern (T9). 

Fig. 5: Class 3 – Evaluated test pattern ( Blue) 

training pattern (T10) and test pattern (T11). 

. The obtained results are really satisfactory both 

in terms of possibility to group the variables and 

in term of the possibility to create a unique model 

that is representative for all the elements of the 

class.

The long-term objective is to extend this strategy 

at products level, this will bring a great 

enhancement to the potentiality of this strategy. 
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Abstract—A hardware prototype of the novel 

two-stage Colpitts oscillator employing the 
microwave BFG520 transistors with the threshold 
frequency of 9 GHz is described. The circuit is 

investigated both numerically and experimentally. 
Typical phase portraits, positive Lyapunov exponent 

and broadband continuous power spectra confirm 
chaotic performance of the oscillator in the 
ultrahigh frequency range (300 to 000 MHz). The 

two-stage chaotic Colpitts oscillator exhibits better 
spectral characteristics compared to a classical 

single-stage Colpitts oscillator. The relative 
bandwidth is either 0.47 or 0.74 at the central 
frequency of about 500 MHz within the spectral 

unevenness of either 0 dB or 20 dB, respectively. 

I. INTRODUCTION

Chaos in the Colpitts oscillator was first reported 

at the kilohertz frequencies [1]. Later the circuit was 

investigated in the high frequency (HF: 3 to 30 

MHz) range [2,3]. Chaotic oscillations were 

demonstrated at the fundamental frequency 

f*=23 MHz using the 2N2222A [2] also at 

f*=26 MHz using the 2N3904 [3] bipolar junction 

transistors, both with approximately the same 

threshold frequency fT of 300 MHz. By means of the 

PSpice simulations chaos was predicted at 

f*=500 MHz using the microwave AT41486 type 

transistor with fT of 3 GHz [2] and at f*=1 GHz 

employing the BFG520 transistor with fT of 9 GHz 

[3,4]. However these results were not confirmed 

experimentally at that time. Very recently we 

demonstrated chaos in a hardware prototype at 

f*=450 MHz, f*=780 MHz, and f*=1060 MHz using 

the BFG520 microwave transistor [5]. Analysis 

shows that in a classical (single-transistor) Colpitts 

oscillator, chaotic oscillations can be generated up to 

approximately f*≈0.1fT [6], that is at f*≈900 MHz 

with the BFG520. Indeed, only weak chaos with 20 

to 30 dB height peaks at f* also at its sub-harmonic 

and higher harmonic components can be expected 

for f*=1000 MHz [3,4]. Moreover, the last minute 

PSpice simulations indicate that chaotic oscillations 

observed experimentally at f*=1060 MHz [5] are 

due to the parasitic elements, like wiring inductance 

and wiring loss resistance that can be important at 

the ultrahigh frequencies [7]. In the present work we 

recall to a two-stage Colpitts oscillator introduced 

several years ago and promising higher fundamental 

frequencies, up to f*≈0.3fT [3,4]. We describe an 

example of a hardware implementation of the 

modified oscillator and give experimental evidence 

of its chaotic performance in the ultrahigh frequency 

(UHF: 300 to 1000 MHz) range. 
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II. CIRCUITRY

Simplified circuit diagram of the two-stage 

Colpitts oscillator [3,4] is sketched in Fig. 1, 

meanwhile its specific hardware implementation 

is presented in Fig. 2. 

Fig. 1. Two-stage Colpitts oscillator 

V1
C0 C0

C0

C0

C0R

L

Q1
C1

R3

R1

R2

Q2

Re C2 R4 R5

Q3

C5

out
C4

C3

R0R0

V2

Fig. 2. Full circuit diagram of  

the two-stage Colpitts oscillator 

The Q1-Q2-based stages compose the intrinsic 

two-stage Colpitts oscillator while the Q3-based one 

is an emitter follower inserted to buffer the influence 

of the measuring devices. The resonance tank 

combines the loss resistor R, the inductor L, and 

three series capacitors C1, C2, C3. The C4 is a 

coupling capacitor. Small auxiliary capacitors of 300 

pF (not shown in the circuit diagram) are connected 

in parallel with the main blocking capacitors C0 to 

improve filtering at high frequencies. The bias 

emitter current I0 can be tuned by varying the 

voltage source V2.

III. PSCPICE SIMULATION RESULTS

In the hardware prototypes the circuit 

parameters were the following: R0=100 Ω,

R1=510 Ω, R2=3 kΩ, R3=5.1 kΩ, R4=3 kΩ,

R5=200 Ω, Re=1.5 kΩ, C0=47 nH, C2=C3=10 pF,

C4=1 pF, C5=270 pF (other parameters of the tank 

elements, namely R, L, and C1 depend on the chosen 

fundamental frequency f* and are given in the 

captions to Figs. 4,5). We note, that in a real circuit 

the total tank inductance L consists of: (1) the Lext

controlled by an external inductive element, (2) the 

parasitic inductance of the loss resistor LR, and (3) 

the parasitic inductance LC0 of the filter capacitor. 

Thus, L=Lext+LR+LC0. The two latter values are 

approximately 2 nH, each. The microwave 

transistors BFG520 discussed in the Introduction 

were employed in the circuit. The specific values of 

the supply voltages V1 and V2 were adjusted to 

achieve the desired chaotic performance of the 

oscillator. Simulations of the circuit in Fig. 2 were 

performed by means of the Electronics Workbench 

Professional simulator, based on the PSpice 

software. The Gummel-Poon model of the 

transistors was employed. Chaotic performance of 

the oscillator is observed in a sufficiently wide range 

of the control parameters and is illustrated in Fig. 3 

with a typical phase portrait. It was simulated using 

the following resonance tank and supply voltage 

values: R=47 Ω, L=16 nH, C1=2.4 pF, V1=10 V, 

V2=24 V. 

I
L

V
Q

Fig. 3. Typical chaotic phase portrait, current through the 

inductive element IL versus collector voltage VQ1
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IV. EQUATIONS, LYAPUNOV EXPONENTS

Dynamics of the two-stage oscillator in Fig. 1 is 

given by the following set of ordinary differential 

equations: 
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We note, that by omitting in (1) the third equation 

for VC3 and setting VC3 = 0 in the other equations one 

comes to the set describing the classical Colpitts 

oscillator. In eqn. (1) the forward current gain of the 

both transistors in the common base configuration is 

assumed for simplicity to be α = 1, that is the base 

currents are neglected. By introducing the following 

dimensionless state variables  
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eqns. (1) are transformed into the form convenient 

for numerical integration: 
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In eqns. (4) the constant term V0/ρI0 has been 

omitted since it does not influence the overall 

dynamics of the system. The nonlinear functions F1

and F2 describe the current-voltage characteristics of 

the base-emitter junctions of the Q1 and Q2 

transistors, respectively. They can be presented in 

the form of two-segment piece-wise linear functions: 
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Parameter a in expressions (5) and (6) depends on r,

the differential resistance of the base-emitter 

junction in the forward-active mode. In this 

simplified mathematical model the r is considered to 

be a constant parameter. Meanwhile in experiments 

it can be controlled by the emitter dc bias current I0.

To characterize the two-stage Colpitts oscillator 

quantitatively we made use of the Matlab Lyapunov 

Exponent’s Toolbox (LET) and estimated the full 

spectrum of the Lyapunov exponents. The LET 

requires the Jacobian matrix of the corresponding 

state-equations. Since eqns. (4) contains two piece-

wise linear functions F1 and F2, each two-segments 

ones, the Jacobian matrix has four different forms. 

For the specific parameter values a=10, b=0.4, and 

ε2 =ε3 = 5 the LET provides the following Lyapunov 

exponents: 

λ1= 0.27, λ2= 0, λ3= −0.31, λ4= −0.57.   (7) 

Though eqns. (4) describe a four-dimensional 

system it possesses only one positive Lyapunov 

exponent, λ1>0. Thus, despite the enlarged 

dimensionality of the system the two-stage Colpitts 

oscillator remains simply chaotic one in contrast to a 

coupled system of two classical Colpitts oscillators 

that has two positive Lyapunov exponents, therefore 

exhibits hyperchaotic behaviour [8]. Employing the 

Kaplan-Yorke conjecture 

0,0,
1

1

<>+=
+

+

j

i
i

j

i
i

j

j

i
i

L jd λλ
λ

λ
   (8) 

we evaluated the Lyapunov dimension dL = 2.88, 

that is rather close to 3 and is essentially larger than 

the corresponding measure of the classical single-

stage Colpitts oscillator (dL = 2.08) estimated for 

similar set of the parameter values. 
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V. EXPERIMENTAL RESULTS

To illustrate the performance of the oscillator 

experimentally several power spectra were taken at 

different fundamental frequencies f* with spectral 

resolution of 120 kHz. Two of them are presented in 

Figs. 4,5. The spectra are broadband continuous 

ones with only rather flat rises at the f* and near the 

subharmonics f*/2 (Fig. 4) or the f*/3, 2f*/3 (Fig. 5). 

0 200 400 600 800 1000
0
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40
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S
, 
d
B
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Fig. 4. Experimental power spectra. f*≈ 600 MHz, 

R= 33 Ω, Lext= 12 nH, C1= 2 pF, V1=10 V, V2=25 V

0 200 400 600 800 1000
0

20

40

60

S
, 

d
B

f, MHz

Fig. 5. Experimental power spectra. f*≈ 1100 MHz, 

R= 17 Ω, Lext= 4 nH, C1= 1 pF, V1= 6.3 V, V2= 27 V

In comparison with a classical single-stage oscillator 

investigated for this frequency range previously in 

[5,7] the modified version exhibits essentially better 

spectral features. For example, in Fig. 4 the lower 

and upper frequency band limits are f1=250 MHz and 

f2=700 MHz within the spectral unevenness of 10 

dB, while f1=150 MHz and f2=1000 MHz within the 

unevenness of 20 dB. Thus, for the central frequency 

fc=(f2+f1)/2 of about 500 MHz the relative bandwidth 

∆ = (f2−f1)/(f2+f1) is 0.47 and 0.74, respectively. 

Moreover, the spectrum shown in Fig. 5 covers the 

full UHF range (300 to 1000 MHz, fc= 650 MHz, 

∆ = 0.54) with the unevenness of less than 6 dB. 

VI. CONCLUSIONS

A hardware prototype of the two-stage Colpitts 

oscillator has been designed for the UHF range and 

described in details. It has been demonstrated 

numerically and experimentally to generate 

broadband chaotic oscillations. The two-stage 

chaotic Colpitts oscillator has better spectral 

characteristics than the classical single-transistor 

oscillator.
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Abstract—The perturbation method is compared
with the methods of Volterra series and of Picard’s
simple iteration when applied for predicting the
distortion in nonlinear analog circuits. Exact
relationships among them are established showing
that they lead to asymptotically equivalent series
solutions of circuit equations and provide very
similar approximants to the solution.

I. INTRODUCTION

The analysis of nonlinear harmonic distortion in
analog integrated circuits involves the calculation of
the steady-state response to a periodic signal in a
nonlinear time-invariant circuit. This can be found
using a variety of numerical methods or, when it is
possible, through analytical methods. Obviously, the
latter are generally preferred as they allow symbolic
expressions for the harmonics to be derived,
providing a better understanding of the distortion-
generating mechanism.

The Volterra series method is a powerful
analytical method for the analysis of nonlinear
systems, both autonomous [1] and forced [2]-[3],
and it is frequently used for predicting the nonlinear
distortion in a variety of circuits. This method,
which is suitable for weakly nonlinear circuits,
enables a periodic solution to be determined in the
form of a series, in principle, to any order of
accuracy. However, the calculation of higher-order
kernels rapidly becomes too complicated, especially
for nonlinearities of non-polynomial type.

As an alternative, a method relying on the
classical theory of regular perturbation was
presented for analyzing nonlinear oscillators [4] and
for predicting the distortion in nonlinear analog
circuits [5]. Since in the cases where the prediction
of harmonic distortion is of interest the actual
response slightly differs from the linear

approximation, it is natural to view the former as a
small perturbation of the latter, and thus to formulate
the problem of determining the periodic response in
analog circuits as a regular perturbation problem.
Consequently, the response is sought in the form of
a power series in a perturbation parameter through a
procedure of successive approximations. As in [4],
the method presented in [5] combines the classical
method of perturbation and the Harmonic Balance,
allowing the coefficients of series to be determined
by recurrent formulae, thus providing the periodic
response in a closed analytical form to any
approximation order.

Here, we present a rigorous comparison between
the Volterra series method and the perturbation
method, as well as with the Picard iteration method
[6], showing that these methods lead to the same
series solution of the describing equation of a circuit
with a polynomial nonlinearity, and evolve very
similar approximants to the solution. Consequently,
the perturbation method is a valid alternative to the
Volterra series method, as already observed in [5]
through a numerical investigation.

II. PERTURBATION METHOD

We describe the perturbation method presented in
[5] in order to make easier the comparison with
other methods. Let us consider a circuit with an
excitation )(tu , T-periodic in time t, and a single
nonlinearity )(xgz = , representing a nonlinear two-
terminal or a nonlinear controlled source. The
nonlinearity )(xgz = can represent the current-
voltage characteristic of a nonlinear resistor, the
charge-voltage characteristic of a nonlinear
capacitor, the flux-current characteristic of a
nonlinear inductor, or the input-output characteristic
of a nonlinear two-terminal. We consider the
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controlling variable of the nonlinearity, )(tx , as the
unknown variable and, thus, the periodic nonlinear
problem is solved when this variable is determined.
Once the controlling variable is known, any other
circuit variable can be obtained by linear
transformation.

The circuit equation can be put in the operator
form

)(xgux �� += (1)

where the symbols � and � denote linear
operators. Decomposing the nonlinearity into its
linear and nonlinear part, that is setting

)()( xfxxg βα += , where 0)0()1( =f , the
equation describing the behavior of the circuit, can
be written in the form

)()1( 1 xfux ��� −−+= αβ (2)

where ��� 1)1( −−= α . The last term of (2)
accounts for the effect of the nonlinearity on the
circuit response and is neglected when the method of
equivalent linearization is used.

As analog circuits are usually designed
minimizing the nonlinear distortion, the last term in
(2) must be small as compared to the previous terms
and, consequently, (2) can be seen as a perturbation
of the linear equation ux �= . Thus, we can put (2)
in the perturbation form

)(xfux �� ε+= (3)

where ε is a normalization parameter, such that

��� 1)1( −−= αβε . The parameter ε assumes the
meaning of a perturbation parameter, as its value
determines the nearness of the nonlinear equation to
its linear approximation. Observe that the entity of
ε is not meaningful, being significant the smallness
of the perturbation entity only, here represented by

)(xf�ε . Equation (3) is formulated as a regular

perturbation problem and, for ε tending to zero,
reduces to the equation describing the circuit when
its nonlinearity is neglected, that is ux �= .
Accordingly, we write the solution of (3) as a
perturbation of the linear solution ux �=0 , in the

form ),()(),( 0 εεε thtxtx += , where ),( εε th is the
remaining part of the solution ),( εtx accounting for
the effect of the nonlinearity.

Assuming the analyticity of )(xf , we calculate
the periodic solution ),( εtx of (3), of which we
admit the existence, in the form of power series of ε

�+++= 2
210 )()()(),( εεε txtxtxtx . (4)

In order to calculate the periodic coefficients
)(txk , we substitute (4) in both sides of (3) and

expand )],([ εtxf in a power series of ε at 0=ε .
Thus, we get

)( 10
2

210 �� +++=+++ εεεε ffuxxx �� (5)

where the Taylor-series coefficients )(tf k ,
,...1,0=k , are calculated by

)( 00 xff =

)()()( 0
)(

20
)2(

10
)1(

k
k

k zxfzxfzxff +++= � .(6)

Here, )( 0
)( xf n denotes the nth derivative of

)(xf evaluated at 0xx = , and the nz ’s are given by

�
≥

=+⋅⋅⋅+

⋅⋅⋅=

1
1

1!

1

j

n

n

l
kll

lln xx
n

z . (7)

Then, balancing the coefficients of the same
powers of ε in (5), the coefficients )(txk are
recursively determined in an explicit form through
the recurrent formulae

ux �=0 (8a)

)( 001 xffx �� == (8b)

10
)1(

12 )( xxffx �� == (8c)

( )2/)()( 2
10

)2(
20

)1(
23 xxfxxffx +== �� (8d)

( )10
)1(

10
)1(

1 )()( −
−

− ++== k
k

kk zxfzxffx ���

(8e)

allowing us to construct the successive
approximations to the solution ),( εtx with the

desired accuracy. Let 0
)0( xx = be the zero-order
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approximation in ε to the solution, the successive
approximations are determined by the iteration
procedure

k
k

k xxxx εε +++= �10
)( (9)

k
k

kk xxx ε+= − )1()( (10)

whereby the solution can be constructed by
repetitively calculating kx through (8e), that is the
response of a linear circuit described by the linear
operator � , subject to a time-domain forcing signal

1−kf . This calculation can be easily carried out in the
frequency-domain, as shown in [5].

Like the Volterra series method, the perturbation
method can be applied only for mildly nonlinear
circuits or for limited signal amplitudes. Differently
from the Volterra series method, the formulae are
based on the usual transfer functions of linear
analysis and the method can be practically used for
non-polynomial nonlinearties too, as well as for
obtaining harmonics higher than the third.

III. CONNECTION WITH VOLTERRA AND PICARD
METHODS

Now, we investigate the connection between the
perturbation method and the well-known methods of
the simple iteration (Picard method) and of the
Volterra series. To this end, we first show a property
of the solution achieved through the proposed
method.

The solution of the linearized problem
corresponding to (3), i.e. 0x , is the generating
solution of the constructive method (9), meaning
that all kx ’s are calculated through (8e), starting

from 0x . Assuming that )(xf is a polynomial

nonlinearity, �++= 3
3

2
2)( xcxcxf , and putting

0x into (8b), terms of type k
k xc 0� results in 1x .

Then, putting 1x into (8c), it follows that 2x

includes the terms 2
00

2
22 xxc �� , 2

0
2
0323 xxcc �� ,

3
00322 xxcc �� ,… . As terms of the general type

( )qji xx 00 �� arise in kx , we define as the order of a

term in kx the number m of times values of 0x

multiplied together. It is easy to verify that 0x is a

term of order 1=m , 1x includes terms of order

2≥m and 2x includes terms of order 3≥m .

Generalizing, we show the following:
Theorem 1. The coefficient kx in (8e) contains

terms of order )1( +≥ km .

Proof . By virtue of (7), 1−kf can be rewritten in
the expanded form

)!1(

)(

)()(

)(

1
1

0
)1(

1232210
)2(

10
)1(

1

−
−

−−−

−−

−
++

++++

+=

k
k

kkk

kk

x
k

xf

xxxxxxxf

xxff

�

� (11)

As )( 0
)1( xf has terms of order greater or equal to

1 and 1−kx has terms of order greater or equal to k ,

it follows that 10
)1( )( −kxxf generates terms of order

)1( +≥ km . All other terms in (11),

nlll
n xxxxf �

21
)( 0

)( , with )1(2 −≤≤ kn and

11 −=++ kll n� , contain n factors
jlx each of

order greater or equal to )1( +jl , which together

have order greater or equal to )( 1 nll n +++� .
Thus, all remaining terms in (11) generate terms of
order )1( nkm +−≥ and, hence, of order

)1( +≥ km .

From Theorem 1 and (9), we deduce that )(kx and
)1( −kx have the same terms of order km ≤ , as well

as all higher-approximations )( jkx + , 1≥j . Further,

if we write )(kx in the form

�� ++++= )()()( ,,2,1
)( tttx kmkk

k χχχ , (12)

where km,χ denotes the sum of terms with the same

order m at the kth approximation, we can conclude
that all terms of order km ≤ of (12) are definitively
determined at the )1( −k th approximation, and
higher approximation add higher-order terms only.

Applying the Picard method to the integral
equation (3) and assuming 0x as an initial guess
solution, the construction of the solution ),( εtx
proceeds following the iteration procedure

)( )1(
0

)(

0
)0(

−+=

=
k

P
k

P

P

xfxx

xx

�ε
(13)

The first approximation to the solution,
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)( 00
)1( xfxxP �ε+= , is equal to that achieved

through the perturbation method, by virtue of (8b).
The second approximation is

)( 100
)2( xxfxxP εε ++= � . Developing )(xf in a

Taylor series of ε and taking into account (8b), we
get

3
101

2
210

)2( ),,( εεεε xxgxxxxP �+++= (14)

where 2x is given by (8c) and 2
101 ),,( εε xxg

represents the complementary term. Proceeding in
the same way, the kth approximation can be written
in the form

1
101

10
)(

),,,( +
−−

++++=
k

kk

k
k

k
P

xxg

xxxx

εε
εε

�

�

�
(15)

where kx is given by (8e) and k
kg ε1− is the

complementary term. Comparing (15) with (9), we
deduce that the regular perturbation method and the
Picard method give rise to different approximations,
for 1>k . However, they lead to solutions which are
asymptotically equivalent, that is obtained summing
equivalent power series.

Let us now write the kth approximation to the

solution of the Picard’s iteration method, )(k
Px , and

that of the Volterra series method, )(k
Vx , as

�� ++++= kmkk
k

Px ,,2,1
)( γγγ (16)

�� ++++= kmkk
k

Vx ,,2,1
)( βββ (17)

where )(, tkmγ and )(, tkmβ denote the sum of terms

having the same order m, in the sense outlined
above. A straightforward generation of the Volterra
series in the time domain was derived in [6], who
showed that kmkm ,, βγ = , for km ≤ .

Theorem 2. The perturbation method, the Picard
method and the Volterra series method give the
same terms of order m at the kth approximation to
the solution of the integral equation (3), for km ≤ .
Further, they lead to the same series solution.

Proof. As, by virtue of Theorem 1, we have

kmkm ,, γχ = for km ≤ , and kmkm ,, βγ = for km ≤
[6], we deduce that kmkm ,, βχ = for km ≤ . The kth

approximations provided by the three methods are
thus identical in the terms of order less or equal to
k . From this, we deduce that the series solutions
achieved by the three methods are asymptotically
equivalent.

It follows, from the above results, that we can
deduce the same conclusions as in [6] and extend
them to the perturbation method.

IV. CONCLUSIONS

The perturbation procedure and the Volterra series
evolve very similar kth approximations to the
solution, as they contain the same terms of order less
or equal to k. However, the kth approximation of the
Volterra series contains no higher-order terms,
whereas the perturbation method does. A frequency
domain formulation of the perturbation procedure
(8),(9) which is simple and straightforward to apply,
is based on the usual transfer function of linear
dynamic systems, avoiding the calculation of
frequency domain Volterra kernels. In addition, the
perturbation procedure allows us to formally handle
nonlinearities of non-polynomial type, as the
transistor exponential nonlinearities.

REFERENCES

[1] L.O. Chua and Y.S. Tang, “Nonlinear oscillation via
Volterra series,” IEEE Trans. Circuits Syst., vol. 29,
pp. 150-168, 1982.

[2] P. Wambacq and W. Sansen, Distortion analysis of
analog integrated circuits, Norwell, MA: Kluwer,
1998.

[3] P. Wambacq, G.E. Gielen, P.R. Kinget and Sansen
W, “High-frequency distortion analysis of analog
integrated circuits,” IEEE Trans. on Circuits Syst.-II,
vol. 46, no.3, pp. 335-345, 1999.

[4] A. Buonomo and C. Di Bello, “Asymptotic formulas
in nearly sinusoidal nonlinear oscillators,” IEEE
Trans. on Circuits Syst.- I, vol. 43, pp. 953-963, 1996

[5] A. Buonomo, A. Lo Schiavo, “Perturbation analysis
of weakly nonlinear forced circuits”, Proc. of NDES
2003, Scuol, Switzerland, May 18–21, 2003, pp.45-
48.

[6] B.J. Leon and D.J. Schaeffer, “Volterra series and
Picard iteration for nonlinear circuits and systems,”
IEEE Trans. on Circuits and Syst., vol. 25, no. 9, pp.
789-793, 1978.

N  D  E  S        2  0  0  4

106



BIFURCATION  ANALYSIS  AND CHAOTIC BEHAVIOR

IN  BOOST CONVERTERS:  EXPERIMENTAL  RESULTS

D. Cafagna  and  G. Grassi

Dipartimento di Ingegneria dell’Innovazione,

Università degli Studi di Lecce, Lecce, ITALY

{donato.cafagna; giuseppe.grassi}@unile.it

    Abstract – This paper presents an experimental set-up

for investigating some dynamic phenomena that can occur 

in DC-DC boost converters. To this purpose, the paper

illustrates bifurcation analyses and possible pathways

through which the converter may enter chaos. In particular, 

based on experimental measurements, it is shown that

variations of supply voltage and inductance generate

interesting bifurcations and novel routes to chaos.

I. INTRODUCTION

 In recent years it has been observed that a large number 

of power electronic circuits can exhibit deterministic 

chaos [1]-[5]. Referring to power DC-DC converters, it 

has been demonstrated that buck and boost converters are 

prone to subharmonic behavior and chaos [5]-[6]. Even

though the approaches in [2]-[3] are very interesting,

further experimental analysis is required on the parameter

domains in which chaotic behavior may occur. Therefore, 

the aim of this paper is to experimentally investigate some 

dynamic phenomena that can occur in DC-DC boost

converters. In particular, the paper presents an

experimental set-up for obtaining bifurcations and

possible pathways through which the boost converter may 

enter chaos. The paper is organized as follows. In Section 

2 the state equations of the current-programmed boost 

converter are reported. In Section 3 the circuit

implementation of the proposed converter is illustrated. In

Section 4 it is experimentally shown that the variations of 

the supply voltage and inductance lead to new bifurcation

paths and routes to chaos. These results are illustrated by 

means of the measured time waveforms of the inductor

current and the PSpice phase portraits.

II. EQUATIONS  OF  THE BOOST CONVERTER

The current-programmed boost converter includes an 

inductor L, a diode D, a DC source Vin, a switch S, a 

resistance R, a capacitor C and a feedback path that

consists of a flip-flop and a comparator (Fig.1). The

converter is assumed to operate in continuous mode [6].

Namely, the inductance L and the switching period T are 

chosen so that the inductor current i(t) never falls to zero. 

Hence, there are two switch states: i) switch S ON and 

diode D OFF; ii) switch S OFF and diode D ON. Therefore,

the state equations of the boost converter are [4]:

1 00

1
0 0

in

dv

vdt RC V
di i

L

dt

−
= +

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎢ ⎥⎣ ⎦

(1)

for nT ≤ t < (n + d)T;

1 1 0

11 0
in

dv

vdt RC C
V

di i
LL

dt

−
= +

−

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

(2)

for (n + d )T ≤ t < (n + 1)T;

where v(t) is the voltage across the capacitor C, n is an 

integer and d is the duty cycle. The current i(t) is chosen 

as the programming variable, which generates the ON-

OFF driving signal for the switch S after the comparison 

with a reference current Iref. While S is ON, i(t) increases

until reaches the value of Iref. Then, S is turned OFF and 

remains OFF until the next cycle begins.

Fig.1. Current-programmed boost converter.

III. CIRCUIT IMPLEMENTATION

This Section illustrates the PSpice design of the

implemented boost converter (Fig.2). The switch S is 

realized using a MOSFET. Its control circuitry is based on 

the OpAmp LM339 used as a comparator. In particula r,

the LM339 compares the reference voltage Vref with the 

voltage across the resistance R3 in series with the drain of 

the MOSFET. Note that this voltage is proportional to the 

current i(t) through the inductor L when the MOSFET is 

turned ON. Therefore, the output of the comparator is 

high when the inductor current reaches the value Iref = Vref

/ R3, whereas it is low when the inductor current is less 

than Iref. Now the generation of the clock signal is

described. At first, the integrated device NE555C is

considered in order to generate a square wave with duty

cycle d = 0.9. By making the derivative of the rising edge 

of the square wave, it is possible to obtain an impulsive 

signal that represents the SET input of the S-R latch. 

Additionally, by making the derivative of the falling edge, 

the signal able to control the duty cycle is obtained.

Referring to the latch, its output signal is high (i.e., the 

MOSFET is ON) when an impulsive signal arrives at the 

SET input. On the other hand, its output signal is low 

(i.e., the MOSFET is OFF) when a proper impulsive 

signal arrives at the RESET input.
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Fig.2. Circuit diagram of the experimental current-programmed boost converter.

Such RESET signal, by means of an OR gate, can be 

either the output of the comparator or the signal able to 

control the duty cycle.

IV. BIFURCATIONS AND CHAOS: EXPERIMENTAL RESULTS

    In this Section the way the boost converter changes its 

behavior is experimentally analyzed by varying some

parameters, while keeping fixed the current Ire f. The 

considered oscilloscope is the HP184A.

A. Route to chaos by varying parameter Vin

Herein the behavior of the boost converter is analyzed 

by varying the supply voltage Vin, whereas the following

circuit parameter values have been fixed:

R =39Ω , C =22µF, L =0.6mH, Iref =1.05A, f =1/T =10KHz.

At first the value of the supply voltage is chosen as Vin = 

10V. Fig.3(a) shows the measured inductance current of 

the implemented converter under a fundamental periodic 

operation. The vertical scale is 200mA/div and the

horizontal scale is 0.1ms/div. The PSpice phase portrait ,

corresponding to Fig.3(a), is shown in Fig.3(b).

(a)

(b)

Fig.3. Fundamental periodic operation: (a) experimental time

waveform of the inductor current (time-scale: 9ms–10ms;
current-scale: 0.5A-1.1A); (b) (i, v)-phase portrait using

PSpice (current-scale: 0.5A-1.1A; voltage-scale: 12V-13V).

When the voltage Vin is decreased, many other operating 

regimes are possible. For example Fig.4(a) shows the

experimental time waveform of the current i(t) for a

period-two subharmonic operation (Vin = 8V). The

corresponding PSpice phase portrait  is  shown in Fig.4(b).

(a)
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(b)

Fig.4. 2T subharmonic operation: (a) experimental waveform of 

the inductor current (time: 9ms–10ms, 0.1 ms/div; current:

0.4A-1.2A, 200mA/div); (b) (i, v)-phase portrait using
PSpice (current: 0.4A-1.1A; voltage: 8.8V-10.4V).

Fig.5. Quasi-4T  subharmonic operation: experimental waveform

of the inductor current (time: 8ms–10ms, 0.2ms/div;

current: 0.5A-1.1A, 200mA/div).

Additionally, by taking Vin = 7.2V, it is possible to obtain 

a quasi-periodic operation. Fig.5 shows the experimental

quasi-4T periodic waveform of the inductance current.

Finally, when the value of the supply voltage Vin is further 

decreased, the chaotic operating regime appears. The

experimental current waveform and the PSpice phase

portrait for the circuit operating in the chaotic regime (Vin

= 7V) are shown in Fig.6(a) and Fig.6(b), respectively.

(a)

(b)

Fig.6. Chaotic operation: (a) experimental waveform of the 

inductor current (time: 9ms–10ms, 0.1ms/div; current: 

0.5A-1.1A, 200mA/div); (b) (i, v)-phase portrait using
PSpice (current: 0.5A-1.1A; voltage: 6.5V-8.5V).

(a)

(b)

Fig.7. Fundamental periodic operation: (a) experimental waveform

of the inductor current (time: 8ms–10ms, 0.2ms/div;

current: 0.0A-1.2A, 200mA/div); (b) (i, v)-phase portrait 
using PSpice (current: 0.0A-1.2A; voltage: 7.0V-7.6V).

B.  Route to chaos by varying parameter L

Herein the behavior of the boost converter is analyzed 

by varying the inductance L, whereas the following circuit 

parameter values have been fixed:

R =39Ω , C =22µF, Vin =7V, Iref =1.05A, f =1/T =10KHz.

At first the inductance is chosen as L = 0.15mH. Fig.7(a)

and Fig.7(b) show the measured inductance current

waveform and the corresponding PSpice phase portrait, 

respectively, under periodic operation of period T.

When the inductance L is increased, many other

operating regimes are possible. For example Fig.8(a)

shows the experimental time waveform of the inductance 
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current for a period-two subharmonic operation (L = 

0.3mH). The corresponding PSpice phase portrait  is

shown in Fig.8(b). Additionally, for L = 0.53mH, a quasi-

periodic operation is obtained. Fig.9 shows the

experimental result for the quasi-4T periodic operation. 

Finally, when L is further increased, the circuit behavior 

goes toward chaotic regimes. For example, for L =

0.6mH, the measured current and the PSpice phase

portrait for the chaotic regime are shown in Fig.10(a) and

Fig.10(b), respectively.

(a)

(b)

Fig.8. 2T subharmonic operation: (a) experimental waveform of 

the inductor current (time: 8ms–10ms, 0.2ms/div; current: 

0.2A-1.2A, 200mA/div); (b) (i, v)-phase portrait using
PSpice (current: 0.2A-1.1A; voltage: 7.0V-8.2V).

Fig.9. Quasi-4T subharmonic operation: experimental time

waveform of the inductor current (time-scale: 8ms–10ms,

0.2ms/div; current-scale: 0.5A-1.1A, 200mA/div).

(a)

(b)

Fig.10. Chaotic operation: (a) experimental waveform of the 

inductor current (time: 9ms–10ms, 0.1ms/div; current: 

0.5A-1.1A, 200mA/div); (b) (i, v)-phase portrait using

PSpice (current: 0.5A-1.1A; voltage: 6.5V-8.0V).

V. CONCLUSION

This paper has experimentally analysed some dynamic 

phenomena that can occur in current-programmed DC-DC

boost converters. Namely, bifurcation analyses as well as 

possible pathways through which the converter may enter 

chaos have been shown. In particular, an experimental

set-up has been implemented to show how variations of 

supply voltage and inductance may lead to interesting

bifurcation paths and novel routes to chaos.
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Abstract – This paper and the companion one [1]
illustrate the new phenomenon of chaotic beats in a

modified version of the Chua’s circuit, driven by two

sinusoidal inputs with slightly different frequencies. In

particular, in this paper the behaviour of the proposed

circuit is analyzed both in time-domain and state-space,
confirming the chaotic nature of the phenomenon and the

effectiveness of the design.

I. INTRODUCTION

In the field of chaotic systems, different complicated

behaviors such as period-adding sequences, generation of

multi-scroll attractors, synchronization phenomena and

intermittency properties have been widely studied [2]-[4].

Very recently, a fascinating phenomenon has been

investigated in [5], where the behaviors of Kerr and

Duffing nonlinear oscillators driven by two sinusoidal

inputs with slightly different frequencies have been

analyzed. In particular, the authors of ref. [5] started by

considering that in linear systems the interaction of two

sinusoidal signals is the well-known phenomenon called

beats [6]. Namely, when two waves with slightly different 

frequencies interfere, the frequency of the resulting

waveform is the average of the frequencies of the two

waves, whereas its amplitude is modulated by an

envelope, the frequency of which is the difference

between the frequencies of the two waves (see Fig.1).

This concept has been generalized in [5], where the

generation of chaotic beats in coupled nonlinear systems

with very small nonlinearities has been studied.
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Fig. 1. Beats in linear systems: the combination of 25 sin(3.0*t)

and  25 sin(3.1*t) generates a waveform with amplitude 50,

fundamental frequency 3.05 and envelope frequency 0.1.

Based on these considerations and on the results

reported in [7], this paper and the companion one [1] aim

to investigate the generation of chaotic beats in a novel

modified version of the Chua’s circuit.

The paper is organized as follows. In Section 2 the

equations of the proposed non-autonomous circuit are

reported. It consists in a modified version of the

autonomous Chua’s circuit, where two sinusoidal inputs

characterized by slightly different frequencies have been

added. In Section 3 numerical integrations of

dimensionless equations get a first insight into the

generation of chaotic beats. By exploiting PSpice

simulator, Section 4 illustrates the phenomenon in the

circuit implemented in the companion paper [1]. The

study of the beat phenomenon concludes with the analysis 

of the behaviour of the proposed circuit driven by two

sinusoidal signals with equal frequencies.

II. THE PROPOSED CIRCUIT

The state equations of the proposed non-autonomous

circuit (Fig.2), constituted by two capacitors, an inductor, 

a linear resistor, the Chua’s diode and two external

periodic excitations, are:

1 2 1

1

2 1 2

2

1 1 1

2

2 2

( ) sin(2 )

sin(2 )

C C C

C

C C C

L

L
C

dv v v
C g v A f t

dt R

dv v v
C i

dt R

di
L v A f t

dt

π

π

−
= − +

−
= +

= − +

(1)

where A1 and A2 are the amplitudes of the periodic

excitations, f1 and f2 are their frequencies whereas

g(vC1) = Gb vC1 + 0.5(Ga – Gb)(| vC1 + Bp| – | vC1 – Bp |)(2)

is the characteristic of the Chua’s diode [3].

Fig. 2. The proposed modified Chua’s circuit.

The dynamics of (1) depend on a set of eleven circuit

parameters: C1, C2, L, R, Ga, Gb, Bp, A1, A2, f1, f2. The

number of parameters is reduced by normalizing the

equation of the nonlinear resistor, so that its breakpoints

are at ±1 instead of ± Bp. By introducing dimensionless

variables x1, x2, x3 and τ :

1 1 pCv x B= ,
2 2 pCv x B= , 3

p

L

B
i x

R
= , 2t RCτ= ,
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and redefining τ as t, the following equations are

obtained:

1
2 1 1 1 1

2
1 2 3

3
2 2 2

= ( ) sin(2 )

sin(2 )

d d

d d

dx
x x g x A f t

dt

dx
x x x

dt

dx
x A f t

dt

α α π

β π

⎡ ⎤⎣ ⎦− − +

= − +

= − +

(3)

with

g(x1) = bx1 + 0.5(a – b)( |x1 + 1| – |x1 – 1| ) (4)

where 2

1

C

C
α = ,

2
2R C

L
β = , aa RG= , bb RG= ,

1
1
d

p

A R
A

B
= , 2

2
d

p

A
A

B

β= ,
11 2

df RC f=  and 2 2 2
df RC f=  (the

superscript d means “dimensionless”). Thus, the set of

eleven circuit parameters turns into the set of eight

dimensionless parameters { }1 2 1 2, , , , , , ,d d d da b A A f fα β .

III. NUMERICAL INTEGRATIONS

In this Section the phenomenon of beats in the

dimensionless system (3) is investigated. 

(a)

(b)

(c)

(d)

Fig. 3. Behaviors of the variable x1 for different time-scales;

(a): t ∈ [0, 15000]; (b): t ∈ [0, 2000]; (c): envelope of x1 for

t ∈ [0, 2000]; (d): t ∈ [0, 170].

By varying the parameters { }1 2 1 2, , , , , , ,d d d da b A A f fα β ,

several numerical integrations of equations (3)-(4) have

been carried out. After a first round of integrations, the

complexity has been  reduced by selecting the values

a = –1.1429, b = –0.7143 and β = 14.283. Successively,

extensive integrations have been carried out for several

values of the parameters 1 2, ,d dA Aα  and slightly different

values of the frequencies 1
df  and 2

df . In particular, it is

interesting to analyze the system behavior for α = 6.799,

1 2 25d dA A= = , 1 12 =3.0d dfω π=  and 2 22 3.1d dfω π= = . To 

this purpose, Fig.3 shows the time behaviors of the state

variable x1 for different resolutions of the time scale.

More precisely, Fig.3(a) makes perceive the chaotic

nature of the signal x1, whereas Fig.3(b) highlights the

occurrence of chaotic beats generated by its envelope

(Fig.3(c)). Moreover, Fig. 3(d) reveals in the signal x1

both an amplitude modulation due to the chaotic envelope 

and the presence of a fundamental frequency. Further

analysis, related to the power spectral density (Fig.4),
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confirms the chaotic nature of signal x1 as well as the

presence of a fundamental frequency f ∗ = 0.48828 (i.e.,

ω∗ = 3.0679). 
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Fig. 4. Broadband spectral density of the signal x1 (fundamental 

frequency at f ∗ = 0.48828).

Finally, referring to the chaotic nature of the signal x1,

the Lyapunov exponents of system (3) are calculated. By

considering each sinusoidal forcing term as parameter, a

null exponent is obtained. Namely, the calculated

Lyapunov exponents are:

λ1 = 0.00043, λ2 = 0.00000, λ3 = -0.03805, λ4 = -4322.4.

Notice the presence of one positive Lyapunov exponent,

which confirms the chaotic dynamics of system (3).

IV. PSPICE SIMULATIONS

Since numerical integrations of the dimensionless

system (3) have shown the occurrence of chaotic beats,

the aim of this Section is to investigate the beat

phenomenon in the circuit, which has been designed in

the companion paper [1]. In particular, based on the

dimensionless parameter values reported in the previous

Section, the design procedure has led to the following

dimensional parameter values (see details in [1]):

1000R = Ω , 1 10 nFC = , 2 67.99 nFC = , 4.76 mHL = ,

0.01 VpB = , 11.1428 maG −= − Ω , 10.7142 mbG −= − Ω ,(5)

1 0.25 AA = , 2 17.49 VA = , 1 7022.57 Hzf = , 2 7256.66 Hzf = .

By exploiting (5), PSpice simulator is used to describe

the chaotic amplitude modulation of the beats in the

proposed circuit. In particular, several phase portraits are

carried out in the (vC1, vC2)-state space, at different time

units. The results are reported in Fig.5(a)-(d), where in

each figure the evolution of the trajectory with respect to

the previous illustration has been highlighted. In

particular, Fig.5(a) shows that the circuit dynamics start

from the origin and expand until vC1 approximately

reaches the values ±11.4V. Then, Fig.5(b) illustrates that

the trajectory of variable vC1 shrinks back until the values

±1.4V are approximately reached. In Fig.5(c) the

dynamics expand again until they reach the values

±8.15V. Successively, in Fig.5(d) the values ±11.25V are

approximately reached. These expanding and contracting

behaviors go on chaotically for increasing times until the

“final” attractor is obtained (see also [1]).

(a)

(b)

(c)
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(d)

Fig. 5. Phase portraits  at  different  time  units using  Pspice.

(a): t = 2.5ms; (b): t = 5.2ms; (c): t = 7.5ms; (d): t = 15ms.

V. DISCUSSION

In order to better understand the formation of the

chaotic beats, the circuit dynamics are analyzed by taking

the circuit parameters (5) but equal frequencies

1 2 7022.57 Hzf f= = . The resulting time waveforms of

the variable vC1 are reported in Fig.6(a)-(b) for two

different resolutions of the time scale. Figure 6 clearly

highlights that in this case the expanding and contracting

behavior goes on periodically for increasing times. More

precisely, Fig.6(a) highlights the presence of beats due to

a periodic envelope, whereas Fig.6(b) reveals the

presence of a fundamental frequency. Based on these

considerations, it can be argued that for equal frequencies 

1 2 7022.57 Hzf f= = the proposed non-autonomous

circuit is not able to generate chaotic beats. However,

notice that in this case the circuit exhibits periodic

amplitude modulated signals, which are very similar to

the beats obtained in linear systems.

We would point out that further investigation is required 

for better understanding the chaotic beats phenomenon. In 

particular, observations for other sets of parameters

should be carried out, along with further analysis related

to the conditions assuring the existence of the

phenomenon.

VI. CONCLUSIONS

This paper and the companion one [1] have focused on

a modified version of the Chua’s circuit, characterized by

two sinusoidal inputs with slightly different frequencies.

In particular, in this paper the new phenomenon of chaotic

beats has been analyzed both in time-domain and state-

space, confirming the effectiveness of the design

approach developed in [1].

Time

0s 20ms 40ms 60ms 80ms 100ms
V(C1:2)

-10V

0V

10V

-15V

15V

(a)

Time

0s 2ms 4ms 6ms 8ms 10ms 12ms
V(C1:2)

-10V

0V

10V

-15V

15V

(b)

Fig. 6. Behaviors of vC1 for different time-scales using PSpice;

(a): t ∈ [0, 100ms]; (b): t ∈ [0, 12ms].
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Abstract – This paper and the companion one [1]
illustrate the new phenomenon of chaotic beats in a

modified version of the Chua’s circuit, driven by two

sinusoidal inputs with slightly different frequencies. In

particular, in order to satisfy the constraints imposed by

the beats dynamics studied in [1], this paper presents a
novel implementation of the voltage-controlled

characteristic of the Chua diode. Moreover, by exploiting

Pspice simulator, the beats phenomenon generated by the 

designed circuit is investigated in detail.

I. INTRODUCTION

Very recently, a new fascinating phenomenon has been

investigated in [1]-[2], where the behavior of nonlinear

systems in the presence of sinusoidal excitations has been

analyzed. In particular, reference [1] illustrates the

phenomenon of chaotic beats in a modified version of the 

Chua’s circuit, driven by two sinusoidal inputs with

slightly different frequencies. More precisely, in [1] the

behaviour of the circuit is numerically analyzed both in

time-domain and state-space, confirming the chaotic

nature of the beat phenomenon in nonlinear systems.

While reference [1] focuses on the dynamics of chaotic

beats, the aim of this paper consists in illustrating both the 

design procedure of the modified Chua’s circuit and the

corresponding beats generation using Pspice simulator.

The paper is organized as follows. Section 2 illustrates

the design of a novel modified version of Chua’s circuit.

In particular, in order to satisfy the constraints of the beats 

dynamics found in [1], a new implementation of the

characteristic of the Chua diode is proposed. Finally, by

exploiting PSpice simulator, Section 3 illustrates the beats

phenomenon generated by the designed circuit. 

II. CHAOTIC BEATS: CIRCUIT DESIGN

The proposed circuit (see also [1]) is constituted by two 

external periodic excitations, a linear resistor, an inductor, 

two capacitors and a nonlinear resistor. The state

equations for the voltages vC1, vC2 and the current iL are:

1 2 1

1

2 1 2

2

1 1 1

2

2 2

( ) sin(2 )

sin(2 )

C C C

C

C C C

L

L
C

dv v v
C g v A f t

dt R

dv v v
C i

dt R

di
L v A f t

dt

π

π

−
= − +

−
= +

= − +

(1)

where A1 and A2 are the amplitudes of the periodic

excitations, f1 and f2 are their frequencies whereas

g(vC1) = Gb vC1 + 0.5(Ga – Gb)(| vC + Bp| – | vC1 – Bp |) (2)

represents the characteristic of the Chua’s diode [3].

Before designing the circuit, consider its dimensionless

equations (3)-(4) reported in ref. [1] and note that the

amplitude of the dimensionless variables x1, x2 and x3 is

very large (see [1]). If Bp = 1 V, it follows that the

dimensional variables
1 1 pCv x B=  and

2 2 pCv x B= are

characterized by amplitudes in the range of KVolt. In

order to carry out a feasible circuit design, it is useful to

reduce the value of Bp. To  this purpose, by choosing

Bp = 0.01V, 1000R = Ω  and by considering the

dimensionless parameters { }1 2 1 2, , , , , , ,d d d da b A A f fα β (the

values of which have been found in [1]), it results

1 1 0.25 A
p d

B
A A

R
= =  and 2 2 17.49 V

p dB
A A

β
= = . Moreover,

by taking 1 10 nFC = , it results 2 1 67.99 nFC Cα= = ,

2
2 4.76 mH

R C
L β= = , 11.1428 ma

a
G

R
−= = − Ω ,

10.7142 m
b

b
G

R
−= = − Ω , 1

1
2

7022.57 Hz
df

f
RC

= =  and

2
2

2

7256.66 Hz
df

f
RC

= = . Now, the Chua diode is properly 

implemented by taking into account that Bp is 0.01 V and 

that the maximum amplitude of the voltage
1Cv  is scaled

down to approximately 12V. The adopted configuration is 

reported in Fig.1, whereas the driving-point (DP)

characteristic obtained using Pspice is reported in

Fig.2(a). In particular, the Chua diode reported in Fig.1

has been implemented by taking: R1 = 2333 Ω, R2 = R3 =

R5 = R6 = 150 Ω, R4 = 875 Ω, two 1N4148 diodes, two

0.01V batteries and four LF411 op amps biased with

±18V supplies. Note that the considered LF411 op amp

enables an accurate characteristic to be obtained, since it

draws negligible input current (by virtue of its JFET input 

stage) with a maximum input offset voltage of 1.0mV

(i.e., one order of magnitude smaller than the 10mV of the 

breakpoints).

Fig. 1. Implementation of the Chua diode using PSpice.
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(a)

(b)

Fig. 2. Characteristic of the diode (V_V1 ≡ vN and –I(V1) ≡ iN).

(a) overall  characteristic  with outer breakpoints  at  ±16V;

(b) characteristic around the inner breakpoints at ±10mV.

The voltage-controlled characteristic reported in Fig.2 has 

been implemented by connecting four devices in parallel, 

as shown in the following. At first, the two-terminal

device reported in Fig.3(a) has been designed, with the

aim of obtaining the characteristic reported in Fig.3(b)-

(c). In particular, the DP characteristic has zero slope

between its breakpoints at ±0.01V (obtained using two

0.01V batteries) and has slope abG G− (obtained using

the linear resistor R1 = 2333 Ω) outside the breakpoints

(Fig.3(b)). Note that the three segments and the two

breakpoints correspond to linear operation of the op amps 

[4]-[6]. The second step has consisted in designing the

two-terminal device reported in Fig.4(a). In particular, a

negative resistance converter [6]-[7] has been added in

parallel to the two-terminal device reported in Fig.3(a) in

order to obtain the DP characteristic reported in Fig.4(b)-

(c). It has zero slope between its breakpoints at ±0.01V

and has slope – abG G−  outside the breakpoints

(Fig.4(b)). Note that the outer segments in Fig.4(c) are

due to the eventual passivity of the negative resistance

converter and saturation of the op amps [3]. The third step 

has consisted in designing the two-terminal device

reported in Fig.5(a) where a passive resistor (R4 = 875Ω)

has been added in parallel to the two-terminal device

reported in Fig.4(a), so that the DP characteristic reported 

in Fig.5(b)-(c) is obtained. It has slope aG  between its

breakpoints at ±0.01V and has slope bG  outside the

breakpoints (Fig.5(b)).

(a)

(b)

(

(c)

Fig. 3. (a): First stage of the diode (V_V1 ≡ v and –I(V1) ≡ i);

(b): its characteristic in the range  ±30mV (with zero slope

between the breakpoints at ±10mV and slope abG G−
outside them); (c): its characteristic in the range  ±20V.

The final step has consisted in adding a further negative

resistance converter (see Fig.1) in parallel to the two-

terminal device reported in Fig.5(a), so that the overall
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DP characteristic reported in Fig.2(a)-(b) is obtained. As

required, it has slope 11.1428 maG −− = − Ω  between its

breakpoints at ±0.01V (Fig.2(b)) and has slope
10.7142 mbG −− = − Ω  outside them (but within the outer 

breakpoints at  ±16V, see Fig.2). Since the maximum

amplitude of voltage
1 NCv v≡  has been scaled down to

approximately 12V, the positive slope of the two outer

dissipative segments ( 15.8569 mcG −= Ω  beyond the

breakpoints at  ±16V, see Fig.2(a)) does not affect the

circuit behavior.

(a)

(b)

(c)

Fig. 4. (a): Second stage of the diode (V_V1≡ v and –I(V1)≡ i );

(b): its characteristic in the range  ±30mV (with zero slope

between the breakpoints at ±10mV and slope – abG G−
outside them); (c): its characteristic in the range ±20V.

(a)

(b)

(c)

Fig. 5. (a): Third stage of the diode (V_V1≡ v and –I(V1)≡ i );

(b): its characteristic in the range  ±30mV (with slope aG

between the breakpoints at ±10mV and slope bG  outside

them); (c): its characteristic in the range ±20V.

Finally, note that the proposed design approach has two

main advantages: i) the slopes and breakpoints of the

characteristic can be set independently; ii) the breakpoints

± Bp are independent of the saturation levels of the op

amp output voltage.

III. CHAOTIC BEATS: PSPICE ANALISYS

Herein, the aim is to investigate the beats phenomenon

in the designed circuit. By using PSpice, the results

reported in Fig.6 are obtained, where the time behaviors

of the voltage vC1 for different resolutions of the time

scale are shown. In particular, Fig.6(a)-(b) confirms the
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occurrence of the chaotic beats studied in [1], whereas

Fig.6(c) confirms the presence of a fundamental

frequency as well as an amplitude modulation due to the

chaotic envelope (see [1] for details).

Time

0s 0.2s 0.4s 0.6s 0.8s 1.0s

V(C1:2)

-10V

0V

10V

-15V

15V

(a)

Time

0s 50ms 100ms 140ms

V(C1:2)

-10V

0V

10V

-15V

15V

(b)

Time

0s 2ms 4ms 6ms 8ms 10ms 12ms

V(C1:2)

-10V

0V

10V

-15V

15V

(c)

Fig. 6. Time behaviors of vC1 for different resolutions of the time 

scale; (a): t ∈ [0, 1s]; (b): t ∈ [0, 140ms]; (d): t ∈ [0, 12ms].

Finally, Fig.7 shows the time behaviors of the voltage vC2

and of the current iL, confirming the presence of chaotic

beats for all the variables of the designed circuit.

Time

0s 0.2s 0.4s 0.6s 0.8s 1.0s

I(V1)

-40mA

0A

40mA

SEL>>

V(L:2)

-10V

0V

10V

Fig. 7. Time behaviors of vC2 ( ≡V(L:2)) and of iL ( ≡ I(V1)).

IV. CONCLUSIONS

The conclusion of the study (illustrated in this paper and 

the companion one [1]) is that the recent phenomenon of

chaotic beats can be obtained in a modified version of the 

Chua’s circuit, characterized by two sinusoidal inputs

with slightly different frequencies. In particular, in order

to satisfy the constraints imposed by the beats dynamics

[1], this paper has shown a new implementation of the

characteristic of the Chua diode, with the following

advantages: i) the slopes and breakpoints can be set

independently; ii) the breakpoints are independent of the

saturation levels of the op amps. PSpice simulations have 

confirmed the chaotic nature of the phenomenon, along

with the effectiveness of the design approach. The next

step, on which the authors are currently working, is the

hardware implementation of the designed circuit.
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Abstract— Character of changes of slip regimes in 

experiments on laboratory spring-slider system

under external forcing have been investigated. Here

we report the experimental evidence of induced by 

external periodic electromagnetic (EM) influence 

phase synchronization in slip dynamics. 

I. INTRODUCTION 

It is well known that many physical, biological or 

technical systems often respond in a very original

way to external driving signals. One of possible 

response is synchronization. For the last decade

synchronization phenomena of complex dynamical

systems has attracted much interest [1]. At present

various types of synchronization is known, e.g.

complete or identical synchronization, generalized 

synchronization, lag and phase synchronization [1, 

2, 3].

In present study phase synchronization in the

experimental spring-slider system is shown.

Recently, in the experiments on laboratory spring-

slider system subjected to a constant pull, with weak

mechanical or EM periodic forces superimposed on

it was shown that the instability (here, slip) of the

mechanical system driven close to the critical state

can either be initiated or hampered under strong 

external EM pulses [4, 5]. This observation, together 

with earlier reports about essential influence of

strong external electrical impact on dynamics of 

seismic systems mechanics [5, 6], points that the EM

field can affect and even control the mechanical

stability of systems that are close to the critical state.

It was found that variable external periodic EM 

forcing leads to the clear phase synchronization of 

slip of spring-slider system.

II. MATERIALS AND METHODS

    Experimental setup of our experiments

representing itself a system of two plates of 

roughly finished basalt (with average height of 

surface asperities of 0.1–0.2 mm), where a 

constant pulling force was applied to the upper 

(sliding) plate [5, 6]. In addition, the same plate 

was subjected to electric periodic (50 Hz) 

perturbations with variable amplitude, which 

was much weaker when compared to the pulling 

force.

    Different regimes of slip were excited

depending on the amplitude of applied weak 

external EM influence (Fig. 1). Slip events, 

were recorded as acoustic emission bursts.

Fig.1.a) Acoustic emission during slip  and b) variable

external periodical EM influence. 

Fig.2.a) Enlarged recording of acoustic emission during

slip  and b) external periodical EM influence at complete

phase synchronization (central part of Fig. 1). 

    Acoustic emission waveforms as well as

sinusoidal EM signal (f = 50 Hz) were digitized at

44 kHz. 
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In order to be able to use easiest approach for 

estimating of phases we have transformed digitized 

waveforms in that way to have well pronounced

sharp picks as markers. For this purpose, after

subtraction of noise, consecutive wave trains from

acoustic waveforms were picked up. Then time

series of maximums in wave trains were composed

(Fig. 3). The same was done for external periodic 

signal. After all, because our dataset was 

transformed to a spike train containing distinct 

markers we have used phase difference 

determination technique described in Pikovski [1].

Fig.3. Part of time series of consecutive amplitudes  in

acoustic signal.

As statistical measure of the quality of

synchronization we have calculated the full width

at half maximum (FWHM) of probability density

distribution of phase differences.

    In order to have additional quantitative tests for

temporal variation of phase synchronization

Shannon entropy S , where 

is the probability of event to occur within the i

box, was calculated for mentioned phase 

difference sequence. Then in order to evaluate the

strength of functional dependence between phase

variation of analyzed waveforms and external

sinusoidal signal we used a measure of statistical 

independence between two variables, the averaged

mutual information:
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[7, 8], where  is probability of finding 

 measurement in time series,

is joint probability of finding 

measurements  and  in time series 

and T  is the time lag. 

III. RESULTS AND DISCUSSION 

The regimes of slip recorded as acoustic emission

vary from the perfect synchronization of slip events

with the perturbing periodic EM impact, to the

complete desynchronization of microslip events and 

perturbations.

 As it follows from our results, in our Experiments

on the spring-slider system we deal with phase 

synchronization of microslip events. Indeed, well 

defined horizontal part of synchrogram in Fig. 4a, 

represents time during which the acoustic emission

become phase synchronized to the external 

sinusoidal influence in wide range of their

amplitudes.

Fig. 4. a) Phase difference between acoustic emission and

sinusoidal signal. b) FWHM) of probability density

distribution of phase difference, c) Shannon entropy of 

phase difference, d) Mutual Information variation

between phases of acoustic emission and external

sinusoidal forcing.

    It is known that probability density distribution

must be narrower for synchronized signal comparing

to non synchronized one. As it follows from Fig. 4 b,

N  D  E  S        2  0  0  4

120



density distribution is indeed much more narrow for 

the part of Fig. 4a, attributed as synchronized. 

    Moreover, clear decrease of entropy value 

indicates that dynamics of acoustic emission 

becomes much more regular for this part of acoustic 

emission data set (Fig. 4 c).  

    It is interesting that there exists some transitional 

effect before and after phase synchronization in 

acoustic emission visible as two clear minima in 

extent of functional interdependence between 

acoustic emission and EM sinusoidal forcing (Fig. 4, 

d).

IV. CONCLUSIONS 

    Influence of external EM field on spring-slider 

system can significantly affect their mechanical 

stability. In wide range of amplitudes external 

periodic forcing lead to clear synchronization of 

micrislip. The effect of phase synchronization  of 

slip was established.
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Abstract— The present work is an approach to a

real problem suggested to us by the Psychiatry Unit

of the Hospital Complex of Badajoz: eating disorders

(EDs). The treatment of these patients is focused on

the control of their weight. Since this is an objective

measurable variable that is sufficiently representative

of the disease, we believe that its analysis may provide

interesting results with application in clinical prac-

tice.

An exhaustive analysis of the time series of the daily

weights of hospitalized patients compared with those

of control subjects and tested against simulated se-

ries revealed that linear techniques are insufficient to

explain the underlying dynamics. It was more useful

to approach the problem within the conceptual frame-

work of the theory of non-linear dynamic systems.

As the principal conclusion drawn from the work,

we conjecture that the fractal dimension of the attrac-

tor that appears in the phase diagram of the weight

allows one to characterize the behaviour of the ED

patient.

I. THE PROBLEM

The objective that we set ourselves in beginning

this work was to approach real problems that arise in

psychiatry with the aim of modeling and characteriz-

ing the symptoms of different psychiatric alterations

and of evaluating the corresponding therapies, in order

to establish objective means of diagnosis and progno-

sis.

In psychiatry, diagnosis is based fundamentally on

the patient’s "state", which is the information needed

to describe a system, while prognosis tells of the "dy-

namics", i.e., of the rules that govern how the state of a

system changes over time. One could hence think, as

in a dynamic system, of a patient whose psychopatho-

logical alteration evolves over time.

In particular, the present work centres on a problem

that arouses great interest amongst health personnel –

eating disorders (EDs). These are problems of great

relevance socially and medically because of their sin-

gularity, gravity, and social interest, and their com-

plexity and resulting difficulties in diagnosis and treat-

ment. If not treated early on, they can evolve into sit-

uations of extreme gravity [1].

Anorexia nervosa (AN) and bulimia nervosa (BN)

are the principal ED diagnoses. They predominantly

affect females – the male:female ratio is 1:10. The age

of onset is usually around adolescence.

The variable chosen for analysis was the subject’s

daily weight, measured while still fasted in the morn-

ing by the health professional, using a precision scale.

This variable was selected because it forms the central

axis of treatment.

Working with real data involves a series of limi-

tations that, in the present case, are augmented by

the fact that the data are from humans. In general,

these time series are short and noisy, and have a non-

stationary behaviour. Consequently, one must apply

the analytical methods with especial caution.

In so far as possible, we eliminated biases in the

results and preconceived ideas by using a double blind

technique and a control group for comparison.

II. DESCRIPTION OF THE DATA

The study environment was the Psychiatry Unit of

the Hospital Complex of Badajoz. All the patients

were diagnosed with some ED according to the crite-

ria of the DSM-IV manual [2] and treated in the same

context, receiving the same pharmacological treat-

ment, diet program, and cognitive-behavioural orien-

tation psychotherapy. Table 1 summarizes the main

characteristics of the time series analysed:

Number of cases ED Feeding

33 AN Oral

4 AN NGT

20 Control Normal

8 Control Diet

10 Others

75
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So as to carry out comparative studies, we shall

work with the normalized weight, i.e.

=
1

× 100 = 1 2 (1)

where represents the weight recorded for the th

subject on the th day of monitoring, with being

the length of the series. We shall then denote by

© ª
=1

= 1 2 (2)

the normalized time series corresponding to the th

subject, where is the total number of cases

analysed.

Figure 1 plots an example of each of the patterns of

behaviour that we found.

75

100

125

150

1 11 21 31 41 51 61 71

t

x
(t

)

NGT-AN

AN

Control

Diet

BN

Ant-AN

Fig. 1. Examples of the time series analysed. From top to

bottom: NGT-fed AN patient, orally-fed AN patient,

control subject eating normally, control subject on a

strict diet, BN patient, and patient with a history of AN.

One observes in all the series except those of the

healthy controls trends that are more marked the

greater the control of the treatment – diet or NGT

feeding. The fluctuations are greater in the series

corresponding to ED patients, especially orally fed

anorexia nervosa or bulimia nervosa patients.

III. RESULTS

The linear models that we used as a first approxi-

mation suffer from major limitations [3]. Since they

interpret all the regular structure of the data as linear

correlations, this means that small changes in the sys-

tem have small effects. This, however, is not the be-

haviour that is typical of psychiatric patients. In their

evolution, a multitude of variables interact with each

other such that the outputs are not proportional to the

strength of the inputs.

More interesting results were provided by tools cor-

responding to non-linear dynamic systems.

A. Simulation

Given the limited number of cases available, we de-

signed two algorithms, one based on logical rules and

another on the empirical distribution function, to sim-

ulate series with patterns of behaviour similar to those

of the group that was used for learning. For more de-

tails, see [4].

B. The phase space

The phase space representation is a very effective

means of displaying in a single plot all of a system’s

dynamics, since the axes of the phase space contain all

the aspects of the system’s dynamics. In the present

case, the plot in the phase plane of the normalized

weight, versus the variation of the weight, 0

shows more clearly the different temporal evolution

patterns (Figure 2).
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Fig. 2. Two-dimensional phase space representing geomet-

rically the evolution of the time series shown in Figure

1. The variable is the patient’s normalized weight,

and 0 is the variation in weight on the th day of

monitoring. The vertical lines mark significant changes

in the feeding of the subject, the horizontal arrows the

direction of the evolution of the weight, and the other

arrows the direction of the evolution of the trajectories.

There appears a possible attractor in the cases of the
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orally-fed ED patients, and the subjects on a strictly

controlled diet present an approximately linear behav-

iour. One observes that the main difference between

patients and healthy subjects lies in the space occu-

pied by their corresponding trajectories.

C. Estimate of the dimension

To characterize the different types of temporal evo-

lution, we used the fractal dimension of the attractor

that appears in the phase plane, based on the general

expression [5]:

( ) =
1

1
lim

log
P ( )

=1

log
(3)

where ( ) is the number of boxes of side needed

to cover the object, and is the probability that the

trajectory passes through the th box. The particu-

lar cases = 0 1 2 are equivalent to calculating the

capacity, information, , and correlation di-

mensions, respectively.

In view of the limitations of the time series with

which we were working, we took certain precautions

to ensure the consistency and robustness of the re-

sults. Firstly, we estimated the dimension using the

different definitions ( , and ), finding compa-

rable results. Secondly, we estimated the values over

time (i.e., for time series of lengths 1,2, up to ) for

each case analysed, finding that the behaviour of the

ED patients can be characterized by the corresponding

fractal dimension for series lengths 30. Finally, we

estimated the dimension of a good number of series

obtained by simulation.

Figure 3 shows the estimates of for the real cases

and for the simulated series1.

The value of the dimension was between 1 and 2

[6] for all the cases studied. At the lower end of the

range were the values corresponding to the time series

of strictly controlled subjects (either on a diet, or with

NGT feeding). The intermediate region corresponded

to the orally-fed ED patients. Finally, the upper end

of the range corresponded to the control subjects. The

values obtained for the simulated series lay within the

same range of values as those of the series that were

used in the learning stage of the simulation algorithms

for both patients and controls.

IV. CONCLUSIONS

We would highlight the following as the most inter-

esting conclusions:

1The and results were very similar, and are not shown for

the sake of simplicity.
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Fig. 3. Estimates of the capacity dimension versus length

of the time series. The plots correspond to: AN patients

(•) and simulated series trained with AN-patient series

( ); control subjects (N) and simulated series trained

with the control-subject series (×); and subjects with

some other type of pathology maintained on a strict diet

or NGT-fed anorexia nervosa patients (¥).

• We studied the phase diagram of the temporal evo-

lution of the weights of ED patients, characterizing

this evolution on the basis of the fractal dimension of

the attractor.

• To solve the problem of the limited number of time

series available of ED patients, we designed a simu-

lation strategy that allows one to obtain a unlimited

number of sequences with properties similar to those

of the originals. The estimates of the dimension of

the simulated time series were comparable to those of

the group that was used in the learning stage of the

simulation.

• To check the consistency and robustness of the esti-

mates of the fractal dimension, we used different de-

finitions of this dimension, and verified the monoto-

nous nature of the relationship between the length of

the series, beyond a certain minimum value, and the

estimate of the dimension.

• The estimates of the fractal dimension of the phase

diagrams of subjects with strictly controlled feeding

were close to unity. Completely the contrary was the

case for the healthy subjects, who had no kind of forc-

ing or restriction in their eating: they presented the

highest values of the fractal dimension. Finally, the

dimensions for the orally-fed ED patients were inter-

mediate in value, being higher the more irregular their

behaviour.

• As a result of this study, we conjecture that the box-

counting dimension has shown itself to be a measure

of great utility in characterizing the evolution of pa-
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tients with eating behaviour disorders, since it can as-

sist the therapist in selecting treatment strategies.

The results presented in this report are in reality a

starting point. We recognize that many open ques-

tions remain into which we would like to go deeper

in the future. For example, in which direction should

the therapist lead the patient? Towards linear behav-

iour or towards chaotic behaviour? Nevertheless, we

were greatly encouraged by the interest that our re-

sults aroused in the clinical personnel with whom we

were collaborating, especially in regard to the objec-

tive assistance that this could represent in their deci-

sions about treatment, although it can not replace their

own criteria.
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Abstract—We report the experimental observation
of homoclinic chaos in two Chua's oscillators
diffusively coupled in the weak coupling limit.
Evidence of homoclinic orbit is found by tuning
control parameters when one oscillator is double-
scroll chaotic in the period-adding regime while the
other oscillator is in excitable state. Near
homoclinic chaos, the return time maps show a
distribution in the periods characterizing chaos.

1. INTRODUCTION

A homoclinic orbit is biasymptotic to a saddle
type equlibrium set. In 3-D, the simplest
Shil’niknov’s scenerio deals with a saddle focus.  It
has been shown that in the vicinity of a homoclinic
orbit, there are countably infinite number of periodic
orbits if it satisfies Shil’nikov criteria [1,2]. The
latter is stated in terms of the eigen values of the

fixed point (σ ± jω,  -γ). When σ and γ  are
positive, the orbit approaches the saddle focus along
the stable eigendirection spiraling away in the
unstable manifold corresponding to the complex

conjuagte eigenvalues. When σ and γ are negative,
the orbit spirals-in along the attractive two
dimensional  plane and exits along the unstable
direction. The Shil’nikov condition refers to

⎪γ/σ⎪>1. Although, the geometry of the homoclinic
chaos appears highly regular, its chaotic behavior is
characterized by  large variations in the return times
of unstable periodic orbits close to the homoclinic
point. As the homoclinic orbit is structurally
unstable,  it is not easy  to observe in experiments
even though homoclinic chaos has been observed
previously in many experiments, such as liquid
crystal flow [3], CO2 laser [4], optically bistable
device [5] and others systems.

Homoclinic chaos has striking similarities with
spiking train of biological neurons and it is
considered as one of the important mechanism for
the emergence of spiking and bursting [6,7].

Moreover, recent investigations on CO2 laser [8-9]
also show promise in encoding messages in the
interspike intervals of homoclinic chaos for its
possible application in secure communication. While
the Shil’nikov condition refers to a complete
approach to homoclinicity, several studies [10-12]
show that incomplete approach is seen in many
dynamical systems. In both cases, periodic states of
period adding type dominate the bifurcation
diagram.  Numerical methods [13] are available to
obtain both homoclinic and heteroclinic orbits in
Chua's circuit, but experimental observation of
homoclinic oscillation in undirectionally coupled
Chua's circuits was first reported in our earlier paper
[14].

Fig.1. Time series of VC1 with L=2,3,4 for circuit

components (a) R1,=1386Ω , R8=1833Ω and RC=95 kΩ (b)

R1,=1427Ω , R8 =1954Ω and RC=136.6 kΩ (c)  R1,=1384Ω ,

R8 =1833Ω and RC =101 kΩ.  
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Here, we report our experimental observations on
homoclinic chaos of the Shil’nikov type using two
diffusively coupled Chua's oscillators. The Chua's
circuit is well known for its double scroll attractor
[15] with three saddle foci, one near the origin and
other two in mirror symmetric positions. As can be
seen from Fig.1 and Fig.3, homoclinic chaos
observed in our experiment has a special feature,
namely,  the orbit approaches one of the saddle foci
along the stable eigenvector and spirals away in the
unstable eigenspace, in contrast to the previous
experiments [3-5]. This homoclinic structure has
particular relevance to the mechanism of emergence
of bursting oscillations near a homoclinic
bifurcation, in a generic sense, as discussed in [6].
We have also observed bursting type oscillations
near homoclinic bifurcation which will be reported
elsewhere. The evidence for homoclinic chaos are
seen in the form of mixed mode oscillations
denoted by L

s
 where L and s refer to the large and

small amplitude loops respectively. In our set up, we
have observed L =2,3 and 4, the large loops near one
saddle focus and smaller loops around the other
saddle focus.

In the next sections we describe our circuit
scheme with the details of homocilinic chaos and its
return map of return time  to characterize its chaotic
behavior.  The last section contains conclusions.

II. HOMOCLINIC CHAOS IN COUPLED CHUA'S
OSCILLATORS

For a selected parameter space, the double scroll
chaotic trajectory mostly revolves around the mirror
symmetric saddle foci but occasionally switches
from one to the other. Here we used a double scroll
oscillator for selected circuit parameters as our first
oscillator. We coupled a second oscillator kept in
stable equilibrium state, instead of introducing a
slow dynamics as usually proposed to obtain spiking
or bursting oscillations for many other systems,
biological [6-7] and physical [16]. Effectively, the
double scroll trajectory of the first oscillator is
pushed close to one of its mirror symmetric saddle
foci by the stable node of the second oscillator.
Homoclinic chaos is then obtained by adjusting the
coupling resistance near the homoclinic bifurcation.
The mechanism of how the presence of a stable node
of second oscillator induces homoclinic chaos in the
first oscillator is yet to be understood properly
although it seems to behave like introducing a slow
dynamics. The circuit diagram is shown in Fig.2.

Fig.2. Coupled Chua’s Circuit  :power supply is ±9V

Fig.3. Homoclinic chaos for L=4: (a) reconstructed in 3-D

space with measured time series of VC1(t), VC2(t) and time

delayed VC1(t-4), (b) time series of VC1(t). Arrows indicate

direction of the trajectory. R1=1384Ω , R8=1833Ω ,

RC=101kΩ .
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The governing equations of the coupled circuit are
given by

where the piecewise linear function f(VC) is given by

The slopes a1,2 and b1,2 of the piecewise linear
function are [17]

The state variables are the voltages VC1,C3,VC2,C4

measured at respective capacitor nodes and the
inductor current IL1,L2. Measured time series of VC1

and VC2 are recorded using a digital oscilloscope

with a sampling rate of 40µs.
The first oscillator is set at double scroll chaotic

state in the period-adding regime by R1 and the
second oscillator is set at excitable state (stable
equilibrium) by R8. Then for a selected coupling
resistance RC chosen as the bifurcation parameter,
homoclinic cycles make L large amplitude loops and
s small amplitude loops as shown in Fig.3(a). The
number of L-loops is entirely controlled by R1, while
RC controls the number of s-loops. The latter is seen
near the saddle focus between large spikes. Once R1

is set, the control parameter RC is adjusted within a
narrow range near the homoclinic bifurcation when
the number of s-loops varies randomly with large
fluctuations in the interspike intervals of quasi-
homoclinic orbits. It may be noted that the range of
coupling resistance RC is always set in the weaker
limit. The number of s-loops increases as the

trajectory moves closer and closer to the saddle
focus. Theoretically, a countable infinity of unstable
periodic orbits exists near the homoclinic bifurcation
whose fluctuating periods are characterized by a
large variation in the numbers of s-loops. In our
experiment, we obtain a large variation in the
number of s-loops for a limited measurment time.
This is also revealed by the large variations in the
interspike intervals for a fixed RC value as shown in
the time series in Fig.1 and Fig.3(b). A plot of the
period T with the bifurcation parameter RC is shown
in Fig.4. The period here is defined as the estimated
mean of interspike intervals at a particular RC value.
As RC approaches the homoclinic bifurcation

parameter RC
*≈101kΩ, T increases exponentially.

Although the time period fluctuates for  a fixed RC

value, homoclinic chaos has a characterisitic mean
time period. It reflects the chaotic nature of
homoclinic cycles near the bifurcation point.

Fig.4. Time period with bifurcation parameter: solid curve

is an exponential fitting on experimental data (square).

Parameters: R1=1384Ω , R8=1833Ω, RC
*≈101kΩ for L=4.

III. RETURN TIME MAP

The return time return map is a very useful tool [4]
for the analysis of homoclinic chaos. The global
return time of quasi-homoclinic trajectories are
obtained from the measured scalar signal. The
crossing time of the smaller loops to a voltage level
of VC1=-0.35V indicated by the bold horizontal line
near saddle focus shown in Fig.5(a) are calculated.
The time interval between the successive crossings
with dVC1/dt>0 is taken as t(i) for the ith crossing.
The return time  map in Fig.5(b) shows the
multivalued  structure indicating chaotic behaviour.

IV.CONCLUSIONS

Multi-loop homoclinic chaos has been generated
using two diffusively coupled Chua's oscillators. The
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geometry of the homoclinic chaos in experimental
circuit has relevance to the emergence of bursting in
biological cells. Thus, it could be a useful model for
understanding the mechanism of bursting oscillations
in general.

Fig.5. Retrun time map of homoclinic chaos: (a) measured

time series of VC1 for L=2 . The crossing is indiated by

horizontal bold line at VC1=-0.35, (b) t(i+1) versus t(i)

plot. All time scales are in sec. R1=1389Ω ,

R8=1814Ω, RC=93kΩ.
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Abstract—This paper investigates the possibility to
analyse the structure of unconditional or conditional
(and possibly nonlinear) dependence in financial re-
turns without requiring the specification of mean-
variance models or a theoretical probability distribu-
tion, through an entropy-based test.

I. INTRODUCTION

The most known measure of dependence between
two random variables is the coefficient of linear cor-
relation, but its application requires a pure linear re-
lationship, or at least a linear transformed relation-
ship [see e.g. Granger et al., (1994); Maasoumi et al.,
(2002)], because it is nothing but a normalized covari-
ance and only accounts for linear relationships. How-
ever, this statistics may not be helpful in determining
serial dependence if there is some kind of nonlinear-
ity in the data. In this context, it seems that a mea-
sure of global dependence is required, that is, some
measure that captures linear and nonlinear dependen-
cies, without requiring the specification of any kind of
model of dependence. Urbach (2000) defends a strong
relationship between entropy, dependence and pre-
dictability. This relation has been studied by several
authors, namely Granger and Lin (1994); Maasoumi
and Racine (2002); Darbellay and Wuertz (2000). On
the basis of the above arguments we try to find out a
rationale to the following question: “Is it possible to
inquire about any unconditional, or conditional (and
possibly nonlinear) dependence structure in returns
without requiring the specification of mean-variance
models and theoretical distribution probabilities?”

II. INFORMATION AND PREDICTABILITY

A measure that takes the value 0 when there is to-
tal independence and 1 for total dependence is one
of the most practical ways to evaluate (in)dependence
between two vectors of random variables

�� � � �� � . Let� �� � 	 �� 
 � �  � � be the joint probability distribution

of � �� � � �� � � and � �� � � � � , � �� 
 � � � the underlying

marginal probability distributions, where � is a sub-
set of the observation space of

�� �
and � a subset of a

observation space of
�� � , such that we can evaluate the

following expression:

� � � � �� 	 �� 
 � �  � �
� �� � � � � � �� 
 � � � � (1)

If the two events are independent, then � �� � � �	 
 � �  � � �
� �� � � � � � �� 
 � � � , and so equation (1) will take the
value zero.

Granger, Maasoumi and Racine (2002) consider
that a good measure of dependence should satisfy the
following six ”ideal” properties:

1. Must be well defined for both continuous and
discrete variables;
2. Must be normalized to zero if

�� �
and

�� � are inde-
pendent, and lying between � � and � � , in general;
3. The modulus of the measure should equal 1 if

there is an exact nonlinear relationship between the
variables;
4. Must be similar or simple related to the linear cor-

relation coefficient in the case of a bivariate normal
distribution;
5. Must be metric in the sense that it is a true mea-

sure of ”distance” and not just a measure of ”diver-
gence”;
6. Must be an invariant measure under continuous

and strictly increasing transformations.

Consider two vectors of random variables � �� � � �� � � �
Let � �� � � � �� 
 and � �� � 	 �� 
 be the probability density func-

tion (pdf) of
�� � � �� � and the joint probability distri-

bution of � �� � � �� � � � Denote by � � �� � � � � � �� � � �� � � and
� � �� � � �� � � the entropy of

�� �
, the joint entropy of the

two arguments � �� � � �� � � and the conditional entropy
of

�� � given
�� �

. Then, the mutual information can be
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2defined by the following expression:� � �� � � �� � � � 	 � �� � � �� � � � 	 � �� � 
 �� � �� 	 � �� � � � 	 � �� � � � 	 � �� � � �� � � (2)� � �  �� � � �� � � � � � � � � � � �� � � �� � � � �  !� �� � � � ! � �� � �  ! " � " � #
Since 	 � �� � � $ 	 � �� � 
 �� � � , we have

� � �� � � �� � � $ % ,
assuming equality iff

�� �
and

�� � are statistically inde-
pendent. So, the mutual information between the vec-
tors of random variables

�� �
and

�� � can be considered
a measure of dependence between these variables, or
better yet, the statistical correlation of

�� �
and

�� � .
The statistics defined in equation (2) satisfies some

of the desirable properties of a good measure of de-
pendence [see Granger et al., (2002)]. In equation
(2), we have % & � � �� � � �� � � & � ' , which difficult
comparisons between different samples. In this con-
text Granger and Lin (1994) and Darbellay (1998),
among others, use a standard measure for the mu-
tual information, the global correlation coefficient, de-

fined by: ( � �� � � �� � � � ) * � + � , - � �� � � �� � ! # This measure
varies between % and * being thus directly compara-
ble to the linear correlation coefficient . , based in the
relationship between the measures of information the-
ory and variance analysis. The function ( captures
the overall dependence, both linear and nonlinear, be-
tween

�� �
and

�� � .
According to properties presented by mutual in-

formation, and because independence is one of the
most valuables concepts in econometry, we can con-
struct a independence test based on the following
hypothesis:	 / 0  � � � � � � � � �  � � � �  � � � � � 	 1 0 � � � � � � � � 2�  � � � �  � � � � # If 	 / � then

� � � � � � �% and the independence between the variables is
found. If 	 1 then

� � � � � � 3 % and we reject the
null hypothesis of independence. The above hypothe-
sis can be reformulated in the following way:	 / 0 � � � � � � � % � 	 1 0 � � � � � � 3 % #
The above hypothesis can be reformulated in the fol-
lowing way: in order to test adequately the indepen-
dence between variables (or vectors of variables) we
will need to calculate the critical values. In our case
this is based upon simulated critical values for the null
distribution or the percentile approach1.4

These values have been found through the simulation of criti-
cal values based upon a white noise, for a number of sample sizes.
Given that the distribution of mutual information is skewed, we
can adopt a percentile approach to obtain critical values.

One of the difficulties for calculate the mutual in-
formation from empirical data lies in the fact that the
underlying pdf is unknown. There are, essentially,
three different methods to estimate mutual informa-
tion: histogram-based estimators; kernel-based esti-
mators; parametric methods. According to Modde-
meijer (1999), histogram-based estimators are divided
in two groups: equidistant cells (see e.g. Modde-
meijer, 1999) and equiprobable cells, i.e. marginal
equiquantisation [see e.g. Darbellay, (1998a)]. The
second approach, marginal equiquantisation, presents
some advantages, since it allows for a better adequacy
to the data and maximizes mutual information [Dar-
bellay, (1998a)].

The definition of mutual information is expressed in
an abstract way and it is based on space partitions. To
simplify, let us consider a finite dimension Euclidian
space, 5 � 5 6 7 5 8 � and let 9 � � : ; < = > 4< ? 1 9 � �: @ A = > BA ? 1 be two generic partitions of the subspaces5 6 and 5 8 . Then the mutual information is a positive
number defined as:� C �� � � �� � D E F G HI J K L I M N L O < � A P �� � � �� � � ; < 7 @ A �Q � � � P �� � � �� � � ; < 7 @ A �

P �� � � ; < � P �� � � @ A � R #
The supremum is taken over all the finite partitions of5 6 and 5 8 . The conventions % � S T /U V � % for W $ %
and W � S T U/ V � � ' are used. Darbellay (1998a)
shown that mutual information is finite if and only if
the measure P �� � � �� � is absolutely continuous with re-
spect to the product measure P �� � 7 P �� � . The system9 � 9 � 7 9 �

is a partition of 5 � 5 � 5 6 7 5 8 and
is the product of two marginal partitions, one of 5 6
and another of 5 8 . Marginal equiquantisation con-
sists of dividing each edge of a cell into X (normallyX � Y � intervals with approximately the same number
of points. The approximativeness of the division has
two causes: the number of points in a cell may not be
exactly divisible by X , or some

�
may take repeating

values [for more details see for example Darbellay,
(1998)].

We applied this approach to measure global (lin-
ear and nonlinear) dependence in some financial time

Appendix A lists the 90 Z [ , 95 Z [ and 99 Z [ percentiles of the
empirical distribution of the mutual information for the process\ Z ] ^ Z with ^ Z _ ` a ` a b a c d e f g h , having been made 5000 simu-
lations for each critical value. This methodology was applied as
proposed by Granger, Maasoumi and Racine (2002), and accord-
ing to these authors, the critical values can be used as the base to
test for time series serial independence.
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3series and in the end, we can say that the main advan-
tage of the application of the mutual information in
financial time series is the fact that this measure cap-
tures the global serial dependence (linear and nonlin-
ear) without any request about some theoretical prob-
ability distribution or specific model of dependency.
Even if this dependence is not able to refute the effi-
cient market hypothesis, it is important to the investor
to know that the rate of returns are not independent
and identically distributed.
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III. APPENDIX A

Critical values tables for testing serial indepen-
dence through mutual information fot 	 
 � �  � data.
5000 replications were computed.

N=100
Percentiles

Lag 90 95 99

1 0.0185 0.0323 0.0679
2 0.1029 0.1232 0.1933
3 0.1059 0.1260 0.1722

N=200
Percentiles

Lag 90 95 99

1 0.0092 0.0214 0.0361
2 0.0561 0.0701 0.1080
3 0.0591 0.0918 0.1318

N=500
Percentiles

Lag 90 95 99

1 0.0037 0.0070 0.0144
2 0.0222 0.0369 0.0501
3 0.06799 0.0788 0.1128

N=1000
Percentiles

Lag 90 95 99

1 0.0019 0.0045 0.0071
2 0.0133 0.0191 0.0311
3 0.0340 0.0399 0.0568

N=1500
Percentiles

Lag 90 95 99

1 0.0013 0.0026 0.0045
2 0.0101 0.0133 0.0224
3 0.0222 0.0267 0.0369

N=2000
Percentiles

Lag 90 95 99

1 0.0009 0.0019 0.0033
2 0.0061 0.0094 0.0147
3 0.0169 0.0203 0.0278

N=2500
Percentiles

Lag 90 95 99

1 0.0008 0.0015 0.0030
2 0.0054 0.0078 0.0129
3 0.0134 0.0171 0.0251
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� � � � � � � � � � 	 
 � �  � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � 
 	 � � � � � � � � �

� � � � � � �  ! " � � � �  ! � " # $  % " & & " � % � � '
( � ) " � � ( � � ' � ) $ � * � � � ! �  ) � � � ' �  + � !  ( � � , % � �
+ � � ( , � �  + - . � ) ! ! � " ) ( � � " ( " � � � � , ( � � " � " & � � � ' $  /
� � ) � � � � � " � ( � ) " � � ( " � ( � $ $ ) � " � � * � � � ! �  ) � � � ' �  +

� !  ( � � , % " � � �  # ) � � � " & 0 ) ( � � 1  ( " % ! " �  � �
2 � � ) � � � � � " � 3 4 ! ) � � � 1  5 , ) + � � ! " $  ( $ " �  + � � &   + # ) ( 6
$ " " ! 7 � � � , ( � , �  � � ! � " ! " �  + - � � � � � � " * � � � ) � � � � �  
" � ( � $ $ ) � " � * � � � � , ( � � � � , ( � , �  � � � � ! " � � � # $  � " " # � ) � �
( � ) " � � ( � !  ( � � , % * � � ( �  � 1  $ " !  � � ( $ " �  � " � �  

� � ) !  " & � �  ) % ! $ � � , +  / & �  5 ,  � ( 8 �  � ! " � �  " &
&   + # ) ( 6 $ " " ! " & � �  � 8 � �  % -

9 : ; < = > ? : @ < 9
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K L M N O N P Q R S T Q S R U V W T Q L X U Y U Q Z [ R \ ] ^ W _ _ L X U ` S W a R L ^ [ b U
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Abstract – In this paper the notion of amplitude

modulation of chaotic signals is introduced, similar

to amplitude modulation of harmonic signal. Neces-

sary conditions for modulation and demodulation of 

chaotic carrier are discussed. In particular, the type

of chaotic carrier is discussed from the point of view

of optimal demodulation. Demodulation accuracy 

estimates are also presented. 

I. INTRODUCTION

At present much attention is devoted to

application of chaotic signals in communications. In

particular, it concerns the use of such signals as 

information carrier. As an example, the direct 

chaotic communication systems introduced in [1–3]

can be considered. In those systems processes of 

generation, modulation and demodulation are

performed in radio or microwave band. Different 

modulation schemes are introduced in [1]. In the 

simplest one, the symbol “1” is represented by

chaotic radio pulse at a prescribed position and 

symbol “0” by void position. In the report a 

possibility of application of amplitude modulation

(AM) [4] in the direct chaotic communication

systems is considered. The above mentioned

modulation scheme can be regarded as a special case 

of the amplitude modulation of chaotic signals,

where the information signal is a sequence of video 

pulses.

It is shown in the report that some classical

methods of amplitude modulation and demodulation

can be applied to modulation and demodulation of 

the chaotic carriers. 

III. AMPLITUDE MODULATION OF A CHAOTIC 

CARRIER

Let x(t) be a passband signal, generated with 

some chaotic source, and occupy a frequency band 

[F1, F2]. Next, let’s introduce transformation of the 

chaotic signal x(t), defined by

)()()( txtmtv , (1) 

where )()( 0 timtm  for AM with suppresion 

carrier or 1)(0)( timtm  for AM without 

suppresion carrier, m0 is a constant, and i  is 

an information signal.

)(t

Further we will see that under appropriate 

conditions the demodulation of signal v(t) can be

achieved. This fact allows us to define

transformation (1) as an amplitude modulation of the 

chaotic carrier x(t), similar to amplitude modulation

of harmonic carrier. Moreover, AM of chaotic signal

can be divided into AM with carrier suppression and

without carrier suppression. Consider the spectral

properties of v(t). For that let us apply Fourier

transform to (1). This yields the following 

expression

)()()( fXfMfV , (2) 

where V(f), M(f) and X(f) are Fourier transforms of 

the signals v(t), m(t) and x(t). Symbol means

convolution.

Since the spectrum X(f) of the chaotic signal x(t)

occupies frequency band [–F2, –F1]U[F1, F2] and the 

spectrum M(f) of signal m(t) occupies frequency

band [-W, W], the spectrum V(f) of the signal v(t)

occupies the frequency band [–F2–W, –F1+W]U[F1–

W, F2+W]. Thus the positive frequency band

occupied with the spectrum of the signal v(t) can be 

represented as [F1–W, F2+W]. And the width of this

band ( F ) is represented by expression

WFFF 2)( 12 . (3) 
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IV. DEMODULATION OF THE AMPLITUDE 

MODULATED CHAOTIC CARRIER

Let us evaluate a possibility of recovering

information from the amplitude modulated chaotic 

signal. First, consider the case, when the receiver 

possesses an exact copy of the chaotic carrier 

generated in the transmitter. By analogy with a 

coherent receiver for amplitude modulated harmonic

carrier, let us introduce a coherent receiver for 

amplitude modulated chaotic signal. This receiver 

consists of a multiplier and a low pass filter with the 

cut-off frequency W equal to the baseband width of 

some modulation signal m(t) (see Fig. 1a). 

(a) (b)

Fig. 1. Receivers for AM chaotic signals: (a) – coherent 

receiver; (b) – non-coherent receiver. 

The multiplier performs multiplication of the 

modulated chaotic signal v(t) by a copy of the

chaotic signal x(t), generated in the transmitter. The 

signal at the output of the multiplier can be

represented as 

)]()()[()()()( 2 tytyAtmtxtmtv pb , (4) 

where A is a constant, yb(t) is a component of x2(t)

which occupies the frequency band [-F2 +F1]U[F2–

F1]; yp(t) – is a component of x2(t) which occupies 

the frequency band [–2F2,–2F1]U[2F1, 2F2]. Further 

we will consider the spectrum properties only for 

positive frequencies. Let us rewrite equation (4) as 

)()()()()()( tytmtytmAtmtv pb . (5)

First term in (5) is a useful signal; the second one is

low-frequency disturbance, which occupies

frequency band from zero up to F2–F1+W, and, 

finally the third term is a high-frequency

disturbance. The use of low-pass filter after

multiplier partially allows to eliminate the

disturbances. To completely remove high-frequency

disturbance the following condition for the cut-off

filter frequency must be satisfied 

1FW . (6)

The low-frequency disturbance cannot be 

completely eliminated in general, but its influence 

can be adjusted by choosing the chaotic carrier type.

V. NON-COHERENT RECEIVER

A possible structure of non-coherent demodulator

of chaotic signal is depicted in Fig. 1b and its

structure is similar to the structure of non-coherent 

demodulator of harmonic carrier. Demodulator

consists of an envelope detector (quadratic, for

example) and a lowpass filter. If the modulated

chaotic carrier (1) is fed to the input of quadratic 

envelope detector then the signal at the output will

be

)()()()()()( 222 tytmtytmAtmtv pb , (7) 

where A, yb(t), yp(t) are the same as in expression 

(4). We can see from (7) that similar to the non-

coherent receiver of amplitude modulated harmonic

carrier, for non-coherent receiver of amplitude

modulated chaotic carrier the modulation must be

without suppression of carrier. For modulation

without suppression carrier the expression (7) can be 

rewritten as 

)())(2)((

)())(2)((

)()(2)(

0
22

0

0
22

0

2
0

tytimtim

tytimtim

tAitAimAtv

p

b
(8)

In (8) the second term is proportional to the original 

information signal. The last term is the high 

frequency signal that can be removed by lowpass 

filter after envelope detector. The last term occupies 

frequency band (9) 

]22,22[ 21 WFWF . (9) 

To remove high-frequency signal, band (9) must not 

coincide with the low-pass filter frequency band, 

i.e.,

WFW 22 1  or 1
3

2
FW . (10) 

The third and fourth terms in (16) are low-frequency

disturbance whose frequency band partially overlaps 

the frequency band of information signal. This

disturbance cannot be eliminated completely by
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filtering, so it corrupts information signal at the 

detector output. However, appropriate choice of

chaotic carrier parameters can reduce the level of 

disturbance. In the next section we will consider the

phase chaotic signal as a carrier, and we will show

that disturbance can be rather low for such type of

carrier.

VI. PHASE-CHAOTIC CARRIER

Let us define a phase-chaotic signal as a signal

with chaotic phase  defined by)(t

))(2cos()( 0 ttftx , (11)

where  is the center of frequency band of x(t).

 is a chaotic signal produced by a chaotic

source,  is a constant parameter. It can be seen

from (11) that the larger the larger the amplitude

of chaotic signal , so it yields to spectrum

spreading of x(t). Otherwise, with decreasing 

0f

)(t

)(t

 the 

spectrum of x(t) becomes narrower and for 0

x(t) tends to harmonic signal. 

Let for fixed  the spectrum of x(t) occupy the 

band [F1, F2]. Consider signal x2(t):

))](24cos(1[
2

1
)( 0

2 tftx . (12)

If one substitutes x(t) in (4) by (12), then A = 0.5, 

yb(t) = 0, ))(24cos(
2

1
)( 0 tfty p

)(tyb

. Therefore, for 

double-sideband amplitude modulation of x(t) and 

for coherent receiver is zero = 0. So, it is 

possible to recover information (modulating) signal 

without disturbances by using proper lowpass filter. 

Consequently, the phase chaotic carrier can be re-

garded as the optimal carrier among all the chaotic 

carriers involved. 

Let us analyze the signal structure at the output of 

the quadratic detector (7) for non-coherent demodu-

lation of phase-chaotic carrier. Low-frequency dis-

turbance is zero yb(t)=0, as well as for coherent re-

ceiver. High-frequency disturbance yp(t) can be 

completely removed by low-pass filter. So, at the 

receiver output we have the signal

)()( 2 tAmtv . (13)

Taking into account that modulation is without car-

rier suppression, we have 

))()(21()( 22

00 timtimAtv . (14) 

Quadratic signal component occupies frequency

band [0, 2W], so we can await that the power of this

component will be two times smaller after low-pass

filter with cut-off frequency W. Therefore, the power

ratio of information signal 2))(2(~ tmiPs  and dis-

turbance quadratic signal 222 ))((
2

1
~ timPd  is de-

scribed by

)8lg(10)/lg(10
2

0mPP ds  [dB], (15)

where it is implied that 1)(2 ti  and 0)(ti . From

(15) we can see that the quality of recovered infor-

mation signal at the receiver output becomes worse

with increasing modulation depth m0.

VII. NUMERICAL SIMULATION

Numerical simulation of demodulation of phase 

chaotic carrier has been carried out to evaluate the

quality of the recovered information signal at the

receiver. The modulating (information) signal is 

lowpass. Both coherent and non-coherent receivers 

are considered. For evaluation of signal quality we

introduce the signal to disturbance ratio (S/D) 

defined by

)/lg(10/ ds PPDS , (16) 

where Ps is the power of information signal i(t), Pd is 

the power of the difference between original

information signal i(t) and the evaluated signal i’(t)

at the receiver output. All frequencies were scaled to

1 (Nyquist frequency). Numerical simulation

consists of two stages. 

At the first stage, the double sideband modulation

of phase-chaotic carrier with coherent receiver was

investigated. Influence of information signal band-

width W and parameters of phase-chaotic carrier on 

quality of demodulated signal were analyzed. Spec-

trums of information signal, chaotic carrier and 

modulated chaotic carrier and corresponding wave-

forms are depicted in Fig. 2. It was shown that when

frequency bands corresponding to the modulating

signal and the chaotic carrier do not overlap, i.e.
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when condition (10) is fulfilled, the quality of de-

modulated signal is rather high (S/D =~ 77 dB, Fig. 

2). If condition (10) is broken the quality of

demodulated signal is rather low (S/D =~ 15 dB).

(a)

(b)

Fig. 2. Simulation results under conditions W=0.18,

F1=0.33, F2=0.53: (a) – spectrums of information, chaotic 

and modulated chaotic signal; (b) – original information

signal i(t) and error signal e(t).

At the second stage the double sideband modula-

tion with non-coherent receiver was investigated for

different modulation depth m0 and bandwidth W, F1,

F2. Simulation results of the quality of demodulated

signal as a function of modulator parameters are

depicted in Fig. 3, where the S/D vs bandwidth W

for different modulation depth m is plotted. One can 

see that disturbance of demodulated signal decreases 

with decreasing modulation depth. This fact qualita-

tively agrees with expression (15) that also points at

increasing quality of demodulated signal out with 

decreasing modulation depth. However, it is neces-

sary to take into account that the presence of noise

does not allow to make the value of modulation

depth arbitrarily small because it yields increase of

noise power at the output of the receiver, so the 

compromise value of modulation depth must be 

chosen.

Fig. 3. S/D ratio vs information signal bandwidth W, for 

different m0 and F1=0.33, F2=0.53.

VIII. CONCLUSION

The method of amplitude modulation of chaotic 

carrier is proposed. It was shown that quality of

demodulated signal depends on parameters of 

modulation-demodulation scheme and on type of

chaotic carrier. In particular it was shown that the 

use of phase-chaotic signal and coherent receiver 

gives rather high quality of demodulated signal. This 

fact allows us to conclude about potential applicabil-

ity of amplitude modulation of chaotic carrier for 

direct chaotic communication systems.
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Abstract—The Fitzhugh-Nagumo-like systems are
well-know in physiology and they contributed enor-
mously to the formation of a new field of applied math-
ematics, the study of excitable systems. Our work
provides a study of some bifurcations associated with
canonical return maps for a Fitzhugh-Nagumo sys-
tem. We characterize the dynamics, in particular some
routes to chaos, in special regions of the parameter
space.

I. INTRODUCTION

The present paper analyses a piecewise-linear
Fitzhugh-Nagumo system depending on three real pa-
rameters A, θ and T .

The Fitzhugh-Nagumo model governs the initiation
of the nerve impulse and can be derived from a sim-
plified model of the cell membrane. Here the cell con-
sists of three components: a capacitor representing the
membrane capacitance, a current-voltage device for
the fast current, and a resistor, inductor and battery in
series for the recovery current. In the 1960s Nagumo,
a Japanese electrical engineer, built this circuit using
a tunnel diode ([1]), thereby attaching his name to the
system.

The presence of the three parameters leads to a
large variety of dynamics, each of them responsible
for a specific physiological function. For physiol-
ogists it is highly desirable to have a global view
of all possible qualitatively distinct responses of the
Fitzhugh-Nagumo model for several values of the pa-
rameters. This reduces to the knowledge of the bifur-
cation diagram.

Our goal in this paper is to use the bifurcation the-
ory to characterize the dynamics of a special type of

return maps for a singular system.

II. DESCRIPTION OF THE MODEL

The model is a planar piecewise linear system for
which the equations are given by
{

εdv
dt = f(v) − w + ψ(t) ≡ F (v,w, t)

dw
dt = v − δw ≡ G(v,w)

(1)

Here f : R −→ R is the continuous, piecewise linear
function defined by

f(v) =

⎧⎨⎩
−α1v + γ1 for v < vl

α2v − γ2 for vl ≤ v < vr

−α3v + γ3 for v ≥ vr

where αi and γi, i = 1, 2, 3, are fixed positive con-
stants and 0 < vl < vr. Without loss of general-
ity we assume that γ1 = 0. The forcing function
ψ : R −→ R is a piecewise constant periodic func-
tion of period T , defined by

ψ(t) =
{

0 for mT ≤ t < (m + θ)T
A for (m + θ)T ≤ t < (m + 1)T

m = 0,±1,±2, ...

where A > 0 and θ ∈ [0, 1] . In the context of bio-
physical models of excitable membranes, this forcing
corresponds to injection of a depolarizing current dur-
ing a fraction (1 − θ)T of each cycle. The dynamical
variables of the Fitzhugh-Nagumo model are v and w.
The variable v represents the voltage and is called the
excitation variable, while variable w is called the re-
covery variable. We assume that ε is very small. The
assumption ε << 1 often appear in the literature in
the form ε → 0. Since the small parameter multiplies
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the derivative dv
dt , the system is called singularly per-

turbed. Figure 1 shows the nullclines of the system
(1).
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Fig. 1. A schematic of the nullclines of (1). The coor-
dinates for the standard values of the parameters are
α1 = 2, α2 = α3 = 1, γ2 = 0.6 and γ3 = 1.8.

For these parameters A1 = 0.4, A2 = 0.8, A3 = 1.8,
vl = 0.2 and vr = 1.2.

As Othmer and Watanabe showed in [2], in the sin-
gular limit ε = 0, the system (1) reduces to

dw

dt
=
{

−λi(w − w∗

i ) , (v,w) ∈ L−

i

−λi(w − (w∗

i + A∗

i )) , (v,w) ∈ L+
i

(2)

where w∗

i ≡ γi

1 + δαi
and A∗

i ≡ A

1 + δαi
, i = 1, 3.

The w∗

i (resp., w∗

i + A∗

i ) are the w-coordinates of
the rest points (resp., virtual rest points, i.e., the inter-
section of the extension of L±

i with G = 0). We have
w∗

1 = 0, w∗

1 + A∗

1 = W5, w∗

3 = W12, w∗

3 + A∗

3 =
W11. Note that solutions are constrained to the lines
L±

i when ε = 0.

III. DISCRETE DYNAMICS. BIFURCATIONS AND

ROUTES TO CHAOS

Maps from an interval to itself provide a simple and
helpful context, which allow us to study interesting
properties of several dynamical systems. As in [2] and
[3], we shall use a map derived from the singular sys-
tem. In order to facilitate comparison of return maps

-0.5 0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

1

1.5

2

W

V

Fig. 2. Solution of (2) in phase plane for (A, θ, T ) =
(0.6, 0.4, 4.0).

for different combinations of the parameters A, θ and
T , we map the w-coordinate into the unit interval via
transformation

xn =
{ w

W8+W10
if (v,w) ∈ L−

1 , w ≥ 0
1 − w

W8+W10
if (v,w) ∈ L−

3 , w ≥ 0
.

The 3-parameters family of return maps are ob-
tained by numerically computing the trajectories of
5000 points in (0, 1) for one period of the forcing. By
a period one (or return map) we mean a map from the
unit interval to itself that maps a point into its image
after time T (one cycle of the forcing). The interval
(0, 1) decomposes into a disjoint union of character-
istic intervals. (See [2] and [3] for more details). We
can gain some qualitative insights by studying repre-
sentative return maps that arise for several parameters
values. If we consider the invariant regions of the re-
turn maps for specials values of the parameters, we
find that we can have one of the following three types
of canonical maps which arise when 0.8 < A ≤ 1.8:
• Type A maps - this family has three branches and
two turning points,
• Type B maps - this family has four branches and
three turning points,
• Type C maps - this family has two branches and
one turning point.

In this paper we restricted our attention to Type A
maps (quoted as fA,θ,T ), which have three branches
and two turning points (Fig.3).

The maps can display various qualitative types of
behavior for different values of the parameters A,
θ and T : steady states, periodic cycles of differ-
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Fig. 3. The computed return map for (A, θ, T ) =
(1.1, 0.1, 1)

ent lengths and chaos. The changes from one form
of qualitative behavior to another as a parameter is
changed are called bifurcations, and the parameter
values at which they occur are called bifurcations
points. An important goal in studying the return maps
is to understand the bifurcations that can appear for
several values of the parameters. Instead of formu-
lating general statements at this point, we are going
to discuss explicit cases, which occur in the model.
We consider the dynamics for small fixed θ and vari-
able T . To see the long term behavior for all values
of T ∈ (0.2, 1.25) at once we plot the orbit diagram,
which show only the attractive orbits. Figure 4 plots
the system’s attractor as a function of the period for
A = 1.1. We fix θ at 0.1 and we iterate the return map
from a single point 2000 times and plot the last 100
iterates.

0.6 0.7 0.8 0.9 1 1.1 1.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4. Images under the return map of the initial point
x0 = 0.5 versus the period T for θ = 0.1 and A = 1.1.
The initial point is iterated 2000 times and the last 100
iterates are plotted for each period in this figure.

When the parameter θ and A are fixed and the pe-
riod T is increased, the slope of the middle branch
becomes steeper while the other two pieces become
flatter.

The last numerical results raise many important
questions. We attempt to identify types of bifurca-
tions that can occur for several values of the param-
eters when T decreases from 1.25 to 0.2. Since the
family of return maps is obtained by numerically com-
puting the trajectories of a certain number of points in
(0, 1), we must rely on graphical and numerical argu-
ments to elucidate the qualitative behavior. The ana-
lytical methods don’t work in this context.

Firstly, amongst the bifurcations of Type A maps,
we quote two types of bifurcations that occur when
T decreases from 1.25 to 0.2: period-doubling bifur-
cation (for instance at T ∼ 1.094) and saddle-node
bifurcation, which explains the birth of a periodic cy-
cle at T ∼ 0.874. These maps don’t undergo a suc-
cession of period-doubling bifurcations which lead to
chaos. We don’t have a period-doubling cascade in
periodic windows like in the family of quadratic maps
ax(1 − x). The Type A maps are continuous and
piecewise differentiable. (the derivative doesn’t exist
at the turning points).

In the study of Type A maps, we identified bifurca-
tions that don’t occur in the bifurcation sequence for
the family of quadratic maps. To describe these bifur-
cations we start our analysis at T = 1.0, where the
attractor is a period-4 cycle, as indicated by the four
branches (Fig. 4) We analyse the stability of a cycle
reducing the problem to a question about the stability
of a fixed point, as follows. The graph of a fourth-
iterate (Fig. 5) map provides sufficient insight about
the stability of the period-4 cycle.

The four fixed points at which the slope of the map
has absolute value less than 1 corresponds to a sta-
ble period-4 cycle. In contrast, the slope exceeds 1
in the remaining fixed points (one period-1 cycle and
one period-2 cycle).

Figure 6 shows a partial bifurcation diagram of the
Type A return maps.

As T decreases, a pair of repulsive orbits are cre-
ated at T ∼ t2. The graph of the fourth-iterate map is
helpful to understand the birth of these orbits.

In order to facilitate the analysis about the stability
of the fixed points, we present figures 7 and 8 which
represent the slopes of the return map at these points
when T ∼ t2 and T ∼ t1, respectively.

Therefore we emphasize the creation of pairs of re-
pulsive orbits at T ∼ t2 and the occurrence of a in-

N  D  E  S        2  0  0  4

144



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

xn+4

xn

Fig. 5. The fourth-iterate map for (A, θ, T ) = (1.1, 0.1, 1).
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Fig. 6. Sketch (not to scale) of the bifurcation diagram
of the Type A maps for A = 1.1, θ = 0.1 and T ∈

(∼ 0.94,∼ 1.25). There are two special values of T ,
which are t1 = 0.942318 and t2 = 0.94883.

verted saddle-node bifurcation at T ∼ t1, that is, the
destruction of pairs stable-unstable orbits. It’s inter-
esting to notice that all these types of bifurcations are
independent of the parameters. Indeed, they occur
when we plot the system’s attractor as a function of
A and as a function of θ.

Regarding the previous description, we derive our
main result

Theorem 1: Let fA,θ,T be the three parameters
family of canonical return maps of Type A. Then
we have the occurrence of four types of bifurcations:
period doubling bifurcation, saddle-node bifurcation,
saddle-node inverted bifurcation and a non standard
bifurcation (creation of a pair of unstable orbits).

1s2u 3u

4u

5s 6u
7u

8u

9u

10u 11s

12u

13s 14u

15u

Fig. 7. Representation of the slopes of the fourth-iterate
map at the fixed points when T ∼ t2.
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15u

Fig. 8. Representation of the slopes of the fourth-iterate
map at the fixed points when T ∼ t1.
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Abstract— In this paper we use a state-space
transformation to simplify the tangential system
of an oscillator. The resulting system consists of
two static, time varying maps and a decoupled LTI
system. The structure of the transformed system
is used to simplify the noise analysis of the oscil-
lator.

I. Introduction

Oscillators have a key function for the reali-
sation of modern communication systems. Thus
there is still a great interest in the analysis of os-
cillators. A lot of empirical arcticles can be found
in the literature from the last 50 years (e.g. [8],
[6]) and also rigorous analyses leading to numeri-
cal algorithms (e.g. [4], [3]).

The analysis of the influence of perturbations
on an oscillator can be done by the analysis of its
tangential system. Unfortunately most tools for
the small signal analysis of nonlinear systems are
difficult to apply to oscillators. Although there
are generalisations of the transfer functions for
LTV systems (e.g.[10]), an approach which would
be comparable in ease of use to the algorithms in
the analysis of LTI-systems does not exist. Due to
this difficulties most of the analyses of oscillators
are normally done numerically [7], [4], [3].

In this paper we describe an approach to the
analyis of oscillators, which uses Lyapunov trans-
formations to simplify the tangential system of
the oscillator. This transformation will lead to an
natural definition of phase noise and amplitude
noise corresponding to [7] and yields a decompo-
sition of the LTV system into one describing the
evolution of the phase deviation of the oscillator
and another one for the amplitude deviation. An
example will conclude the paper.

II. The Oscillator and its LTV System

A n-dimensional oscillator is described by its
state space equations1

ẋ = f(x) + ξ (1)

where x is the state and ξ describes the pertur-
bation e.g. by noise of the active circuit elements.
The system (1) has the homogeneous solution x0

for ξ = 0 with the period T : x0(t) = x0(t + T ).
A perturbation of the oscillator results into a

deviation ∆x from the limit cycle x0 and a phase
shift τ on the limit cycle. Thus an ansatz [7] for
the solution of (1) is

x(t) = x0(t + τ(t)) + ∆x(t) (2)

The behaviour for small signal perturbations by
b is described by the tangential system of (1):

u̇ = A(x)u + ξ with A(x) =
∂fi(x)
∂xj

(3)

For ξ = 0 this tangential system has a station-
ary solution us(t) = ẋ(t), corresponding to the
Floquet exponent λ1 = 0. All other Floquet ex-
ponents λi are smaller than zero, if the system (1)
has a stable periodic solution x0.

The general homogeneous solution of (3) for
ξ = 0 has the form:

u(t) =
n∑

i=1

ci ui(t) =
n∑

i=1

ci li(t)eλit (4)

where the l(t) are periodic functions with the
period T ,, also called Floquet functions. With
un = us = ẋ0 this has the form

u(t) = cn ẋ0(t) +
n−1∑
i=1

ci li(t)eλit (5)

1Note that this system is an simplified model. The per-
turbation process ξ depends in general on x.
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III. Transformation of the Tangential
System

In order to simplify the tangential system (3), it
can be transformed by a suitable Lyapunov trans-
formation T (t) [9]:

u = Tv and v = T−1u. (6)

The transformed system has then the form

v̇ = Bv+T−1ξ with B = T−1(AT − Ṫ ) (7)

This system has the same stability properties as
the original one (3), in the sense that both sys-
tems have the same Floquet exponents [1]. Note
that the perturbation vector ξ is transformed by
the time varying transformation T−1 and thus
gets modulated.

A. Transformation to a LTI System

The transformation T can be chosen freely, as
long its inverse T−1 exists. If all the Floquet vec-
tors l in (4) are known, the transformation T can
be constructed by using the Floquet vectors in
the columns of the matrix T = (l1, . . . , ln) [5].
The resulting system matrix B is then a diagonal
matrix:

B =

⎛⎜⎝λ1 · · · 0
...

. . .
...

0 · · · λn

⎞⎟⎠ (8)

and the system (3) decomposes into n indepen-
dent one-dimensional differential equations:

v̇i = λi vi +
n∑

j=0

T−1
ij ξj (9)

The structure of a transformed system is shown
in Fig. 2 for the example discussed in section V.

Unfortunately in general only one vector of the
li is known. In this case only an incomplete trans-
formation can be done as described in the follow-
ing.

B. Incomplete Transformation

The term incomplete refers here to the not com-
plete diagonalisation of the tangential system if
only the one known vector ln = ẋ0 can be used
for the transformation.

If for one column of T the known solution x0 of
(3) is used and the other ones are chosen arbitrary

∆x(t)

x0

x0(t) x0(t + τ)

Fig. 1. Relation between the vn and the phase shift
of the oscillator

[5], i.e. T = (t1, . . . , tn−1, x0), the new system
matrix B has the following structure:

B =

⎛⎜⎜⎜⎝
b1,1 · · · b1,n−1 0
...

. . .
...

...
bn−1,1 · · · bn−1,n−1 0
bn,1 · · · bn,n−1 0

⎞⎟⎟⎟⎠ =
(

B′ 0
b′ 0

)

(10)
and the resulting transformed system is

v̇′ = B′v′ + (T−1)′ ξ

v̇n = b′v′ +
n∑

i=0

T−1
ni ξi

(11)

where (T−1)′ is the matrix T−1 without its last
row. Thus evolution of the variables v1 to vn−1

is described by a n − 1-dimensional differential
equation system while the variable vn depends on
a weighted sum of the other variables, but it has
no feedback to them.

IV. Transversal Process and Tangential
Process of an Oscillator

After one of the above transformations the vari-
able vn relates to the length of a tangential vector
in the original system (1). Thus it corresponds to
a phase shift τ of the reference trajectory x0(t+τ)
(see also Fig. 1):

τ(t) ≈ vn(t)
|ẋ0(t)|

(12)

The other variables form a vector describing
the transversal deviation from the reference tra-
jectory.

To keep things simple, in the following we
will assume that a transformation to a LTI sys-
tem was possible and that the oscillator is two-
dimensional, i.e. n = 2. Then the perturbation
signal ξ gets transformed by a structure as shown
in Fig. 2. There are several points to notice:
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TT−1

ξ1

ξ2

ξ′1

ξ′2

v1

v2

u1

u2

v̇1 = −2εv1 + ξ′1

v̇2 = ξ′2

x0(t)

Fig. 2. Transformations and variables in the example

• The noise gets transformed by two time varying
maps and one LTI filter.

• The evolution of each state variable vi is de-
scribed by a differential equation of first order
with a constant coefficient corresponding to the
Floquet exponent.

• If there are two oscillators with the same Flo-
quet exponents, their noise behaviour is differ-
ent only by the transformation T and its inverse,
which modulates the input noise.

This structure allows a step-by-step calculation of
the stochastic characteristics at the output. We
will give equations for the variance of the pro-
cesses in the following. It is assumed, that the
perturbation process ξ consists of n independent
white noise processes with normal distribution.

Even if the input noise ξ is assumed to be a sta-
tionary process, the input ξ′ to the transformed
system is in general an cyclo-stationary process
modulated by the transformation:

ξ′ = T (t) ξ (13)

Its variance σ2
ξ′ is

σ2
ξ′ = (T−1)(2) σ2

ξ (14)

where M (2) a matrix with each element squared.

A. Transversal Process

In a two-dimensional oscillator the variable v1

is a direct measure for the deviation from the limit
cycle of the oscillator. Its evolution is according
to Eq. (9) determined by a LTI-filter of first order:

v̇1 = λ1 v1 +
2∑

i=1

T−1
1i ξi (15)

The variance of v1 is

σ2
v1

(t) = e−2εt

∫ t

0
σ2

ξ′
1

(η) e2εη dη. (16)

The value of v1 corresponds to the length of a
deviation vector in the direction of l1. Thus the
vector ∆x in (2) is

∆x(t) = v1(t)l1(t) (17)

with the stochastic properties determined by v1.
This corresponds to an amplitude modulation of
the carrier l1 by v1.

B. Tangential Process

The absolute value v2 of the tangential devi-
ation results from the integration of the trans-
formed perturbation ξ′:

v̇2 =
2∑

i=1

T−1
2i ξi. (18)

The integration of the cyclo-stationary process ξ′

results into a process with monotonic increasing
variance:

σ2
v2(t) =

∫ t

0
σ2

ξ′2
(η) dη (19)

By (12) v2 is directly connected with the phase
deviation of the oscillator. Thus the reference sig-
nal x0 gets phase modulated by v2 or respectively
frequency modulated by ξ′2.

V. Example

In this example we will discuss an oscillator
which is given by the differential equation system

ẋ1 = x2 + ε(1 − x2
1 − x2

2)x1 + ξ1(t)

ẋ2 = −x1 + ε(1 − x2
1 − x2

2)x2 + ξ2(t)
(20)

This system has the stationary solution x0 für
ξi(t) = 0

x10(t) = sin(t) x20(t) = cos(t). (21)
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Fig. 3. Evolution of the transversal (left) and the tangential (right) processes variance

independent off the parameter ε > 0. The homo-
geneous tangential system is

u̇ =
[(

−ε 1
−1 −ε

)
+ ε

(
cos(2t) − sin(2t)

− sin(2t) − cos(2t)

)]
u.

(22)
The transformation T has the form

T (t) =
(

x1(t) ẋ1(t)
x2(t) ẋ2(t)

)
=
(

sin(t) cos(t)
cos(t) − sin(t)

)

(23)
and leads to the system

v̇ =
(
−2ε 0
0 0

)
v. (24)

which in this case has a very simple structure.
The structure of the system after its transforma-
tion is shown in Fig. 2.

The variance of the transversal part converges
for large t to

σ2
v1

(t) =
1
8ε
(
σ2

ξ1 + σ2
ξ2

)

+
2ε cos(2t) + sin(2t)

4 (1 + 4ε2)
(
σ2

ξ2 − σ2
ξ1

)
(25)

and the variance of the tangential part is

σ2
v2(t) =

t

2
(
σ2

ξ1 + σ2
ξ2

)
+

1
4

sin(2t)
(
σ2

ξ1 − σ2
ξ2

)
(26)

as shown in Fig. 3. If the input variances are
equal, i.e. σ2

ξ1
= σ2

ξ2
= σ2

ξ the terms for the vari-
ances reduce to

σ2
v1

(t) =
σ2

ξ

4ε
(27)

and
σ2

v2(t) = σ2
ξ t (28)

It can be seen, that the transversal process is
(cyclo-)stationary while the tangential process is
non-stationary with monotonic increasing vari-
ance.

From the corresponding correlation functions
the spectra of the oscillator signal x(t) can be
calculated [2].

A similar system has been analysed in [5], which
does not decompose into independent LTI differ-
ential equations. Thus the analysis is more com-
plicated, but the structure of the decomposition
of the tangential system remains the same if the
Floquet vectors are used.

VI. Conclusions

Lyapunov state space transformations have
been used for the analysis of the noise behaviour
of oscillators. These transformations yield espe-
cially in the case of two dimensional oscillators a
simple model for understanding the signal trans-
forming in the oscillator leading to phase and am-
plitude noise.

References

[1] L. Ya. Adrianova. Introduction to Linear System s of
Di erentialEquations. Translation of Mathematical
Monographs. American Mathematical Society, 1991.

[2] Leon W. Couch. Digitaland Analog Com m unication
System s. Prentice Hall, 2000.

[3] Alper Demir, Amit Mehrotra, and Jaijeet Roychowd-
hury. Phase noise in oscillators: A unifying theory and
numerical methods for characterisation. IEEE Trans.,
47(5):655–673, May 2000.

[4] Alper Demir and Alberto Sangiovanni-Vincentelli.
Analysis and Sim ulation of Noise in nonlinear elec-
tronic Circuits and System s. Kluwer Academic Pub-
lishers, 1998.

[5] Thomas Falk and Wolfgang Schwarz. An explicit for-
mulation of the sensitivity function of two-dimensional
oscillators. In Proc.NDES 2003, Scoul, Swiss, 2003.

[6] A. Hajimiri and T.H. Lee. The Design ofLow Noise
O scillators. Kluwer Academic, 1999.

[7] Franz X. Kaertner. Analysis of white and f−α noise
in oscillators. Int.JournalofCircuitTheory and Ap-
plications, 18:485–519, 1990.

[8] D. B. Leeson. A simple model of feedback oscillator
noise spectrum. Proceedingsofthe IEEE , 43:329–330,
1966.

[9] Pieter van de Kloet. M odalSolutionsforLinearTim e
Varying System s. PhD thesis, TU Delft, 2002.

[10] Lofti Zadeh. Frequenzy analysis of variable networks.
IRE Proceedings, 38:291–299, 1950.

N  D  E  S        2  0  0  4

149



Conductance: from electrical networks, through graphs, to dynamical systems

Sara Fernandes and J. Sousa Ramos
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Abstract—We introduce the notion of conductance
in dynamical systems on iterated maps of the interval.
Our starting point is the notion of conductance in the
graph theory. We pretend to apply the known results
in this new context.

I. INTRODUCTION

The transfer of concepts from one area of knowl-
edge to another has been serving as impulsive force of
the development of mathematics. It was so with the
entropy, which arrived from the thermodynamic and
was brought by Kolmogorov to the dynamical sys-
tems. Today, thanks to Sinai, Adler, Konheim, McAn-
drew, Misiurewwitz, Szlenk and others, this concept is
commonly used and calculated in this area, see [6].

Our objective with this paper is to introduce the no-
tion of conductance in the discrete dynamical system
on the iterated map of the interval. We will use the
Markov partition of the interval to define an associ-
ated graph. By analogy with the electric circuits, the
conductance was defined and is known for a regular
graph without orientation. We will extend this defi-
nition to a more general setting to include both non-
regular and oriented graphs, which are more useful to
represent our dynamical systems. Then, we go back,
and bring the definition of conductance with us to use
in the study of certain families of maps, which cannot
be differentiated by the topological entropy.

II. CONDUCTANCE OF A DISCRETE DYNAMICAL

SYSTEM

In this section we will introduce formally, the no-
tion of conductance of a dynamical system. First we
will introduce this concept in the graph theory, where
it has been studied for several years, see [1] for more
details.

A. Graphs

An unordered graph G is an ordered pair of sets
(V,E) , such that E is a subset of V ×V of unordered

pairs of V. We will call V the set of vertices and E the
set of edges. An edge {i, j} is said to join the vertices
i and j and is denoted by ij. The order of G is the
number of vertices in G and is denoted by |G| . The
degree of a vertex i is the number of edges in E, which
one of the ”endpoints” is i, that is, the number of ele-
ments of E, for which i is one of the two components.
A graph is said k−regular if each vertex has degree k,
for some k and is said connected if there isn’t any iso-
lated vertex (every vertex has an edge with him as end-
point). To each unordered, connected k-regular graph
G with n vertices {1, 2, ..., n} , is associated a simple
random walk X = (xt)

∞

t=0 in its simplest form: start-
ing at x0, its next vertex, x1, is chosen randomly from
the neighbours of x0. Next x2 is chosen among neigh-
bours of x1, and so on. Set pi (t) = Prob (xt = i) .
Thus X is the simple random walk (Markov Chain)
with initial distribution p0 = (p(0)

1 , p
(0)
2 , ..., p

(0)
n ) and

pt = (p(t)
1 , p

(t)
2 , ..., p

(t)
n ) = p0P

t is the distribution of
xt. We view the distributions as row vectors in R

V and
we call P the transition matrix.

Definition 1: A row vector π ∈ R
V is a stationary

distribution of the chain X with transition matrix P if
a) π (i) ≥ 0, for all i ∈ V ;
b)
∑

i∈V π (i) = 1;
c) π = πP

Definition 2: A Markov chain X with transition
matrix P is said to be ergodic if it has a stationary dis-
tribution. Is said to be irreducible if for all i, j ∈ V,
there is an m such that (Pij)

m > 0. Is said aperiodic
iff for all i ∈ V, gcd{m : (Pij)

m > 0} = 1.
It is known that any finite, irreducible Markov chain

is ergodic.
Back to our simple random walk, we have then pt

tends to the stationary distribution, that is, in this case,
the vector π =

(
1
n , 1

n , ..., 1
n

)
. The measure of the

speed of convergence pt → π, is given by the mix-
ing rate of the random walks on G

µ = sup
p0

lim
t→∞

sup ‖pt − π‖
1

t

2 ,
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where the supremum is taken over all initial distribu-
tions p0. As is pointed out in [1], the mixing rate µ
is easily described by the eigenvalues of P. By defi-
nition, P = A/k, where A = (aij)

n
ij=1 is the adja-

cency matrix of G, defined for i �= j by the number
of edges from i to j (note that an edge from i to j
is also an edge from j to i) and for i = j, by the
number of loops at i. As usual, A is identified with a
linear endomorphism of the vector space C0 (G) of all
functions from V into C. The matrix P is hermitian
and then it has only real eigenvalues. It is known that
1 = λ1 > λ2 ≥ ...λn > −1 and we have that the
mixing rate µ is precisely λ = max {λ2, |λn|} .

In fact, we shall estimate the speed of convergence
to the stationary distribution in terms of the conduc-
tance ΦG of a graph. The definition follows.

Definition 3: Let G be an unordered, connected, k-
regular graph. Define the conductance ΦG of G by

ΦG = min
U⊂V

e(U, Ū )
d min

{
|U | ,

∣∣Ū ∣∣}

where = V \U and e(U, Ū ) is the number of edges
from U to Ū . Note that if |U | ≤ n/2, as we may as-
sume, then k |U | =

∑
u∈U d(u) is the maximal num-

ber of edges that may leave U, so e(U,Ū)
d |U |

is the propor-
tion of edges ”leaving” U.

So, for a dynamical system described by an her-
mitian matrix, we can speak about the conductance
introduced in the above definition.

B. Markov Chains

In a general way, to each discrete dynamical system
(I, f) defined by the iterates of a map f on the inter-
val I, we associate a Markov matrix, which is rep-
resentable by a non-regular, oriented graph Gf (the
elements of E are now ordered pairs). So we have
systems defined by the adjacency matrix Af = (aij)
of Gf , that is, the 0− 1 matrix where aij = 1 iff ij is
an edge. In turn, to each Af , we associate a probabil-
ity matrix Pf and an invariant measure (the measure
of maximal entropy) π. So we have what is called a
random walk in a weighted directed graph, with loops
allowed, described by a transition matrix Pf , which
is no longer hermitian, but can however represent an
ergodic system. We can now establish the notion of
conductance of a discrete dynamical system.

Definition 4: Let f be a map on the interval, Pf =
(Pij)nij=1 be the probability matrix associated to f and
πf = (πi)ni=1 be the invariant measure. Define con-

ductance of (I, f) by

Φf = min
0<π(S)≤1/2

S⊂V

∑
i∈S,j∈S̄

πi Pij∑
i∈S

πi

Another possible approach to the conductance is
trough the discrete laplacian of a graph defined next.

Definition 5: Let Af = (aij)ni,j=1 be the adjacency
matrix associated to (I, f) and Gf the Markov graph.
Define the diagonal matrix Df = (dij)ni,j=1, putting
in the diagonal dii the number of edges that incide (in
and out) in the vertex i (loops contribute with 2). We
will call the matrix

∆f = Df − (Af + AT
f )

the laplacian matrix of the graph Gf .

As we will see, the smallest non-zero eigenvalue of
the laplacian is closely related with the conductance
of the system.

III. BIMODAL FAMILY

Lets consider a bimodal family of maps Sa,b (cubic
like maps, see Figure 1), depending on two parameters
a and b. We want one parameter to be related with the
topological entropy (defined as the logarithm of the
growth number of periodic points) and use the second
to distinguish the systems via conductance.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 1. Cubic like map.

For different values of the parameters a and b we
obtain trajectories, which can be symbolically ex-
pressed by the itineraries of the two critical points c1

and c2.
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If we take a point x in I, we will call the address of
x, A (x) , one of the symbols L, A, M, B, R accord-
ing to the following rule:

A (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L if x < c1

A if x = c1

M if x > c1 and x < c2

B if x = c2

R if x > c2

The itinerary of x ∈ I will be then the sequence of
symbols A (x) , A (f (x)) , A (f (f (x))) ....

Using the itinerary of the critical points c1 and c2

we obtain a Markov partition of the interval I. The
exists an uncountable quantity of different dynamic
types. To introduce the study of conductance and dis-
crete laplacian in the maps of the interval we consid-
ered 3 families, given by the pair of itineraries of the
critical points:
1. ((RkA)∞, (LkB)∞), k = 1, 2, ...; with topologi-
cal entropy ht(f) ∈ [0, log(3)].
2. ((RMkA)∞, (LMkB)∞), k = 1, 2, ...; with
topological entropy ht(f) ∈ [0, log(2)].
3. RMk(BLMk)∞ and RLk(BLLk)∞, k =
1, 2, .... Here the trajectory of c1 falls in the trajec-
tory of c2; with constant topological entropy ht(f) =
log(2).

After a numerical study, we can state the following
result.

Theorem 1: Let f : I → I be a piecewise mono-
tone map. The conductance Φf and the first non-zero
eigenvalue λ1(∆f ) of the discrete laplacian ∆f are
functions that decrease when the periods of the criti-
cal points increase, converging to a constant depend-
ing on the topological entropy of f .

This result can be proved by symbolic dynamic
methods and it is illustrated in Figures 2, 3, 4 and 5,

5 10 15 20 25

1

2

3

4

5

Fig. 2. The fi rst eigenvalue λ1(∆) (dim Af ) for the
family ((RkA)∞, (LkB)∞), with topological entropy
∈ [0, log(3)].

5 10 15 20 25

1

2

3

4

5

Fig. 3. The fi rst eigenvalue λ1(∆) (dimAf ) for the family
((RMkA)∞, (LMkB)∞), with topological entropy ∈
[0, log(2)].

5 10 15 20 25

1

2

3

4

5

Fig. 4. The fi rst eigenvalue λ1(∆) (dimAf ) for the family
RLk(BLLk)∞, with constant topological entropy =
log(2).

In the Figure 3 the oscillation in the decreasing of
the λ1(∆f ) is due to parity of number of M symbols
(because the function f

|M has negative slope).
In the Figure 6 and Figure 7 we can see the variation

of the modulus of the second eigenvalue λ2(Af ) of the
adjacency matrix Af increasing with the dimension
of Af , see [2] and [3] for the relation with the mixing
rate.
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Fig. 5. The conductance Φf (dim Af ) for the fam-
ily RLk(BLLk)∞, with constant topological entropy
= log(2).
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Fig. 6. The second eigenvalue λ2(Af ) (dim Af ) for the
family ((RMkA)∞, (LMkB)∞), with topological en-
tropy ∈ [0, log(2)].
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Abstract— Tandemly repeated sequences of DNA
are modeled as nonhomogeneous elastic rods. Using
the framework of the Kirchhoff rod model we study
the tridimensional conformations of rods with period-
ically varying Young’s modulus. Using tools of dy-
namical systems we analyze the effects of the Young’s
modulus oscillations in the stroboscopic maps and in
the regular (non chaotic) spatial configurations of the
filaments. These configurations correspond to local
minima of the total elastic energy of the rod. The pe-
riodic variations of the filament Young’s modulus lead
to deviations from the well known helix solution, and
the resulting shape is either a slightly deformed he-
lix or a highly twisted and compacted rod. Deviations
from the helix shape are larger near resonance.

I. INTRODUCTION

We shall consider here the elastic continuum rod
model, which is appropriate for studying the general
behavior of very long DNA molecules [1]. Models
that take into account the atoms and molecules form-
ing the DNA can be computationally solved only if the
total length is not too long. References [1], [2] give a
good review.

The Kirchhoff rod model [3] is a good framework
to study both the statics and the dynamics of thin elas-
tic filaments [4], [5]. This model has been used to
study the elastic behavior of rods in different areas of
knowledge, ranging from Engineering [6], [7], [8] to
Biology [9], [10], [11].

It is known that the elastic parameters of the DNA
are sequence-dependent [2] so, in order to improve the
DNA elastic rod model, we consider a filament with
nonhomogeneous elastic parameters. We assume that
the Young’s modulus depends on the position along

the rod.
A significant fraction of all eukaryotic genomes

consist of the so-called tandemly repeated sequences
of DNA [12], [13]. They are pieces of repetitive DNA
formed by nucleotide sequences of varying length
and composition reaching up to 100 megabasepairs
of length [12]. We shall assume that the DNA is in-
trinsically an untwisted straight rod, but we include
sequence-dependent stiffness. We consider it as a
nonhomogeneous Kirchhoff rod where small periodic
variations of the Young’s modulus are considered to
model the tandemly repeated characteristics of the
rod. Since the equilibrium equations can be written
in a Hamiltonian formulation, we analyze the effects
of this nonhomogeneity in both the stroboscopic maps
and the structure of the periodic (non-chaotic) equilib-
rium solutions. These regular equilibrium solutions
correspond to local minima of total elastic energy of
the rod. We shall show how the sequence-dependent
mechanical properties of filaments deviate their tridi-
mensional structure from the well known uniform so-
lution, namely, the helix.

II. THE KIRCHHOFF ROD MODEL

Basically, the equations of the Kirchhoff model re-
sult from the applications of the Newton’s laws of me-
chanics to a thin rod that is assumed to be weakly
bent (the radius of curvature at each point of the rod is
much larger than the radius of the cross section) [5],
[14].

In order to derive a set of equations for the rod we
have to define the variables used to describe a thin fil-
ament. First, we define a smooth curve � in the 3D
space parametrized by the arclength � that will rep-
resent the axis of the rod. Second, a local orthonor-
mal basis (also called director basis)

� � � � � � � � � 	 ,
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� � � � � � � , is defined at each point of the curve, with� �
chosen as the tangent vector,

� � � � � (the prime
denotes derivative with respect to � , and the dot with
respect to � ). The two orthonormal vectors

� �
and

� �
lie in the plane perpendicular to

� �
. These vectors are

chosen such that
� � � � � � � �

form a right-handed or-
thonormal basis for all values of � . The evolution in
the space and in time of the director basis is given by
the so-called twist and spin equations, respectively,

� �� � � 	 � � �

� � � � 	 � � � � � � � � � � � (1)

where the vectors
�

and
�

are the twist and spin vec-
tors. Both

�
and

�
can be written in the director basis:� � � ��  � � � � �

and
� � � ��  � � � � �

.
� �

and
� �

are
the components of the curvature of the rod, and

� �
is the twist density. The solution of the twist and spin
vectors determines the vector

� �
that can be integrated

to give the space curve � .
Let � and � be the total force and moment with

respect to the axis of the rod. We are interested in
the static Kirchhoff equations, given by (in properly
scaled units):

� � � � � (2)

� � � � � 	 � � � � (3)

� � � � � � � � � � � � � � � � � � � � � � � � � � � (4)

where � � � � � � � � is the average adimensional elas-
tic parameter of the rod and

� � � � is a dimension-
less function representing the variation of the Young’s
modulus around the average value

� � . � � varies be-
tween � � � (incompressible material) and

�
(hyper-

elastic material). We do not consider shear modulus
variation.

III. THE HAMILTONIAN FORMULATION

The main advantage of a Hamiltonian formulation
is that the theory of chaotic Hamiltonian systems and
stroboscopic maps can be directly applied to under-
stand the spatial behavior of the filament. We shall
follow the derivation by Nizette and Goriely [10]. The
static Hamilton’s equations for the Kirchhoff model
are analogous to those of a symmetric spinning top
in a gravity field, with the arc length � along the rod
playing the role of time.

The equation (2) implies that the tension � is con-
stant along the rod. We choose the direction of the
force as the � -direction (in a fixed Cartesian basis):

� � � � � �
(5)

Substituting equation (5) in equation (3) and project-
ing along

� �
we have

� � � � � � � �� � � � (6)

which represents a first integral. By projecting the
equation (3) along

� �
we obtain another integral,

� �
:

� � � � � � � � � � � � � � � �� � � �
(7)

If the Young’s modulus is a constant along the rod,
it is possible to show that the elastic energy per unit
arclength,  

� �
� � � � � � � � � � (8)

is also a constant.
The orthonormal Cartesian basis is connected to the

director basis through the Euler angles:

� � �
�!

"  � # � " � " � (9)

where
� � � � �

and # � " can be seen in references [10],
[14].

Using the equation (9), the equation (8), in Euler
angles, is given by 

� $ �%
� � � � �

� $ �&
� � � � � $ ' ( $ & ) * + , �

�
� � � � � + - . � , � � ) * + , �

(10)
where

� � � � is the scaled Young’s modulus. It should
be remarked that � � has no influence in the tridimen-
sional shape of the equilibrium solutions. The total
elastic energy of the rod can be obtained by integra-
tion of the equation (10),

� / � 0 1�
 

d � � (11)

where 2 is the total length of the rod. The momenta
are defined by

$ % � � � � � , � �$ & � � � � 3 � � 4 � ) * + , � �$ ' � � � � � 4 � + - . � , � $ & ) * + , � (12)

It is possible to show that an effective potential5 � , � related to the Hamiltonian formulation of the
homogeneous case has a minimum at , � and the fre-
quency

� � of small oscillations around the minimum
is given by:

� � � $ �& � � 5 � , � � ( 6 � ) * + , � �
(13)

The solution , � , � related to the minimum of the
potential corresponds to a perfect helix.
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Fig. 1. Stroboscopic maps for � � � � � � � � , � � � � � � � 	
and 
 � � � pN. The frequency of the Young’s modulus
oscillation in each map is: (a) � � � � � � �  ; (b) � �

� � � � �  ; (c) � � �  ; (d) � � � �  . The map in (b)
shows the total elastic energy of the rod (full line) in
proper units.

We shall consider the following periodic variation
of the scaled Young’s modulus

� � � � � � � � � � � � � � � � (14)

where � is the parameter of perturbation and
�

is the
frequency of the Young’s modulus oscillation. In the
case of a homogeneous filament,

� � � � � �
.

To obtain the equilibrium configurations we first
solve Hamilton’s equations for � and 	 
 . Then, we
solve Eq.(12) for � and reconstruct the filament, � � � � ,
by integrating

� �
along � . � � � � is a function of the ini-

tial conditions � � � �  � � � � and 	 
 � � �  � � 	 � .
Without lack of generality, we can set 	 � � 

so that
� � will be a conformation parameter. In solving the
equation for � we set its initial value � � � 

.

IV. NUMERICAL RESULTS

The numerical calculations have been performed
with the following fixed mechanical parameters: � �

 � �
, 	 � �  �  � � , 	 � �  �  � � and

� � � 
pN. These

parameters, excepting the force
�

, are written in prop-
erly scaled units. The value of 	 � corresponds to an
excess of � � of the linking number [16] due to ther-
mal fluctuations. The value of the force corresponds
to a compressing force consistent with the values in
the literature [17], [18].

Fig. 1 shows stroboscopic maps in the � � 	 
 plane
for

� �  � �  � � (Fig. 1a),
� �  � � � � � (Fig. 1b),� � � � (Fig. 1c) and

� � � �   � � (Fig. 1d). In
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Fig. 2. Tridimensional conformations corresponding to the
center of the main islands seen in Fig.1a-c. (a) � �

� � � � �  (center of the island of Fig.1a); (b) � � � � � � � 
(center of the left island of Fig.1b); (c) � � � � � � � 
(center of the right island of Fig.1b); (d) � � �  (center
of the island of Fig.1c).

Fig. 1 there is a large stability island enclosing the
main equilibrium point at � � � �  �

rad and 	 
 � 
.

The stroboscopic map in the Fig. 1b exhibits two dif-
ferent equilibrium points. Fig. 1b displays, in the
same frame, the total elastic energy of the rod,

� �
,

in proper units (full line) (we chose the total length
� � �   

, in scaled units). We can see that the total
elastic energy presents minima centered at the equi-
librium points.

The shape of the tridimensional configurations cor-
responding to the equilibrium points, lying at the cen-
ter of the islands in the stroboscopic maps of Fig. 1,
are obtained by solving the Hamiltonian equations us-
ing the values of the equilibrium point for � and 	 
 as
initial conditions � � and 	 � and constructed the fila-
ment � � � � .

The Fig. 2 shows that the shape of the equilibrium
point tridimensional configuration changes as the fre-
quency is varied. We can see in panels (a), (c) and (d)
that the tridimensional configurations of the nonho-
mogeneous rod can present a slightly deformed helix-
like shape. The panel (b), related to the equilibrium
point at the center of the left island in the stroboscopic
map of Fig. 1b, shows a different kind of solution,
the rod being very twisted and compacted. We have
shown [19] that as the frequency varies, the center of
the main islands in the stroboscopic maps moves, and
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Fig. 3. Tridimensional shape of the configurations corre-
sponding to the center island that appears in the stro-
boscopic maps for � � � � and different � (strobo-
scopic maps not shown). From left to right, homoge-
neous case, � � � � � �

�
and � � � � �

�
.

the shape of the corresponding tridimensional config-
uration changes. Transitions from a helix-like pattern
to a twisted and compacted one, and vice-versa, are
observed.

The sensitivity of the shape of the nonhomogeneous
rod to the amplitude � of the nonhomogeneity can be
tested. Fig. 3 shows the helix solution of the homo-
geneous case � � �

(on the left), the solution for
� � � � � � �

(middle) and � � � � � �
(on the right), in

the case of the resonance
� � � � . Also, these solu-

tions can be compared to that in the Fig. 2d ( � � � � �
).

We can see that even for small nonhomogeneity � , the
tridimensional configuration of the rod is significantly
deviated from the helix shape when

�
is close to

� �

(resonance).

V. CONCLUSIONS

The tridimensional structure of a molecule consist-
ing of tandemly repeated sequences has been modeled
by the Kirchhoff rod model, using a periodic Young’s
modulus to simulate the tandemly repeated character-
istics of the molecule.

Using the Hamiltonian formulation of the Kirch-
hoff equations, we calculated stroboscopic maps for
different frequencies of the periodic Young’s modulus
of the rod (14). We also showed that the equilibrium
points in the stroboscopic maps are local minima of
the rod total elastic energy.

The main result of this numerical experiment is that
the tridimensional conformations of the DNA may
be very sensitive to sequence-dependent properties,
especially if these are in resonance with other nat-
ural periods of the filament. It is well known that
various other elements, besides sequence-dependent
effects, combine to determine the conformation of
DNA molecules, like self-contact, salt concentration,
anisotropy and interaction with proteins. Our results

show that sequence-dependent effects alone may have
a significant influence on the shape of the DNA. This
could be, therefore, a possible mechanical function of
the “junk” sequences.

This work was partially supported by the Brazilian
agencies FAPESP, CNPq and FINEP.
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[3] G. Kirchhoff, Über das Gleichgewicht Und Die Bewegung
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Abstract— In this paper the possibility of observ-
ing strange attractors in an electronic circuit includ-
ing a nonlinear ferroelectric component has been in-
vestigated. The ferroelectric constitutes the medium
interposed between the two plates of a capacitor. A
circuit exploiting the nonlinearity of the ferroelectric
has been designed, while the parameters have been
found by performing numerical integration with re-
spect to different values of them. The circuit has been
realized on a discrete components board. Experimen-
tal results, showing that for a suitable range of pa-
rameters a chaotic attractor emerges, are reported.

I. INTRODUCTION

Since the seminal work of Edward Lorenz [2] in
1963, chaos has been widely investigated. Decades
of efforts have been devoted to discover new math-
ematical systems showing chaotic attractors. Chaos
appears in a lot of different phenomena and soon the
interest on chaotic phenomena has fascinated circuit
designers. The first chaotic circuit is the well-known
Chua’s circuit [3]. Then many other chaotic circuits
have been designed. Some of them implement the dy-
namics of the mathematical systems showing chaos,
others exploit the fundamental feature of electronic
devices to show chaotic behavior.

Only recently the role hysteresis plays in chaotic
circuits has been deeply studied. Several chaotic cir-
cuits based on hysteresis have been proposed. In par-
ticular in [6], [7] four-dimensional circuits are consid-
ered. The family of circuits described in these works
includes a small parameter. When this parameter is
very small it can be assumed that there exist two sym-
metric three-dimensional circuit connected by hys-
teretic switching [7]. In these circuits the hystere-
sis is therefore represented by piece-wise linear ele-
ments. Another relevant example of class of chaotic
circuits with hysteresis makes use of differential hys-
teresis comparator [10].

The presence of hysteresis in these circuits allows
to achieve higher order chaos from low dimensional
circuits. For instance, it is well known that to show

chaos autonomous circuits should have order greater
than two. In [4] an autonomous second order circuit
with an hysteretic inductor is shown to be able to show
chaotic dynamics: this is due to the fact that hysteresis
adds a further memory variable to the circuit. An even
more interesting phenomenon due to hysteresis is the
emergence of hyperchaos in 3D circuits with hystere-
sis. It is well known that hyperchaotic behavior, char-
acterized by two positive Lyapunov exponents, can be
observed in circuits with order higher than three (in
fact, one Lyapunov exponent has to be zero and one
has to be negative, thus to have two positive Lyapunov
exponents the circuit order has to be at least four). The
circuit introduced in [5], the so-called Saito oscilla-
tor, shows hyperchaotic behavior based on a hysteretic
nonlinearity. However, the nonlinearity is realized by
means of a piece-wise resistor. In this work we sub-
stitute this nonlinearity with a real hysteretic device
and successfully investigate the possibility of obtain-
ing chaotic behavior. In fact the aim of the work is
to show chaotic behavior in a circuit with a hysteretic
device such as a ferroelectric capacitor.

In particular the hysteresis is constituted by a fer-
roelectric device. The ferroelectrics constitutes the
medium interposed between the two plates of a capac-
itor, and is obtained by successive vapour deposition
of Strontium, Tantalum and Bismuth on Platinum sub-
strates in small areas. The device is characterized by a
nonlinear hysteretic behavior observed by estimating
the output voltage by using a Sawyer-Tower configu-
ration.

The paper is organized as follows: the main char-
acteristics of the ferroelectric device are briefly dis-
cussed in Section II, the circuit including the ferro-
electric device is described in details in Section III,
experimental results showing the chaotic behavior of
the circuit are illustrated in Section IV, and Section V
draws the conclusions of the paper.

II. THE FERROELECTRIC DEVICE

Even if ferroelectricity has been discovered in the
beginning of the XX century, only recently ferroelec-
tric materials are gaining interest since their possible
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applications in electronics and communications. For
instance non-volatile memories can be realized with
ferroelectric devices since ferroelectric materials re-
tain the information when the power is switched off.

Ferroelectric materials are polarized materials hav-
ing two possible orientations of the spontaneous po-
larization vector. By applying an electric field is pos-
sible to switch the two orientations of the polarization
vector. The hysteretic behavior is due to the energy
needed to change the polarization of domains of elec-
tric polarization.

In our case the ferroelectric device consists of a
medium interposed between the two plates of a ca-
pacitor, and is obtained by successive vapour deposi-
tion of Strontium, Tantalum and Bismuth on Platinum
substrates in small areas.

Modelling ferroelectric materials is very difficult.
Several approaches, based on the so called state space
model [13], viscoelastic model [14], or tanh model
[15], have been proposed. The limited predictive
capabilities of these models are overcome by the
Preisach model [16]. However, the prediction capabil-
ities of this last model are accurate only in the quasi-
static domain.

This constitutes a drawback that does not allow the
use of this model in the design of chaotic circuits,
where the working frequency is usually high. For this
reason in the following a very simple model of the fer-
roelectric hysteresis has been assumed.

III. DESIGN OF THE CIRCUIT

Different circuits showing chaos and based on hys-
teretic behaviour of the nonlinearities are reported in
literature. In particular, in the circuit reported in [5]
the nonlinearity consists of a piecewise linear resis-
tor, only the two tracts with positive slope are effec-
tively involved in the dynamics and an hysteretic be-
havior switching between these two linear segments
of the nonlinearity can be addressed as responsible of
the emergence of hyperchaos in the circuit.

In particular the dimensionless equations regulating
the behavior of the chaotic circuit with hysteresis [5]
are the following:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx
dt = −z − w
dy
dt = γ(2δy + z)
dz
dt = ρ(x − y)
εdw

dt = x − h(w)

(1)

where the nonlinearity h(x) is the following:

h(x) =

⎧⎪⎨
⎪⎩

w − (1 + η) for w ≥ η
−η− 1w for |w| < η
w + (1 + η) for w ≤ −η

(2)

and it is assumed that parameter ε is very small.
We tried to ask the question if it is possible to de-

sign a circuit with the same structure of system (1)
but including the ferroelectric hysteretic device. As in
equations (1) the limit ε → 0 allows to consider the
variable w(t) in quasi static behavior, we considered
the following set of dimensionless equations:

⎧⎪⎨
⎪⎩

dx
dt = −z − f(x)
dy
dt = γ(2δy + z)
dz
dt = ρ(x − y)

(3)

where f(x) is the functional that models the hys-
teresis of the ferroelectric capacitor.

As discussed in Section II, several models can be
assumed for the complex behavior of the ferroelectric
capacitor. Our first approach was to simulate equa-
tions (3) by keeping the model of the ferroelectric very
simple and searching for chaotic solutions of system
(3). Thus the functional f(x) was considered a sim-
ple model of the ferroelectric device defined by two
functions (the upper curve and the lower curve of the
ferroelectric hysteresis). Of course this simple model
does not account for the whole complexity of the be-
havior, but was able to predict chaotic behavior both
in simulation and in circuit experiments.

The model based on the upper and lower hysteretic
curves was derived from experimental data collected
on the ferroelectric. More precisely these were de-
rived by using a Sawyer-Tower circuit [11]. A further
parameter is introduced in the system, the ferroelec-
tric characteristics is multiplied by a gain factor.

Chaotic solutions of system (3) were searched for,
by performing numerical integration with respect to
different values of the parameters. This step was
preliminary to the design of the circuit. Simulations
showed that exists a suitable range of parameters for
which an attractor very similar to that presented in [5]
emerges. Fig. 1 shows the chaotic attractor obtained
in the simulation step.

The circuit implementing equations (3) has been re-
alized by using an Operational Amplifier board. The
electrical scheme of the circuit is shown in Fig. 2.

IV. EXPERIMENTAL RESULTS

Experimental results obtained with the circuit de-
scribed above show that for a suitable range of param-
eter a chaotic attractor emerges. In particular Fig. 3

N  D  E  S        2  0  0  4

159



Fig. 1. (a) Characteristics of the ferroelectric device ob-
tained by using a Sawyer-Tower circuit. (b) Simulation
results. x − y projection of the chaotic attractor ob-
tained by numerical integration of system (3) for the
following values of parameters: γ = 1, δ = 1, ρ = 7
(the gain factor amplifying the ferroelectric character-
istics was fixed to 18.79).

shows the projection of the attractor onto the phase
plane x − y and Fig. 4 onto the phase plane x − z.

These oscilloscope photographs have been recorded
by a digital video camera, this technique allowed to
highlight the presence of unstable orbits in the chaotic
attractor. Fig. 5 shows one of such orbits, this com-
plex unstable limit cycle can be observed just for a
few of frames before disappearing.

Further experimental results deal with synchroniza-
tion of these chaotic attractors. Even if simulation re-
sults are good and show the possibility of successfully
using several synchronization schemes, experiments
do not confirm these results. Two reasons can explain
this behavior: first of all the parameters of the non-
linearity of the ferroelectric material change from cir-
cuit to circuit in a relevant way, then the ferroelectric
materials suffer from aging due to the great number
of working cycles related to the frequency (relatively
high for these materials) of the chaotic attractor gen-
erated.

V. CONCLUSIONS

The paper addresses the possibility of exploiting the
rich dynamics of ferroelectric hysteresis to obtain new
chaotic attractors with low cost circuits. In particular
ferroelectric devices are used. These devices show an
important hysteretic behavior due to the possibility of
having different orientations of the polarization vec-
tor.

The starting point for the circuit introduced in this
paper is the well-known Saito oscillator [5] based on
a piece-wise hysteretic resistor. By keeping the same

Fig. 2. Electrical scheme of the chaotic circuit with ferro-
electric hysteresis.

Fig. 3. Projection of the chaotic attractor onto the phase
plane x − y.

Fig. 4. Projection of the chaotic attractor onto the phase
plane x − z.

N  D  E  S        2  0  0  4

160



Fig. 5. Projection of the chaotic attractor onto the phase
plane x − z.

basic structure of the Saito oscillator it is shown how
hyperchaos can be generated by a circuit including a
ferroelectric hysteresis.

Experimental results have been presented. Syn-
chronization issues of these chaotic attractors have
been also discussed.
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Abstract— A self-synchronization index is pro-

posed to characterize pattern-oriented systems dy-

namics. Starting from spatial modes theory, the 

index has been defined as the number of relevant 

spatial modes and therefore identifies the system 

degree of freedom. The proposed strategy is vali-

dated adopting it to quantify self-synchronization in 

two kinds of pattern-oriented systems: 2-D Chua’s 

circuit arrays and Hindmarsh-Rose neurons lattices. 

In both cases a close relationship between synchro-

nization performances and adopted measure has 

been confirmed. 

I. INTRODUCTION

The key point of this work is the development of a 

new strategy to characterize emerging spatio-

temporal patterns in distributed systems. There are 

two main problems to face studying simulated and 

real-world pattern oriented networks: a huge amount 

of data distributed both in time and space and the 

definition of a meaningful index for better under-

standing the phenomena. 

Synergetic theory explains the emergence of patterns 

by considering complex systems as structures of 

coupled nonlinear subsystems that exhibit macro-

scopic behaviors both in time and space [1]. In the 

following, spatially coherent patterns are investi-

gated by assuming that spatio-temporal systems can 

be described using a few dominant modes with a 

spatial distribution [2][3]. The proposed strategy is 

focused on the definition of an index for evaluating 

the self-synchronization features of extended com-

plex systems: the freedom degree index f. This index 

represents the number of relevant degrees of free-

dom of the system and corresponds to the number of 

relevant spatial modes describing the spatial patterns 

temporal evolution. In particular, one of three differ-

ent dynamics can be characterized: spatio-temporal 

chaos, emergence of patterns and self-synchronized 

behavior. The proposed strategy has been validated 

investigating the spatio-temporal dynamics in two 

different cases of study: bidimensional lattices of 

Chua’s circuits and Hindmarsh-Rose (H-R) neurons. 

The defined index allowed characterizing and com-

paring the networks dynamic behaviors towards the 

system parameter D that represents the connection 

strength.

II. SPATIAL MODES IN SPATIO-TEMPORAL SYSTEMS

It is well known that a linear superposition of a set 

of basic patterns, the so-called modes, can be used to 

represent spatial patterns shown at a certain time t by 

spatially extended systems [2]. Therefore, spatio-

temporal patterns can be modeled by using few 

spatial modes. Given a time series X
TxN

 of a 

spatio-temporal system, where T is the number of 

samples and N the number of subsystems, it can be 

expanded into a set of orthonormal components sk

each one having a corresponding amplitude wk(t):

* + Â
?

?
N

k

kk stwtX
1

)(        (1) 

where t=1…T  is the sample index. 

In order to evaluate sk, the covariance matrix R of

the spatio-temporal time series X, is calculated. 

Since R is symmetric, its eigenvalues nk and its or-

thogonal eigenvectors sk follow the relation: 

kkk ssR n?        (2). 

The eigenvectors are the spatial modes and the ei-

genvalue nk represents the contribution of the eigen-

vector sk to the whole signal. It is assumed that the 

eigenvalues are ordered respect to their magnitude 

and their sum is equal to the unity: 

Â
?

?
N

k

k

1

1n       (3).
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The number of spatial modes, which can be up to the 

number of subsystems N, can be decreased reducing 

in this way the degrees of freedom of the spatio-

temporal system. This can be done, by selecting the 

spatial modes with the largest eigenvalues in the 

Singular Value Decomposition (SVD). 

In real data analysis, the highest eigenvalues are 

associated to the spatially coherent dynamics while 

the smaller ones are related to incoherent dynamics. 

In pattern-oriented systems, the highest eigenvalues 

can be associated to the spatial self-synchronized 

dynamics while the smaller ones can be associated 

to the spatially unsynchronized chaotic dynamics. 

The point corresponding to a gap from the higher to 

the smaller eigenvalues distribution is adopted as the 

number of meaningful spatial modes that identify 

spatially coherent dynamics [4][5]. 

A. Self-Synchronization index  

Starting from the previous considerations, in order to 

evaluate the self-synchronization degree of a pat-

tern-oriented system, a new index is here introduced. 

This index, indicated with f, represents the number 

of freedom degrees of the system and is defined as 

the minimum value of F, for which the following 

relation is satisfied: 

Õ
Ö
ÔÄ

Å
Ã ‡? Â

?
9.0:min

1

F

k

kFf n     (4).

The introduction of a freedom degree index, allows 

quantifying the self-organization level of an ex-

tended network and evaluating its behavior versus 

structural parameters. 

Given the time series X previously defined, three 

main classes of dynamic behavior can be identified 

through the evaluation of the index f:
‚ Spatio-temporal chaos: each unit performs a dif-

ferent behavior characterized by f = N.
‚ Emerging patterns: the units aggregate in syn-

chronized clusters and 1 < f < N.
‚ Synchronization: each unit performs the same 

behavior as a unique system and  f = 1.

III. SYNCHRONZATION IN PATTERN ORIENTED NET-

WORKS

A fundamental parameter in pattern-oriented sys-

tems is the diffusion coefficient D that weights the 

amount of information exchanged between intercon-

nected subsystems.  

This parameter has been here characterized by quan-

tifying its effects on the spatio-temporal dynamics of 

two types of extended 2-D lattices: Chua’s circuits 

and H-R neurons.  Then, to validate the proposed 

approach, networks synchronization has been char-

acterized by using the index f: the freedom degree 

index strategy has been applied in order to classify 

system spatio-temporal behaviors towards D pa-

rameter.  

A. Two-dimensional lattices of Chua’s circuits 

A regular lattice has been built by connecting 100 

Chua’s circuits spatially disposed on a 10x10 matrix. 

The single unit equations have been modified con-

sidering a nearest-neighbor coupling of radius one 

which behavior is described by the following equa-

tions:

)11)((5.0)(

y

))((

//-/-?

/?

ÕÕÖ

Ô
ÄÄÅ

Ã
/--/?

//?
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dt

dz

CyDzyx
dt

dy

xhazy
dt

dx

d

c

   (5)

where a=-1.27, b=-0.68,c "?3 2 ".d "?3 6 0: 9 ."C=8.

The lattice collective behavior has been investigated 

by varying the coupling intensity D. Fig. 1 shows the 

time series of three generic cells of the lattice, while 

Fig. 2 shows the spatial patterns obtained consider-

ing four different time instants for increasing values 

of D. In this case, a bidimensional 64-color map has 

been used. 

Spatio-temporal chaos is observed for weak cou-

pling strength, D  [0.1÷1]: every cell evolves with 

its own dynamics according to its random initial 

conditions and the lattice behaves chaotically in time 

and space; by increasing D the lattice starts exhibit-

ing emerging patterns. Finally, for D values higher 

than 4, self-organization takes place and the systems 

conveys to perfect chaotic synchronization. 

The self-synchronization index approach has been 

validated, by evaluating the index f for increasing 

values of D. Coherently with the previous results, a 

value of f has been associated to the dynamic evolu-

tion of the lattice characterizing then the system 

synchronization degree versus the coupling D, as is 

it shown in Fig. 3. The index f decreases as the cou-

pling strength increases: it is maximum for D = 0, 

when all the circuits are disconnected and spatio-

temporal chaos is shown. For small values of D

[0.1÷1], the index value becomes smaller and 
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emerging patterns arise. Then, for values of D

greater than 4, the index f becomes equal to 1 and 

the perfect chaotic synchronization is reached: the 

system constituted by 100 cells behaves as a whole 

and only one dynamic evolution can be isolated. 

Fig. 1. x variable time series for increasing values of the 

diffusion coefficient D. Three generic circuits are consid-

ered (red line, blue line and green line). 

Fig. 2. Two-dimensional maps of 10x10 Chua’s circuit 

lattices for different values of the diffusion coefficient D.

Fig. 3. Freedom degree index f versus diffusion coeffi-

cient D in a 10x10 lattices of Chua’s circuits. 

B. Two-dimensional network of Hindmarsh-Rose 

neurons

A 2-D network of Hindmarsh-Rose neurons is built 

by disposing each unit on a 10x10 array with radius 

one. The lattice dynamics is defined by the follow-

ing equations: 

)6.1(
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       (6) 

where C=8 is the number of connected cells and 

i=1÷100, r=0.0021, S=4, I=3.281. 

The H-R model is a three state-variables model in 

which x(t) and y(t) model the fast dynamics while 

z(t) models the slow one; I represents the synaptic 

current. In the first differential equation of (6), a 

term representing the coupling between the ith neuron 

and its neighbors has been introduced; this term has 

been opportunely weighted by the coupling strength

D. The model parameters have been set in such a 

way that each isolated neuron is characterized by a 

chaotic behavior, each of them starting from random 

initial conditions. 

In Fig. 4 and 5 the membrane potentials x of three 

coupled neurons and the two-dimensional maps of 

the lattice, respectively, are displayed for increasing 

values of D. As shown in Fig. 4, the system is char-

acterized by two different regimes, slow and fast, 

requiring a different and accurate analysis. 

In the uncoupled case, when D=0, the potentials x(t)

evolve independently and the maps,displayed for 

different time instants, present isolated spots under-

lining the uncorrelated evolution of each neuron. In 

case of weak couplings, when D  [0.1÷2], the 

neurons evolve with slow periodic dynamic and fast 

unsynchronized spikes; as shown in Fig. 5, spatio-

temporal patterns arise. The dynamics changes for 

stronger couplings, when D>3; in this case, the 

neurons are chaotically synchronized as shown in 

Fig. 4 and 5.  

When the perfect synchronization is obtained both 

burst slow activities and spike fast regime become 

synchronized: the 100 neurons behave as an individ-

ual chaotic one and the 64-color maps obtained for 

fixed time instants have a homogeneous color. The 

spatio-temporal behavior of the H-R lattice has been 

then investigated by using the freedom degree index 
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f. The obtained results confirmed the close relation-

ship between synchronization performances and 

adopted measure. Starting from weak couplings, the 

synchronization index is far from 1, as shown in Fig. 

6.

Fig. 4. x variable time-series for different values of the 

diffusion coefficient D. Three generic neurons are consid-

ered (red line, blue line and green line). 

Fig. 5. Two-dimensional maps of 10x10 Hindmarsh-Rose 

neuron networks for different values of the diffusion 

coefficient D.

Fig. 6. Freedom degree index f versus diffusion 

coefficient D in a 10x10 network of neurons.

The freedom degree index curve appears very steep 

and decreases suddenly for higher values of the 

coupling strength D. The network self-organization, 

quantified according to the perfect synchronization 

of both slow and fast regimes, respectively burst and 

spikes dynamics, is obtained for a diffusion coeffi-

cient D higher than 3 when f=1, as reported in Fig. 

6.

IV. CONCLUSIONS

An innovative strategy is proposed in order to char-

acterize self-synchronization in pattern-oriented 

networks. In particular a self-synchronization index 

has been defined, identifying the number of degrees 

of freedom of the system. Two case of study have 

been considered: a two-dimensional network of 

Chua’s circuits and a second one of H-R neurons. 

First, the network dynamic behavior has been de-

scribed both in time and space for different values of 

the coupling strength D, then, the self-

synchronization index strategy has been adopted to 

characterize the different behaviors found in the 

previous analysis identifying the network dynamics 

with a single index. 
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Abstract— In this paper, we investigate synchro-
nization and cluster formation phenomena in two-
dimensional arrays of locally interconnected chaotic
circuits. We report the existence of an abundance of
attractors, for which each cell stores a binary infor-
mation. We describe a simple method for storing bi-
nary patterns in the network. We also address the
question which patterns can be successfully stored in
the network and discuss problems of pattern stability
and influence of parameter mismatch.

I. INTRODUCTION

One of the theories explaining the functionality
of the brain relies on the dynamical representations.
Construction of patterns of brain activity constitutes
the key to understanding of various phenomena in-
cluding perception, memory, attention etc. [2]. Many
different kinds of artificial neural networks have been
proposed to mimic such functionality [1], [3], [4].
Also special types of information processing can be
obtained using Cellular Nonlinear Networks [5], [6].
In this paper we combine two aspects - chaotic unit
cells and abundance of existing attractors to obtain bi-
nary pattern storage.

After introduction of the dynamical array in sec-
tion III we study the problem of existence of many
attractors, corresponding to binary patterns. In sec-
tion IV we describe how to force the network to store
a given binary pattern. We also show examples of pat-
terns, which cannot be stored and attempt to charac-
terize those patterns. In section V we investigate sta-
bility of patterns, the size of their basins of attraction
and influence of parameters mismatch. Finally in sec-
tion VI, we show two examples of behavior of larger
networks and discuss the influence of network size on
the ability of the network to store binary patterns.

This research has been supported in part by the European Com-
munity research program “COSYC of SENS”, no. HPRN-CT-
2000-00158 and by AGH-UST grant 11.11.120.182

II. DYNAMICS OF THE NETWORK

Let us consider a two–dimensional array composed
of simple third–order nonlinear systems (Chua’s cir-
cuits). The dynamics of an n × m array can be de-
scribed by

C2ẋi,j =G(zi,j − xi,j) − yi,j +
∑

(k,l) Ni,j

G1(xk,l − xi,j),

Lẏi,j =xi,j , (1)

C1żi,j =G(xi,j − zi,j) − f(zi,j),

where i = 0, 1, 2, . . . , n − 1, j = 0, 1, 2, . . . , m − 1
and f is a five–segment piecewise linear function:

f(z) =m2z + 0.5 · (m1−m2)(|z+b2| − |z−b2|)+
0.5 · (m0−m1)(|z+b1| − |z−b1|). (2)

xi,j and zi,j denote the voltages across the capacitors
C2 and C1 respectively, and yi,j is the current through
the inductor L in the cell (i, j) (i.e. belonging to
the ith column and jth row – see Fig. 1). Ni,j de-

C1C2 NRL

G

zi,jxi,j

yi,j

f(zi,j)

G1
G1 G1

G1

Fig. 1. A third order circuit coupled with its neighbors by
means of conductances G1

notes the neighborhood of the cell (i, j), i.e. a set of
cells directly connected with the cell (i, j). We con-
sider the case when each cell is connected with its
four nearest neighbors (i.e. Ni,j = {((i + 1) mod
n, j), ((i− 1) mod n, j), (i, (j +1) mod m), (i, (j −
1) mod m)}) by means of conductances G1 (here
G1 = 20). In our study we use parameter values for
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which an isolated circuit generates the “double scroll”
chaotic attractor: C1 = 1/9, C2 = 1, L = 1/7, G =
0.7, m0 =−0.8, m1 =−0.5,m2 =0.8, b1 =1, b2 =2.

III. EXISTENCE OF MANY ATTRACTORS

Let us consider the network composed of n · m =
10 · 10 cells. To make a classification of steady states
of the network we have run a number of simulations
starting the network with random initial conditions.
Four examples are shown in Figs. 2–5. In each case
the network converges to a limit set (steady state). To
show the state of the whole network, we plot a snap-
shot using shades of gray to represent the value of z
variable in each cell. We plot also projections of the
system trajectory onto chosen sub-spaces. Projection
onto the plane (zi,j , yi,j) shows a trajectory of a given
cell, while the projection onto the plane (zk,l, zi,j) in-
dicates the synchronization between two cells.

(a) (b) (c) (d)

Fig. 2. (a) Initial state (t = 0), (b) Steady state (t = 300);
Plots of variables in the steady state: (c) y0,0 versus
z0,0, (d) z4,6 versus z0,0.

For the first example snapshots of the initial state
and the steady state are shown in Fig. 2(a,b). A uni-
form coloring for the whole network in Fig. 2(b) in-
dicates that all cells are synchronized. This is con-
firmed by plotting projection of the trajectory onto the
plane (zk,l, zi,j) for two distant cells (k, l) and (i, j)
(see Fig. 2(d)). Trajectories of individual cells form
double–scroll attractors (Fig. 2(c)). Fully synchro-
nized state is observed most frequently when the net-
work is started from random initial conditions, which
indicates that its basin of attraction is large.

In the second example, in the steady state there are
two clusters of cells oscillating synchronously. This
corresponds to groups of light and dark squares in
Fig. 3(b). Oscillations generated by cells belonging to
different clusters are shown in Fig. 3(c,d). The cells in
different clusters operate in distinct regions of the R

3

space (for cells in one cluster z > 0, while for the sec-
ond one z < 0). Very good synchronization between
the cells within clusters is shown in Fig. 3(e). In the
steady state the behavior of the network is periodic.

Fig. 4 shows an example where one cluster is much
smaller than the other. Clusters have sizes 17 and 83,
respectively. Another important difference is that the

(a) (b)

(c) (d) (e) (f)

Fig. 3. (a) snapshot at t = 0, (b) snapshot at t = 300; plots
in the steady state: (c) y0,0 – z0,0, (d) y4,4 – z4,4, (e)
z4,6 – z0,0, (f) z4,4 – z0,0.

(a) (b)

(c) (d) (e) (f)

Fig. 4. (a) Initial state (t = 0), (b) steady state (t = 300);
plots in the steady state: (c) y0,0 – z0,0, (d) y6,0 – z6,0,
(e) z4,4 – z0,0, (f) z6,0 – z0,0.

network in the steady state oscillates chaotically (see
Fig. 4(c,d)). There is very good synchronization be-
tween cells belonging to each cluster (Fig. 4(e)).

The last example shows pattern switching phenom-
ena. The network started with random initial condi-
tions for time t ∈ [20, 45] displays a pattern with clus-
ter sizes 94 and 6 (Fig. 5(a)). This structure is however
not stable. At t ≈ 45 the pattern changes. Most of the
cells from the larger cluster leave the region z > 0
and a pattern with clusters of size 13 and 87 emerges
(Fig. 5 (b)). This last pattern is stable. After very
long integration time is still persists in the network.
The cells within a cluster are not fully synchronized.
Sometimes small bursts can be seen (Fig. 5(c)), but all
the time the cluster pattern is clearly visible.

Among an abundance of observed attractors most
frequent is the state of full synchronization. Other at-
tractors are characterized by two clusters of cells op-
erating in distinct regions of the R

3 space. In some
sense this attractors can be regarded as binary pat-
terns. If a cell operates in the region z > 0 (or z < 0)
we say it corresponds to binary “1” (or “0”). In some
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(a) (b)

(c) (d) (e) (f)

Fig. 5. (a) Initial state (t = 10.5) and (b) steady state
(t = 300); plots in the steady state: (c) y0,0 – z0,0, (d)
y1,5 – z1,5, (e) z5,5 – z0,0, (f) z1,5 – z0,0.

cases patterns are not stable.

IV. STORING PATTERNS

An important question, which arises in this context
is how can we force the network to display a given
pattern. We test a very simple approach. First, we
choose a point (x, y, z) on the double-scroll attrac-
tor positioned far from the hyperplane z = 0 and
satisfying the condition z > 0. In cells, which we
want to code as binary “1” we set (xi,j , yi,j , zi,j) =
(x, y, z) as an initial condition. For other cells we set
(xi,j , yi,j , zi,j) = (−x,−y,−z). It appears that in
this simple way we can force the network to store a
given binary pattern. An example is shown in Fig. 6.

(a) t = 0 (b) t = 12.5 (c) t = 20 (d) t = 200

Fig. 6. Storing a pattern

Since the initial state (Fig. 6(a)) does not belong to the
attractor corresponding to the binary pattern stored,
we observe transient oscillations (see shades of gray
in Fig. 6(b)). After some time the network converges
to the attractor. Snapshots taken at t = 20 and t = 200
confirm that in the steady state the cells in each cluster
oscillate synchronously.

In Fig. 7, we show four other examples of patterns
that were successfully stored in the network.

There are some patterns which are not stable. Two
examples are shown in Fig. 7(e,f). If we try to im-
pose these patterns using the method described above
the system displays them for some time, but eventu-
ally escapes to a stable attractor – in both cases the

(a) (b) (c) (d)

(e) (f)

Fig. 7. First row – stored patterns (snapshot at t = 40);
second row – unstable patterns, impossible to store

trajectory is attracted to the steady state with all cells
synchronized. It seems that patterns for which one of
the clusters is very small are unstable. Further anal-
ysis is necessary to characterize the class of unstable
patterns.

V. STABILITY OF PATTERNS

In order to study stability of binary patterns, we
carry out two different tests.

In the first test we modify the network parame-
ters. All parameters of cells are disturbed by a ran-
dom deviation of maximum amplitude 0.01% of nom-
inal value. Two snapshots taken at the steady state are
shown in Fig. 8. Initially a binary pattern is formed.
Later, the cells within clusters are not fully synchro-
nized (different shades of grey) but still the cluster
structure is clearly visible.

(a) t = 10 (b) t = 500

Fig. 8. Behavior of network with nonuniform cells.

In the second test we disturb all variables in the net-
work displaying a binary pattern by adding a random
value of a small amplitude. In this way we can test
the size of the basin of attraction of the correspond-
ing attractor. Results for the pattern form Fig. 6(d)
are shown in Fig. 9. The maximum amplitude of per-
turbation was 0.5 (Fig. 9(a)) and 1.0 (Fig. 9(c,e)). In
two cases the pattern was recovered in a correct way
(Fig. 9(b,d)), while in the last case one bit was de-
tected with error (Fig. 9(f)).
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(a) (c) (e)

(b) (d) (f)

Fig. 9. Stability of patterns, (a), (c), (e) disturbed patterns,
(b), (d), (f) recovered patterns

VI. LARGER NETWORKS

Let us now consider two examples of larger net-
works. The behavior of a 20 × 20 network started
with random initial conditions is shown in Fig. 10.
The binary pattern visible in Fig. 10(b) evolves (see
Fig. 10(c)) and around t = 200 the final pattern
emerges (Fig. 10(d)). This pattern persists even for
t ≤ 5000. Although the binary pattern is stable there
is no full synchronization between the cells in the
clusters – waves traveling through the network are vis-
ible as different shades of gray for cells belonging to
a given cluster.

(a) t = 0 (b) t = 10 (c) t = 32 (d) t = 402

Fig. 10. Dynamics of a network of 20 × 20 cells

As a last example we show simulations of the net-
work composed of 100 × 100 cells. In this case the
network started from random initial conditions after
t > 4 displays a binary pattern (Fig. 11(b)). This
pattern is however not stable. At t = 18 a circular
wave appears and the behavior becomes disorganized.
Snapshots taken at t = 100 and t = 500 are shown in
Fig. 11(c,d). The mode of pattern variation is typical
for large networks.

These two simulations show that the property of
storing binary patterns depends on the network size.
It seems that the number of stable patterns is smaller
for large networks. For very large networks binary
patterns are not stable and more complex behavior is
observed.

(a) t = 2.5 (b) t = 12

(c) t = 100 (d) t = 500

Fig. 11. Behavior of a network of 100 × 100 cells

VII. CONCLUSIONS

Arrays of locally coupled chaotic circuits show an
abundance of pattern formation phenomena. Using
position of the attractors in the phase space it is pos-
sible to give a binary description to such patterns. We
have investigated the formation of binary patterns in
arrays of Chua’s circuits coupled via a regular resis-
tive grid. Further we have proposed a simple method
for obtaining a desired binary pattern by appropriate
choice of initial states of the network. Stability of pat-
terns and influence of non-uniformity and size of the
networks have also been addressed.
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Abstract— We present some results whose central
theme is that the phenomenon of the first eigenvalue
of the Laplacian and the ground flow of the compact
surface (bitorus). Our main tool is a method for study-
ing how the hyperbolic metric on a Riemann surface
behaves under deformation of the surface. With this
model, we show that there are variation of the first
eigenvalue of the Laplacian and the ground flow with
the Fenchel-Nielsen coordinates, that characterize the
surface.

I. INTRODUCTION

The Selberg trace formula has been of great inter-
est to mathematicians for almost 50 years. It was dis-
covered by Selberg, who also defined the Selberg zeta
function, by analogy with the Riemann zeta function,
to be a product over prime geodesics in a compact Rie-
mann surface.

The Selberg trace formula has been of great inter-
est to mathematicians for almost 50 years. It was dis-
covered by Selberg [13], who also defined the Selberg
zeta function, by analogy with the Riemann zeta func-
tion, to be a product over prime geodesics in a com-
pact Riemann surface. But the analogue of the Rie-
mann hypothesis is provable for the Selberg zeta func-
tion. The trace formula shows that there is a relation
between the length spectrum of these prime geodesics
and the spectrum of the Laplace operator on the sur-
face.

Fig. 1. Bitorus

More recently quantum physicists (specifically
those working on quantum chaos theory) have been
investigating the Selberg trace formula and its gener-
alizations because it provides a connection between
classical and quantum physics. In fact, of late there
has been much communication between mathemati-
cians and physicists on this and matters related to the
statistics of spectra and zeta zeros.

For the computation of the length geodesic spec-
trum see [11]

In this note, we announce a collection of results
connected to the behavior of the first eigenvalue λ1(S)
of a compact Riemann surface S of genus 2, endowed
with a metric of constant curvature −1.

The idea of studying the first eigenvalue of a Rie-
mann surface via the study of eigenvalues of 3-regular
graphs comes from the work of Buser [5], [7]. In
effect, our approach here is a variation on his idea,
where we first study the behavior of λ1 on finite-area
Riemann surfaces connected to 3-regular graphs, and
then see how λ1 changes when we deformed the sur-
face. It is interesting to pass back and forth between
the geometric and graph-theoretic pictures. One rea-
son for doing this is that a problem which appears dif-
ficult from one point of view may be relatively easy,
or even solved, from the other point of view. Another
reason is that attitudes towards various results may
differ markedly in two areas, and comparing them
may be an important source of insight.

Our main analytic tool is a method for studying how
the hyperbolic metric of a finite-area Riemann surface
behaves under such a deformation.

The first eigenvalue of the Laplacian on a surface
can be viewed as a functional on the space of Rie-
mannian metrics of a given area.

Every such surface is represented by a quotient
space H2/Γ of the upper half-plane H2 by a Fuch-
sian group Γ which is isomorphic to a fundamental
group of M. The discrete group Γ is identified with
the corresponding system of generators. A fundamen-
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tal domain F is defined. The method is to decompose
Riemann surface into a set of 2 pairs of pants by sim-
ple closed geodesics. Then the Fenchel-Nielsen co-
ordinates are defined by geodesic length functions of
three simple closed geodesics and twist angles along
these geodesics.

Here we use a real-analytic embedding of the Te-
ichmüller space T of closed Riemann surfaces of
genus 2 onto an explicitly defined region R ⊂ R �.
The parameters are explicitly defined in terms of
the underlying hyperbolic geometry. The parame-
ters are elementary functions of lengths of simple
closed geodesics, angles and distances between sim-
ple closed geodesics. The embedding is accomplished
by writing down four matrices in PSL(2, R), where
the entries in these matrices are explicit algebraic
functions of the parameters. With explicit construc-
tions and side pairing transformations (see [12]) we
define the Fuchsian group Γ representing the closed
Riemann surface of genus 2.

-15 -10 -5 5 10 15

2

4

6

8

10

12

14

Fig. 2. Hyperbolic plane

Cheeger’s celebrated inequality relates the first
non-trivial eigenvalue of a compact manifold to an
isoperimetric constant, the Cheeger constant, defined
as follows: let S be a closed Riemannian manifold
(compact, no boundary) and let X be a hypersurface
dividing S into two parts, A and B. Then

h(S) = inf
S

area(X)
min(vol(A), vol(B))

where the in infimum runs over all such hypersurfaces
X. Let λ1 denote the first nontrivial eigenvalue of S.
Cheeger in [8] proved:

Theorem 1: Let S be a closed Riemannian mani-
fold. Then λ1 ≥ 1

4h2.

This bound is remarkable for its universal character.
It is natural to ask whether there is an upper bound for
the first eigenvalue in terms of Cheeger’s constant.
With an added hypothesis on curvatures, such an up-

per bound was proved by [7]:
Theorem 2: Suppose that S is a smooth Rieman-

nian manifold with Ricc(S) ≥ −c. Then there are
constants c1 and c2 depending on c so that λ1 ≤
c1h + c2h

2.(see [7]).
It is not surprising that there are graph-theoretic

analogues of these notions and results. As usual, there
are different conventions and normalizations which
are essentially equivalent. It convenient to stick to the
case of k-regular graphs G, and define the Laplacian
as

∆(f)(x) =
1
k

∑
y∼x

(f(x) − f(y))

and the Cheeger constant to be

h(G) = inf
E

#(X)
min(#(A),#(B))

where E runs over collections of edges such that
G − E decomposes into two pieces A and B, and
#(A) (resp. #(B)) denotes the number of vertices
in A (resp. B).

Cheeger’s inequality then becomes:
Theorem 3: λ1 ≥ 1

2k2
h2,(see [1]).

The analogue of Buser’s inequality is:
Theorem 4: λ1 ≤ 2h.(see [1]).
The importance of the study of the first eigenvalue

of a Riemann surface is fairly well established by now
in the literature. But with the introduction of the no-
tion of conductance of a dynamical system, particu-
larly in the graph theory, and with the relationship
with the smallest non-zero eigenvalue of the Laplacian
this importance get bigger. Another field is beginning.

II. VARIATIONS WITH FENCHEL-NIELSEN

COORDINATES

In a general way, to each discrete dynamical system
(I, f) defined by the iterates of a map f on the inter-
val I, we associate a Markov matrix, which is rep-
resentable by a non-regular, oriented graph Gf (the
elements of E are now ordered pairs). So we have
systems defined by the adjacency matrix Af = (aij)
of Gf , that is, the 0− 1 matrix where aij = 1 iff ij is
an edge. We can now establish the notion of conduc-
tance of a discrete dynamical system. For more details
see [10].

Definition 1: Let Af = (aij)ni,j=1 be the adjacency
matrix associated to (I, f) and Gf the Markov graph.
Define the diagonal matrix Df = (dij)ni,j=1, putting
in the diagonal dii the number of edges that incide (in
and out) in the vertex i (loops contribute with 2). We
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will call the matrix

∆f = Df − (Af + AT
f )

the Laplacian matrix of the graph Gf .

As we will see, the smallest non-zero eigenvalue of
the Laplacian is closely related with the conductance
of the system. This result can be proved by symbolic
dynamic methods.

To explicit construction of a fundamental domain
we consider the geodesics in the hyperbbolic plane
H2 given the surface M = H∈/−, see Fig. 2.
When we cut the surface M along these geodesics
then we divide it into four equilateral hexagons. The
sides are are obtained by the intersection of the axis,
they are geodesics segments. These geodesics are the
shortest geodesics in the free homotopy class of loops
corresponding to some elements hi (i = 1, ..., 6) of
Γ = π1(M), the fundamental group of M. We have
the hexagon H1 whose sides si are the arcs of γi and
these arcs are contained in the axes of the hyperbolic
transformations hi (i = 1, ..., 6). Their translation
length in the positive direction along these axis is 2li
where li denote the length of γi = l(γi). They are
four of the parameters. The other parameters are the
gluing angles. So:

c1 = l(γ1), c2 = l(γ2), c3 = l(γ3), c4 = l(γ4),
σ = |P − P2| , τ = arc tanh (cos(θ2)) ,
ρ = arc tanh (cos(θ3))

But c4 is determined by the others parameters, so
with this parametrization, each point ti of the Te-
ichmüller space T is ti = ti(c1, c2, c3, σ, τ , ρ). This
construction is dependent from de choice of the origi-
nal geodesics γi, the chain, thus the dependence from
the parameters ci = l(γi).

The sides are labelled s1, ..., s12 reading counter-
clockwise from the zero.

Let H2/Γ our compact surface of genus g = 2. The
fundamental domain its a bounded fundamental poly-
gon whose boundary ∂F consists of the 12 geodesics
segments s1, ..., s12.

Each side si of F is identified with sj , by an ele-
ment g ∈ Γ and so each g ∈ Γ produces a unique side
s , namely, s = F∩g(F ) There is a bijection between
the set of the sides of F and the set of elements g in
Γ for which F ∩ g(F ) is a side of F .

We construct a map from the set of the sides of F
onto itself , g : si → sj where .si is identified with sj .
This is called a side-pairing of F . The side-pairing
elements of Γ generate Γ.

In this construction we choose the side rule for the
pairing

s1 → s7, s2 → s12, s3 → s5,

s4 → s10, s6 → s8, s9 → s11

With this choice we explicitly calculate formulas
for the side pairing transformations g1, ..., g6,g7 =
g−1
1 , ...,g12 = g−1

6 . This mean that s7 =
g1(s1),...,s9 = g6(s11), s1 = g7(s7),...,s11 =
g12(s9), thus we obtain explicitly the generators gi =
gi(c1, c2, c3, σ, τ , ρ) , i = 1, ..., 12.

With the linear fractional transformations defined
above it is possible to obtain the boundary map:
fΓ : ∂F → ∂F , defined by piecewise linear frac-
tional transformations in the partition P = {I

〉
=

[√
〉
,√

〉+∞
),i = 1, ..., 11, [p12 , p1)}, which is orbit

equivalent to the action of the fundamental group Γ
on ∂F . The boundary map is represented by

fΓ :
⋃

i=1,...,12

Ii →
⋃

i=1,...,12

Ii

fΓ(x)
|Ii

= gi(x), i = 1, ..., 12

We are able to define a map that codifies the expan-
sion of boundary points of F . And we determine the
Markov matrix AΓ associated to Γ. Let be AΓ the
matrix

aij =
{

1 if Jj ⊂ fΓ(Ji)
0 otherwise

In [11] we have introduced a Markov partition for
the Bowen-Series boundary map fΓ associated with
the fundamental group Γ and we defined the 24 × 24
Markov matrix AΓ. It is known that there are the
correspondence between the closed geodesics of the
surface and the conjugacy classes of the group so with
the list above we identify each closed geodesic. We
obtained the length spectrum of the closed geodesics
by computing l(g) = 2 Arc cos h[tr(g)/2].

Returning to our original question, we note that a
closed surface of genus at least 2 has uncountably
many hyperbolic structures up to homotopy relative
to the boundary, and these may be parametrized by
Fenchel-Nielsen coordinates in Teichmüller space, so
they have the remarkable property, known as flexibil-
ity. But, in spite of this flexibility, there is the fol-
lowing property, that state the existence of constants,
who guarantees a certain boundedness of hyperbolic
structures under deformation of a hyperbolic surface.

Theorem 5: Let M a hyperbolic surface of genus
g = 2 (bitorus). Then smallest non-zero eigenvalue
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of the Laplacian is bounded from above by a constant
c0 < 1/4 (see [14]).

In this comunication we determine explicitly this
constant. First we need to be clear this constant.

Definition 2: Let be a geodesic chain γ1, γ2, γ3, γ4

where the four geodesics have equal length and the
twist parameters are zero. We call regular domain of
the genus g = 2 closed Riemann surface M with this
Fenchel-Nielsen coordinates choice.

Here, the Cheeger constant is h(Gf ) is the min-
imum of the conductances on M� where t =
t(c1, c2, c3, σ, τ , ρ) is a point of the Teichmüller space
T .

We are able to introduced our main result. We
denote by Φ(∆f ) the eigenvector associated to the
smallest non-zero eigenvalue of the Laplacian ∆f ,
and we designate it by ground flow eigenvector.

Theorem 6: Let Φ(∆f ) be the ground flow eigen-
vector associated to the compact surface M, then the
total sum of its components is zero.

Proof: The prove can be obtained using the fact
that the Laplacian matrix ∆f is symmetric.

See [9] and [10] for the relation with the mixing
rate.
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Abstract— The atmospheric response function
gives the most probable daily mean-temperature
change as a function of temperature anomaly, that
is the deviation from long-term average value for a
particular calendar day. We demonstrate that this re-
sponse function is inherently nonlinear and climate
specific. The shape of the function can be well fit-
ted by a third order polynomial, and the noise ampli-
tude also depends on the anomaly. An electric circuit
realization provides a straight tool for an exhaustive
investigation of the pretty large parameter space.

I. INTRODUCTION

What is the expected average temperature tomor-
row? If your estimate is exactly the same as the value
today plus/minus 2 Centigrade, your success rate will
be well over 60%, at least in temperate climate. The
naı̈ve prediction can be improved by considering ten-
dencies on the previous days. Temperature changes
at calm weather are expected to follow the seasonal
time-course, otherwise, e.g. in midlatitudes, active
cyclones and anticyclones determine atmospheric pa-
rameters for a couple of days. Nevertheless, warming
or cooling trends can not persist forever, there comes
an unavoidable turning point.

Intuitively, turning of temperature trends should
have an increasing probability, when the state of the
atmosphere is shifted farther and farther from the
“normal” conditions. Meteorologists define the nor-
mal state of atmosphere by means of averages taken
over properly chosen time and space domains. For
example, the daily mean-temperature on 9 May in Bu-
dapest is expected around 14.5 ◦C based on averaging
over several years for the same calendar day. The dif-
ference between the actual value and the long-time av-
erage is termed as the temperature anomaly (∆T )i for
the ith day of the year. Figure 1 shows the probability
that the temperature moves back toward the long-time
average on the next day, as a function of anomaly. The
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Fig. 1. Turning probability of daily mean-temperature as a
function of daily mean-temperature anomaly. Circles:
aggregated data for 16 Hungarian weather stations, 38
years each; diamonds: Lethbridge, Canada (49◦ 38’ N,
112◦ 48’ W), 64 years. The gray lines only guide the
eyes.

data illustrate well that our anticipation is not too far
from reality, however, the analysis of the highly non-
trivial curves is beyond the scope of the present work.

The nomenclature (and actually Fig. 1) already sug-
gest that the long-time average value of daily mean-
temperatures is somehow associated with a kind of
equilibrium state. However, any measured data can
be averaged, but the physical meaning of the aver-
age value should be always explained. In this work
we show that (i) the long-time daily average tempera-
ture is an attribute of a stable atmospheric equilibrium
state. (ii) The behavior around this equilibrium can be
described by a temperature response function, which
is climate dependent. (iii) The parameter space is in-
vestigated by a simple circuit model of the response
function.
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Fig. 2. Empirical atmospheric temperature response func-
tion for 16 weather stations in Hungary. (a) The aver-
age temperature step 〈Ti+1 − Ti〉 (circles) as a func-
tion of temperature anomaly ∆Ti, the gray band indi-
cates the standard deviation. The solid line is a fifth
order polynomial fit. (b) The standard deviation σ (di-
amonds), and (c) the skewness γ as a function of tem-
perature anomaly ∆Ti. Dashed line in (b) indicates a
parabolic fit.

II. TEMPERATURE RESPONSE FUNCTION

A system is said in stable equilibrium, when its
spontaneous motion is restricted to a bounded phase
space domain, and the effect of external perturbations
decays in finite time. To be more specific for the at-
mospheric temperature, the first criterion means that
its probability distribution is bounded and invariant in
time, the second means that large anomalies are fol-
lowed by backward steps in a couple of days. While
histograms of temperature fluctuations are evaluated
routinely [1], the ”response function” has been intro-
duced only recently [2].

Figure 2 shows the one-day mean-temperature re-
sponse for Hungary. The data set is described in de-
tails in Ref. [3], long-range correlation properties are
analyzed in [2], [4]. Records for other geographic lo-
cations are obtained from the Global Daily Climatol-
ogy Network provided by the US National Climatic
Data Center [5].

The elements of the response function in Fig. 2 sup-
port that the long-time average temperature represents
a stable (dynamic) equilibrium state of the lower at-
mosphere:
• The expected response vanishes at zero anomaly,
and finite deviations imply a finite average tempera-
ture step of the opposite sign (Fig. 2a).
• Fluctuations are enhanced at larger anomalies in
both directions (Fig. 2b).
• The partial probability distributions at around a
given anomaly value are skewed “backward”, i.e.
fluctuations toward the equilibrium have higher prob-
abilities than in the opposite direction (Fig. 2c)

Note that the curve of the average response (Fig. 2a)
is asymmetric and strongly nonlinear. The best em-
pirical fit is a fifth order polynomial, however a cubic
approximation is acceptable as well [2].

III. RESPONSE FUNCTION CLIMATOLOGY
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Edmonton (53.57° N, 113.52° W)

Dublin (53.35° N, 6.33° W)

Adelaide (34.93° S,  138.58° E)

Fig. 3. Empirical atmospheric temperature response func-
tion for three weather stations:(a) Edmonton (Canada)
64 years, (b) Dublin (Ireland) 80 years, and (c) Ade-
laide (Australia) 112 years daily data. The plots are
in the same scales. Gray band indicates one standard
deviation. Thin lines are cubic fits.

Figure 3 clearly illustrates that the response func-
tion is not universal, it depends strongly on the ge-
ographic location and local climate. In order to com-
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TABLE I
FITTED COEFFICIENTS OF EQ. (1) FOR SEVERAL

WEATHER STATIONS IN DIFFERENT CLIMATES.

c1 × 10 c2 × 103 c3 × 104

Adelaide (AUS) -3.215 -15.143 -1.488
Bamberg (D) -1.964 -9.029 -3.589
Basel (CH) -1.495 -7.837 -6.298
Budapest (H) -1.242 -7.593 -7.965
Darwin (AUS) -2.924 -18.371 -9.436
De Bilt (NL) -1.988 -5.699 -2.540
Dublin (IRL) -3.048 -5.270 -0.000
Edmonton (CAN) -1.677 -3.041 -0.490
Hamburg (D) -1.961 -4.981 -2.294
Kremsmünster (A) -1.384 -7.799 -7.420
La Estan. (URY) -2.993 -6.054 -0.695
Lethbridge (CAN) -1.955 -3.555 -0.623
Lugano (CH) -2.554 -9.517 -2.524
Melbourne (AUS) -3.569 -13.274 -11.606
Oslo (NOR) -1.969 -4.020 -1.377
Paris (F) -1.644 -7.956 -5.223
Potsdam (D) -1.669 -7.418 -4.118
Säntis (CH) -1.675 -0.615 -3.039
Sydney (AUS) -3.807 -30.069 -16.989
Ullungdo (KOR) -2.685 -10.394 -12.817
Zürich (CH) -1.591 -7.506 -7.037
Willis Isl. (AUS) -1.982 -27.334 -160.87

pare different weather stations more quantitatively, we
fitted the average response by a third order polyno-
mial:

〈Ti+1 − Ti〉 =
3∑

n=1

cn(∆T )n
i , (1)

where (∆T )i is the mean-temperature anomaly on the
ith day, 〈Ti+1 −Ti〉 denotes the average change of the
daily mean-temperature on the next day. The coeffi-
cients are given in Table I for a couple of places.

Note that all the signs of the coefficients cn are neg-
ative. This means, first of all, that the atmosphere ex-
hibits a strong negative feedback, large temperature
fluctuations are damped. The lack of turning points is
a physically plausible requirement, thus the parameter
space is restricted by the condition [6]:

c2
2 < 3c1 ∗ c3 . (2)

Furthermore, the data do not coincide with an odd cu-
bic function. When we denote the curve by y(x) =∑3

n=1 cnxn, the symmetry centre (xs, ys) (point of in-

-30 -25 -20 -15 -10 -5 0
xs [°C]

-1

0

1

2

3

4

5

6

y s
[°

C
]

Fig. 4. The shift of the symmetry center Eq. (3) for the
stations listed in Table I. [The fits for Adelaide and
Dublin do not satisfy condition (2)].

flection) obeys a shift [6]:

xs = − c2

3c3
ys =

2c3
2 − 9c1c2c3

27c2
3

. (3)

It is interesting to see that the shifts are arranged
along a line (Fig. 4). The leftmost three stations are La
Estanzuela (Uruguay), Lethbridge (Canada), and Ed-
monton (Canada), the most symmetric curves belong
to Willis Island (Australia) and Säntis (Switzerland).
Since these locations represent very different climate,
an easy explanation is hardly given.

Note finally that the response function (Fig. 2a,
Figs. 3a-c) can be approximated by a straight line
of negative slope at around zero anomaly. This pic-
ture is consistent with the simplest first-order autore-
gressive (AR1) model of temperature anomaly fluc-
tuations, where a stochastic process is defined as [1],
[2]:

(∆T )i+1 = a(∆T )i + ξi . (4)

Here a < 1 is the AR1 coefficient, and ξ is a noise
term of appropriate amplitude and correlation proper-
ties [2]. Numerical tests confirmed that the relation
a ≈ (1 + c1) is fulfilled for each case (note that c1 is
negative), numerical inaccuracies are due to the linear
fit of nonlinear curves.

IV. CIRCUIT MODELING

Analog computers are almost extinct, nevertheless
several fruitful concepts survived “digitalization” [7].
As for our particular problem, an exhaustive inves-
tigation of the parameter space is quite demanding:
there are (at least) three parameters for the average
response, another three for the parabolic noise func-
tion, and there are many possible temporal anomaly
courses on different time scales. An attractive solution
is to construct an electric circuit model where parame-
ters can be tuned by potentiometers, input is provided
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ξ(U)

F(U)

Σ

output

input

Fig. 5. Conceptual circuit model of the atmospheric re-
sponse function. F (U) is the polynomial Eq. (1),
ξ(U) is the noise generator reproducing Fig. 2b with
parabolic coefficients b0, b1, and b2, ∆t is a time-delay
unit.

by a signal generator, and the output is readily acces-
sible by means of an oscilloscope (Fig. 5).

Fig. 6. Graphical user interface for a software realization
of the circuit model in Fig. 5. The graphs show the
response to a sinusoidal excitation, at parameters for
Budapest (see Table I).

Obviously, an electric circuit of similarly low com-
plexity can be easier realized by means of known soft-
ware tools. The graphical user interface of our test
version is shown in Fig. 6. Though the system seems
to be simplistic, it is easy to find parameter ranges
where the behavior is fairly nontrivial. As an ex-
ample, we illustrate the consequence of an increased
quadratic noise term in Fig. 7. The fitted parabolic
function in Fig. 2b (dashed line) is

σ(∆T ) = 2.049−0.0058∆T +0.0094(∆T )2 . (5)

If the coefficient of the last term in Eq. (5) is increased
by a factor of five, the symmetric sinusoidal signal
becomes strongly distorted with an anomalously high
maximum (the amplitude of the excitation is 10 units),
and a loop appears in the input vs. output function.

Fig. 7. Anomalous temperature-course for our Budapest-
model where the only parameter perturbed is the
quadratic term in the noise function (see text).

Note that the extreme heatwaves for summer 2003
gave rise to an intense discussion on the nature and
role of temperature variablity over the European con-
tinent [8].

Of course, we do not expect chaotic behavior for
response functions of parameters listed in Table I.
Nevertheless, the model can help to explore the sur-
prisingly rich behavior of the “weather-oscillator” de-
scribed above.

This work was supported by the Hungarian Science
Foundation (OTKA) under grant no. T032437.
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Abstract— Overdamped bistable systems can
be described by the generic form ẋ = −∇U(x),
where U(x) is a bistable potential energy function.
It is well known that an overdamped system does
not oscillate on its own so that, to switch states,
the system must be forced by an external peri-
odic signal with large enough amplitude to over-
come the potential energy barrier that separates
the two stable attractors (minima). However,
well-designed coupling schemes, together with the
appropriate choice of initial conditions can induce
oscillations when a control parameter exceeds a
threshold value, thereby eliminating the need for
the forcing function. We demonstrate these con-
cepts numerically and experimentally using three
“single-domain” fluxgate magnetometers that are
coupled unidirectionally in a ring; this configura-
tion is the basis of simple, low-power, and inex-
pensive magnetometers for weak dc magnetic field
detection.

I. Introduction

Overdamped bistable dynamics, of the generic
form ẋ = −∇U(x), underpin the behavior of nu-
merous systems in the physical world. The most-
studied example is the overdamped Duffing sys-
tem: the dynamics of a particle in a bistable po-
tential U(x) = −ax2 + bx4. Bistable systems
are also, frequently characterized by a “soft” (to
be contrasted with the “hard” Duffing potential
which approaches ±∞ far more steeply) potential
consisting of a nonlinear addition to a parabolic
component, the latter being, of course, character-
istic of linear dynamics. Amongst these systems,
the dynamics of a hysteretic ferromagnetic core
(treated as a macroscopic single-domain entity)
have recently attracted some attention, because
they underpin very cheap magnetic field sensors,
operated in the time domain [2]. Absent an exter-
nal forcing term, the state-point x(t) will rapidly

relax to one of two stable attractors, for any choice
of initial condition; this behavior is, of course, uni-
versal in overdamped dynamical systems.

Recently, we have demonstrated [1], [3] that
coupling an odd number N ≥ 3 of overdamped
bistable elements in a ring, with uni-directional
coupling, and ensuring that at least one of them
has an initial state that is different from the oth-
ers, can lead to oscillatory behavior, when the
coupling strength exceeds a critical value. The
characteristics of the bifurcation to oscillatory be-
havior depend on the system dynamics and the
manner in which the elements are coupled. Here,
we outline the dynamics of uni-diectionally cou-
pled single domain ferromagnetic cores, focus-
ing on the dynamics past the critical point, and
demonstrate how one may derive the oscillation
frequency together with its scaling behavior as a
function of the coupling strength which is taken to
be our control parameter. This frequency serves
as a useful quantifier of a very small (compared
to the hysteresis loop width) “target” signal, as-
sumed to be dc throughout this work.

II. Coupled “Single-Domain” Magnetic
Systems

We begin by enunciating some of the results
which have already been presented in [1], [3], con-
fining ourselves to the N = 3 case (the extension
to arbitrary N will become clear later on), thereby
setting up the context of the problem at hand. Us-
ing the coupled magnetic “fluxgate” magnetome-
ters as an example [1], we start with the system

ẋ1 = −x1 + tanh(c(x1 + λx2 + ε))
ẋ2 = −x2 + tanh(c(x2 + λx3 + ε)).
ẋ3 = −x3 + tanh(c(x3 + λx1 + ε))

(1)

where xi(t) represents the (suitably normalized)
magnetic flux at the output (i.e. in the sec-

N  D  E  S        2  0  0  4

178



ondary coil) of each unit, and ε � U0 is an ex-
ternally applied dc magnetic flux. It is impor-
tant to note that the oscillatory behavior occurs
even for ε = 0, however when ε �= 0, the oscil-
lation characteristics change. The elements (i.e.
magnetometers) in (1) are assumed identical, c
being a temperature-dependent nonlinearity pa-
rameter (each element is bistable for c > 1), and
U0 being the energy barrier height of any of the
elements, absent the coupling. Notice that the
(uni-directional) coupling term, having strength
λ, which is assumed to be equal for all three el-
ements is inside the nonlinearity, a direct result
of the mean-field nature of the description (in the
fluxgate magnetometer, the coupling is through
the induction in the primary or “pick up” coil).

A simple numerical integration of (1) (starting
with non-identical initial conditions) reveals oscil-
latory behavior for λ < λc, where λc is a critical
(or threshold) value of the coupling strength (as
seen in [1], λc < 0, so that |λ| > |λc| in the oscilla-
tory regime). The oscillations are non-sinusoidal,
with a frequency that increases as the coupling
strength decreases away from λc. For λ > λc,
however, the system quickly settles into one of its
steady states, regardless of the initial conditions;
the same result ensues if N is even, or if the cou-
pling is bi-directional. As a side-note, we point
out that the appearance of oscillations for λ < λc

does not violate any conservation laws; in a prac-
tical implementation, some onboard power (e.g.
to drive the coupling circuit) is always present.
The dc target signal ε has the effect of skewing
the potential function (for zero coupling) of each
element. This has implications for the oscillation
frequency as well as the residence times (or, equiv-
alently, the zero-crossings) of individual elements
of the connected array, in their stable attractors.
This induced asymmetry has been exploited by us
[2] in a design for an inexpensive, low-power, and
simple to operate fluxgate magnetometer.

Figure 1 shows the oscillations and the summed
response X(t) =

∑
i xi(t) for the system (1), for

different values of the coupling strength λ and dc
asymmetrizing signal ε. We note that the indi-
vidual responses xi(t), while having the same fre-
quency (assuming that the parameters c and λ are
the same throughout the dynamics (1)), are offset
in phase by 2π/N . Increasing N leads to differ-
ent frequencies for the individual elements xi(t),
with a concommittant phase difference between
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Fig. 1. Emergent oscillatory behavior in the cou-
pled system (1). (a) shows the oscillations near
the critical point. Summed response is indicated
by thick lines in all panels. Typical of the het-
eroclinic cycles, the amplitudes are fully grown
at the start of the bifurcation and the frequency
is low. At the birth of the oscillations, the fre-
quency is zero as predicated by the heteroclinic
bifurcation. λ = −0.65, ε = 0. (b) shows the os-
cillations for λ = −0.65, ε = 0.05. Notice that
the sum signal is greatly offset between the up-
per state (above zero) and the lower state (be-
low zero). (c) shows the oscillations for a higher
coupling strength λ = −0.75, and ε = 0. Con-
trasted with figure (a), the frequency increases sig-
nificanly. The frequency scaling with respect to λ
obeys the 1/2 power law. Figure (d) has the same
λ value as in (c) but ε = 0.05. Notice the decrease
in frequency when the target signal ε is non-zero.

solutions; however, the summed response has a
frequency that is independent of N , as long as the
other parameters c and λ remain unchanged.

III. Dynamics

We now turn to a more detailed description of
the dynamics (1), confining ourselves to the im-
mediate neighbourhood of the critical point in the
oscillatory regime, i.e., the separation λc − λ is
small. We carry out the analysis for N = 3 el-
ements, with the generalization to arbitrary N
made clear at the end. We refer to figure 1, specif-
ically the top row which corresponds to the case
of small separation λc − λ. Note that figure 1
was generated using a specific set of initial condi-
tions, however the dynamics evolve independently
of this choice, as long as at least one element has
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an initial state different from the others.
For small separation λc − λ it is clear that

the state-points spend the bulk of their transi-
tion times reaching the inflexion points ±xinf =
±√(c − 1)/c, after which the passage to the op-
posite minimum (at ±1) is very rapid. One also
notes that the elements evolve two at a time, with
one element always remaining in its steady state
while the others evolve. This behavior, which is
most pronounced near the critical point, has been
quantified elsewhere [5]. It is also clear (figure 1)
that the zero crossing points t0(= 0), t1, t2 etc. of
the summed output X(t) also correspond to the
crossing points of the individual elements e.g. t1
corresponds to the zero-crossing of x1(t), t2 for
x3(t), etc. Hence, the problem of finding the pe-
riod T+ of the summed output, or the individ-
ual oscillation periods Ti ≡ T3 (which are all the
same; the suffix refers to the N = 3 case) reduces
to determining the zero-crossing times t1,2(t).

From our discussion above it is evident that,
during the dominant part (in figure 1 this corre-
sponds to the half-cycle starting at x1 = 1) of the
evolution of x1(t), the element x2(t) remains in
its steady state x+ ≈ 1 (the exact locations of the
fixed points can be readily found via simple calcu-
lus, as has been done in [2], and for c > 1 are very
close to ±1, due to the tanh function) so that the
first of the equations (1) can be simplified to:

ẋ1(t) = −x1 + tanh c(x1 + λ + ε), (2)

corresponding to simple “particle-in-potential”
motion. Formally integrating this equation yields,

t1 =
∫ 0

1

dx1

tanh c(x1 + λ + ε) − x1
, (3)

where t1 is the time taken (for this choice of initial
conditions) by the state-point x1(t) to evolve from
its attractor at +1, to 0 (figure 1). This integral
cannot be evaluated analytically, in general. Sim-
ilarly, we see that x3(t) evolves while x1(t) ≈ −1
so that we have

ẋ3(t) = −x3 + tanh c(x3 − λ + ε), (4)

whence we obtain,

t12 ≡ t2 − t1 =
∫ 0

− 1

dx3

tanh c(x3 − λ + ε) − x3
. (5)

From these two integrals, we may write down the
period T+ of the summed output as T+ = t12 + t1

by formally summing the above expressions. A
little manipulation of the integration limits shows
immediately that T+ = 2t1 for ε = 0, as ex-
pected. Having obtained the above expressions,
it is easy to see that t3 = T+ + t1, t4 = 2T+, t5 =
2T++t1, t6 = 3T+, etc. In particular, we can write
down the expression for the individual periods as
T3 = 3T+, and for the phase differences between
individual solutions as t3 − t1 = t5 − t3 etc., so
that the phase difference is 2π/3. The general-
ization of the above observations to arbitrary N
should now be clear. In this case, the individual
periods (and the phase offsets) do change; how-
ever, again, only two elements are simultaneously
evolving at any given time, the remainder stay-
ing in their steady states. Hence, the period of
the summed output is always the same, and we
obtain, T+ = Ti/N where T+ is now the summed
output of N (odd) elements, and Ti is the period
of the individual oscillations for the i = N case.
The phase offset between solutions for arbitrary
N is 2π/N .

The integrals in (3) and (5) may be evaluated
just past the critical point, where the integrands
display sharply peaked behavior. After some al-
gebra we obtain [5] the elegant expression for the
sum period T+:

T+ =
π√
cxi

[
1√

λc − λ
+

1√
λc − λ + 2ε

]
. (6)

A comparison between the period obtained from
this expression and from direct numerical sim-
ulations is presented in Fig. 2. We see that
the analytical expression captures the dynamics
well, especially near the bifurcation threshold, but
also well into the oscillating regime. This is at-
tributable to the fact that the peaked nature of
the denominators of (3) and (5) persists well into
the oscillating regime, even though the peaks get
broader as one moves deeper into this regime.

IV. Experiments

We show here, preliminary results from an ex-
perimental setup involving three coupled PCB
fluxgate magnetometers; for details see [5].
The experimentally observed oscillations are quite
striking (figure 3). The system readily oscillates
in a travelling pattern. Like the model, the system
favors this pattern no matter how many times it is
restarted. The frequency of oscillations is about
33.5 Hz. Each wave is phase shifted by exactly
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Fig. 2. Period T+ of the sum signal obtained via
numerical simulation of the dyanmics (1) (solid
curve), and via the expression (6). Left: c = 4, ε =
0. Right: ε = 0.2. The approximation agrees very
well with the numerically obtained period, even
for large λ and ε.

2π
3 as predicted by the model. Comparison of the

oscillations from the experiment to the numerical
results shows good qualitative agreement, but the
waveform from the experiment is a mirror image
of the waveform from the model. This is prob-
ably due to the inversion of the winding of the
coils in the construction of the fluxgates. In ad-
dition, since we do not know the value of c and
the time constant τ in the actual device (we set
τ = 1 in the model), we cannot correctly compare
the time scales in the model and the experimental
observations. The amplitudes of the oscillations
in the experiment are also arbitrary compared to
the model because the recorded voltages depend
on the gains set in the coupling circuit. The mag-
netic flux in the model saturates between ±1, but
in the fluxgate devices, this quantity cannot be
measured directly.

V. Conclusions

We reiterate that the oscillatory behavior dis-
cussed above does not occur in a single unforced
fluxgate magnetometer. Even when coupled, the
number of elements, initial conditions, and the
type of coupling, are critical for the emergence
of this behavior. Our ideas reveal potentially
new ways to enhance the utility and sensitivity
of other classes of nonlinear dynamic sensors (e.g.
ferroelectric detectors for elecric-fields, or piezo-
electric detectors for accoustic applications) by
careful coupling and configuration.

References

[1] V. In, A. Bulsara, A. Palacios, P. Longhini, A. Kho, J.
Neff, Phys. Rev. E68, 045102(R) (2003).

-1

0

1

A
m
p
l
i
t
u
d
e

12x10
3

1086420
Time (iterates)

5

0

-5

A
m
p
l
i
t
u
d
e

60x10
-3

50403020100
Time (second)

(a)

(b)

Fig. 3. Top: the numerical data for c=4, λ = −1.55,
and ε = 0. Bottom: the experimental data from
3 coupled PCB fluxgate magnetometers. There
is very good qualitative agreement between the
model and the experimental systems as indicated
by the similarity of the waveforms between top and
bottom panels. The experimetal system lacks a
couple of parameters (the device time constance τ
and the c value) that are necessary for determining
the exact frequency to match with the numerical
result. The amplitudes of experimental time-series
are also on a different scale because the voltages
recorded at the output of the experiment are de-
termined by the overall gains in the circuits used
to couple the magnetometers.

[2] A. Bulsara, C. Seberino, L. Gammaitoni, M. Karls-
son, B. Lundqvist, J. W. C. Robinson; Phys. Rev. E67,
016120 (2003).

[3] V. In, A. Palacios, P. Longhini, J. Neff, B. Meadows,
Phys Rev. Lett. 91, 244101 (2003).

[4] See e.g. H. Stanley, Introduction to Phase Transitions
and Critical Phenomena, (Oxford Univ. Press, 1971).

[5] A. Bulsara, V. In, A. Kho, A. Palacios, W. Rappel, J.
Acebron, S. Baglio; Phys. Rev. E (2003) submitted.

N  D  E  S        2  0  0  4

181



STUDY OF ELECTRONIC MASTER-SLAVE MFHN NEURONS

S. Jacquira, S. Binczaka, , J.M. Bilbaulta, V.B. Kazantsevb and V.I. Nekorkinb

aLaboratoire LE2I, CNRS UMR 5158, Aile des Sciences de l’Ingénieur, Université de Bourgogne,
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Abstract— An electrical circuit is proposed to real-
ize an unidirectional coupling between two cells, mimick-
ing chemical synaptic coupling. We show the frequency-
doubling and the chaotic dynamics depending on the cou-
pling strength in a master-slave configuration. In all exper-
iments, we stress the influence of the coupling strength on
the control of the slave neuron.

I. INTRODUCTION

Although the differential equations are used to model the
nerve membrane, we suggest to describe overall activity of
the neuron by one of these models. Moreover, we propose
an experimental electronic implementation of it. Indeed in
the literature, some electronic neurons have been realized
such as the Nagumo’s lattice [1] and the Neuristor device
[2]. In the first part of this paper, the FitzHugh-Nagumo
(FHN) equation with modified excitability has been used to
conceive the electronic MFHN neuron [3], [4]. Its experi-
mental bifurcation curves in the dimensionless plane (η, ε)
is given. This MFHN circuit leads to complex dynamics of
travelling waves [5], [6] emerging from saddle homoclinic
loop bifurcations. In the second part, we use the MFHN
circuit as a basic cell to realize a master-slave configura-
tion. Two cells are coupled in an unidirectional manner,
which would correspond to two neurons coupled synapti-
cally. After the presentation of the electronic circuit giving
this coupling, we discuss the experimental conditions for
which the master dynamics controls the excitability of the
slave neuron leading to a shift of bifurcation curves, a vari-
ation of an eigen interspike frequency or a phenomenon of
intermittency route to chaos.

II. EXPERIMENTAL DESCRIPTION OF ONE CELL

A. Electrical circuit

The nonlinear circuit, as sketched in Fig. 1, can be de-
scribed as follows: Part (A) is a parallel association of three
different branches, two of them being resistive and com-
muted by silicium diodes (V d = 0.6 V ) while the third
one is a negative resistor obtained with an operational am-
plifier.

Due to diodes’ commuting behaviour, the resulting I-V
characteristic is nonlinear and can be modelled by a cubic
polynomial function for an appropriate set of parameters so
that

INL = f(U) =
1

R0

[
U − γ2U3

3

]
, (1)

R5

R6

U ini

+

-

R
R

3

4
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R1

C

D
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R7

21L

1E 2E
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D

3

4

D5 D6

U

7

I I 21

I
NL

V syn

Fig. 1. Diagram of the nonlinear circuit

where U and INL are respectively the voltage and the cor-
responding current. The parameters R0 and γ are obtained
by a fitting approximation, e.g. by least mean square’s
method. We obtain a good match between experimen-
tal results and equation (1) by setting R0 = 1010 Ω and
γ = 1.138 V −1 [3]. This nonlinear resistor is in parallel
with a capacitance and two branches in parallel including
inductances, resistances and voltage sources, one of them
being commuted by a silicium diode so that setting the con-

ditions
R6

L1
=

R7

L2
, E2 = −V d, and using a piecewise lin-

ear I-V description for diode D7, I2 = 0 if U < 0. There-
fore, using Kirchhoff’s laws, the system of equations can
be expressed in a normalized way by :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dV

dτ
=
[
V − V 3

3

]
− W

dW

dτ
= ε
[
g(V ) − W − η

] (2)

Where V = γU and W = γR0(I1 + I2) correspond, in
biological terms, to the membrane voltage and the recov-

ery variable; τ =
t

R0C
is a rescaled time, ε =

R0R6C

L1

the recovery parameter and η = γ
R0

R6
E1 a bifurcation pa-

rameter. g(V ) is a piecewise linear function, g(V ) = αV

if V ≤ 0 and g(V ) = βV if V > 0 where α =
R0

R6
and

β =
L1 + L2

L2

R0

R6
control the shape and location of the W-

nullcline [3].
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B. Experimental bifurcation curves of MFHN circuit

This section presents different dynamics of the MFHN
neuron [3]. In the case, α = β = 1, the system corresponds
to the standard FitzHugh-Nagumo equation where nullcline
can only intersect at a single equilibrium point leading to
Andronov-Hopf bifurcations. In the general case α �= β,
resolving equation (2), three nullcline points are expected.
The phase portrait is very similar to the one occurring from
the modified Morris-Lecar equations [7], [8] proposed to
model barnacle muscle fibres and pyramidal cells. Con-
sidering the case α = 0.5 and β = 1.96, an experimen-
tal determination of the bifurcation curves in the parameter
plane (η,ε) is proposed in Fig. 2. Several results are to
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Fig. 2. Experimental bifurcation curves in the dimensionless plane (η, ε).

be distinguished depending on the location of the nullcline
points and on initial conditions. In domain (1), two points
are stable and unstable foci, while one point is a saddle,
the system responds with an excitation pulse. Domain (2)
corresponds to the bistability case characterized by the ex-
istence of a stable fixed point and a stable limit cycle that
has appeared from a big homoclinic loop bifurcation. Then
the model exhibits oscillations if the perturbation is large
enough. In domain (3), the fixed point looses stability via
a subcritical Andronov-Hopf bifurcation and only oscilla-
tions occur in the model, which are similar to the spiking
train of pulses. Note that in the region (2), another saddle
homoclinic loop bifurcation has taken place leading to a
small unstable limit cycle near the fixed point. Experiments
have shown that, contrary to standard FHN, arbitrarily long
interspike intervals can be found, as the two lower equilib-
rium points are merging. Finally, in domain (4), a single
unstable fixed point exists leading to oscillations, see [3]
for more details. The existence of these domains has been
confirmed with numerical simulations and stability analy-
sis of equation (2). In the following section, we study a
specific case of coupling between two cells.

III. UNIDIRECTIONAL COUPLING OF TWO CELLS

The neurons communicate mainly between them through
specialized devices called synapses via chemical messages.
The chemical synapse transmits the impulse unidirection-
ally. Therefore, it is interesting to conceive and to real-

ize an electrical circuit including the same features as the
synaptical coupling. We present in Fig. 3 the unidirec-
tional coupling between two cells leading to a master-slave
configuration where Ni(i = 1, 2) are described by the cir-
cuit of Fig. 1. Let us introduce D the coupling parameter

N 1 N 2

D

Fig. 3. Coupling between two cells N1 and N2.

(synaptic strength). Its circuit, as illustrated in the Fig. 4,
includes an adder-inverter, an inverter and then a follower.
U1 (resp. U2) is the voltage capacitor of the cell N1 (resp.

c

-

+

-

+

R

R

R

Ra

Ra

U1

U2

-

+R

Fig. 4. Unidirectional coupling circuit.

N2). The value of the resistor R is fixed to 100kΩ, which
is large compared to the other components so that the cur-
rent going though 2R is negligible, Ra = 10kΩ, while Rc
is a detuning parameter which allows to control the cou-
pling parameter value. Note also that the initial condition
can be loaded in the neuron via an analogue commutator
controlled by Vsyn. Although it is usual to study a system
with normalized variables, it is more convenient to describe
electrical circuits with experimental variables. Therefore,
we will keep both variables (as normalized V1 and experi-
mental U1) in the following of this paper. Using Kirchoff’s
laws, the normalized equations corresponding to the cou-
pling between two MFHN neurons in a master-slave con-
figuration can be expressed by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dVi

dτ
=
[
Vi − V 3

i

3

]
− Wi + DV1δ2,i

dWi

dτ
= εi

[
g(Vi) − Wi − ηi

] (3)

with i = {1, 2}, D = R0
Rc

, and where δ2,i is a Kronecker
symbol, so that δ2,1 = 0 and δ2,2 = 1.
Therefore, the two neurons are coupled so that a part of cur-
rent weighted by D via R, and generated by N1 is included
in N2. The two neurons are initially set to voltage U1ini
and U2ini, due to the analogue commutators controlled by
voltage Vsyn. When the initial conditions are loaded, these
commutators are switched off while the two neurons are
connected via a third commutator controlled by Vsyn. Note
that the time delay between the two neurons has not been
taken into account in this circuit, a master-slave configura-
tion rendering it unnecessary.
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A. The master in a resting state

When the voltage is so that V1 is constant (the cell N1

is in a resting state), it is straightforward to show that the
variable W2 and the bifurcation parameter η2 of the cell N2

are given by:⎧⎨
⎩

η2(V1) = η2(V1 = 0) − DV1

W2(V1) = W2(V1 = 0) + DV1

(4)

Therefore, it implies a modification of the excitability of
the cell N2 corresponding to a shift in the (η, ε) plane il-
lustrated on Fig. 5. The initial conditions are so that, when
D = 0, the master neuron N1 lies in domain (1), while the
slave neuron N2 is in domain (3) and generates a spiking
train of pulses. When the unilateral coupling is increased
and reaches a critical value, the neuron N2 ceases to oscil-
late and stays in the resting state, meaning that the slave
neuron has been moved from domain (3) to domain (1) of
Fig. 2. This ability of neuron N1 to inhibit neuron N2 cor-
responds to the shift predicted by equation (4): As V1 < 0,
increasing D implies to increase η2(D, V1) and therefore
the bifurcation curves of Fig. 2 are translated along ab-
scissa, while the value of η2 defined by the electrical pa-
rameters of neuron N2 has not been changed. This result
suggests that, for a defined activity of a slave neuron, the
strength of a unilateral coupling should be above a critical
value to give to the master neuron the control on the slave
neuron. In Fig. 5, experimental values (D, η[D,V1]) corre-
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Fig. 5. Shifted bifurcation curve of the slave neuron N2 between domains
(1) and (3). Parameters: Master neuron N1: α1 = 0.5, β1 = 1.96,
ε1 = 0, η1 = 0.01 leading to V1 = − 1.05 (i.e. U1 = − 921mV )
Slave neuron N2: α2 = 0.5, β2 = 1.96, ε2 = 0

spond to the shifted bifurcation curve between domains (1)
and (3) of the neuron N2 with ε2 = 0 and when the mas-
ter neuron N1 lies in domain (1) in a resting state so that
V1 = −1.05. Comparison shows a good match between ex-
perimental results (+) and equation (4) (continuous line),
validating the unilateral coupling circuit.

B. The master in a spiking regime

In this section, we present some results when the master
is in domain (2) and oscillates. As V1 is varying in time, we

cannot express a simple relationship between the parame-
ters of neuron N2 and V1, as in equation (4). Nevertheless,
oscillations of neurons N1 let V1 be alternatively positive
and negative, which implies that the bifurcation curves of
neurons are translated along the abscissa in the plane (η, ε)
in a periodic manner (the position of saddle points of the
cell N2 is moved periodically). Thus, the slave neuron N2

initially situated in the vicinity of a bifurcation curve may
be able to cross sometimes this curve and develop a differ-
ent dynamical behaviour. Therefore we have investigated
the unilateral coupling influence on N2, in the case when
neuron N1 is initially (i.e. when D = 0) in domain (3) and
oscillating, while the slave neuron N2 is in domain (1).
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Fig. 6. Normalized eigen interspike slave frequency fs by interspike
master frequency fm versus D with C = 0nF , ε1 = ε2 = 0,
η1 = 0.199 and η2 = 0.109.

According to the value of D, several different dynamical
behaviours can be identified, as illustrated in Fig. 6 and 7:
- In case a, the coupling strength is small, leading to sub-
threshold oscillations of fm frequency, which are not taken
into account in Fig. 6 but observable in Fig. 7.
- In cases b to f, stable periodic oscillations appear whose
eigen interspike frequency follows a devil’s staircase-like
curve. Only specific values of fs/fm are obtainable. In-
creasing the coupling strength causes the period-doubling
in the slave cell, that is the period is multiplied by 2, 4, 8,
16 and so on.
- In case g, N2 is fully synchronized with N1. The slave
neuron oscillates in the same manner than the master one.

The slave neuron shows also a chaotic sequence of spikes
resulting with variable interspike intervals. This chaotic
regime, corresponding to the dot lines in Fig. 6, between
the period-doubling plateaus, is so that the interspike slave
period is varying during the experiments. When the cou-
pling parameter is gradually increased, we firstly proceed
from a periodic spiking regime to a chaotic regime via a
sequence of period-doubling bifurcations. Finally, it leads
to the reappearance of periodic dynamics inserted in the
chaotic zones. The chaotic puffs disturb the periodic spik-
ing regime. This is intermittency, as introduced by [9].
Increasing the coupling parameter causes the increase of
the frequency disturbances and then the chaos dominates
the regime in the slave cell [10], [11]. An illustration of a
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Fig. 7. Temporal evolution of experimental voltage U2 for different val-
ues of D corresponding to cases (a− g) of Fig. 6. Voltage of the mas-
ter neuron N1 is shown on top.Abscissa : 0.1ms per division;ordinate
: 1 V per division.

Fig. 8. Chaotic signal in the case where D = 0.0535. Abscissa : 5s per
division; ordinate : 1 V per division.

chaotic signal is given in Fig. 8 for D = 0.0535. The cor-
responding probability of normalized interspike slave fre-
quency fs/fm is presented on Fig. 9. This figure shows
that in a chaotic regime, the interspike frequencies are dis-
tributed widely in the range [0, 0.4fm]. These experiments
show that the unilateral coupling strength controls the slave
neuron, from a silent to a chaotic dynamical behaviour.

IV. CONCLUSION

We have introduced an electrical circuit which allowed
an unidirectional coupling without delay between two cells,
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Fig. 9. Normalized distribution of the interspike frequency of N2 corre-
sponding to the signal in Fig. 8.

in a master-slave configuration. We have showed that the
intervals between successive spikes can be chaotic and de-
pends on the coupling strength. We suggest that this study
can be helpful in understanding the different dynamics of
potential propagation in brain cells. To complete this work,
it would be of interest to study the bidirectional coupling,
corresponding to the electric synapse case, and the influ-
ence of the size of the network on the fractal dimension of
the information [4]. This nonlinear electrical circuit cell,
gives indeed the opportunity to realize a large scale net-
work.
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Abstract— This paper deals with the application
of nonlinear dynamical systems to image encryption.
Both, classical number theory - based and chaos-
based encryption systems are considered from a com-
mon nonlinear dynamics point of view. One system
of each type is considered in more detail. Finally im-
provements of a chaos-based system [1] and results of
its VHDL modeling are presented.

I. INTRODUCTION

A large number of chaos-based crypto systems
has been suggested and investigated during the past
decade (e.g. [1], [2]). These systems have also been
compared to conventional number theory-based algo-
rithms ([3], [4]). In this paper number theory-based
and chaos-based methods are considered from a com-
mon nonlinear dynamics point of view. Applications
to image encryption are investigated. Finally a chaos-
based system introduced in [1] and its digital realiza-
tion (VDHL implementation) are discussed in more
detail and some improvements to the original system
are suggested.

II. REQUIREMENTS FOR IMAGE ENCRYPTION

Classical encryption systems are designed to cipher
text messages. Unlike text messages image data pos-
sess properties like high redundancy and high bulk
data capacity. Furthermore, several applications re-
quire consistence of specific image file formats. Secu-
rity requirements are often not very strict. Thus image
encryption systems should posses

• high speed (large amount of data),
• high flexibility (adaptation to security requirements
and images formats) and
• required level of security (depending on applica-
tion)

III. ALGORITHMS BASED ON NUMBER THEORY

In applied cryptography there exist block cipher
and stream cipher. Block cipher apply an encryption
function Ek to a block of plain text pi in order to ob-
tain a block of cipher text ci. Stream cipher operate
on continuous bit streams.

A well-known and well-established block cipher al-
gorithm based on number theory is the Data Encryp-
tion Standard (DES) [5]. It has been developed in
1976 and is still used very widely. In this paper it
is used to demonstrate properties of such systems.

A. Electronic Codebook Mode

DES is a block cipher algorithm which maps 64 bits
of plain text pi to 64 bits of cipher text ci depending
on a key k of 56 bits. The encryption function Ek

might be realized as a very large look up table (264 en-
tries) and thus can be considered as a static nonlinear-
ity depending on the encryption key k only. This ba-
sic mode of operation is called Electronic Codebook
Mode (ECB, Fig. 2A). It is used e.g. for applications
requiring direct access to data blocks like data bases.

In ECB identical plain text blocks pi are mapped to
identical cipher text blocks of ci. For images which
are often strongly correlated this leads to encrypted
images which still show information of the original
image. As an example Fig. 1 shows that the image
structure of an bitmap is still visible after encryption
using DES in ECB mode (key: 0123456789ABCDEF
(hex), using software CrypTool [6]). This is a problem
because cipher text must not leak any information of
the plain text as already pointed out bei Shannon in
[7]. Therefore block ciphers in ECB mode are not
suitable for image encryption.

B. Modes of operation including dynamics

To avoid such problems, modes of operation includ-
ing memory and feedback have been introduced [5].
Most common modes are (Fig. 2B-D)
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A) B) C)

Fig. 1
A) ORIGINAL IMAGE (RGB24), B) DES ECB CODED, C) DES CBC CODED (KEY: 0123456789ABCDEF)

• Cipher Block Chaining (CBC, ci = Ek(pi ⊕ ci− 1))
• Output Feedback (OFB, ci = pi⊕zi, zi = Ek(zi− 1)
• Cipher Feedback (CFB, ci = pi ⊕ Ek(ci− 1))

Ek
pi ci DES(k)XOR

T64

DES(k)XORXOR

T

pi ci

DES(k) T64

XOR

T

XORpi ci

T64

XOR

T

XORpi
ci

A) B)

D)C)

EkEk

Ek

Fig. 2
MODES OF OPERATION: A) ECB, B) CBC, C) OFB, D)

CFB

Using one of these modes for DES the structure of the
image information is not visible anymore (e.g. DES
in CBC mode, Fig. 1C). Choice of a specific mode
depends on requirements of the application.

C. Nonlinear dynamics point of view

Considering modes of operation from nonlinear dy-
namics point of view shows the correspondences:

ECB = static nonlinear map
CBC and CFB = inverse system1

OFB = pseudo-chaotic masking2

1with in general low dimension but strong nonlinearity
2for DES key stream is periodic with period < 264

For image encryption systems dynamics is required as
shown in Fig. 1. Additional a very complex nonlinear-
ity (Ek) is necessary which has to depend strongly on
the encryption key (see algorithm and cryptographi-
cal strength of DES [5]). Using a large key space3 is
not sufficient if the nonlinearity is weak and can be
analyzed easily. This also applies to chaos-based en-
cryption systems as pointed out e.g. in [8].

3possible keys to be checked for extended key search

IV. CHAOS-BASED ALGORITHMS

Now chaos-based algorithms are considered. To en-
crypt digital images - which are represented by digital
data - on digital systems (finite state space machines)
chaotic system (infinite state space) have to be dis-
cretized.

A. Using static nonlinearities

One approach is to construct very complex 2D or
3D chaotic maps the discretization of which leads to
bijective maps. In contrast to ECB mode of DES the
maps are parametrized to the size of the complete im-
age. Then the static nonlinearity is applied to the com-
plete image all at ones. In this case the ECB mode
problem depicted in Fig. 1B is omitted. An example
of such a system using 3D baker maps is described in
[2]. Ciphering speed of that systems is much higher
than that of DES [2].

B. Using dynamics

Using dynamics leads to chaos-based discrete-time
inverse systems which are comparable to the cipher
feedback mode.

B.1 General encoder structure

A general design approach is the statement of Shan-
non [7] that the cipher text of a good (binary) ci-
pher should be uniformly distributed in order to pre-
vent successful statistical attacks. This idea has been
extended to continuous-value systems and encrypted
signals with n-dimensional uniform distribution in
[1]. The general encoder structure derived there is
depicted in Fig. 3. The system operates on the con-
tinuous interval I = [−1, 1) using modulo addition
over I (depicted by ⊕). Maps fi and g need to pre-
serve uniform distribution over I and one of the maps
fi has to be a m : 1-map. Realization of Σ is arbitrary
as long as at least two neighboring states zi and zi− 1
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(1) to (4) indicate improvements suggested in Sec. IV-B.3.

Fig. 3
GENERAL ENCODER STRUCTURE

influence the key stream. Map g has to be invertible
in order to enable decryption.

B.2 Basic realization example

A basic realization of that system is shown in Fig. 4
[1]. Due to the properties of the modulo addition the

mod()

...

.
.
.

.
.
.

...

.
.
.

-

mod()

a1a1

an an

Encoder Decoder

TT

TT

.
.
.

TT

TT

picipi

Fig. 4
BASIC REALIZATION OF THE CHAOS-BASED

DISCRETE-TIME ENCODER

encoder corresponds to an IIR filter with one single
nonlinearity mod(x) = x − 2 · ⌊x+1

2

⌋
, the decoder

to a FIR filter with the same nonlinearity. For digi-
tal implementations the nonlinearity can be realized
by neglecting the overflow bits of the additions. That
approximation can be considered linear over GF (2w)
(w =word length). Thus the nonlinearity of the sys-
tem is very weak and it can be analyzed with fairly low
effort as shown in [8]. However, like a binary scram-
bler it hides image information in an uniformly dis-
tributed noise-like signal (Fig. 5). This may be suffi-
cient for some application such as video surveillance.

Fig. 5
IMAGE IN FIG. 1A ENCODED BY A 3RD-ORDER SYSTEM

USING KEY (123, 45, 67)

B.3 Digital realization and improvements

Analysis of DES has shown that a strong nonlin-
earity is important for a high level of secrecy. The
following suggestions increase the nonlinearity of the
basic system (Fig. 4) within the framework of the gen-
eral encoder structure (Fig. 3) without really increas-
ing computational effort.
(1) Introduction of a nonlinear function f0 to omit
direct transmission of system states and thus to make
successful attacks to the system presented in [8] much
more difficult. This map has to preserve uniform dis-
tribution.
(2) Realization of fi and g. Maps fi have to preserve
uniform distribution. Such maps can be realized by an
l bit left shift of the input (multiplication by 2l) and
subsequent replacement of the l least significant bits
of the result by a permutation of the l most significant
bits of the input signal. Such maps can be realized
by permutation of connections in the VHDL model.
Because they are invertible they can be used for g as
well.
(3) Modification of carry-in bit of additions, either
fixed to 1 or depending on bits of the input signals or
on the encryption key.
(4) Replacement of an in Fig. 4 by a map fn accord-
ing to (2) saves a w x w multiplication. It also over-
comes the problem of suitable selection of a discrete-
value multiplier to meet the requirements specified in
[1].
(5) Selection of nonlinearities fi can be either fixed,
depending on the key or dynamically depending on
the value of signal bits.
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(6) Modification of the values of ai depending on
signal bits.
(7) Complex calculation of parameters ai from a
smaller key (like round key generation in DES) to re-
duce input pins.
(8) Replacement of multipliers ai by a static or dy-
namic nonlinear subsystem Σ (comp. Fig. 3 & 4).

This ideas allow adjustment of cipher speed or level
of secrecy to the requirements of the application.

B.4 Results of FPGA implementation

For real-time processing of images a high cipher
speed is required. Therefore the system in Fig. 4
with suggested improvements (1) to (3) has been mod-
eled in VHDL and synthesized for the FPGA Xilinx-
Spartan II having 1200 Slices4. Results of the scal-
able design are presented in detail in [9]. They show
that the whole codec (encoder and decoder) with sys-
tem dimension n = 3 fits to one such FPGA chip up
to a word length of 24 bits (Tab. I). Approximations
of the cipher speed based on timing analysis of the
synthesized circuit are shown in Tab. II. They show
that for w ≥ 16 an uncompressed video stream of
270MBit/s = 33.75MByte/s can be processed in
real-time.

w 8 16 24 32
slices 134 476 1047 1692

TABLE I
NO. OF SLICES VERSUS WORD LENGTH

max. clock freq. cipher speed
in MHz in MByte/s

w encoder decoder encoder decoder
8 24.4 128.2 24.4 128.2

16 17.2 91.6 34.4 183.2
24 15.4 65.3 46.2 195.9
32 15.3 69.3 61.2 277.2

TABLE II
CIPHER SPEED OF FPGA REALIZATION DEPENDING ON

WORD LENGTH w

B.5 Application to image encryption

The VHDL model has been used to encrypt RGB24
bitmaps. To achieve image file format consistence and
to avoid successful known plain text attack (images
headers are well defined) only pixel values have been

42 LUT, 2 carry logic units, 2 MANDs and 2 flip flops

encoded. The header remained unchanged. Without
using identical fixed or key dependent initial values zi

for encoder and decoder the self-synchronizing prop-
erty of the system leads to n ·word lenght bits at the
beginning of the sequence which might be decoded
incorrectly.

For fixed file format applications (e.g. RGB24
bitmaps) one can also encode the complete file and
replace the beginning of the sequence by the original
file header. The decoder can encode the header again
using identical initial conditions in order to calculate
initial system states zi for decoding of pixel values.

V. SUMMARY

In this paper different encryption systems have been
considered from a common nonlinear dynamics point
of view. It turned out that high level of secrecy re-
quires strong nonlinearity. For image encryption at
least some dynamics is necessary too.

Furthermore a digital approximation of a chaos-
based encryption system has been discussed and im-
provements of such systems by additional nonlin-
earities without much additional computational ef-
fort have been suggested. A FGPA implementation
demonstrated suitability of such systems for encryp-
tion of images and allow a realistic performance esti-
mation.
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[1] M. Götz, K. Kelber, W. Schwarz. Discrete-time chaotic en-
cryption systems - Part I: Statistical design approach, IEEE
Trans. Circ. & Syst.-I, vol. 44(10), pp. 963–969, 1997.

[2] Y. Mao, G. Chen, S. Lian: A Novel Fast Image Encryption
Scheme Based on 3D Chaotic Baker Maps, Int. J. Bifurcation
& Chaos, June, 2003.

[3] F. Dachselt, W. Schwarz: Chaos and Cryptography, IEEE
Trans. Circ. & Syst.-I, vol. 48(12), pp. 1498–1509, 2001.
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Zürich, Switzerland
e-mail: albert@ini.phys.ethz.ch

WWW: http://www.stoop.net/group

Abstract— The nonlinear amplification process in
the mammalian cochlea gives rise to a variety of phe-
nomena, which manifest as two-tone suppression and
combination tone generation. These nonlinear effects
show that, besides mere mechanical-to-neural trans-
duction, the cochlea performs significant information
processing on a biophysical, pre-neural level. As non-
linear cochlear processing is a precondition for suc-
cessful feature extraction at higher neural stages, its
profound understanding is of interest for the design
of intelligent acoustic sensors. In this contribution,
we provide a thorough explanation of suppression and
combination tone generation, where we rely on Hopf-
type cochlear amplifiers. The underlying cochlear
model can be implemented as an electronic circuit.

I. INTRODUCTION

The first theory of the mammalian hearing organ,
the fluid-filled cochlea, was put forward by H.L.F.
Helmholtz in 1863 [1]. Based on anatomical in-
vestigations, Helmholtz proposed that each segment
of the basilar membrane (BM), which separates the
cochlear fluid, acts as a tuned oscillator. A sound
of given frequency thus ellicits maximum oscillations
at a specific location in the cochlea (characteristic
place), so that the cochlea acts as a spatial Fourier an-
alyzer (tonotopic principle). Mechano-sensitive cells
on the BM then transduce the mechanical vibrations
into neural signals. In 1928, the tonotopic princi-
ple has been verified experimentally by von Békésy
[2]. In contrast to Helmholtz’ original theory, how-
ever, the tonotopic principle is correctly deduced from
the exponentially decaying transversal BM stiffness� � � � � � � � � � � 	 
 � �

, by applying linear hydro-
dynamical theory [3], [4]. Cochlear hydrodynamics
has also been described in terms of electronic circuit
analogs [5].

In the early 1970s, increasing evidence was fur-
nished that the cochlear response is strongly nonlin-

ear [6], which was in stark contrast to the preva-
lent linear theory. With the detection of otoacous-
tic emissions [7] it became clear that a nonlinear
force-generating mechanism must be present in the
cochlea. In 1985, the outer hair cells (OHC), which
reside on the BM, have been identified as the source
of this mechanical amplification, and as the origin of
cochlear nonlinearity [8]. This discovery has trig-
gered intensive research in the following two decades
[9]. In particular, it has been shown that a degener-
ation of OHC causes cochlear hearing loss. In this
case, even the use of sophisticated hearing aids of-
ten results only in partial improvement of auditory
performance; especially the capability for auditory
scene analysis frequently remains severely hampered.
It thus follows that, in addition to mechano-to-neural
transduction, the cochlea performs significant infor-
mation processing by means of the nonlinear amplifi-
cation mechanism. Cochlear information processing
applies mainly to the frequency domain, while pro-
cessing of time information is performed on the neural
level.

For two nonlinear phenomena – two-tone suppres-
sion and combination tone (CT) generation – there ex-
ist ample physiological measurements. Both phenom-
ena arise if two tones are applied simultaneously to the
ear. In the case of suppression, the BM response to a
single tone of frequency � � , is reduced (suppressed)
in the presence of a second tone of frequency �  . Evi-
dently, the suppressive effect of the � � - and �  -tones is
mutual. Combination tones (distortion products) with
frequencies � � � � � � � � � �  (

� � � � � ) are gener-
ated by the nonlinear interaction between the two fre-
quency components. Due to the structural properties
of the cochlea, only the frequencies � � � 	 �  and (to a
lesser extent) �  	 � � ( �  � � � ) are able to propagate
to their respective characteristic places.

In this contribution, we give a detailed explana-
tion for the observed nonlinear phenomena, based
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on nonlinear dynamical systems theory. Specifically,
the cochlear amplification mechanism is described in
terms of oscillators undergoing a Hopf bifurcation
(Hopf oscillators). By this approach, the experimental
observations can be explained by a variation of the ef-
fective Hopf bifurcation parameter in the presence of
a second tone.

II. THE HOPF COCHLEA MODEL

Recently, it has been shown [10] that the basic char-
acteristics of hearing can be explained from the math-
ematical properties of the driven Hopf oscillator,�� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

(1)

where � �
is the natural frequency of the oscillation,� � 	 denotes the bifurcation parameter, and � � � � �

� 
 � �  is an external periodic forcing with frequency� . In the absence of external forcing, (1) describes
the generic differential equation displaying a Hopf
bifurcation. For an input � � � �

, � � � �
can be consid-

ered as the amplified signal. The steady-state solu-
tion for periodic forcings is obtained by the ansatz� � � � � � 
 � �  � � � , which leads to a cubic equation in� � ,

� � � � � � 	 � � � � � � � � � � � � � � � � � � �
(2)

Assuming � � � �
and

� � �
, for � � � � � � � � ,

the response is linear,
� � � � � �

. If � � � � � � � � ,
the

� �
-term becomes dominant, and the compressive

nonlinear regime is entered,
� � � 
 � �

, with the am-
plification gain decreasing like � � � � �

. For � �� �  ,� � � � ! � � � � � � �  � � , and the response is al-
ways linear. If

� � �
, stable limit-cycles emerge,

which explains the generation of otoacoustic emis-
sions.

The fact that the properties of (2) explain the ob-
served characteristics of hearing – linear BM response
for weak stimuli ( � " �

dB SPL), and a compressive
nonlinearity for moderately intense responses – moti-
vated the development of a Hopf-type cochlea model
(for details see [11]). From energy-balance arguments
[12], the cochlea differential equation,# 
 � � � � �# � � � 
 � � � � �

$ � � � � � % # $ � � � � �# � � & � � � � � '
� ( � � � 
 � � � � � � � �

$ � � � � � �
(3)

was derived. 
 � � � � �
denotes the one-dimensional en-

ergy density of the cochlear fluid, $ � � � � �
is the group

velocity of the BM traveling wave, & � � � � �
encom-

passes viscous losses, and ( � ) �
denotes the nonlinear
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Fig. 1. Frequency response at fi xed location on BM. (a)
Hopf cochlea model, Eqs. (2-4). (c) Experimental mea-
surements [13].

active amplification by OHC. Based on cochlear bio-
physics (see [11])

( � 
 � � � � � � * � � � ! + 
 � � � � � � � � �
(4)

where
*

and + are constants, and
� � ) �

is determined
by (2). The connection between the cochlea model
and experimentally measured BM response , is
given by the relation , � � � � � � � 	 
 � � � � � �  � � � � 
 � �
(

 � � � �  � � � � � � � � �
denotes the BM stiffness).

The frequency response of the cochlea model (mea-
sured at fixed location on BM) displays remarkable
coincidence with experimental measurements (Fig. 1).
Optimal responses are obtained if feedforward cou-
plings between the Hopf amplifiers are taken into ac-
count [11]. In the following analysis, however, we use
the simpler version of the model (Fig. 1a).

III. NONLINEAR COCHLEAR SIGNAL

PROCESSING

In the presence of a tone consisting of two frequen-
cies, the driving term of (1) reads

� � � � � � 
 
 � � -  � � . / � � � 
 � � /  � � . - � � � � 
 � � 0 1  � � . 0 1 �
(5)

where we allow for phases 2 3 of the two frequency
components, � 3 � �

, and � 3 � 	 4 � 3 , 5 � 6 7 � 	 8 .
When CT responses at frequency � � � � 	 � 
 � � �
( � � � � 
 ) are generated at a certain site on the BM,
these constitute a component of the input to Hopf os-
cillators at neighboring BM locations. For the Hopf
cochlea model, the last term in (5) must therefore be
considered.

The steady-state solution of (1) is obtained from the
Fourier series ansatz

� � � � � � 
 
 � � -  � � � - � � � 
 � � /  � � � / (6)

� � � � 
 � � 0 1  � � � 0 1 � 9 : � : 
 � � ;  � � � ; �
The third term denotes the propagating combination
tone with frequency � � � � 	 � 
 � � � ( � � � � 
 ), and
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the sum includes all higer-order contributions � � �
� � � � � � � ,

� � � � � � � � � � 	 � 
 � � .
After some calculations, the response to frequen-

cies � � , � � is obtained as

� �� � � �� 
 	 	 � � � � � � 
�
� � 	 �� � � � � � � � � 
 � �  � � � �� �

(7)

where  � � � � 	 � and � ��  . These equations can
be interpreted as single Hopf equations with effective
bifurcation parameters

	 � � � � � � 	 
 	 � ��
(cf. Eq.

(2) and note that
	 � �

). Since the small-signal gain
is given by

� � � 	 � � � �
, it becomes evident that the sup-

pressive effect in the presence of a second tone is cap-
tured by a shift of the effective bifurcation parameter
away from the bifurcation point.

The response at � � � is obtained in the same way,

� �� � � � 
 � � �� 
 	 � � � � � � � � � � � � 	 � � 
 � � � � � � 
� � �� � 
 	 	 � � � � � � � 
 � �

� � 	 �� � � � � � � � � � � 
 � �  � � � �� � �
(8)

If comparing (8) with (7), three points attract our at-
tention. First, we note from the emergence of an effec-
tive bifurcation parameter

	 � � � � � � � 	 
 	 � � � � � � �� 
,

that suppression plays a crucial role in CT generation.
Secondly, the term

� 
 � � �� expresses CT generation in
the absence of external driving, � � � . From the dis-
cussion in Sec. II, it is seen that the CT response is
given by

� � � � � � � � � � 	
, if

� � � � � � � 	 � � � � (assum-
ing � � � � � �

). If
� � is kept fixed and

� � is in-
creased, we thus assume a 	 dB/dB increase of

� � � .
As a third point, we observe that the presence of an

external driving � � � at frequency � � � not only gives
rise to the term � �� � . In addition, a phase-dependent
term is induced, where � � (  � � � 	 ) denote the phase
differences between

� � and the driving force,

� � � 	 
 � � 	 � � � 
 � �
	 
 � � � � �� 
 	 � ��  
 � � � � � ��  �

(9)
For a single Hopf oscillator, the CT response is eas-
ily computed from (8) and (9). In the cochlea model,
however, the phase � � � is determined by the cochlear
hydrodynamic wave. The computation of the � � � -
term in (8) thus becomes difficult, but fortunately, its
contribution to CT generation can be neglected for the
following arguments. Firstly, if � � and � � are not too
close, either � � � or

� � � � � dominate on the left hand
side of (8), so that the � � � -term always remains small.
This has been verified by numerical simulations for
the frequencies used. Secondly, the interaction with
the hydrodynamic wave causes rapid changes of � � �

Fig. 2. Two-tone suppression: a) Model response: sup-
pressor intensity increases from 10 dB to 110 dB in
steps of 10 dB. The 10, 20, and 30 dB lines coincide.
b) Experimental measurements [15].

along the BM, so that the contributions by the phases
are effectively averaged out.

The Hopf model response for a two-frequeny tone
is obtained by resolving a system of three differential
equations of the form (3). This provides the energy
densities � � and � � � . As

� � and
� � � must be sub-

stituted in (4), these equations are coupled by Eqs. (7)
and (8) [14].

A. Two-Tone Suppression

In two-tone suppression experiments, the response
to one tone (the test tone) is measured in the pres-
ence of a suppressor tone (indexing by

�
and  ). The

test-tone input-output function obtained by the Hopf
cochlea model, determined for increasing suppressor
intensity, shows nearly perfect agreement with exper-
imental measurements (Fig. 2). In this representation,
the BM response at characteristic place (the location
of maximum BM response, cf. Fig. 1) is plotted as
a function of sound intensity. For suppressor levels� �

below � �
dB (top curve in Fig. 2) we recognize

the strong compressive nonlinearity which is char-
acteristic for the single-frequency cochlear response.
For

� � � � �
dB (dashed line in Fig. 2a), the small-

signal gain of the test tone becomes significantly re-
duced, with constant separations between the curves.
If

� � � � �
dB (dashed-dotted line), these are reduced

by a factor of about
� � � .

The Hopf cochlea model provides an explanation
for these observations. Since the small-signal re-
sponse of the test tone is given by

�
�

� � � � � 	 � � � �
�

�
,

and
	 � � � �

�
� 	 
 	 � �� , we conclude that suppressive

effects become appreciable if
	 � � � �

� deviates signifi-
cantly from

	
, which is the case if � � � � � � � � 	 �

.
The spacing between the curves reflects the compres-
sive nonlinearity of the suppressor response,

� �
. For� � � � �

dB,
�

�
� � � � � �� � � � � �

� , which ex-
plains the constant spacings between the curves in
Fig. 2. If the suppressor enters the compressive non-
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Fig. 3. Combination tone generation: BM response at
characteristic place for a tone with frequency � �� � � � � � , as a functon of � � -intensity. a) Model re-
sponse (curves for � � � � � � 	 � � 
 � dB; � � � � � � Hz,

� � �  � � � Hz, � � � � � �  � � � ). b) Experimental mea-
surements [16] ( � � � � � �  �  ).

linear regime,
� �� � � � � �� � � � � ��

holds, which leads
to a reduction of the spacing by

� � � . It is remarkable
that the same effect is observed in the experiment.

B. Combination Tones

CT measurements are performed in a variety of ex-
perimental settings [16]. We restrict our analysis to
the situation where the CT response is measured as a
function of the intensity of the � � -component, while
the level of the � � -component is kept fixed (Fig. 3).
We observe a close agreement of the model results
with the experimental measurements.

An explanation of Fig. 3 is again provided by the
Hopf cochlea model. At the increasing branches of the
curves, the slope is exactly � dB/dB, as was predicted
from Eq. (8). The role of suppression is twofold:
For low � � -levels, suppression of the CT stems ex-
clusively from the � � -component. This explains the
decrease of the CT response upon increase of the � � -
level (while � � -intensity remains fixed), which is ob-
served when CT responses at different curves are read
off for fixed � � -intensity. For the same reason, the

� dB/dB-slope remains unaffected: From Eq. (8) fol-
lows � � � � � � � � � � � � � � � � � � � � � , as

� � � � � � � is
only a function of

� � for small � � -intensities. Since� � � � � � � � � � � � � � � 	 � �� 

, the contribution of the

� � -component to suppression becomes significant if� � 	 � � , which is the case when the intensity of the
� � -component exceeds the � � -level. This explains the
decrease of the CT response for large � � -intensities.

IV. CONCLUSION

In the preceeding section we have demonstrated
that the Hopf cochlea model provides an successful
description of cochlear nonlinear phenomena. The
role of suppression in cochlear information process-
ing consists in the reduction of the response to small-
amplitude signals (which can be considered as noise).

This leads to a pattern-sharpening effect, analog to the
increase in resolution of neural receptive fields, which
is achieved by lateral or surround inhibition. The role
of combination tones is less clear. Possibly, they may
help in signal identification (scene analysis) if several
signals of comparable magnitude are present; if the
signal intensities differ, the combination tone is read-
ily suppressed. CT generation sometimes plays a role
in music – the phenomenon has been described for the
first time by the violinist Tartini in 1714,

For the design of intelligent acoustic devices, which
perform signal identification and scene analysis tasks,
a profound understanding of the nonlinear phenom-
ena in mammalian hearing may provide helpful. For
example, if a speech recognition system is endowed
with a simple cochlea model as a front end, its perfor-
mance increases significantly [17]. We therefore ex-
pect that the Hopf approach to cochlear modeling will
be of great benefit for developping sound-processing
devices. Hopf oscillators can be implemented as elec-
tronic circuits [18].
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Abstract— This paper presents a simple chaotic
circuit consisting of two capacitors, one linear two-
port VCCS and one time-state-controlled impulsive
switch. The impulsive switch causes rich chaotic
and periodic behaviour. The circuit dynamics can
be simplified into a one-dimensional return map that
is piecewise linear and is piecewise monotone. Us-
ing the return map, we clarify parameters conditions
for chaotic attractors, periodic attractors and co-
existence state of attractors.

I. INTRODUCTION

This paper presents a simple nonautonomous
chaotic circuit based on integrate-and-fire dynamics
[1]-[4] and dependent switched capacitor circuits [5]-
[7]. The circuit consists of two capacitors, one lin-
ear two-port voltage-controlled current source (ab.
VCCS), and one firing switch. The a capacitor volt-
age vibrate divergently and the divergence can be sup-
pressed by the firing switch that depends on both time
and the capacitor voltage. This time-state-controlled
impulsive switch (ab. TSCIS ) causes rich chaotic
and periodic behaviour. The circuit dynamics can be
simplified into a one-dimensional return map that is
piecewise linear and is piecewise monotone. Using
the return map, we clarify parameters conditions for
chaotic attractors, periodic attractors and co-existence
state of attractors. In the final version, we will present
a simple test circuit with typical laboratory data.

As compared with existing various nonautonomous
chaotic circuits (see [6] [8] and references therein),
our circuit has some properties including the follow-
ing. (1) the refractory threshold controls the disconti-
nuity points of the return map and can cause interest-
ing chaotic/periodic behaviour, (2) the TSCIS relates
deeply to stretching and folding mechanism to gener-
ate chaos and is applicable to wider class of two or
more dimensional circuit, and (3) the circuits configu-
ration is simple and is suited for integration. Also, the
impulsive switching relates deeply to integrate-and-
fire neuron models [1]-[3] and pulse-coupled neural
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Fig. 2. Time-domain wave-forms.

networks [7] [9]-[11]. These systems can exhibit a
variety of synchronous/asynchronous phenomena and
have a variety of applications including associative
memory [9] [10] and image segmentation [11]. If our
TSCIS circuit is developed into a novel PCNN, it my
contribute to analysis of rich synchronous phenomena
and application to flexible information processing.

II. THE CHAOTIC CIRCUIT

Fig. 1 shows the circuit model. In the figure, a 2-
port VCCS and two capacitors construct a linear sub-
circuit described by

d

dt

[
C1v1

C2v2

]
=

[
g11 g12

g21 g22

] [
v1

v2

]
(1)

We assume that Equation (1) has unstable complex
characteristic roots δω ± jω:

ω2 = −g12g21

C1C2
− 1

4

(
g11

C1
− g22

C2

)2

> 0,

δ = 1
2ω

(
g11

C1
+

g22

C2

)
> 0.

(2)

In the figure, series of Ss and St constructs the time-
state-controlled impulsive switch (ab. TSCIS). If the
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TSCIS does not exist, the capacitor voltages diverge
with vibration. This dynamics relates to stretching
mechanism for chaos generation. The TSCIS sup-
presses the divergence as shown in Fig. 2: if the first
capacitor voltage v1 exceeds a refractory threshold Vr

at time mT , v1 is reset to the base level E instanta-
neously holding the continuity of v2, where m is a
positive integer and T is a basic period of the TSCIS.[

v1(t+)
v2(t+)

]
=

[
E

v2(t)

]
if v1(t) > Vr and t = mT.

(3)
We refer to this switching as compulsory firing (ab.
CFR) hereafter. Here we introduce the following di-
mensionless variables and parameters:

τ = ωt, x = v1
VT

, ẋ = dx
dτ , y = 1

VT

(
pv1 + g12

ωC1
v2

)
d = ωT, a = Vγ

VT
, p = 1

2ω

(
g11
C1

− g22
C2

)
, q = E

VT

(4)
where VT is a criterion voltage based on the dynamic
range of the VCCS. Using these, Equations (refosc)
and (3) are transformed into the following normal
form equations.

CFR: (x(τ+), y(τ+)) = (q, y(τ) − p(x(τ) − q)
if x(τ) > a and τ = md[

ẋ
ẏ

]
=

[
δ 1
−1 δ

] [
x
y

]
otherwise

(5)
where m is a positive integer. This normalised equa-
tion has five parameters: the damping δ, the jumping
slope p, the base q, the basic period d and the refrac-
tory threshold a. In an interval of switchings, Equa-
tion (6) has exact piecewise solution:[

x(τ)
y(τ)

]
= eδτ ′

[
cos τ sin τ
− sin τ cos τ

] [
x(τs)
y(τs)

]
(6)

where (x(τs), y(τs)) denotes a state vector just after
the switching at time τs and τ ≡ τ − τs. For simplic-
ity, we select d and a as control parameters and the
other three parameters are fixed: δ = 0.05, p = 0.8
and q = −0.5. Fig. 3 shows typical phenomena cal-
culated using the exact piecewise solution.In order to
classify the periodic phenomena, we use ratio of the
switching per basic period. For example, Fig. 3(a)
shows 1 : 1 periodic orbit where the x resets once
during one basic period and Fig. 3(b) shows 2 : 1 pe-
riodic orbit where the x resets once during two basic
period. In some parameter range, 1 : 1 and 2 : 1
periodic orbits can coexist as shown in Fig. 3(c) and
the system exhibit one of them depending on an initial
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Fig. 3. Typical phenomena (δ = 0.05, p = 0.8, q =
−0.5, d = 0.7). (a) 1:1 periodic orbit (a = −0.4),
(b) 2:1 periodic orbit (a = −0.1), (c) Coexistence of
1:1 and 2:1 periodic orbits (a = −0.25), (d) Chaotic
attractor (a = 0.2).

state. This system can also exhibit chaotic attractor as
shown in Fig. 3(d).

III. ANALYSIS

In order to analyse the phenomena, we derive a 1-D
return map. As illustrated in Fig. 4, a CFR occurs at
τ = τs, the trajectory is reset to a point (q, y0) on the
base line x = q. The trajectory starting from (q, y0)
rotates divergently around the origin and is reset to a
point (q, y1) when the next CFR occurs. Then we can
define the following 1-D return map.

f : y0 �→ y1. (7)

N  D  E  S        2  0  0  4

199



 q a

0=τ

1y

d=τ

d2=τ

d=τ

0=τ
x

y

1y

0y

0y d=τ

1D

Fig. 4. Phase plane.

Since the system is piecewise linear the map can be
calculated analytically:

f(y0) = y(τs + md) − p(x(τs + md) − q), (8)

where m is given by min
m

x(τs + md) ≥ a. This re-

turn map is piecewise linear and piecewise monotone.
Fig. 5 shows typical 1-D return maps, where (a) and
(b) correspond to Figs. 3(c) and (d), respectively.
Let Bm be a subset of y0 such that a trajectory starting
from a point y0 ∈ Bm exhibits CF at τ = τ0 + md.
Let Dm be a discontinuity point between Bm+1 and
Bm:

Dm =
a − eδmd cos (md)

eδmd sin (md)
. (9)

In Fig. 5(a), there exist two stable fixed points yp1 ∈
B1 and yp2 ∈ B2 corresponding to 1 : 1 and 2 : 1
periodic orbit, respectively. Fig. 5(b) shows a chaotic
attractor where the attractor is on B3 and B4. Fig. 6
shows the bifurcation diagram for the refractory a.
Let us consider existence condition for periodic orbits.
There exists fixed point ypm = f(ypm) corresponding
to m : 1 periodic orbit if Dm < ypm ≤ Dm− 1, where

ypm = q
p − eδmd(sin(md) + p cos(md))
1 + eδmd(p sin(md) − cos(md))

. (10)

The fixed point ypm is stable if |Df(ypm)| < 1, where
Df is the derivative of f :

Df(y) = eδmd(−p sin(md)+cos(md)) for y ∈ Bm.

That is, an m : 1 periodic orbit exists if (d, a) ∈ Pm:

P1 ≡ {(d, a)|D1 < yp1, |Df(yp1)| < 1},
Pm ≡ {(d, a)|Dm < ypm ≤ Dm− 1, |Df(ypm)| < 1}

for m ≥ 2.
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Fig. 5. Typical 1-D return maps (δ = 0.05, p = 0.8, q =
−0.5, d = 0.7). (a) a = −0.25, (b) a = 0.2.

Fig. 7 shows an existence region for each periodic or-
bit. Next, we consider existence condition for chaos
attractor. An interval I ≡ (ymin, ymax) is said to
an invariant interval if f(I) ⊆ I . If ymax exists on
Bm, ymin exists on Bm+1 and if |Df(y0)| > 1 for
y0 ∈ Bm ∪ Bm+1, then f generates chaos on I .
Fig. 8 shows a existence region for each chaos attrac-
tor. f generates chaos and the chaotic orbit behaves
on Bm and Bm+1 for m ≥ 2 if (d, a) ∈ Cm,m+1:

Cm,m+1 = {(d, a)|Dm+1 < ymin ≤ Dm,

Dm < ymax ≤ Dm− 1, |df(y0)| > 1for y0 ∈ I}.
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Fig. 6. (a)Bifurcation diagram (δ = 0.05, p = 0.8, q =
−0.5, d = 0.7). The i region exhibits 1:1 periodic
orbit, the ii region exhibits coexistence of 1:1 and 2:1
periodic orbits, the iii region exhibits 2:1 periodic or-
bit, the iv region exhibits chaotic attractor, the v region
exhibits 5:1 periodic orbit.
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Fig. 7. Existence region for each periodic orbit (δ =
0.05, p = 0.8, q = −0.5). (1 ≤ m ≤ 9).
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Fig. 8. Existence region for each chaos attractor (δ =
0.05, p = 0.8, q = −0.5). (2 ≤ m ≤ 9).

IV. CONCLUSIONS

We have considered a simple chaotic circuit includ-
ing TSCIS. The TSCIS causes rich chaotic/periodic
phenomena and the phenomena are analysed using
one-dimensional piecewise linear ( and monotone )
return map. Future problems include detailed anal-
ysis of bifurcation phenomena and application of the
TSCIS to higher dimensional circuits and PCNNs.
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Abstract— Bernoulli shift or tent map is a simple
example of ergodic maps generating chaos. Several
well-known ergodic maps topologically conjugate to
the tent map are shown to be governed by Abel’s dif-
ferential equations. Jacobian elliptic Chebyshev ra-
tional map is shown to be induced by a typical elliptic
integral in real numbers. It is also shown to gener-
ate a sequence of 2-dimensional i.i.d. binary random
variables.

I. INTRODUCTION

Bernoulli shift and its associated binary function,
called Rademacher function, can produce a sequence
of independent and identically distributed (i.i.d.) bi-
nary random variables (BRVs) in a sense that they
furnish us with a model of independent tosses of a
’fair’ coin. Tent map, closely related to the Bernoulli
map, and its associated binary function can also gen-
erate a sequence of i.i.d. BRVs. Ulam and Von
Neumann[1] showed that the logistic map is topolog-
ically conjugate to the tent map via the homeomor-

phism h− 1(ω) =
2
π

sin− 1 √ω. They also pointed out

that the logistic map is a strong candidate for pseu-
dorandom number generation (PRNG) even though
it has a non-uniform absoultely continuous invariant
(ACI) measure. Motivated by Ulam-Neumann’s so-
phisticated statement, we have recently shown that
a class of ergodic maps with equidistributivity prop-
erty (EDP) can generate a sequence of i.i.d. BRVs
if their associated binary functions satisfy constant
summation property (CSP) [2]–[3]. A chaos-based
generator of random bits [4] is known to be a PRNG
method without using linear feedback shift register se-
quences [5].

Let w = w(z) be the algebraic function deter-
mined by F (z, w) = 0, where F (z, w) is a polyno-
mial in z and w and let R(z, w) be a rational function
on a Riemann surface [6],[7]. Integrals of the form∫

R(z, w)dz are called Abelian integrals. Bernoulli
shift or tent map is a typical example of addition (or

duplication) formula. It is well known that Euler’s (or
Abel’s) addition formula can be represented in elliptic
integrals.

Several well-known ergodic maps topologically
conjugate to the tent map are shown to be governed by
Abel’s differential equations in the following sense:
(1) inverse function of a homeomorphism defining an
ergodic map is represented by an Abelian integral; (2)
its derivative with respect to a single parameter gives
ACI measure of the map and (3) the map satisfies an
Abelian differential equation with respect to the pa-
rameter and induces a 2-dimensional map.

Derivative of Jacobian elliptic Chebyshev rational
map [8] is shown to induce an elliptic curve [9], de-
fined by an elliptic integral in real numbers. Real-
valued orbits on the curve are shown to produce a se-
quence of 2-dimensional i.i.d. BRVs.

II. INVERSE FUNCTION OF HOMEOMORPHISM

AND ELLIPTIC FUNCTION

Consider an ergodic map τ : I = [d, e] → I with
its unique ACI measure, denoted by f (ω)dω.

Bernoulli map with f (ω)dω = dω is defined as

τB(ω) = 2ω(mod 1) =
{

2ω, 0 < ω < 1
2 ,

2ω − 1, 1
2 � ω < 1.

(1)

If ω is represented by its binary expansion as
ω = 0.d1(ω)d2(ω) · · · , then the binary expansion of
τB(ω) is given by τB(ω) = 0.d2(ω)d3(ω) · · · . This
implies that τB(·) shifts the digits one place to the
left. The functions dk(·), called Rademacher func-
tions, furnish us with a model of independent tosses
of a fair coin. A sequence {dk(ω)}k=0 can be re-
garded as a sequence of i.i.d. BRVs in a sense that
for almost every ω, dk(ω) can imitate coin tossing.
Another map and its associated binary function are as
follows. Consider piecewise linear map of p branches
with f (ω)dω = dω, given by [10]

Np(ω) = (−1) pω pω(mod p), ω ∈ [0, 1]. (2)

In particular, N2(ω) is referred to as the tent map. In-
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troduce its associated BRV defined as

ak =
{

0, for N k
2 (ω) � 1

2 ,
1, for N k

2 (ω) > 1
2 .

(3)

Then for ω = 0.d1(ω)d2(ω) · · · , we get

a0(ω) = d1(ω), ak(ω) = dk(ω)⊕ dk+1(ω), k � 1,
(4)

where ⊕ denotes a modulo 2 addition (or exclu-
siveor) operation. Hence N2(ω) and its associated bi-
nary functions ak(·) can generate a sequence of i.i.d.
BRVs. Naturally, the important question arises, that
can any other map and its associated binary function
generate a sequence of i.i.d. BRVs? We have got
an affirmative answer to this question [2]–[3], which
is firstly, the map should satisfy EDP and secondly,
the binary function should satisfy CSP. EDP and CSP
respectively correspond to trivial and non-trivial par-
tition of the interval [3]. Fortunately, EDP is satis-
fied by many well-known maps. Furthermore, EDP is
proven to be invariant under topological conjugation.

Definition 1: (Topological Conjugation) [11] Two
transformations τ : I → I and τ : I → I on inter-
vals I and I are called topologically conjugate if there

exists a homeomorphism h: I
onto−→ I , such that

τ(ω) = h ◦ τ ◦ h− 1(ω). (5)
Suppose τ(ω) and τ(ω) have their ACI measures de-
noted by f (ω)dω and f (ω)dω respectively. Then,
these ACI measures satisfy the relation

f (ω) =
∣∣∣∣dh− 1(ω)

dω

∣∣∣∣f (h− 1(ω)). (6)

Remark 1: If we take N2(ω) as τ(ω), then f (ω)
is simply represented by the derivative of h− 1(ω).
Hence, if h(ω) can be given in an inverse function
form, then its integrand gives an ACI measure within
normalization factor. Most famous example of inverse
functions is sin function, i.e.,

ω =
∫ sinω

0

du√
1 − u2

. (7)

This remark is a starting point of our study. In fact,
Ulam and von Neumann [1] gave the logistic map

L2(ω) = 4ω(1− ω), ω ∈ [0, 1] (8)

with f (ω)dω = dω

π
√

ω(1− ω)
which is topologically

conjugate to N2(ω) using h− 1(ω) =
2
π

sin− 1 √ω.

III. ABEL’S DIFFERENTIAL EQUATIONS

The example mentioned above implies that dupli-
cation formula gives chaos. To observe it thoroughly,
consider an irreducible algebraic equation [6],[7]

F (z, w) = 0, (9)

where F (z, w) is a polynomial in z and w that is not
representable as a product of two polynomials. The
set of all pairs (z, w) satisfying eq.(9) is called an al-
gebraic curve. In particular, consider eq.(9) with the
form

w2 = A(z − α1)(z − α2) · · ·(z − α2p+1),
w2 = A(z − α1)(z − α2) · · ·(z − α2p+2).

}
(10)

If p = 1, we get an elliptic curve and for p > 1
a hyperelliptic curve. Consider a rational function
R(z, w) on Riemann surface belonging to eq.(10).
Obviously, the expression (7) is an example of an el-

liptic integral
∫

R(z, w)dz =
∫

dz

w
1. Most impor-

tant elliptic function is the Weierstrass oneP(u), writ-
ten by

w2 = f = 4z3 − g2z − g3, (11)

u =
∫
P

dz√
f(z)

,
dz

du
=
√

f(z). (12)

Different values of the above integral have the form
±u + 2mω + 2m ω , (13)

where u is one of these values, m and m are arbitrary
integers and ω, ω are half-periods. Expressions about
two variables w, z using a single parameter u such as
eqs.(11)–(12) are called uniformization [6]. Let

zi = P(ui), wi = P (ui), for 1 � i � 3. (14)

Abel’s addition theorem states that if

u1 + u2 + u3 = 0 mod(2ω, 2ω ), (15)

then there exit a and b such that

wi = azi + b, 1 � i � 3. (16)

Such uniformization gives a 2-dimensional chaotic se-
quence governed by an Abel’s differential equation as
follows.
(1) logistic map: Transformation x = sin2 θ gives(

dx

dθ

)2

= 4x(1− x). (17)

Let xn = sin2 θn, θn+1 = 2θn. Then we get 2-
dimensional sequences {(xn, yn)}n=0, given by

xn+1 = L2(xn)=4xn(1 − xn), (18)

y2
n+1 =

(
1
2
· d L2(xn)

dθ

)2

=4L2(xn)(1 − L2(xn)).

(19)
1More precisely speaking, if p = 0, (z,w) satisfying eq. (10)

gives a circular (or hyperbolic) curve and an elementary integral�
R
�
z,
�

az2 + bz + c
�

dz.
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(2) Chebyshev map of degree 2:
Grossmann and Thomae [10] observed that Cheby-

shev polynomial maps of degree p (p = 2, 3, · · ·) [12]

with f (ω)dω =
dω

π
√

1 − ω2
, written by

Tp(ω) = cos(p cos− 1 ω), ω ∈ [−1, 1] (20)
is topologically conjugate to N p(ω) via
h(ω) = cos πω. Transformation x = cos θ gives(

dx

dθ

)2

= 1− x2. (21)

Let xn = cos θn, θn+1 = 2θn. Then we get 2-
dimensional sequences {(xn, yn)}n=0, written by

xn+1 =T2(xn)=2x2
n − 1, (22)

y2
n+1 =

(
1
2
· d T2(xn)

dθ

)2

=1 − (T2(xn))2 . (23)

(3) Katsura map:
Katsura and Fukuda [13] gave a rational function

version of L2(ω) with parameter k, defined as

Rsn2

2 (ω, k) =
4ω(1− ω)(1− k2ω)

(1 − k2ω2)2
, ω ∈ [0, 1] (24)

with its ACI measure

f (ω, k)dω =
dω

2K(k)
√

ω(1− ω)(1− k2ω)
(25)

via h− 1(ω) =
1

K(k)
sn− 1(

√
ω, k), where sn(ω, k) is

the inverse function of the elliptic integral with mod-
ulus k (|k| < 1) and K(k) is the complete elliptic
integral, each of which is given respectively as

ω =
∫ sn(ω,k)

0

dv√
(1− v2)(1− k2v2)

, (26)

K(k) =
∫ π

2

0

dθ√
1 − k2 sin2 θ

. (27)

Transformation x = sn2 u gives(
dx

du

)2

= 4x(1− x)(1− k2x). (28)

Let xn = sn2 un, un+1 = 2un. Then we get 2-
dimensional sequences {(xn, yn)}n=0, given by

xn+1 = Rsn2
2 (xn, k) ==

4xn(1− xn)(1 − k2xn)
(1− k2x2

n)2
,

(29)

y2
n+1 =

(
1
2
· d Rsn2

2 (xn, k)
du

)2

= 4Rsn2

2 (xn, k)(1− Rsn2

2 (xn, k))(1− k2Rsn2

2 (xn, k)).
(30)

(4) Jacobian Elliptic Chebyshev map of degree 2:

Kohda and Fujisaki [8] have recently introduced the
Jacobian elliptic Chebyshev rational map with modu-
lus k, defined by
Rcn

p (ω, k) = cn(p cn− 1(ω, k), k), ω ∈ [−1, 1] (31)

with its ACI measure

f (ω, k)dω =
dω

2K(k)
√

(1− ω2){(1− k2) + k2ω2}
(32)

using homeomorphism h− 1(ω, k) = cn−1(ω,k)
2K(k) of

Np(ω), p = 2, 3, 4, · · · , where cn(ω, k) is the inverse
function of the elliptic integral with modulus k, i.e.,

ω =
∫ 1

cn(ω,k)

dv√
(1 − v2){(1− k2) + k2v2} . (33)

We know that Rcn
p (ω, k) satisfies the semi-group

property
Rcn

r (Rcn
s (ω, k), k) = Rcn

rs(ω, k) (34)
for integers r, s and when p = 2

Rcn
2 (ω, k) =

1 − 2(1− ω2) + k2(1− ω2)2

1 − k2(1− ω2)2
(35)

holds. Using the relation K(0) = π
2 , we get

Rcn
p (ω, 0) = Tp(ω), f (ω, 0)dω =

dω

π
√

1 − ω2
.

(36)Transformation x = cn u gives(
dx

du

)2

= (1 − x2)(1− k2 + k2x2). (37)

Let xn = cn un, un+1 = 2un. Then we get 2-
dimensional sequences {(xn, yn)}n=0, defined as

xn+1 = Rcn
2 (xn, k) =

2x2
n − 1 + k2(1 − x2

n)2

1 − k2(1 − x2
n)2

,

(38)

y2
n+1 =

(
1
2
· d Rcn

2 (xn, k)
du

)2

=
(
1− (Rcn

2 (xn, k))2
) (

1 − k2 + k2(Rcn
2 (xn, k))2

)
.

(39)

IV. MEASURE ON JACOBIAN ELLIPTIC CURVE

Addition formula for cn function gives [8]

Rcn
p+1(ω, k)− 2ωRcn

p (ω, k)
1 − k2(1 − ω2){1− Rcn

p (ω, k)2}
+Rcn

p− 1(ω, k) = 0, p = 1, 2, · · · (40)

with Rcn
0 (ω, k) = 1, Rcn

1 (ω, k) = ω. (41)

Similarly, Rcn
p (xn, k) satisfies the Abelian differential

equation(
1
p
· d Rcn

p (xn, k)
du

)2

=
(
1 − (Rcn

p (xn, k))2
) (

1 − k2 + k2(Rcn
p (xn, k))2

)
.

(42)
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As reported in previous study [9], R cn
2 (xn, k) has a

stable invariant curve, written by Y 2 = (1−X2)(1−
k2 + k2X2). The adjective stable means the curve
behaves as an attractive curve as shown in Fig.1(a).
xn+1 is given as eq.(38). On the other hand, eq.(39)
gives calculation of yn+1

2, defined as

yn+1 =

⎧⎨
⎩
−π(xn+1),
for 0 < 2un(mod 4K(k)) < 2K(k),
π(xn+1), otherwise,

(43)

π(xn+1) =
√

(1 − x2
n+1)(1− k2 + k2x2

n+1). (44)

Observed measure of real-valued orbits, generated by
2-d map (xn+1, yn+1) = (Rcn

2 (xn, k), 1
2 ·

d Rcn
2 (xn,k)
du ),

as shown in Fig.1(b) supports that there exists an ACI
measure on the curve. Figs.2 (a) and 2(b) show its
marginal distributions of y and x, respectively given
by µX =

∫ 1
− 1 f (x, y)d y and µY =

∫ 1
− 1 f (x, y)d x.

In these figures, their theoretical distributions are also
depicted. These are given by integrand of ellip-
tic integral for inverse function (cn u)− 1, defined as

eq.(33) and one for inverse function
(

d cn u
du

)− 1
=

− (sn u dnu)− 1, defined as

ω =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ − sn(u,k) dn(u,k)

0

√
2k√

(2k2 − 1 +
√

1 − 4k2t2)(1 − 4k2t2)
dt

(k <
√

1
2
)∫ − sn(u,k) dn(u,k)

0

√
2k√

(2k2 − 1 +
√

1 − 4k2t2)(1 − 4k2t2)
dt

+
∫ − sn(u,k)dn(u,k)

0

√
2k√

(2k2 − 1 −√
1 − 4k2t2)(1 − 4k2t2)

dt

(k >
√

1
2 )

(45)
respectively. This implies µY is given by integrands of
eq.(45), whereas µX is given by integrand by eq.(33).
Namely, inverse function of − snu dn u is also repre-
sentable in a kind of elliptic functions in real numbers.
On the other hand, distribution of the u-axis along the
invariant curve, denoted by µu, should be uniform as
shown in Fig.2(c), which is identical to the uniform
ACI measure of N2(u), defined as f (u)du = du be-
cause cn u is written by cn u = cos θ = cos am(u, k),
where am(u, k) is Jacobi’s amplitude function, de-
fined as

u =
∫ θ

0

dθ√
1 − k2 sin θ

, θ = am(u, k). (46)

V. CONCLUDING REMARKS

Jacobian Chebyshev rational map has been shown
to satisfy Abelian differential equation. Real-valued

2Another expression for (xn+ 1, yn+ 1) has been given in refer-
ence [9].
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Fig. 1. (a) Stable invariant curve and (b) its joint distribu-
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orbits on Jacobian elliptic curve have been shown to
produce a sequence of 2-dimensional i.i.d. BRVs.
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Abstract—In this work we report about our

achievements in numerical investigation of energetic

processes (migration, merging, fusion, trapping) in 

systems with complicated structure and defined 

energetic disorder. The Sl branch of AED theory

(hierarchical multilevel system theory) was used for

mathematical definition of the task, computer reali-

zations for 1D and 2D cases were done in object-

oriented technique of programming language Delphi

and results were compared with real experiments. 

The simulation allows us to investigate the processes 

in dynamics (in time) and interactively control them 

by operator. Constructed mathematical definition

allows to extend the simulation for 3D case and can 

be modified for requested practical tasks. 

I. PICTURE OF THE PROBLEM

Novel methods of numerical investigations are

strongly required nowadays. And we have applied 

multilevel hierarchical system theory AED (Sl

branch [1]) for investigation of the energetic proc-

esses in systems with complex structure. This is an 

important task due to the demand in newel tech-

niques for signal transfer and processing, energy

collection and storage, design of opto-electronic

devices. Up to now wide range of experimental

works (see, for example, results of our group [2-5])

leads to understanding of complexity and mutual

influence of dynamic processes inside of the sys-

tems. New suggestions about physical base of the

processes require advanced computer simulations to

prove and clarify them. To carry out these tasks the 

special mathematical definitions should be used to 

provide sufficiently powerful ground for number

imitations. And in ideal case, the simulation should 

be useful (can be applied) for tasks of learning and 

for practical tasks of manufacture. With this reasons 

we have applied hierarchical multilevel system the-

ory AED for mathematical definition of the ener-

getic processes in disordered system, and realized

(animated) them with digital simulation by object-

oriented technique of the language Delphi under

Windows

AED THEORY.

Up to now the AED theory has wide range of appli-

cations for actual tasks of programming [6], net-

works [7-9], demography [10], economics [11],

biology [12, 13], physics [14, 15, 16] etc. The theory

was developed by Novikava at 90th years and has

origin in general system theory proposed by Taka-

hara & Mesarovic (for details see [17]). It has two 

variants Sl and Al. In this article we deal with Sl and 

present short introduction to the theory and way of

definition for our task (an investigation of energy

condition inside of the sample with time) in its sym-

bols.

In the AED theory each process and system should 

be defined by the same set of features: level, coordi-

nator, structure, lows and condition. Below the short

introduction to the mathematics is presented, where

the systems are denoted by S and l is the index of 

level for the systems.

The system in the theory  is described by follow-

ing symbol construction: 

S

},{
0

SS

0
S

- aggregated dynamical realization of the units 

and acts (condition),  - construction of the level, 

- co-ordinator for the level, l - index of the level 

.
sL

 Farther, , , where and0
,~ S ~,

0
S ~
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~
 are connected by coordinator and contain the 

dynamical realizations and constructions of unit

(object) , its environment  (other units of its

level), mutual acts (processes) o  of  in 

with acts  of and o :

0S

S

So

S

S
o

S

S,

So S

,
o

S

S
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C CoX

C CX
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Y

0, S

0

0}

0S , ;S

Each sample of  contains own realization of the 

dynamical systems

},,)
k

where  - low of connections for  with other 

units and acts inside and outside of the level, and the 

construction of  connects the details of the sam-

ples  (states , inputs  and outputs ):k k
Y

k

}, LX
.

The dynamical realization of the system ,

is described by set of dynamical functions: 

Y
ttk

}&C
tk

The network of connections of , ,  is 

described by Table 1. 

Yk

Table 1.

States Inputs Outputs

So Xo Co

So o

)(YYo

S { )(YY

})(Y

S X

(X

C

Xoo

X

Due to the connections in  of all details of  is 

restored by its other details with becoming uncer-

tainty.

The co-ordinator is described in the same way:

0 {S ,

that is S has own aggregated dynamical realization 

 and the construction ; the availability of S

(the connection with higher levels) allows to account 

and to change by its own activity.

0

0 00

0S

III. ALGORITHM FOR THE TASK DEFINITION.

Below is principal schema for definition of the 

electronic (energetic) processes in the symbols

of the AED theory (definition of levels, units 

and processes). The main level l0 contains the 

investigated sample S0 and its environment (la-

ser S0-1 and receiver S0+1). They are connected 

by laws {
S0-1 S0

}
l0

, and {
S0 S0+1

}
l0

, which define 

acts (motion, transmission) for input and for 

output signals. Internal level for S0 is presented 

by subsystems {S0int}i (domains of molecules of 

the sample) and is denoted as l0int ( index i al-

lows to define place of the subsystems in S0). In 

its turn each from subsystems {S0int}i has own 

structure - set of molecules {{S0int}i}j <-> 

{Moli}j, where j is number of molecule. The 

molecule in our definition has no structure 

(structure in undefined) but has condition 

CS0int_i_j <-> {Type {trap, ordinary}, State {ES0,

ET1, ES1}}. Inside of the domain (S0int}i ener-

getic disorder for molecules is defined by Gaus-

sian distribution {G_moli} <–> {{sigma,

ET1_average, ET1_max, ET1_min, dET1}i.} And ener-

getic disorder of the domains {ET1_average}i is 

defined by another Gaussian Gdom <–> { sigma,

ET1_average, ET1_max, ET1_min, dET1}.In general 

features {G_moli} and Gdom are not the same

and are varied in our imitation to clarify influ-

ence of energy disorder. Beside of the energetic 

disorder the structure of the systems may be 

change. The sample S0 has structure sigmaS0

l_int

<–> {dimension, shape, domain interconnection 

(type of lattice), linear size in domains}. The 

structure of the domains {sigmaS0int_i} <–>

{dimension, shape, bonds between molecules

(type of lattice of molecules), linear size in 

molecules}i does not depend on i and is a con-

stant in the simulation (in principle may be var-

ied). In real experiments parameters of Gaus-

sians and size of domains reflect way of the 

sample preparations (fast or slow cooling, for 

example). And by variation of linear size of S0

influence of space restriction should be investi-

gated (important for nano-technologies). 

By continue in such way the process is defined 
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mathematically exactly. And the next step is 

number realization of the definition. One of the 

most important things is correspondence in the 

system theory between mathematical definition 

and number simulation. S0, each element of the 

mathematical definition is realized by certain 

programming code (as object, for example). It 

makes the programming very clear for under-

standing and allows us to advance the simula-

tion with advance of mathematical definition 

without rebuilding of whole program. 

In our simulation we set up 1. the linear sizes and 

structure for S0 and S0inti (lattice, linear size of S0

and linear size of S0int), 2. the energetic disorder 

Gdom and Gmol, 3. the intensity of input light (con-

centration of excitons at t=0), 4. the concentration of 

traps, 5. the temperature (influence on *activity* of 

the excitons), 6. the number of realizations for the 

sample energetic disorder, 7. the number of excita-

tions of the realization. As output data we fixed 

quantity of excited states ET1 of molecules and 

events of energy fusion at each step of time. We 

have shown, that all of these parameters depend on 

features of parameters 1-5 with good correspon-

dence by experimental ones (experimental investiga-

tion of our group [2-5]). Nevertheless, main 

achievements is successful application of the theory 

AED that makes possible dynamical monitoring of 

the system's conditions on each level, interactive 

control under processes and fast calculation with 

presentation of data with real time animation. That 

allows us to make preliminary decision about actual-

ity of the theory in modern research of complex 

systems by digital (computer tools). 

IV. CONCLUSION

As conclusion we want to emphasize actuality of 

application of the AED theory for mathematical 

definition of complex dynamic tasks. It allows to 

provide actual number investigations of complex 

phenomena by imitations of the processes with abil-

ity of farther developing for required tasks (engi-

neering, learning, fundamental science). At the end 

we have to note about insufficiently wide range of 

practical application of the theory and strong de-

mand in finding out advantages and restrictions of 

application of the theory for modern aims of learn-

ing (science, study and teaching) and goals of pro-

duction (numerical design and testing), what re-

quires using of the theory for new tasks in various 

applications.
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Abstract— Applying periodic input, spiking oscil-
lators output various pulse-trains and exhibit rich syn-
chronous phenomena. This paper studies the phenom-
ena using two simple examples. In the first example,
the input is a sawtooth base signal and the frequency
versus parameter characteristics of the synchroniza-
tion is the complete devil’s staircase. In the second
example, a pulse-train input is applied via a refrac-
tory threshold and the characteristics of the synchro-
nization is an interesting incomplete devil’s staircase.
These phenomena can be analyzed theoretically and
typical phenomena can be confirmed experimentally.

I. INTRODUCTION

Spiking oscillators output pulse-trains based on the
integrate-and-fire dynamics and can exhibit rich syn-
chronous phenomena [1] [2]. Analysis of the phenom-
ena is important not only as fundamental study but
also for application to pulse-coupled artificial neural
networks (ab. PCNN [1]-[7]). In the PCNN, vari-
ety of synchronous patterns relates to variety of in-
formation processing functions and may be developed
into flexible applications including image segmenta-
tion and pulse-based communication [5] [8]. How-
ever, theoretical and systematic analysis of the syn-
chronous phenomena is still an interesting problem.

This paper studies the problem using two exam-
ples of simple spiking oscillators which output vari-
ous pulse-trains [2] [4]. Our previous work [2] has
discussed that the spiking oscillators can by analyzed
theoretically and systematically using pulse-position
maps (ab. PPmaps), however, concrete analysis has
not been sufficient. The first circuit has a periodic
sawtooth base signal and outputs a variety of chaotic
and periodic pulse-trains governed by piecewise lin-
ear PPmap. In the periodic phase, the frequency ver-
sus parameter characteristics of the synchronization
is the complete devil’s staircase corresponding to all
rational numbers [9] [10]. The second circuit has a re-
fractory threshold via which a periodic pulse-train is

Fig. 1. Spiking oscillator with sawtooth base

applied. In this case the oscillator outputs various pe-
riodic pulse-trains and the frequency versus parameter
characteristics is an incomplete devil’s staircase hav-
ing an interesting structure [11]. The PPmap is simpli-
fied into a circle map with a trapping window that has
rich super-stable periodic dynamics. Presenting a sim-
ple test circuit, typical phenomena can be confirmed
experimentally. It should be noted that the complete
and incomplete devil’s staircases relate deeply to anal-
ysis and improvement of A/D converters [12] [13].

II. THE FIRST SPIKING OSCILLATOR

Fig. 1 shows the first circuit. In the figure Vf

is a constant firing threshold and B(t) is sawtooth
base signal with period T : B(t) = K(t − 0.5T ) for
0 ≤ t < T and B(t + T ) = B(t). B(t) has no
dc component and B(t) < Vf . The capacitor volt-
age v increases by integrating current I . If v reaches
Vf , the comparator triggers the monstable multivibra-
tor to output a pulse signal Y . The output Y closes
the switch S and v is reset to the base B(t) instanta-
neously. Repeating this integrate-and-fire dynamics,
the oscillator outputs a pulse-train. The dynamics is
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Fig. 2. Pulse position map for the first circuit

described by Equation (1)⎧⎪⎨
⎪⎩

C
dv

dt
= I for v < Vf

v(t) = B(t) if v(t− ) ≥ Vf

(1)

Y (t) =

{
VDD if v(t− ) = Vf

VSS otherwise

where VDD and VSS are high and low output levels of
the monstable multivibrator, respectively. Using the
following dimensionless variables and parameters,

τ =
t

T
≥ 0, x =

Cv

TI
, a =

CVf

TI
, k =

CK

TI

y =
Y − VSS

VDD − VSS
, b(τ) =

C

TI
B(Tτ),

(2)

Equation (1) is transformed into Equation (3)⎧⎪⎨
⎪⎩

dx

dτ
= 1 for x < a

x(τ) = b(τ) if x(τ− ) ≥ a

(3)

y(τ) =

{
1 if x(τ− ) = a
0 otherwise,

where b(τ) = k(τ−0.5) for 0 ≤ τ < 1 and b(τ+1) =
b(τ). It should be noted that normalized equation has
two parameters a and k and |0.5k| < a is satisfied to
guarantee b(τ) < a. For the analysis, we introduce
the pulse position map (ab. PPmap). Let τn be n-th
pulse position at which the oscillator fires and outputs
n-th pulse signal as shown in Fig. 1. The pulse-train
is governed by the following PPmap.

τn+1 = f1(τn) ≡ τn − b(τn) + a

= (1− k)τn + 0.5k + a + INT(τn),
(4)

Fig. 3. bifurcation diagram (S ≡ 0.5k + a = 0.8).

Fig. 4. Devil’s staircase and typical return map (1 − k =
0.8, S ≡ 0.5k + a). (a)S = 0.36

where INT(τn) denotes the integer part of τn. An ex-
ample of the PPmap is shown in Fig. 2. It goes with-
out saying that b(τ) < a guarantees f1(τ) > τ . For
convenience we reduce the PPmap into the return map
F1 from I = (0, 1] to itself:

θn = F1(θn) ≡ f1(θn) mod 1, (5)

where θn = τn mod 1. As parameters vary, this sys-
tem exhibits rich dynamics as suggested in Fig. 3.
Using a simple test circuit presented in [4], typical
phenomena can be confirmed experimentally. As dis-
cussed in [2], the pulse-train is chaotic for |1−k| > 1
and is periodic for for |1− k| < 1. For simplicity, we
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Fig. 5. Spiking oscillator with pulse-train inputs

focus on the case

0 < 1− k < 1, 0.5k + a < 1, 0.5k < a.

In this case, the system exhibits periodic phenomena
only. In order to characterize the phenomena, we in-
troduce an encoding ω and a frequency ratio ρ:

ω(θn) =

⎧⎨
⎩

0, for 0 ≤ θn < 1− S
1− k ,

1, for 1− S
1− k ≤ θn < 1,

(6)

ρ = 1
M

∑M
n=1 ω(θn) (7)

where S ≡ 0.5k + a and M is the period of the orbit:
θm = θ0 and θm �= θl for 0 < l < m. Fig.4 shows
ρ versus S characteristics and a typical return map.
This characteristics is known as the devil’s staircase
and corresponds to all the rational numbers [10].

III. THE SECOND SPIKING OSCILLATOR

Fig. 5 shows the second circuit where P (t) is a
periodic pulse-train input with period T : P (t) = V DD

at t = mT and P (t) = VSS for t �= mT where m
is a positive integer. If P (t) does not exist, the circuit
dynamics is the same as the first circuit with B(t) = 0
and is described by Equation (1) with B(t) = 0. In
this case, the circuit fires and v is reset to 0 if v reaches
Vt. We refer to this resetting as self-firing (ab. SFR).
Then the input P (t) is applied via refractory threshold
Vr and resets v as shown in Fig. 5:

v(t+) = 0 if P (t) = VDD and Vr < v(t). (8)

We refer to this resetting as compulsory-firing (ab.
CFR). Using the following normalization with (2):

q =
CVr

TI
, p(τ) =

P (Tτ)− VSS

VDD − VSS
, (9)

Fig. 6. Pulse position map for the second circuit

we obtain the following normalized equation:

x(τ) = 0 if x(τ− ) ≥ a (SFR)

x(τ+) = 0 if p(τ) = 1 and q < x(τ) (CFR)

dx

dτ
= 1 otherwise,

(10)
where p(τ) = 1 at τ = m, p(τ) = 0 for τ �= m and
m is a positive integer. It should be noted that this this
normalized equation has two parameters a and q. For
simplicity, we focus on the case

0 < q < a < 1.

In this case the PPmap f2 and the return map F2 are
given by Equations (11) and (12), respectively.

τn+1 = f2(τn)

=

{
m, for m − a ≤ τn < m − q
τn + a, otherwise,

(11)

θn = F2(θn) = f2(θn) mod 1

=

⎧⎪⎨
⎪⎩

θn+1 + a for 0 ≤ θn < 1 − a
0 for 1 − a ≤ θn < 1 − q

θn + a − 1 for 1 − q ≤ θn < 1,
(12)

where m is a positive integer and θn = τn mod 1.
Shape of the PPmap is shown in Fig. 6. The return
map is the rotation having window with width a − q.
Since the map is flat on the window, this map exhibits
super-stable periodic orbit for almost all initial values.
Fig. 7 shows a laboratory measurement corresponding
to the periodic orbit. In a likewise manner as Section
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Fig. 7. Laboratory measurement of typical syn-
chronous phenomena, horizontal=t[0.5s/div.] and
vertical=v[0.5v/div.]. (a = 0.4, q = 0.3).

II, we introduce the encoding:

ω(θn) =

{
0, for 0 ≤ θn < 1− a,

1, for 1 − a ≤ θn < 1.
(13)

Substituting this ω(θn) into Equation (7) we obtain
the frequency ratio ρ. Fig.8 shows ρ versus a char-
acteristics with typical return maps. This interesting
staircase is different from the devil’s staircase in Fig.4.
The devil’s staircase is continuous function and corre-
sponds to all the rational numbers, however, this stair-
case is not continuous and corresponds to a subset of
rational numbers. The density of the subset depends
of the window width a − q. Theoretical analysis of
this incomplete devil’s staircase is in progress.

IV. CONCLUSIONS

We have considered periodic synchronization of
two spiking oscillators and have clarified that they ex-
hibit rich synchronous phenomena characterized by
complete and incomplete devil’s staircases. Our re-
sults will be developed into analysis of synchronous
phenomena of artificial pulse-coupled neural net-
works based on the spiking oscillators and its applica-
tions including A/D conversion. The authors wish to
thank M. Shimazaki, R. Furumachi and H. Hamanaka
for their helpful advises.
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Abstract—In this paper we model the behaviour of
a nonperiodically clocked CPM boost converter. The
behaviour can not be modeled by one-dimensional
maps. We propose a cascaded map model of a cou-
pled hybrid system. The system consists of a chaos
clock generator driving a CPM boost converter. The
model is used to apply statistical analysis and for EMI
consideration.

I. INTRODUCTION

The current programmed mode (CPM) boost con-
verter is a standard device in electronic power supply
devices. Under certain conditions it exhibits chaotic
behaviour, [1], [2]. Some applications use this mode
for the better EMI performance [2], [3]. However due
to the spectral peak at the clock frequency further im-
provement is desirable. In the paper we use a separate
chaotic clock generator for this purpose. For the anal-
ysis of each part separately efficient one-dimensional
embedded map models and a variety of tools exist, [1],
[2], [4], [5], [6], [7].

When both parts are coupled conventional mod-
elling by a one-dimensional map is not possible.
Therefore we introduce a cascaded map model which
we convert into a higher-dimensional one. This model
allows to efficiently apply statistical analysis to the
system and to consider its EMI.

The paper is organised as follows: In section II we
summarize one-dimensional maps of the CPM boost
converter. In section III we propose the coupled sys-
tem and enhance the embedded map model by cas-
cading two one-dimensional maps. We develop the
model into a higher-dimensional map in section IV.
This model we use to apply statistical analysis and to
study the EMI behaviour of the system using different
clock generators. Section V draws conclusions.

II. ONE-DIMENSIONAL MAP OF THE CONVERTER

Fig. 1 depicts the scheme of the CPM boost con-
verter. In most application CL is large enough to keep

D ioL

S Rlo

Q

C

Rl

Sgenerator
clock x

t

Vi

+
- R
t

ire f

Ilo0

iL

vo

Fig. 1. CPM boost converter scheme.

vo at a nearly constant level at normal operation. Then
the converter current iL

�
t � is nearly piecewise linear in

time, see Fig. 2. At periodic clock iL can be described
by the a-switching map (switching event-driven)

ik � 1 � ire f � c2T � c2

�
ire f � ik

c1
modT � (1)

see [1], [2], [3], [8]. Another descrpition is possible
by the so-called stroboscopic map

i
�
iL � n � � 	 iL � n � c1T Tc1 
 ire f � iL � n

ire f � c2a T c1 � ire f � iL � n
a � T � ire f � iL  n

c1
Tc1 � ire f � iL � n (2)

which determites iL at each clock pulse, [1]. This map
will be used in the sequel.

tn tn � 1 tn � 2 tn � 3

t
iL � n � 1

iL � n c1 c2

tk tk � 1

ik

ire f

control clock

ik � 2

iL

ik � 1

Fig. 2. One-dimensional CPM DC-DC converter maps.
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III. CASCADED MAP

Fig. 3 depicts the system corresponding to the
chaotically clocked CPM DC-DC converter. The em-
bedded map of the clock generator is g. The map gDC

z � 1 z � 1

map
g

clk

tn convertertn � 1

in � 1

chaotic clock generator

tk
gDC

Fig. 3. Cascaded map model.

determines the sequence of converter currents iLn at
the clock events (Fig. 2) and the switching times tk. It
has the form

gDC � ����
iL � n � 1

k
tk
tk � 1

� 		
 � ����
i

�
iL � n � tn 

k
�
iL � n � tn 

a
c2
c1

a

� 		
 (3)

with

i
�
iL � n � tn  � � iL � n � c1tn tnc1 � ire f � iL � n

ire f � c2a tnc1 � ire f � iL � n
a � � � � tnc1 � ire f � iL � n

tn � ire f � iL � n
c1

tnc1 � ire f � iL � n
k

�
iL � n � tn  � � k tnc1 � ire f � iL � n

k � 2 tnc1 � ire f � iL � n
(4)

Note the map gDC returns switching times only at
those clock events which cause the converter to switch
off during the next cycle. At the other clock events
there is no switching and the map gives no tk � tk � 1

output.

Analysis of this model is possible by a two-step ap-
proach:

1. Generation of the control clock vector tn

2. Analysis of gDC by using tn as input

Alternatively the two maps can be combined to a
higher-dimensional map as shown in the sequel.

IV. HIGHER-DIMENSIONAL MAP

As g and gDC are driven by the same events the
two maps can be combined. Fig. 4 shows the com-
bined model. It is described by the following five-

z � 1

converter �
in � 1 � tn � 1 �

clk

tk
gH

Fig. 4. Higher-dimensional model.

dimensional map

������
tn � 1

iL � n � 1

k
tk
tk � 1

� 				
 � ������
g

�
tn 

i
�
iL � n � tn 

k
�
iL � n � tn 

a
c2
c1

a

� 				
 (5)

where g
�
tn  is the map of the chaotic clock generator.

i � k and a correspond to Eq. (4). This map is now used
for system analysis.

A. Statistical Analysis

At the moment, analysis showed here is done nu-
merically. But we will derive some approximative
expressions from the observed behaviour of the cou-
pled system. To design the input circuit the mean cur-
rent ripple ipp is required. To calculate ipp the density
of the inductor current ik at the converters switch-on
events is required. It is obtained numerically from the
map, Eq. (5). The converter parameters are:� Vin � 10 V α � ��� c2

c1 ��� � 2� f � 100 kHz ∆ f
f � � 10 %

First we apply triangular periodic FM (PFM). The
map g in this case is

tn � 1 � � tn � Ψ1
�
tn  zn � 1

tn � Ψ2
�
tn  zn � 0

zn � 1 � � zn tmin � tn � tmax

zn else

Ψ1
�
tn  � ct3

n
1 � ct2

n

Ψ2
�
tn  � ct3

n
1 � ct2

n

(6)

In the chaotic cases we change the clock period every
m cycles chaotically. For the m � 1 cycles in between
it remeans constant. The map g then reads as

tn � 1
f � ∆ f

�
xn � 1

2 
xn � 1 � γ

�
xn  (7)

γ
�
xn  is the bernoulli map or the tent map. Fig. 5 de-

picts the PDF if ik (initial current for the switch-on
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Fig. 5. Density of the start current, α � 2.

phase) for the cases indicated. For integer α it can be
approximated by the following function

fik

�
x � � � ���

���
0 i 	 ia
c2
N

�
tmax 
 tmin � �

i 
 ia � ia � i � ib
1
N ib 	 i 	 ire f

0 i � ire f
(8)

with

ia � ire f 
 c2tmax

ib � ire f 
 c2tmin

N �  ire f

ia
fik

�
y � dy (9)

From Eq. 8 the mean value m1
�
fin � and the mean cur-

rent ripple
ipp � ire f 
 m1

�
fik � (10)

can be calculated. The estimation fin very good fits
with simulation results of slow modulation

�
m � 10 � .

For decreasing m we obtain an increased error, see
cases bernoulli and tent at m � 1, Fig. 5 due to the
influence of the clock generators dynamics on the con-
verter dynamics.

It can be shown that the PDF of the inductor current
is the normalised integral of the PDF of in, i.e.

fil

�
x � � 1

Ni
 x

ire f � c2tmax

fin

�
y � dy x 	 ire f (11)

with

Ni �  ire f

ire f � c2tmax

fil

�
y � dy (12)

Fig. 6 depicts the converter current density using
the different clock processes. For the case of periodic
clock and integer α an exact analytical expression can
be derived too, see [5].
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Fig. 6. Converter current density, α � 2.

At non-integer α values the PDF is more compli-
cated. Figs. 7 and 8 depict the numerically obtained
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Fig. 7. Converter start current density, α � 2 � 5.

results for α � 2 � 5. Nevertheless the differences do
not show up so strictly in the converter current den-
sity.

B. PDS and EMI Consideration

Now the PDS of iL
�
t � is calculated using the

method shown in [8]. Therefore the converter time
series is calculated using Eq. (5). Fig. 9 shows the re-
sult for periodic clock and PFM using fm

f � 1
100 . The

PDS using bernoulli map clock generator is depicted
in Fig. 10. Fig. 11 shows the for the tent map clock
generator.

The PDS consists of a basic wideband part deter-
mined by the converter dynamics and a spiky part re-
sulting from the clock. From Figs. 9 to 11 it can be
clearly seen that the FM of 10 % takes no significant
influence on the converter dynamics. This may give
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1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

100000 400000 700000

periodic clock
periodic fm

ω � s

S C
C

� ω

�

Fig. 9. Cpm boost converter pds.

rise for separate analysis of the two processes.
In these examples chaotic clocking of the converter

using bernoulli map and m � 20 achieved the best
EMI performance and should be prefered.

V. CONCLUSIONS

In the paper we derived coupled and higher-
dimensional models for the chaotically clocked CPM
boost converter. Using these models efficient statis-
tical analysis, similar to that of one-dimensional sys-
tems has been carried out. In the proposed case ap-
proximation of the system behaviour by separate anal-
ysis of the maps was possible. Approximative ana-
lytic expressions have been provided for special cases.
However more exact analysis at the moment is pos-
sible numerically only. A more extended analysis is
subject to further research.
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Abstract–This work is devoted to partial 

approach to solution of inverse problem of chaotic 

dynamics as follows to logistic map parameter and 

initial condition reconstruction from the 

communication channel chaotic signal in the 

presence of noise.

I. INTRODUCTION

In the process of development of information 

transmission systems using chaotic carrier one has to 

deal with two fundamental problems of chaotic 

dynamics: a direct problem and an inverse one. A 

direct problem solution is necessary when one builds 

a chaotic carrier generator and analyses an influence 

of the generator parameters and initial conditions on 

basic characteristics of chaotic oscillations. It is 

important to choose a method of modulation and a 

method of demodulation in an authorized receiver 

[1]. An inverse problem has to be solved when one 

builds a non-authorized receiver that has to 

determine a structure, parameters and method of 

modulation of chaotic carrier generator to be able to 

extract an information from chaotic signal in the 

presence of the channel noise [1,2]. 

A general approach to the inverse problem 

solution for the case of one-dimensional time series 

observation is presented in the paper [3]. In many 

cases one has some information about chaotic carrier 

generator that gives an opportunity to reduce a 

general inverse problem solution to the problem of 

determination of several parameters and initial 

values that define a chaotic carrier generator 

operation with accuracy that is sufficient for 

practical application. The aim of this paper is to 

develop an approach to solution of such simplified 

inverse problem. This approach is illustrated by 

particular example of chaotic generator of one-

dimensional time series using a logistic map. 

II. PROBLEM FORMULATION

Let us consider a discrete dynamical system 

described by equation of one-dimensional map:  

x(k+1) =  F [ 1, 2,…,x(k)] . (1)

To simplify the problem we consider a one-

parameter map:  

x(k+1) =  F [ , x(k) ] . (2)

Let as suppose that F [ ,x(k)]= x(k)(1-x(k)).

This particular example of the map (2) is famous as 

a logistic map [4]:

x(k+1) =  x(k)(1 - x(k)) . (3)

It is famous that the map (3) in a case of =3.9 and 

(0)=0.1 generates a numeric sequence that presents 

discrete time chaotic oscillation.  

This chaotic oscillation can be modulated by its 

initial values commutation in the clock time 

moments mL, m=1,2… [2]. If we choose two 

different initial values, providing two non-correlated 

in the interval 0  k  L chaotic sequences x0(k) and 

x1(k) we generate chaotic oscillations containing a 

binary information signal a(m):  

0

1,
a(m)  , m=1, 2, …    . 

This signal is generated according to the next rule: 

xs{k, a(m)} =  x0(k-mL)  if  mL<k (m+1)L and 

a(m) = 0,   and  xs{k,a(m)} = x1(k-mL)  if    mL< k 

 (m+1)L and a(m) = 1.
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Two different initial values can correspond to the 

values of the same sequence having time shift q; so 

that x1(k)=x0(k+q).  

The received signal in the presence of additive 

Gaussian noise n(k) can be presented in the form:  

y(k) = x(k) + n(k) . (4)

Let’s assume that receiving the sequence (4) we 

know that the carrier is generated by logistic map (3) 

but parameter  and initial conditions x0(0) and x1(0) 

have to be determined to demodulate the signal (4), 

using methods, described in [1]. We suppose also 

that we know positions of clock time moments. By 

comparisons to the case considered in [1,2], in this 

case we have to determine not only initial values, 

but the map parameter  also.

III. THE MAP PARAMETER DETERMINATION

To find the parameter  from the sequence (4) we 

construct the map function diagram as dependence 

y(k+1) on y(k). In a case of noise absence and 

constant parameter  each point of this dependence 

belongs to the curve  x(k+1)=F[ , x(k)]. It follows 

from (2) and it is illustrated by Fig. 1,  that was 

obtained from the sequence x(k). Addition of the 

noise leads to random deflection of the points 

[y(k),y(k+1)] from the curve y(k+1)=F[ , y(k)]. It is 

illustrated by Fig. 1,b where signal-to-noise ratio 

consists / n = 3. The values  and n are 

determined by formulae: 

N

0k

x

N

0k

2

x
2

x(k)
N

1
M

-Mx(k)
N

1
(k)

 , 

N

0k

n

N

0k

2

n
2
n

0n(k)
N

1
M

-Mn(k)
N

1
(k)

.

(5)

An estimation of  based on the non-modulated 

sequence y(k)=x(k)+n(k) and providing minimum of 

mean-square error of the estimation can be obtained 

as follows in [5]. One has to find an estimation 
~

(k)

from each of the N equations:

a)

b)

Fig. 1. Map function diagram for logistic map:  

(a) without noise,  

(b) in the presence of additive noise 

F[
~

(k), y(k)]-y(k+1)=0, k=0,1…N, (6)

and take their average value.

In the case of logistic map we have from (6)  

~
(k)  y(k) (1 – y(k)) – y(k+1) = 0 ,  

     k=0,1…N, (7)

and an estimation 
~

(N) can be found from the next 

formula:  

N

0k

N

0k

y(k)-1y(k)

1)y(k

(N)
~   . 

(8)

The dependence 
~

(N) for the case / n=10 is 

shown in the Fig. 2, . One can see that this 

estimation approaches to the exact value =3.9 when 

N  . 
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a)

b)

Fig. 2. Map parameter refinement at data accumulation 

In the Fig. 2,b a dependence of module of 

difference between estimation and exact value 
~

(N)-  is presented. One can see that an error of  
~

(N) estimation is significantly less than / n. In 

the Fig. 3 the dependence of 
~

(N)-  at the end 

of interval N=300 versus signal-to-noise ratio / n

is shown.

On can see that if one uses such small values of 

N an accuracy of  determination becomes 

unsatisfactory when signal-to-noise ratio is smaller 

than 10. 

Fig. 3. Parameter dispersion dependence versus signal-to-

noise ratio

If one uses modulation by initial values 

commutation at the clock time moments all points of 

map function diagram except the ones corresponding 

to elementary signals commutation moments. 

Consequently, an accumulation of partial sums 
N

0k

y(k)-1y(k)  and
N

0k

1)y(k  for parameter 

estimation has to be carried out with elimination of 

y(k) corresponding to clock time moments mL. 

IV. INITIAL VALUES ESTIMATION

 An algorithm for initial values estimation with 

already given values of parameter  is given in [2]. 

This algorithm is based on sequential application of 

optimal nonlinear filtering and inverse interpolation 

algorithms. Obviously because the parameter 

estimation 
~

 has a limited accuracy the accuracy of 

initial value estimation  will  be limited too. In Fig. 4 

the dependence of accuracy of initial values 

estimation on parameter estimation error is shown. 

One can see that accuracy of initial condition 

restoration result less by the order of value by 

comparison to parameter estimation accuracy.  

It is known [4] that two chaotic sequences with 

parameters or initial values having  small  difference  

will  missing with 

Fig. 4. Connection between  parameter and initial  values  

errors
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Fig. 5. Divergence of two chaotic sequences with 

parameter (initial condition) difference  ( =10
-4

)

current of time (Fig. 5).   Duration of time interval 

during which the divergence between two chaotic 

sequences will not exceed a defined threshold  is 

defined by divergence of parameter or initial condition 

values. Therefore with parameter and initial condition 

accuracy refinement the efficacy of   chaotic   signal 

treatment increases (Fig. 6). The during of effective 

data accumulation interval K increase too with 

decrease of parameter or initial conditions 

reconstruction error (Fig. 7).

Fig. 6. Restriction of integrator output voltage in 

correlation non-authorized receiver in conditions of 

parameter or initial conditions reconstruction error  

Fig. 7. The voltage accumulation window size 

dependence versus initial condition error 

In the practice the parameter restoration accuracy 

refinement by data accumulation time increasing   in  

the correspondence with Fig. 2. 

V. CONCLUSION

Thus, in relation to this topic, it is possible to 

propose the simple algorithms for parameter and initial 

condition restoration. We are investigated an example 

of derivation and use this algorithm  for  parameter  

and initial condition restoration in the simplest one-

dimensional one-parameter logistic map. We estimate 

also the possible accuracy of parameter and initial 

condition restoration for received chaotic signal with 

initial conditions modulation with account of additive 

noise. The achieved parameter and initial conditions 

restoration accuracy in the case of additive Gaussian 

noise presence is estimated. 
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Abstract–In this paper, we examine the stabi-
lization and synchronization of a class of chaotic
systems with impulsive control. In particular,
we propose a two-stage impulsive control strat-
egy to achieve quick synchronization and to im-
prove the e ciency of bandwidth utilization. The
results obtained in this paper can be very useful
in applications such as chaotic secure communi-
cations and chaotic spread spectrum communica-
tions that are based on this class of chaotic sys-
tems.

I. Introduction

The synchronization of two chaotic systems is
one of the fundamental problems for chaotic se-
cure communication systems and chaotic spread
spectrum communications. The chaotic sys-
tems can be time-discontinuously synchronized,
in which impulsive control method is attractive
because it allows the stabilization of a chaotic sys-
tem by using only small control impulses [1], [2],
[3], [4]. It can increase the e ciency of bandwidth
usage. Although impulsive chaotic synchroniza-
tion has been widely studied, the existing results
are still very conservative. We shall relax the syn-
chronization condition for a class of chaotic sys-
tems.
To evaluate di erent impulsive synchronization

methods, there are two performance indices: the
time required to synchronize and the length of the
impulsive interval after two systems are synchro-
nized. The two performance indices contradict
each other and depend on the choice of a design
parameter. To obtain a tradeo between them,
an intermediate value is usually chosen [3],[4]. A
simple two stage synchronization strategy is pro-
posed in [5] for Chua’s circuit. In this paper, we
shall improve on the strategy for a class of chaotic
systems. It involves an adaptation of the switch-
ing instant which is determined by the local in-

formation of the state variables.

The rest of this paper is organized as follows.
In the following section, the synchronization of a
class of chaotic systems is considered. A two-stage
impulsive control strategy is provided in Section
3. Section 4 provides a numerical example to il-
lustrate the e ciency of the proposed results. Fi-
nally, some concluding remarks are presented in
section 5.

II. Synchronization of a Class of Chaotic
Systems

Consider the synchronization of the following
class of chaotic systems:

Ẋ(t) = AX(t) + (X(t)) (1)

where X(t) R3 is the vector of the state vari-
ables and X(t) is globally bounded, A R3×3 is
a constant matrix, and : R3 R3 is a nonlin-
ear function that gives rise to chaotic dynamics.
In the synchronization configuration, the driving
system is given by (1), whereas the driven system
is given by

˙̃X = AX̃(t) + (X̃(t)) (2)

where X̃ is the vector of the state variables of the
driven system and A and are the same as in
(1). We consider the class of chaotic systems that
satisfies the following inequality:

2eT ( (X(t)) (X̃(t)))

eT (h(X(t)) + hT (X(t)))e (3)

where e = X(t) X̃(t) is the synchronization error
vector, h : R3 R3 ×R3 with each element of h
a bounded function of X(t).

Since each element of h is a bounded function
of X(t), and X(t) is globally bounded, h is thus

N  D  E  S        2  0  0  4

223



globally bounded. That is,

|h(X)|
H11 H12 H13
H21 H22 H23
H31 H32 H33

= H (4)

where Hij is the upper bound of hij(X) and the
matrix inequality is defined element-wise.
Three typical examples of this class of chaotic

systems are Lorenz system, Chua’s circuit and
Chen’s equation.
In the following, we shall derive a su cient con-

dition for the impulsive synchronization of the
driving and the driven systems.
In an impulsive synchronization configuration,

at discrete instants i(i = 1, 2, · · ·), the state vari-
ables of the driving system are transmitted to
the driven system and the state variables of the
driven system are then subject to jumps at these
instants. In this sense, the driven system is mod-
eled by the following impulsive equations:

˙̃X = AX̃ + (X̃) ; t = i

X̃|t= i
= Be ; i = 1, 2, · · ·

(5)

where B is a 3 × 3 symmetric matrix satisfying
(I + B) < 1 and e is defined in (3), k(k =
1, 2, · · ·) are time varying and satisfy [3], [4]

2i+1 2i 1( 2i 2i 1) (6)

where 1 < 1 is a given positive constant. Denote

1 = sup{ 2i 2i 1} < (7)

2 = sup{ 2i+1 2i} < (8)

as the bounds for the impulsive intervals.
Let (X, X̃) = (X) (X̃). The error system

of the impulsive synchronization is then given by

ė = Ae+ (X, X̃) ; t = i

e|t= i
= Be ; i = 1, 2, · · ·

(9)

We can obtain the following result.
Theorem 1: The impulsive synchronization of

two chaotic systems, with the error system given
by (9), is asymptotically stable if

0 max((A+H)
T + (A+H)) (10)

2

(1 + 1) 1
ln( d1)

where > 1, d1 =
2(I +B) < 1, and d1 < 1. H

is the upper bound of h as defined in (4). max(a)
denotes the largest eigenvalue of a.

Proof: Choose the Lyapunov function as
V (e) = eT e. When t = i,

V̇ (e) = eT (AT +A)e+ T (X, X̃)e+ eT (X, X̃)

eT (AT +A)e+ eT (h(X) + hT (X))e

max((A+H)
T + (A+H))V (e) (11)

We can obtain the following comparison sys-
tem:

ẇ(t) = max((A+H)
T +A+H)w(t) ; t = k

w( +
k ) = d1w( k)

w( +
0 ) = w0 0

(12)
Similar to the proof of Theorem 2 in [3], when

t = i, we know that

w( 2k+1) e 2 ln( d1)/(1+ 1)w( +
2k) (13)

w( 2k+2) e 2 1 ln( d1)/(1+ 1)w( +
2k+1) (14)

where +
i is the time instant just after i.

It follows that

w( +
2k+2)

1
2
w( +

2k) (15)

It can be easily shown that the comparison sys-
tem (12) is asymptotically stable if inequality (10)
holds. It follows from Theorem 1 in [4] that the
impulsive synchronization of two chaotic systems,
with the error system given by (9), is asymptoti-
cally stable.
To achieve the synchronization of the chaotic

systems defined in (9), the impulsive interval
bound can be chosen as

1( ) =
2ln( d1)

(1 + 1) max((A+H)T + (A+H))
(16)

III. Two-Stage Impulsive Control

We have the following two observations from
(15) and (16):
a) With a larger , less time is required to syn-
chronization while the bound of impulsive inter-
vals is smaller.
b) With a smaller , more time is required to
synchronization while the bound of impulsive in-
tervals is larger.
We shall combine the advantage of the two

choices of to design a two-stage impulsive con-
trol strategy. In the first stage with a large 1, for
any given > 0, we have

||e( 2k)|| < (17)

N  D  E  S        2  0  0  4

224



when k > log1/ 2

1

( 2/M0), where M0 = ||e(t0)||
2.

Define a function as follows:

( 2) = e max((A+H)T+(A+H)) 1( 2) (18)

It can be easily shown that

V (e(t)) ( 2)V (e( 2k 1)) ; 2k t 2k+2

(19)
We then have the result that with a small 2 in
the second stage, for any > 0, there is

||e(t)|| < (20)

when t > 2k̃. The time instant at which the
system is switched from stage 1 to stage 2 is 2k̃

where k̃ is defined as follows:

k̃ = log1/ 2

1

(
2

M0 ( 2)
) (21)

It is clear that the major objective in the sec-
ond stage is to obtain a larger bound of impulsive
intervals. We shall provide a method which in-
volves an adaptation of the switching instant to
yield a larger bound. This is achieved by using
the local maximum values of the state variable.
Set the default values of 2k̃+1 and 2k̃+2 as 2k̃+

1( 2) and 2k̃+(1+ 1) 1( 2), respectively. The
final values of 2k̃+1 and 2k̃+2 are given via the
following two steps.
Step 1 Compute the final value of 2k̃+1.
At the time instant ( 2k̃ + 1( 2)), the maxi-

mum values of h(X) is obtained as follows:

|h(X)| H(k̃) (22)

where H(k̃) is the maximum value of h(X(t))
within the interval [ 2k̃, 2k̃ + 1( 2)]. Then the
following is true:

max((A+H(k̃))
T + (A+H(k̃)))

max((A+H)
T + (A+H)) (23)

We can therefore compute an upper bound as

˜
1( 2) =

2ln( 2d1)

(1 + 1) max((A+H(k̃))T + (A+H(k̃)))
(24)

Clearly, ˜ 1( 2) 1( 2).
Step 2 Compute the final value of 2k̃+2.
This step is similar to step 1.
With the adaptive strategy, we can expect to

get larger impulsive interval bounds once the sys-
tems are synchronized.

IV. Numerical Example

We now use a numerical example to illustrate
the e ectiveness of the results derived in this pa-
per.
By studying the case of the Chen’s equation,

which is given by [6]:

ẋ = a(y x)
ẏ = (c a)x+ cy xz
ż = xy bz

(25)

where a, b and c are the parameters of the Chen’s
equation.
Let XT = [x, y, z], then we can rewrite

(25) into the form of (1), where A =
[ a a 0; c a c 0; 0 0 b],
(X) = [0 xz xy]T , and h(X) =
[0 z y; 0 0 0; 0 0 0].
Choose the impulsive controller matrix B as

B = diag(l1, l2, l3) (26)

It follows from Theorem 1 that d1 =
2(I +B) <

1 should be satisfied, which implies that 2 <
li < 0, (i = 1, 2, 3). It is easy to see that d1 =
maxi=1,2,3(li+1)

2 = (l+1)2, say, with 2 < l < 0
Assuming that My and Mz are the upper

bounds of the state y and z, respectively. We
have H = [0 Mz My; 0 0 0; 0 0 0].
Let q denote the largest eigenvalue of (A+AT ),

we then have the following result:

max((A+H)
T + (A+H))

max(A
T +A) + max(H

T +H)

= q + MyMz +M2
y (27)

Figure 1 shows the stable region for di erent
value of under our improved condition. The en-
tire region below the curve corresponding to = 1
is the estimated stable region. When , the
stable region shrinks to a line l = 1.
If we use the method in [3], the su cient con-

dition given for the impulsive synchronization of
two Chen’s equations is

0 q + MyMz +M2
y

2

(1 + 1) 1
ln( d1)

(28)

Clearly, our result is less conservative than that
derived in [3].
Consider the Chen’s equation with the para-

meters: a = 35, b = 3, c = 28, the upper bound
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Fig. 1. Estimate of boundaries of stable region, for
di erent value of , under our improved condition.

of the state variables are Mx = 40, My = 40,
and Mz = 65. Then, we have the maximum
M0 = 7425. Choose the impulsive controller pa-
rameters as l1 = l2 = l3 = 0.1, with 1 = 0.5 and
= 1.05. It is easy to show that d1 = 0.81 and

max((A+H)
T+(A+H)) = 108.5509. The upper

bounds of the impulsive interval are 1 = 0.002s
and 2 = 0.001s.

In the two-stage synchronization, we choose

1 = 1.23 and 2 = 1.01. Then, the upper bounds
of the impulsive intervals in the two stage are

1(1.23) = 4.5 × 10
5s, 1(1.01) = 2.5 × 10

3s,
respectively.

For = 10 6, k̃ is given as k̃ =

log1/ 2

1

(
2

M0 ( 2)
) = 90. The time necessary to syn-

chronize the two Chen’s systems is then computed
as 90 1.5 4.5 10 5(= 0.0061). If we use the
local values of z and y, we can compute the upper
bound of the impulsive time intervals in the sec-
ond stage as ˜ 1(1.01) = 4.1 × 10 3. It is larger
than 1(1.01) = 2.5 × 10 3. The experimental
result is illustrated in Figure 2.

However, if we choose a fixed as 1.05, k̃ is then

computed by k̃ = log1/ 2

1

(
2

M0
) = 422. The time

necessary to synchronize the two Chen’s systems
is then computed as 422 1.5 0.002(= 1.266)
while the upper bound of the impulsive intervals
is given by 0.002.

Clearly, our two-stage impulsive control strat-
egy can be used to reduce the time necessary to
synchronize the two Chen’s systems and at the
same time increase the bound of the impulsive in-
terval after the two systems are synchronized.
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Fig. 2. The synchronization errors of the Chen’s equa-
tion.

V. Conclusion

In this paper, we have provided a less conserva-
tive condition for the synchronization of a class of
chaotic systems and used to develop a two-stage
impulsive control strategy to synchronize the class
of chaotic systems. With our method, the time
necessary to synchronize two chaotic systems is
minimized while the bounds of the impulsive in-
tervals are maximized. Our result can be used to
improve the transmission e ciency of the chaotic
secure communication systems based on chaotic
systems because of the less frequent need to trans-
mit the synchronization impulses.

References

[1] T. Yang and L. O. Chua. Impulsive stabilization for
control and synchronization of chaotic systems: the-
ory and application to secure communication. In IEEE
Transactions on Circuits and Systems Part I: Funda-
mental Theory and Applications, vol. 44, pp.976—988,
1997.

[2] T. Yang. Chaotic secure communication systems: his-
tory and new results. In Telecommunications Review,
vol. 9, no. 4, pp. 597-634, 1999.

[3] W. X. Xie, C.Y. Wen, and Z. G. Li. Impulsive control
for the stabilization and synchronization of Lorenz sys-
tems. In Physics Letters A, vol. 275, pp. 67—72, October
2000.

[4] Z. G. Li, C. Y. Wen, and Y. C. Soh. Analysis and design
of impulsive control systems. In IEEE Transactions on
Automatic Control, vol. 46, pp.894—897, July 2001.

[5] K. Li, Y. C. Soh, and Z. G. Li. Chaotic cryptosystem
with high sensitivity to parameter mismatch. In IEEE
Transactions on Circuit and System I: fundamental The-
ory and Applications, vol. 50, pp. 579-583, April 2003.

[6] Z.H. Guan, R.Q. Liao, F. Zhou, and H. O. Wang. On
impulsive control and its application to Chen’s chaotic
systems. In Int. J. of Bifurcation and Chaos, vol. 12, pp.
1191-1197, 2002.

N  D  E  S        2  0  0  4

226



ON THE MECHANISMS BEHIND CHAOS

Erik Lindberg, IEEE Lifemember

Ørsted•DTU Department,
348 Technical University of Denmark,

Ørsteds Plads, Kgs. Lyngby, DK2800, Denmark
e-mail: el@oersted.dtu.dk

WWW: http://www.oersted.dtu.dk/∼el/

Abstract— Chaotic systems are observed every-
where. Electronic circuit analogues based on the dif-
ferential equations of the models for the chaotic sys-
tems are often used to study the nature of chaotic sys-
tems. This tutorial is an attempt to classify electronic
chaotic oscillators according to the mechanism be-
hind the chaotic behaviour, e.g. one group is based
on the sudden interrupt of inductive currents another
group is based on the sudden parallel coupling of ca-
pacitors with different voltages and a third group may
be based on multiplication of signals. An example
of chaos based on ”disturbance of integration” is dis-
cussed in details.

I. INTRODUCTION

Radio amateurs and electronic engineers have ob-
served chaotic performance of electronic circuits
since the invention of the triode amplifier by Lee
de Forest in 1906. The phenomena observed were
called noise, nonlinear distortion, parasitic oscilla-
tions, intermittent operation, asynchronous hetero-
periodic excitation etc. It was considered unwanted
and impossible to investigate analytically. Edwin
H. Armstrong (1890-1954) invented the regenerative
circuit for HF oscillations in 1912 (superheterodyne
1918, FM 1937). He possibly observed chaos [1], [2].
Balthasar van der Pol (1889-1959) reports about chaos
as “an irregular noise” [3], [4], [5], [6]. Within the last
30 years we have been able to study the nonlinear dis-
tortion phenomena by means of computer simulation
and to some extent by means of analytical investiga-
tion. The concept of chaotic oscillators has been de-
fined by means of a large number of examples. Very
little has been reported concerning classification of
chaotic oscillators or procedures for design of chaotic
oscillators with prescribed attributes.

II. MECHANISMS BEHIND CHAOS

All electrical and electronic engineers know that
you should not try to interrupt the current in a coil

or short circuit the voltage of a capacitor in no time.
If you try to do this you may expect nasty behavior
of your circuit. Apparently the kernel of all chaotic
oscillators is an oscillator of some kind [7]. If you
disturb the performance of the oscillator by adding
some nasty circuit composite with local activity and
memory [8], [9], you may create chaos. Chaos sets in
when the circuit drifts out of synchronization, i.e. if
you couple two circuits which are not in harmony you
may create chaos.

If you take a look at the many proposed implemen-
tations of chaotic oscillators [10], [11], [12], [13], you
will find that most of them may be classified accord-
ing to the following list of “mechanisms”:

A: Implementation of an analogue computer model
for a set of differential equations with chaotic per-
formance e.g. the Lorenz equations [14], [15]. The
mechanism behind chaos in many of these circuits is
the multiplication of two signals. If one of the signals
is close to zero the sign of the signal becomes sensi-
tive and the result of the multiplication may change
drastically in almost no time.

B: By means of an “ideal switch” do the following:
B1: Interrupt the current in a coil. This is a well-

known nasty operation in electrical circuits which
may give rise to sparks and radiation of energy.

B2: Short-circuit a capacitor with charge. Note
that this well-known nasty operation is the dual of B1
above.

B3: Connect in parallel two capacitors having dif-
ferent voltages. It is a nasty operation to distribute the
charge between the two capacitors in no time.

B4: Connect in series two coils having different cur-
rents. Note that this well-known nasty operation is the
dual of B3 above.

C: Introducing some kind of hysteresis may give
rise to chaos [16], [17].
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D: Introducing a circuit composite of a nonlinear
conductive component with a variable negative slope
characteristic in parallel with a capacitor may create
a small signal Thevenin/Norton current source which
try to charge the capacitor in a kind of “switching
mode”, Chua’s Diode [18], [19]. This mechanism
seems to be behind all the “Double Scroll” [20] and
“Multi Scroll” oscillators [21], [22], [23].

E: Introduce a circuit composite based on distur-
bance of integration. In [24] an ideal sinusoidal oscil-
lator V S is loaded with a RC series circuit in connec-
tion with the collector of a transistor with grounded
emitter, fig. 1. The base of the transistor is loaded

Fig. 1. Oscillator V S with an active RC load compos-
ite. R2 = 1MΩ, C2 = 680pF, C1 = 4.7nF, R1 =
1kΩ, V S = 12V/10kHz, Q1 = BC107.

Fig. 2. Oscillator V S with an active RC load composite.
V S = 10V/3kHz, R1 = 1kΩ, C1 = 4.7nF, R2 =
994kΩ, C2 = 1.1nF, Q1 = 2N2222A.

with a grounded capacitor C2 which is charged by
a constant dc voltage source V DC in series with a
large resistor i.e. integration of an almost constant dc
current source. The time constant of the charging of
C2 (0.68ms) is large compared with the period of V S
(0.10ms). When the transistor ”goes ON” the integra-
tion of the current is disturbed. The two independent

Fig. 3. Measured limit cycle (fig.2).
V S : 10V/3kHz. y: V (2) = V (C2), 0.5V/div,
x: V (5) = V (V S), 2.0V/div

Fig. 4. Measured chaotic attractor (fig.2).
V S : 10V/10kHz. y: V (2) = V (C2), 0.5V/div,
x: V (5) = V (V S), 2.0V/div

sources V DC and V S are ”fighting” concerning the
charging of the capacitor. In the following a modified
version of this circuit is investigated.

F: Other implementations e.g. based on nonlinear
coils and/or capacitors.

III. CHAOS BASED ON DISTURBANCE OF

INTEGRATION

Figure 2 shows an ideal sinusoidal oscillator V S
loaded with an active RC composite. Figures 3 and
4 show measurements on the circuit. By varying the
frequency (or the amplitude) of the oscillator limit cy-
cle and chaotic behaviour is easily found. In order
to study the mechanism PSpice simulations have been
made. Chaotic behaviour is easily found, fig. 5. Ap-
parently it is very difficult to find limit cycle behaviour
by means of simulation because it is very time con-
suming to vary the frequency by fractions of a Hz (or
the amplitude by fractions of a volt).

If you neglect the transistor Q1 then the time con-
stant for the passive load of V S becomes τ = R C =
(R1 + R2)((C1 C2)/(C1 + C2)) = 0.886922ms.

N  D  E  S        2  0  0  4

228



Fig. 5. Calculated chaotic attractor. V S : 10V/3kHz.
y: V (2) = V (C2), x: V (5) = V (V S)

Fig. 6. Calculated limit cycle. V S : 10V/1.12749433kHz.
y: V (2) = V (C2), x: V (5) = V (V S)

By choosing a frequency with a period equal to the
time constant limit cycle behaviour is found (bifur-
cation, fig. 6). Figures 7 and 8 show collector volt-
age and base voltage of the transistor for different
models. Figure 9 shows the spectrum. It is seen
(fig.7) that the curves are more smooth when the com-
plete PSpice model is used and the circuit is of or-
der 8. The transistor model used in fig.8 is build
from two diodes (DBC, DBE) and two current con-
trolled current sources (IAF, IAR). The base-emitter
diode DBE and the reverse current source IAR =
AR ∗ I(DBC) are in parallel with C2. The base-
collector diode DBC and the forward current source
IAF = AF ∗ I(DBE) are in parallel with R2. It is
obvious that C2 integrates IAR and DBE and IAF
try to disturb this integration. If you simplify the tran-
sistor model by removing either the two reverse com-
ponents (DBC and IAR) or the two forward compo-
nents (DBE and IAF ) chaos will not occur, fig.10,
11.

Calculation of Lyapunov exponents must be done
in the future.

Fig. 7. Collector voltage V (1) and base voltage V (2) as
functions of time. V S : 10V/3kHz.
Transistor Q1 : 2N2222A

Fig. 8. Collector voltage V (1) and base voltage V (2) as
functions of time. V S : 10V/3kHz. Transistor Q1 :
Ebers-Moll Injection model with no memory.
AF = 0.997260274, AR = 0.5,
Diodes: IS = 14.34e − 15, RS = 1

Fig. 9. Spectrum: Collector voltage V (1)dB and base volt-
age V (2)dB. V S : 10V/3kHz. Transistor Q1 : Ebers-
Moll Injection model with no memory.
AF = 0.997260274, AR = 0.5,
Diodes: IS = 14.34e − 15, RS = 1
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IV. CONCLUSION

An attempt to classify chaotic oscillators according
to the mechanisms behind chaos is made. The mech-
anism ”Chaos based on disturbance of integration” is
studied in details.

Fig. 10. Collector voltage V (1) and base voltage V (2)
as functions of V (5). V S : 10V/3kHz. Transis-
tor Q1 : Ebers-Moll Injection model with no mem-
ory. AF = 0.997260274, AR = 0, DBC removed,
Diode DBE : IS = 14.34e − 15, RS = 1

Fig. 11. Collector voltage V (1) and base voltage V (2) as
functions of time. V S : 10V/3kHz. Transistor Q1 :
Ebers-Moll Injection model with no memory. AF =
0, AR = 0.5, DBE removed, Diode DBC : IS =
14.34e − 15, RS = 1
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Abstract–In this paper we provide a topological
prove of the periodic solutions existence result of the
classical averaging principle, which permit us to ob-
tain an explicit estimation for the small parameter. By
using this result we provide a condition for the nonlin-
earity parameters in a forced nonlinear oscillator to
guarantee the existence of periodic solutions.

I. INTRODUCTION

Since Van der Pol an averaging principle is one of
most relevant mathematical tools to investigate a pe-
riodic processes in a forced oscillator with small non-
linearity. Indeed, the mathematical model of such os-
cillator near resonance is the following second order
differential equation (see [1])

ẍ + w2x = µf(x, ẋ) + µE sin wt, (1)

where w is a natural frequency of the oscillator, f :
R × R → R is a continuously differentiable nonlin-
ear function which describes a nonlinearity (nonlin-
ear resistance, saturable-core inductance or other) and
µ > 0 is a small parameter. By the change of variables

y1(t) = x(t) cos wt − ẋ(t) sin wt,
y2(t) = x(t) sin wt + ẋ(t) cos wt.

(2)

the equation (1) can be rewritten in the form

ẏ = µF (t, y), (3)

where F : R×R2 → R2 is continuously differentiable
and 2π/w-periodic with respect to the first variable
function. It is called averaging principle the follow-
ing famous result on existence of periodic solutions to

the system (3) (see [2], [3], [4]) and so to the system
(1).

Theorem 1. Let a point ξ0 ∈ R2 such that

F0(ξ0) = 0 (4)

and

0 �∈ Re(σ(F0(ξ0))), (5)

where

F0(ξ) =
∫ T

0
F (τ, ξ)dτ.

Then for 0 < µ < µ0, where µ0 is a sufficiently small
number, the system (3) has a T -periodic solution yµ

satisfying

yµ(t) → ξ0 as µ → 0 (6)

uniformly with respect to t ∈ [0, T ].
By using the last result it were obtained many inter-

esting phenomenons in a forced nonlinear oscillator, in
particular, the effect of frequency entrainment (see [4]
and [1]). But as it was observed in [5] for lack of ex-
plicit value of ε0 the application of averaging principle
to a practical problems leads sometimes to mistakes.
Some papers are devoted to this problem (see, for ex-
ample, [6]), but for the best knowledge of the author
there is no a common approach to evaluate ε0.

In the past few years, several conributions have been
made toward a topological approach in averaging prin-
ciple. For example, in [7] such approach permits the
author to deal with the case when (5) is not satisfied,
in [8] by topological technic the authors eliminate the
differentiability assumption on the function F. A topo-
logical proof of an averaging method is provided also
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in [9] for a class of the systems of differential equa-
tions. A topological generalizations of some Poincaré-
Malkin theorems on small parameter method (see [2])
are given in [10] and [11]. By means of topological
approach we will obtain the explicit value of ε0 in the
present paper.

The paper is organized as following. In the next
section we provide our averaging approach, which co-
incide with the theorem 1 of this section, but contain
an explicit estimation for the parameter ε. In the sec-
tion 3 we apply our result to the equation (1) describes
a valve oscillator with a polinomial dynamic charac-
teristic of valve.

II. THE EXPLICIT FORMULA FOR
THE CONSTANT ε0

For a bounded set U ⊂ R2 introduce the constants

MU = max
t [0,T ], ξ U

‖F (t, ξ)‖,

MU = max
t [0,T ], ξ U

‖Fξ(t, ξ)‖,

KU = min
ξ ∂U

‖F0(ξ)‖.

Theorem 2. Let the point ξ0 ∈ R2 satisfying the
conditions (4) and (5) of the theorem 1. Consider an
open bounded set U ⊂ R2 contained the point ξ0 and
such that the map F0 doesn’t vanish on the set U\{ξ0}.
Then for

0 < µ <
2KU

T 2MUMU

(7)

the system (3) has a T -periodic solution yµ satisfying
(6) uniformly with respect to t ∈ [0, T ].

Proof. Let us show that by the condition (7) the
compact vector field

(Fµx)(t) = x(t) − x(T ) − µ
t∫
0

f(τ, x(τ))dτ,

linearly homotopic (for all topological notions of this
proof see, for example, [12]) to the field

(F0,µx)(t) = x(t) − x(T ) − µ
T∫
0

f(τ, x(τ))dτ

on the boundary of the set
W = {x : x ∈ CT , x(t) ∈ U, t ∈ [0, T ]} ,

where we denoted by CT the space of all continu-
ous functions acting from [0, T ] to R2. Assume con-
trary, therefore there exist µ > 0 satisfying (7) and
xµ ∈ ∂W such that

xµ(t) = xµ(T ) + λµ
t∫
0

f(τ, xµ(τ))dτ+

+(1 − λ)µ
T∫
0

f(τ, xµ(τ))dτ, (8)

where λ ∈ [0, 1]. Since xµ ∈ ∂W there exists tµ ∈
[0, T ] satisfying xµ(tµ) ∈ ∂U. We have∥∥∥∥∥∥

tµ+T
2∫

tµ−
T
2

f(τ, xµ(τ))dτ−
tµ+T

2∫
tµ−

T
2

f(τ, ζµ)dτ

∥∥∥∥∥∥ ≤
≤ max

{
maxt I1,µ ‖f(t, xµ(t)) − f(t, ζµ)‖,

maxt I2,µ ‖f(t, xµ(t)) − f(t, ζµ)‖
}
· T ≤

≤ µT 2M ′
UMU

2 < KU , (9)

where ζµ = xµ(tµ), I1,µ =
[
tµ − T

2 , tµ
]

and I2,µ =
[
tµ, tµ + T

2

]
.

But, from (8) with t = T we have∫ T
0 f(τ, xµ(τ))dτ = 0,

and so ∫ tµ+T
2

tµ−
T
2

f(τ, xµ(τ))dτ = 0.

Therefore from (9) we obtain∥∥∥∥∫ tµ+T
2

tµ−
T
2

f(τ, ζµ)dτ

∥∥∥∥ < KU ,

and so ∥∥∥∫ T
0 f(τ, ζµ)dτ

∥∥∥ < KU ,

which contradict the definition of KU . So, by the con-
dition (7)

degCT
(Fµ, W ) = degCT

(F0,µ,W ).
By a coincidence degree theorem (see, for example,
theorem 27.1 from [12])

degCT
(F0,µ,W ) = degRn(F0,µ, U)

and since the fields F0,µ F0,1, are linearly homotopic
on ∂U we have

degRn(F0,µ, U) = degRn(F0,1, U).
From the last three equalities we obtain

degCT
(Fµ,W ) = degRn(F0,1, U).

But by the conditions (4) and (5) degRn(F0,1, U) �= 0
and so by a property of topological degree we obtain
that the field F0,µ has at least one zero point belonging
to the set W for any µ satisfying (7).

III. APPLICATION TO THE SYSTEM (1)

In this section we apply the theorem 2 to the equa-
tion (1) in the case

f(x, ẋ) = hx − (δ − γx + Kx2
)
ẋ,

which correspond to a valve oscillator with a polino-
mial dynamic characteristic of valve and where it is
denoted by h a derangement of the frequency of an ex-
ternal force from the natural frequency of the oscillator
(see [1], [4]).

It is known that the system (1) of this form may have
more than one periodic solutions, but to illusrate our
approach we restrict ourself by only the existence of
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periodic solutions which tends to 0 as µ → 0. Also to
simplicity we consider w = 1.

We can prove the following result.
Theorem 3. Let r > 0 such, that

r
√

(Kr2 + 4δ)2 + 16h2 − 4E > 0. (10)

Than for

0 < µ <

(
r
√

(Kr2 + 4δ)2 + 16h2 − 4E
)2

(24Kr2 + 8γr + h + δ)
·

· 1
2 (8Kr3 + 4γr2 + 2(h + δ)r + E)

(11)

the equation (1) has a 2π-periodic solution inside the
ball of the radius r.

Proof. Denote by Br the inward of the ball of the
radius r. After the change of variables (2) and reduc-
tion of equation (1) to the standart form (3) we find the
following values:

MBr≤
√

2
(
8Kr3+4γr2+2(h+δ)r+E

)
,

MBr
≤ √

2
(
24Kr2 + 8γr + h + δ

)
,

while for f0 we have the following expression

F0(ξ)=
π

4

(
−Kξ1(ξ2

1+ξ2
2)−4δξ1−4hξ2−4E

−Kξ2(ξ2
1+ξ2

2)−4δξ2+4hξ1

)
.

It is easy to verify that if for any φ ∈ [0, 2π]
−Kr3 cos φ − 4δr cos φ − 4hr sin φ > 4E

then the conditions (4) and (5) hold. Observe, that the
last condition coincide with (10). Finally, we obtain
the following estimation for KBr :

KBr =
(
r
√

(Kr2 + 4δ)2 + 16h2 − 4E
)2

.

To finish the proof of this theorem it is now enough to
apply the theorem 2 with U = Br.

In the last theorem we considered the point ξ=0 sat-
isfying (4) for simplicity. It easy to see that with the
same reasons the theorem 2 can be applied to any an-
other point ξ satisfying (4).

This work is partially supported by Russian Foun-
dation for Basic Research grants 02-01-00189, 02-01-
00307 and by U.S.CRDF – RF Ministry of Education
grant VZ-010.
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Abstract—Systems of coupled dynamical networks
are studied from the point of view of synchronizability.
Power-law and fractally coupled networks are intro-
duced through a parameter which describes the spa-
tial decay of interaction. The spectral properties are
compared, and a critical value of the relevant param-
eter is identified, below which increasing the system
size increases synchronizability. It is found by numer-
ical computations that for fractally coupled networks
this critical value is strictly higher than for power-law
coupled systems.

I. INTRODUCTION

Networks of coupled dynamical units have received
much attention recently. These systems play an im-
portant role in many fields of life, including biology,
neuroscience, communication technology, solid state
physics. Especially interesting is the effect of the net-
work structure on the system dynamics [1].

Amongst the many dynamical features, synchro-
nization is of particular interest. The synchronization
of interacting systems may give insight to the behavior
of several interesting and essential phenomena (see,
for example [2], [3]). Recently general methods have
been developed for studying the collective synchro-
nization of networks of coupled dynamical systems
[4], [5]. These methods induced the investigation of
different coupling topologies, including small-world
[6], [7] or scale-free networks [8].

In this contribution we compare the synchroniz-
ability of two network models which try to capture
the phenomena that occurs in real-world networks:
the connection is “weaker” between nodes that are
“more separated”. In Sec. II we review the methods
for synchronization stability and in the next Section
we introduce power-law and fractally coupled net-
works. Spectral properties related to synchronizabil-
ity are studied in Sec. IV and consequences regarding
synchronization are discussed.

II. BACKGROUND

In the following we outline the techniques devel-
oped recently for synchronization stability (see, e.g.
[4], [5]). Let us consider a system of N coupled os-
cillators. The dynamics of each uncoupled node is
identical:

ẋi = f(xi),

where xi ∈ R
m (i = 1, . . . , N) is the state variable.

The coupled system is assumed to be in the form:

ẋi = f(xi) − K
∑

j
AijHxj , (1)

where K > 0 is the universal coupling strength, and
the coupling structure is included in the interaction
matrix A, which contains information about the - pos-
sibly weighted - coupling graph. The matrix H de-
fines which components of the state variables are in-
volved in the interaction, and is assumed to be diago-
nal, with Hii being either 0 or 1. We also assume, that
A has 0 row-sums, with non-positive off-diagonal el-
ements:

Aij ≤ 0 i �= j, (2a)

Aii = −
∑

j=i
Aij . (2b)

This property arises naturally for diffusively coupled
systems. In this case A can be considered as the
Laplacian of the coupling graph.

The system is called synchronized if

s(t) = x1(t) = x2(t) = · · · = xN (t),

which defines the invariant synchronization manifold.
Linear perturbation theory around this solution leads
to a variational equation, which can be block diago-
nalized, since the uncoupled dynamics is the same for
every node. This uncouples the variational equation
into mutually transverse blocks:

ξ̇j = (Df(s) − KλjH) ξj , (3)
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where λj is the j-th eigenvalue of A. Thus, the prob-
lem of stability is separated into two parts: the stabil-
ity problem of the variational equation parametrized
by λ, and a spectral problem. The first depends only
on the given node dynamics (and the synchronized so-
lution), while the second depends on the coupling net-
work structure.

We denote the ordered eigenvalues by λ1 ≤ λ2 ≤
· · · ≤ λN . Since A has 0 row-sums, we always
have an eigenvalue λ1 = 0, which corresponds to
the motion along the synchronization manifold. If
the network is connected, then all other eigenvalues
are strictly positive. For a large class of systems and
parameter ranges the spectral problem reduces to the
determination of λ2 [4], which we identify in the fol-
lowing with synchronizability. In particular, in [4] the
authors showed that for symmetric diagonal coupling
synchronization is asymptotically stable if

λ2 ≥ T/K. (4)

Here T > 0 is chosen in a way that the self-feedback
uncoupled node is stable, where T denotes the feed-
back strength.

III. THE TWO MODELS

Usual network models (e.g. small-world, scale free,
etc.) are expressed only in graph theoretical terms,
i.e. in terms of the sets of vertices and edges. How-
ever the modeling of real world phenomena some-
times requires additional assumptions. Both mod-
els discussed here are intended to capture the rather
widespread phenomenon, where “wider separation”
means “weaker” interaction in some sense.

First we define distance, which assumes the exis-
tence of an embedding metric space where the dis-
tance between two vertices is independent of the graph
structure. This metric space corresponds to usual
physical space or it can include abstract spaces as
well. For simplicity, in the following we assume that
vertices are located on a 1-dimensional grid with pe-
riodic boundary conditions. Distance is the usual Eu-
clidean distance and the unit is equal to the grid spac-
ing.

The difference between the two models is in the
way they contain the “weakness” property.

A. Power-law coupling

First, consider a network where all elements are
connected to each other, but the strength of the cou-
pling decays in space according to some power α of
the distance. Thus the off-diagonal elements of the

coupling matrix Ap are:

Ap
k� = − 1

rα
k�

for k �= �

where rk� = minn Z |k − � + nN | is the distance
between two sites, and α ≥ 0. The diagonal elements
satisfy condition (2b). Clearly, Ap is symmetric. We
call this arrangement power-law coupling.

This setup might be applied to model systems
where the interaction is via some spatially decaying
physical intensity or some rapidly diffusing chemi-
cal substance. Recent developments connected to this
model can be found in [9], [10], [11].

B. Fractal coupling

Fractally coupled networks were introduced in [12]
to describe certain collective neural phenomena in
networks where the dendritic branching shows frac-
tal properties. Similar networks can be used to model
magnetic properties of linear polymer chains [13],
[14]. Here all the existing connections are equally
weighted, but the probability that two nodes are con-
nected decays in space according to a power-law of
the distance, i.e. for Af

k�, � > k we have:

Af
k� =

{
−1 with probability p = 1

rα
k�

0 with probability q = 1 − p

We require that Af
k� = Af

�k, and also condition (2b)
should be satisfied. This defines a one-parameter fam-
ily of graph ensembles, which we call the fractally
coupled model.

C. A first comparison

In graph theoretical terms one can say that power-
law coupled networks are complete weighted graphs,
while fractally coupled networks are non-complete,
and all the edges have the same weight. In spite of
this, it is clear that the two models are similar in many
ways. In particular

Ap
k� = 〈Af

k�〉,

i.e. the expectation value of the elements of the Lapla-
cian matrix of the fractally coupled network is equal
to the corresponding element of the Laplacian of the
power-law model. However, this equivalence does not
guarantee the dynamical similarity, since (as it was
indicated in Sec. II) it is determined by the spectral
properties. Clearly, from the above equivalence does
not follow a similar relation for the spectra.
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Fig. 1. The second eigenvalue λ2 as a function of param-
eter α for the power-law coupled model for different
N (from N = 1001 (down triangles) to N = 101
(pluses), with steps of 100).

For the two limiting cases of the values of α the two
models coincide. For α = 0 we obtain the globally
uniformly coupled model, while for α → ∞ the near-
est neighbor coupling is retrieved. These two cases
are amongst the most frequently studied connection
schemes.

IV. SPECTRAL PROPERTIES

As we briefly discussed it in Sec. II, the stability of
a given network of identical dynamical units depends
on the spectral properties of the coupling matrix A.
Note that here λ2 = λ2(α, N), i.e. in general, syn-
chronizability depends on both the parameter and the
size. We will be mainly be interested in the behavior
as the size is increased for given α.

First let us consider the two limiting cases where
the two models coincide. For α = 0 the spectrum of
A is

λ1 = 0, λj = N, j = 2, . . . , N.

In the nearest neighbor coupled case (α → ∞) the
first non-zero eigenvalue is

λ2 = 4 sin2
( π

N

)
.

From these well known results one can conclude that
for fixed coupling strength K the increase in system
size increases (decreases) synchronizability for glob-
ally (nearest neighbor) coupled networks. As α de-
fines a continuous transitions between the two ex-
tremes, one can expect that there exists a critical value
αc where this change occurs.

For the power-law coupled model the coupling
Laplacian is circulant and the spectrum can be calcu-

 0.01

 0.1

 1

 10

 100

 1000

 100  1000

N

λ2

Fig. 2. The second eigenvalue λ2 as a function of N for the
power-law coupled model for selected α values (from
top to bottom: α = 0.1, 0.5, 0.9, 1.0, 1.1, 1.5, and 1.9).

lated analytically via Fourier-representations. Assum-
ing N is odd, for the second eigenvalue we get:

λ2 = 4
(N− 1)/2∑

k=1

sin2
(
π k

N

)
kα

.

The values of λ2 as a function of α are plotted in Fig.
1 for different sizes. Note, that for α < 1 relation
N1 < N2 implies λ2(N1) < λ2(N2), while for α > 1
the opposite holds.

It can be seen that for N → ∞ and fixed α > 1
λ2 → 0. Also, for α < 1, λ2 diverges. The second
eigenvalue λ2 behaves like λ2 ∼ Nβ(α) (see Fig. 2),
with β(α) ≈ 1−α around α = 1, and β(α) monotone
increasing. This implies a change in the behavior of
large systems: for α > 1 increasing the size will re-
sult larger sensitivity to small perturbations, while for
α < 1, the system becomes more stable, its synchro-
nizability improves.

Now let us consider the fractally coupled network.
Clearly, fractally coupled graphs defined in Sec. III
are connected for every α ≥ 0, thus λ2 > 0. There is
no known analytical method to determine the spectra
of such graphs, thus we investigate them numerically.
Because of randomness, averaged quantities are stud-
ied. Results for 〈λ2〉 as a function of the parameter
α can be seen in Fig. 3. One can observe a simi-
lar transition phenomenon as for power-law coupling,
but apparently the crossing point is shifted to α > 1
(see inset in Fig. 3). Note also, that it seems that αc is
independent of the system size N .

The location of the transition point can be further
investigated by studying the behavior of 〈λ2〉 for fixed
α as the size is increased. Numerical results are plot-
ted in Fig. 4. From the figure it can be seen that we
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Fig. 3. The average second eigenvalue 〈λ2〉 as a function of
parameter α for the fractally coupled model for differ-
ent N (from N = 1001 (down triangles) to N = 101
(pluses), with steps of 100). Each point represents an
average over 25 realizations of the model. Inset: region
around αc.

can assume that the large N behavior can be approx-
imated as 〈λ2〉 ∼ Nβ(α). The critical value αc of the
crossing point can be determined from β(αc) = 0,
which gives αc ≈ 1.1 > 1. This value is in agreement
with the results in [12], where the authors located the
transition to the range 1 < αc < 2. Below the criti-
cal α value larger N results in improved synchroniz-
ability, while for α > αc one needs to increase K to
maintain an originally synchronized state.

Finally we remark, that the results above can be
checked by direct investigation of given dynamical
systems. For example, using condition (4) boundaries
of the synchronization region in the (α, N) space can
be determined and compared to actual results from di-
rect (numerical) solutions of system (1).
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Abstract— The chaotic escape of a damped oscil-
lator excited by a periodic string of symmetric pulses
of finite width and amplitude from a cubic poten-
tial well that typically models a metastable system
close to a fold is investigated. Analytical (Melnikov
analysis) and numerical results show that chaotic es-
capes are typically induced over a wide range of pa-
rameters by hump-doubling of an external excitation
which is initially formed by a periodic string of single-
humped symmetric pulses. The analysis reveals that
the chaotic escape threshold amplitude when altering
solely the pulse shape presents a minimum as a single-
humped pulse transforms into a double-humped pulse,
the remaining parameters being held constant.

I. INTRODUCTION

Escape from a potential well is an ubiquitous phe-
nomenon in nature. Instances are known in astro-
physics [1], chemistry [2], hydrodynamics [3], quan-
tum optics [4], etc., where complex escape phenom-
ena can often be well described by a low-dimensional
system of differential equations. In most cases, escape
is induced by a harmonic (external or parametric) ex-
citation added to the model system [5]-[7], so that,
before escape, chaotic transients of unpredictable du-
ration (due to the fractal character of the basin bound-
ary) are usually observed. However, real-world ex-
citations exhibit a great diversity of waveforms as
well as many complex transitions from one to an-
other as the system’s parameters change. In general,
to consider periodic excitations with arbitrary wave-
form implies extending the amplitude-period param-
eter space to include the parameters, si, that control
the excitation waveform. In physical terms this means
that, for fixed period and amplitude, the parameters
si are responsible for the temporal rate at which en-
ergy is transferred from the excitation mechanism to
the system. Since the choice of a specific mathemat-
ical function to model a given real-world excitation

determines, to a great extent, which range of phenom-
ena it could suitably characterize, one would like to
use an excitation function which generates a great di-
versity of waveforms with few parameters si. In this
regard, the Jacobian elliptic functions (JEF) [8] ap-
pear to be suitable candidates fulfilling the aforemen-
tioned requirement, since their shapes can be con-
trolled by a single parameter: the elliptic parameter
m. This choice is quite natural since the solutions
of the most universal nonlinear integrable oscillators
(such as the pendulum, and Helmholtz’s and Duffing’s
oscillators) [9] are given in terms of JEF’s. With the
help of JEF’s, there has recently been undertaken the
study of excitation-reshaping-induced transitions in a
broad class of damped nonautonomous systems [10]-
[13]. In particular, some order↔chaos routes have
been found to be especially rich when altering solely
the width of a single-humped periodic excitation [12]-
[13].

In this present work we study the chaotic escape of
the following universal model

..
x = −x + βx2 − δ

.
x (1)

+γN(m) sn [Φ (t) ; m] dn [Φ (t) ; m] ,

when only the excitation shape is varied from sin-
gle-humped to double-humped. Here, Φ (t) ≡
4K(m)t/T , sn (u; m) and dn (u; m) are JEF’s of
parameter m (K(m) is the complete elliptic in-
tegral of the first kind), and N(m) is a nor-
malization function (Boltzmann form), N(m) ≡{
a + b [1 + exp ((m − c) /d)]−1

}
−1

, with a ≡
0.43932, b ≡ 0.69796, c ≡ 0.3727, d ≡ 0.26883,
which is introduced for the excitation function to have
the same amplitude, γ, and period, T , for any wave-
form (i.e., ∀m, m ∈ [0, 1]). The excitation func-
tion F (t; m, T ) ≡ N(m) sn [Φ (t) ; m] dn [Φ (t) ; m]
is used as an example to illustrate the chaotic escape
induced by hump-doubling. This new mechanism of
enhancement of chaotic escape could be relevant in
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excitable systems (such as neurons and other types of
cells as well as some chemical reactions) to increase
the firing rates without changing the amplitude and
period of the stimulus. When m = 0, then F (t; m =
0, T ) = sin(2πt/T ), i.e., one recovers the previously
studied case of a single-humped (harmonic) excitation
[3]. This is relevant to comparing the structural stabil-
ity of the universal escape model when solely the exci-
tation shape is varied from a single-humped shape to a
double-humped shape. Since dn [4K(m)t/T ; m] rep-
resents a periodic string of asymmetric pulses, whose
effective width decreases as m increases from m = 0,
in the limiting value m = 1 the excitation function
F (t; m, T ) vanishes except on a set of instants that has
Lebesgue measure zero, i.e., one recovers the purely
damped system.

The rest of the paper is organized as follows. In
Sec. II we derive analytical results based on a
Melnikov analysis (MA) concerning the threshold of
chaotic escape in the parameter space (β, m, T ). In
Sec. III we present numerical evidence supporting the
theoretical predictions from previous section. Finally,
Sec. IV gives a brief summary of the findings.

II. THEORETICAL APPROACH

To obtain an estimate for the threshold of chaotic
escape in the parameter space (β, m, T ), we apply
MA [14]-[15] to our universal model for the case of
weak damping and excitation (0 < δ, γ � 1). As is
well known, MA predictions for the appearance of
chaos are both limited (only valid for orbits starting
at points sufficiently near the separatrix of the under-
lying conservative system) and approximate (the MA
is a perturbative method). (For a general background,
see for example [15].) It is worth mentioning that the
criterion for a homoclinic tangency (accurately pre-
dicted by MA) in diverse systems [16] is coincident
with the change from a smooth to an irregular, fractal-
looking basin boundary [17]. These results connect
MA predictions with those concerning the erosion of
the basin boundary. The application of MA to Eq. (1)
involves calculating the Melnikov function,

M(t0) = −δ

∫
∞

−∞

.
x2

0 (t)dt (2)

+γ

∫
∞

−∞

.
x0 (t)F (t + t0; m, T ) dt,

where x0(t) = 1 − 3 [1 + cosh (t)]−1,
.
x0 (t) =

3 sinh (t) [1 + cosh (t)]−2 is the separatrix of the un-
derlying conservative system (δ = γ = 0) in paramet-
ric form. Substituting x0(t), ẋ0(t) into (2), after some

algebraic manipulation we obtain

M (t0) = −D−A
∞∑

n=0

an(m)pn(T ) cos (Ωnt0) , (3)

with

D ≡ 6δ
5β2

, A ≡ 12π5γN(m)
β
√

mK2(m)
, Ωn ≡ (4n + 2)π

T
(4)

an(m) ≡ (2n + 1)3 sech
[
(2n + 1)πK (1 − m)

2K (m)

]
,

(5)

pn(T ) ≡ 1
T 2

csch

[
(4n + 2)π2

T

]
. (6)

If M(t0) has a simple zero, then a homoclinic bifur-
cation occurs, signifying the possibility of chaotic es-
cape. From Eq. (3) one sees that a homoclinic bifur-
cation is guaranteed if

δ

γ
< U (β, m, T ) , (7)

where the chaotic threshold function is

U (β, m, T ) ≡ 10π5βN(m)√
mK2(m)

∞∑
n=0

an(m)pn(T ). (8)

From Eq. (8) one readily obtains U(β, m, T →
0,∞) = U(β, m → 1, T ) = 0, i.e., in such limits
chaotic escape is not expected. Also, the threshold
function U(β = const, m, T ) presents a maximum in
the m − T plane at (m = mmax, T = Tmax). A plot
of U(β = 1, m, T ) is shown in Fig. 1.
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Fig. 1. Threshold function U (β = 1,m, T ).
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Let us consider the chaotic threshold as a function
of T , holding β and m constant. Plots of U(β =
const, m = const, T ) show that each curve presents
a maximum Tmax = Tmax(m) such that Tmax(m) in-
creases from its value at m = 0 as m → 1. We now
study the chaotic threshold as a function of m, hold-
ing β and T constant. Plots of U(β = const, m, T =
const) show that each curve presents a maximum
mmax = mmax(T ) such that mmax(T ) increases as
T is increased. Therefore, if one considers fixing the
parameters (β, δ, γ, T ) for the system to lie at a peri-
odic state (i.e., inside the well), then as m is increased
a window of chaotic escape will appear provided the
initial periodic state is sufficiently near the chaotic
regime. We should emphasize that, in the context
of neurosciences, this reshaping-induced effect repre-
sents a new mechanism to control firing rates (see for
example [18]).

III. RESHAPING-INDUCED ENHANCEMENT OF

THE EROSION OF NONESCAPING BASINS

For the universal escape model (1), the initial con-
ditions will determine, for a fixed set of its param-
eters, whether the system escapes to an attractor at
infinity, or settles into a bounded oscillation. As is
well known [3], there can exist a rapid and dramatic
erosion of the safe basin (union of the basins of the
bounded attractors) due to encroachment by the basin
of the attractor at infinity (escaping basin). We shall
show in the following how the erosion of the safe
basin presents a maximum as a single-humped excita-
tion transforms into a double-humped excitation, the
remaining parameters being held constant. To gen-
erate the basins of attraction numerically, we select
a grid of (uniformly distributed) 300 × 300 starting
points in the region of phase space x(t = 0) ∈
[−0.7, 1.3] ,

.
x (t = 0) ∈ [−0.8, 0.7]. From this grid

of initial conditions, each integration is continued un-
til either x exceeds 20, at which point the system is
deemed to have escaped (i.e., to the attractor at in-
finity), or the maximum allowable number of cycles,
here 20, is reached. In the case of a single-humped
harmonic excitation (m = 0), we assume that the sys-
tem presents a very slight erosion of the nonescaping
basin. For the set of parameters considered in Fig. 2
(β = 1, δ = 0.1, T = 2π/0.85), we calculated the es-
cape probability normalized to that of the case with
m = 0, P (m)/P (m = 0), versus the shape param-
eter m for three values of γ (0.071, circles; 0.072,
triangles; 0.073, stars). Note that, for the above pa-
rameters, the chaotic threshold function presents its

Fig. 2. Normalized probability vs shape parameter.

maxima at mth � 0.65 (cf. Eqs. (7) and (8)), which
corresponds to the maxima of the normalized escape
probability as shown in Fig. 2.

IV. CONCLUSION

In sum, we have shown that chaotic escape from
a potential well can be induced over a wide range of
parameters by hump-doubling of an external excita-
tion which is initially formed by a periodic string of
single-humped symmetric pulses. We should empha-
size that the theoretical approach we have discussed
as well as the conclusion that chaotic escape can be
induced by hump-doubling of an excitation are both
general enough to be applied to many other dissipa-
tive nonautonomous systems.
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Abstract— For two interacting ensembles of glob-
ally coupled one-dimensional piecewise linear maps
we find analytically parameter regions for different
types of stability of the synchronized state in phase
space. We analyse strong (asymptotic) and weak (Mil-
nor) stability of the synchonized set as well as its in-
stability. We find that the stability (instability) regions
do not depend on the ensembles size

�
, and depend

only on parameters � and � of the individual skew
tent map. In simplest non-trivial case of four cou-
pled maps we obtain stability regions for coherent and
two-cluster states. The stability regions appear to be
big enough to provide an effective control of coherent
and clustered chaotic regimes. Moreover, we identify
qualitatively different ways from desynchronization to
synchronization, which happen in smooth and pice-
wise linear models.

I. INTRODUCTION

There is presently a high interest in studying the
models which describe collective dynamics of inter-
acting oscillators. Ensembles of globally (mean field)
coupled maps

� � � �� � 	 
 � �  � 	 � ��  � �� ��� � � � 	 � ��  (1)

have been first suggested and intensively studied by
Kaneko [1], [2]. If not all oscillators in the ensemble
interact, we get so-called ’fractally’ coupled system:� � � �� � 	 
 � �  � 	 � ��  � �� � �� � � � � � � 	 � ��  �
where

� � is the number of connections at � th site, and�
runs over all sites that are connected to the site � .

An interesting example of such kind networks is given
by ’small-world’ systems, introduced by Watts and
Strogatz [3]. It can be interpreted as a mathematical
model of many biologic and social networks. Another
example is given by neural network with central el-
ement, where groups of peripheral elements interact
with only one leading element [4].

In the present paper we consider a � �
-dimensional

system of coupled maps which models the situation
when there are two globally coupled Kaneko systems
of the mean field type (1), and their elements are pair-
wisely coupled with each others:

� � � �� � � 
 � � � �� � � 	 � ��  � �� � � � � � 	 � ��  � �� � 	 ! ��  �
! � � �� � � 
 � � � � � � � 	 ! ��  � �� � � � � � 	 ! ��  � �� � 	 � ��  �

� � 
 � " " " � � "
(2)

Here # � �� $ �� � � and # ! �� $ �� � � are
�

-dimensional state
vectors; % � & � 
 � " " " is a discrete time index. � ' ( )( is a one-dimensional map.

Model of the form (2), in the case of smooth, logis-
tic map � � � * was studied in [5], [6]. In the present
work, we choose � as a piecewise linear, skew tent
map of the form

� 	 �  � � + , - 	 �  � ./0
/1

� � � 
 � � � �� � � 2 
 � 
� �
� � � � � � 3 
 � 
� "

(3)
Piecewise linear maps systems are widely spread in
variety of technical, engineering, and electronic appli-
cations. Depending on parameters, such systems are
characterized by regular or complex chaotic dynam-
ics [7–9]. In many cases piecewise linear dynamics
appear to be rather different from smooth ones, espe-
cially as for different types of bifurcations and their
sequences.

Behavior of � � � dimensional system (2) is con-
trolled by four parameters: � 3 & and � 4 � 
 , which
are the coefficients of linear parts of the skew tent map� � � + , - , and coupling parameters � � � . Model (2) can
be interpreted as two groups of interacting oscillators
(i.e. neurons), as well as simplest example of ’small-
world’ network having two groups of elements with
strong coupling inside and weaker coupling between
the groups.
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II. STABILITY OF CHAOTIC SYNCHRONIZING SET

Consider � � � dimensional map � , defined by the
system (2). For any

�
(number of elements in each

globally coupled ensemble) Jacobian matrix � � in
the point � � � � � � � � � � � � � , where � � � 	 
 � �� � � � � � 	 � � � 	 � � �  is the main diagonal of � � �
dimensional phase space, has four different eigenval-
ues:� � � � � 	 � � � � � 	 � 
 � � � � � 	 � � � � � � � � � � 	� 
 � � � � � 	 � � � � � � � � � � 	 � 
 � � � � � 	 � � � � � � � � � � � � �
Note that

� 
 � � � � � and

� 
 � � � � � have multiplicity
� �� . Eigenvector � �

is directed along the main diago-
nal � � � , hence its eigenvalue

� �
is responsible for

’dispersion’ of the trajectories along � � � . Three
other eigenvectors are transverse to � � � . Transverse
eigenvalues

� 
 � � ,

� 
 � � and

� 
 � � control attracting (re-
pelling) strength for the trajectories in corresponding
transverse directions. So as the eigenvalues do not de-
pend on the system size � �

, parameter regions for
different types of stability do not depend on number
of oscillators too.

One-dimensional chaotic set
�  � � � � is called

strongly or asymptotically stable if for any its neigh-
borhood � � �  � there exists the other neighborhood� � �  � that for any � � � � �  � :

1) � � � � � � � � �  � for any � � � � ;
2) � � � � � � � � �  � � � for � � � , � � � � � � being

distance between a point and a set in � � �
.

One-dimensional set
�  � � � � is called weakly

or Milnor stable if its basin of attraction � � �  � has
a positive Lesbegue measure in � � �

.
� 

is called
weakly or Milnor unstable in the opposite case, i.e. if� � � � � �  � 	 � �

With change of coupling parameters � and � ,
chaotic synchronizing set

� 
typically loses its strong

stability through a riddling bifurcation [10]. After the
riddling bifurcation synchronizing set

� 
can still be

weakly stable. Note that the strong stability implies
weak stability, but not vice versa.

Further change of the coupling parameters can
cause loss of weak stability of

� 
through blowout

bifurcation [11]. After blowout bifurcation there still
can exist trajectories attracted by synchronizing set� 

, but the Lesbegue measure of their initial points
is equal to zero.

Let � � � � �  � 	 
 � � � � � � � � � � � � � � � � ��   be a set of preimages for
� 

. Obviously� � � � �  � � � � �  � . Synchronizing set
� 

is called
strongly or asymptotically unstable if � � �  � 	� � � � �  � , which means that

� 
attracts only its

preimages.

Denote �  � !� 	 � � � �� " # � � � � �
� $ " 	 �  � !� 	 � � �� � � 	

�  � !� 	 � � � �� " # � � � � �
� $ " 	 �  � !� 	 � � �� � � � and% 	 & � � ' ( � � � � � � � �

' ( � ) , * � + being integer part of a

real number.
Statement 1: In the system (2), where individual

map � 	 � � � � has form (3), chaotic synchronizing set�  � � � � is strongly stable, if� � � � � � � � � � � �  � !� � �  � !� � for �  � � �
;� � � � � � � � � � � �  � !� � �  � !� � for � ! � � �
,

and strongly unstable if� � � � � � � � � � , � � 	 �  � !� - . , �  � !� � � � - for �  � � �
;

� � � � � � � � � � , � � 	 �  � !� - . , �  � !� � � � - for � ! � � �
.

Consider case where skew tent map � � � � 	 � � � � � � �
has a chaotic interval / 	 * � � � + . According to the the-
orem of Lasota and Yorke [12], for the map � � � � there
exists a unique probability invariant measure 0 	0 � � � , absolutely continuous with respect to Lesbegue
measure. Denote � 	 0 � � � � 
 � � * � � � 1 � 	 � +  � , i.e.� 	 �2

� � � $ � � � � � 3 � , where � � � � is a density function

of invariant measure.
Statement 2: For the system (2), chaotic synchro-

nizing set
�  � � � � is weakly stable if� � � � � � � � � � � � � �� � # 4 � � � 4 � � � �� � # 4 � � � 4 � �

and weakly unstable if

� � � � � � � � � � � � � � � � �� � # 4 � � � 4 � .
. � � � �� � # 4 � � � 4 � � � � �

Invariant measure � can be found in implicit form
only in special cases, in particular when trajectory of
extreme point � 5 	 � � � 1 � puts, eventually, in the
unstable periodic orbit.

Suppose that the parameters � and � are such that
the map � � � � is chaotic and its invariant measure �
is found, being distributed in the interval * � � � + . Then
one can find borders of parameter region for weak sta-
bility for synchronizing chaotic set

� 
using State-

ment 2, as well as regions for strong stability and in-
stability from Statement 1.

All stability regions are shown in Figure 1. Trian-
gle colored by dark gray and signed AS is the region
of strong (asymptotic) stability of

� 
. Region col-

ored by light gray and denoted as MS is the region of
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Fig. 1. Parameter regions for different types of stability of
set � � . In the signed regions � � is: AS- asymptoti-
cally stable, MS- Milnor (weakly) stable, MU- Milnor
unstable, SU- strongly unstable.

Milnor stability. Lines which bound AS region, di-
vide MS region into six parts, denoted on the figure
by numbers from I to VI. In these parameter regions,
diagonal still attracts trajectories from a positive Les-
begue measure of initial points.

Synchronizing chaotic set
� �

in the main diago-
nal � � � can loose its stability in three transverse di-
rections which correspond to crossing each of three
sides of the stability triangle AS in Fig.1. After
loss of the stability, transition to a cluster state takes
place. When

� �
loses stability entering the region

I, transition to the two-cluster state � � � �� � � � � �
� � � � � � � � � � � � � � � � � takes place. When en-
tering region II, we get transition to

	 
 cluster state� � � � � � � � � � � � � � � � � � � � � Finally, when loss of
stability happens through the border of the region III,
then for even

	 � � � it results in two-cluster state� � � �� � � � � � � � � � � � � � �  � � � � � � � � � � �  � �
� � � � � � � � � � � � � � � � � � Coexistence of differ-
ent types of the two-cluster states is possible in the
parameter regions IV, V and VI.� �

is Milnor unstable in the blank region denoted
MU. For the parameter values outside this region MU,� �

is strongly unstable (SU).

To obtain analytically asymptotic stability region
AS, it is enough to know value

� �
�

� � � �� � � � 	 � 	 �
� � � �� � � � 	 � 	 � which is a left corner point

of AS in Fig. 1. Indeed, as it follows from the
Statement 1, strong stability region is bounded by the
straight lines � � � , � � � , and � � � � � 
 � . Value
of � varies, from � to � � � , with change of coefficients
of the single map � � � � . � � � corresponds to the strong

Fig. 2. Variation of the values of � - border of strong stabil-
ity region of chaotic synchronizing set � � with change
of the coefficients � and � of single skew tent map � 	 
 � .

Fig. 3. Variation of � for fixed values of parameter � of sin-
gle skew tent map. Note in periodic windows of skew
tent map � is equal to zero, which means that region of
strong stability covers whole unit square �  � � � � �  � � �
of the parameter plane.

stability of synchronizing set
� �

at all � � � � � � � .
Figure 2 shows plot of values � versus � and � . Blank
regions in the � � � � � 
 plane correspond to periodic
windows of the piecewise linear map � � � � . For coeffi-
cient pairs � � � � � belonging to these regions diagonal is
strongly stable in the whole unit square of � � � � � 
 pa-
rameter plane. Figure 3 shows variation of � versus �
for four fixed values of � � 
 � � � 
 � � � 
 � � � � 
 � � � .
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Fig. 4. Stability diagram for the system (2) with � � � � ,
� � � � � , � � � � � . Region of stability of the coherent
state is shown gray; regions of stability of two-cluster
states are denoted by �

� 	 

� , � � � � � �  � Note doubly

hatched region of coexistence of �
� � 


� and �
� � 


� .

III. EXAMPLE: SYSTEM OF FOUR COUPLED MAPS

As the simplest nontrivial example, consider sys-
tem (2) with � � � � coupled skew tent maps. Cou-
pling parameters are supposed to be � � � � � � � .

Figure 4 shows stability diagram for the system
of four coupled skew tent maps 	 
 � � with coefficients

 � � � � , � � � � � . Region of strong synchroniza-
tion (coherence) is shown gray. The region is a part
of asymptotic stability region AS of the attractor in
the main diagonal (see Fig. 1). Stability regions of
two-cluster states � � � �� � � � � � � � � � � � � � � ,

� � � �� � � � � � � � � � � � � � � and � �
� �� � � � � �

� � � � � � � � � are hatched. Coherent state can loose
its stability in three transverse directions, which cor-
respond to the transition to a two-cluster state. Stable

� � � �� and � � � �� clusters coexist in doubly hatched re-
gion near left lower corner of the coherence region.

Figure 5 shows another example, here  � � � � � ,
� � � � � . Note, that the stability region for the co-
herent state is wider in comparison with the previous
case, and for the two-cluster states stability regions
are smaller. Moreover, there is no coexistence of two-
cluster states � � � �� and � � � �� .

From obtained stability diagrams we conclude that
for small values of coupling parameters � and � , in
blank regions in Fig. 4 and 5 there is no any clus-
tering in the system (2). Then, increasing and varying
parameters � and � , one or even two cluster states � � � ��
or � � � �� can stabilize, followed by stabilization of co-
herent state. Moreover, for some values of coefficients

 and � , coherent state can be the first to stabilize with
grow of coupling parameters.

This type of the synchronization tranzition is es-

Fig. 5. Stability diagram for the system of four coupled
maps with � � � � � � , � � � � � .

sentially different from the case of coupled smooth
maps 	 � � � � � � � � � � � � [5-6]. In the smooth
case, with growing coupling parameters � and � , two-
cluster state � �

� �� is the first to stabilize, only after that

we get stabilization of � � � �� or � � � �� , followed by tran-
sition to coherence.
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It has been widely recognised by economists that 

economic relationships are typically nonlinear. This 

is so that, for example, Granger and Teräsvirta

(1993), inter alia, have dedicated a whole book to 

the subject of modelling nonlinear economic rela-

tionships. Nonlinear relationships are present in 

many aspects of the economic activity, and particu-

larly so in the context of financial markets. Exam-

ples of this include the attitude of investors towards

the risk and the process of generating financial

variables such as stock returns, dividends, interest

rates, and so on. On the other hand, the perform-

ance of an economy also presents strong signs of a 

nonlinear behaviour: e.g. business cycles, produc-

tion functions, growth rates, unemployment, etc. Al-

though the shape of nonlinearity in these relation-

ships may be rather complex, there are cases where

one may admit some sort of linear relationship be-

tween the relevant variables within certain regimes.

This is the case when one aims to study the co-

movements of stock returns volatility and some rele-

vant macroeconomic factors. One obvious question

that we may pose in this context is whether the mag-

nitude of positive and negative responses differs for 

similar positive and negative variations in the pre-

dictors, in which case we can say that the underlying 

variables display asymmetric adjustment. Markets

characterised by higher elasticity of supply are 

likely to show less asymmetry than their counter-

parts due to increased security of supply. Models of 

financial markets have incorporated asymmetry us-

ing GARCH-type methodologies. An alternative way

to deal with these cases is to use threshold autore-

gressive (TAR) and momentum threshold autore-

gressive (M-TAR) models to address the problem of

multivariate asymmetry. These methodologies are 

essential when the asymmetric variables are non-

stationary (but not only), because of the low power 

of unit roots and cointegration tests in such cases. In 

a non-stationary framework, asymmetric cointegra-

tion tests were developed by Enders and Siklos 

(2001) using a modified error correction model de-

rived from the original EG testing procedure. We

apply this methodology to the Portuguese and U.S.

stock markets using monthly observations from 

January 1993 to December 2003. 

Keywords

Threshold adjustment, cointegration, stock market

volatility.

1 MODELLING VOLATILITY

There are many different ways for measuring the 

volatility associated with stock market returns. 

However, since the volatility itself is not directly

observed, one needs to find a suitable estimator to
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measure the risk resultant from changes in stock re-

turns. Stock returns may be measured by

1lnt t tr P P , , where P, 1, ,t t T t is the value

of the underlying stock index at time t. The series 

should only reflect the risk of changes in market re-

turns, so one may filter rt by subtracting from it the

series  generated by a non-risky asset. In our case, 

we considered as  short-run Libor and treasury bill 

(3 months) rates obtained from the DataStream. The

difference between r

tr

tr

t and  is usually termed ex-

cess return (R
tr

t).

The volatility of Rt may be estimated on the basis of

the absolute deviation from the mean excess return,

i.e. ˆ 2t tw R R , 1, ,t t T, . Alternatively,

a popular measure of volatility of stock returns is 

based upon the historical standard deviations of the 

excess return (rolling historical volatility), and is

given by

1

22

1

1
ˆ

1

k

t p

p

t

R R

v
k

t

. (1)

These two measures of volatility will be used in this 

article to address the issue of asymmetric co-

movements between stock market volatility and 

some relevant macroeconomic indicators: (1) divi-

dend yield (dy), (2) earnings price ratio (epr), (3)

inflation (cpi), and (4) industrial growth rate (ipi). 

All macroeconomic variables were found to be I(1). 

Inflation and industrial growth rates are expressed in

terms of the natural logs of the underlying indexes. 

2 THRESHOLD ADJUSTMENT

The long-run equilibrium relationship between two

time series zt and xt can be estimated as a standard

regression model t tz x

t

, where  and 

are the estimated parameters, and t is a disturbance 

term that may be serially correlated. The parameter

 gives the magnitude of adjustment of z to varia-

tions in x, and is the long-run elasticity of the two 

variables if they are measured in logs. If  < 1, then

shifts in x are not fully passed onto z.

The second step of the methodology focuses on the 

OLS estimates of 1 and 2 in the following error 

correction model:

1 1 2 1(1 )t t t t tI I , (2) 

where t is a white noise disturbance and the residu-

als from the long-run equation are used to estimate

t. It is the Heaviside indicator function such that 

1

1

1 if

0 if

t

t

t

I .   (3) 

If in (3) t 1 t 1, then the model specification il-

lustrated in (2) is called the threshold autoregressive 

(TAR) model. It allows for different coefficients of

positive and negative variations. A sufficient condi-

tion for the stationarity of t is 2 < ( 1, 2) < 0. 

This means that the long-run equation is an attractor

such that t can be written as an error correction

model similar to that given in (2). If 1 2 then the 

adjustment is symmetric, which is a special case of

(2) and (3). Expression (2) can also contain lagged 

values of t. When t 1 is above its long-run equi-

librium value, the adjustment is 1 t 1, and if t 1 is 

below its long-run equilibrium value, the adjustment

is 2 t 1.

If in (3) t 1 t 1, then the model (2) is called the 

momentum threshold autoregressive (M-TAR) 

model. The M-TAR model allows the decay to de-

pend on the previous period change in t 1. The

value of the threshold , in our case, will be assumed

to be zero in all models.

The TAR model is designed to capture asymmetri-

cally “deep” movements in the series of the devia-

tions from the long-run equilibrium, while the M-

TAR model is useful to capture the possibility of

asymmetrically “steep” movements in the series

[Enders and Granger (1998)]. For example, in the 

TAR model if 1 < 1 < 2 < 0, then the negative

phase of t will tend to be more persistent than the 

positive phase. On the other hand, for the M-TAR 

model, if for example | 1| < | 2| the model exhibits

little decay for positive t 1 but substantial decay

for negative t 1. This means that increases tend to 

persist but decreases tend to revert quickly toward 

the attractor. 
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Finally, we can perform a number of statistical tests 

on the estimated coefficients (and also on the residu-

als) in order to ascertain the validity of the error cor-

rection model outlined in (2), and subsequently if the 

adjustment is symmetric or not. The relevant tests on

the coefficients are H0: 1 = 0 and H0: 2 = 0, for

which we obtain the sample values of the t-statistics;

and H0: 1 = 2 = 0, for which we obtain the sample

values of the F-statistic. The restriction that adjust-

ment is symmetric, i.e. H0: 1 = 2, can also be tested

using the usual F-statistic.

If the variables in the long-run equation are station-

nary, the usual critical values of the t and F distribu-

tions can be used to assess the significance level of

the underlying tests. However, if these variables are 

integrated of first order, one can use the critical val-

ues reported by Enders and Siklos (2001) to deter-

mine whether the null hypothesis of no cointegration 

can be rejected. If the alternative hypothesis is ac-

cepted, it is possible to test for asymmetric adjust-

ment using the standard critical values of the F dis-

tribution, since 1 and 2 converge to a multivariate

normal distribution [Enders and Granger (1998)].

3 RESULTS

The methodology for assessing asymmetric co-

movements between stock market returns volatility

and macroeconomic factors was applied to the data-

set described earlier. A total of 16 regressions were 

run for each country analysed (Portugal and US). 

The resulting residuals were then used to perform 

the TAR and M-TAR tests of asymmetry. This is 

however only possible when the residuals of the se-

ries are convergent. The results obtained are re-

ported in Table 1 (for Portugal) and Table 2 (for the

US).

The estimators of volatility  and  were found to

be stationary for Portugal on the basis of ADF tests 

using the Bayesian information criterion for model

selection and KPSS tests. Thus, for reasons of con-

sistency, we replaced the original non-stationary 

macroeconomic variables by their first-difference 

I(0) counterparts in these models. For the US, how-

ever, the estimator  is I(0) and the estimator  is

I(1). As before, we replaced the original macroeco-

nomic variables by their first-difference counterparts

in the models that use . With regard to , the

first two tests on the estimated values of 

ˆ
tw ˆ

tv

ˆ
tw ˆ

tv

ˆ
tw ˆ

tv

1 and 2

are actually cointegration tests. 

For both Portugal and the US, the results obtained

when  was used as a measure of volatility show 

that the null hypothesis that 

ˆ
tw

1 and 2 are zero is re-

jected at the 1% level or better in all cases (separate

and joint tests). The test of the null hypothesis of

symmetry, however, was not rejected at significant 

levels in none case. An error correction model with-

out separation of the positive and negative variations 

would therefore be a sufficient representation of the 

process under analysis. Thus, given their triviality,

we shall not report the results for the series .ˆ
tw

Turning now to the results of , it can be seen that

the null hypothesis that 

ˆ
tv

1 and 2 are jointly equal to 

zero is rejected at the 1% level or better in all cases 

for both countries. For the US, the t-max and  sta-

tistics are reported and were compared to the critical

values computed by Enders and Siklos (2001). Re-

jection of the null hypothesis in this case means that 

volatility is cointegrated with the macroeconomic

variables used in our analysis. However, we found

no signs of asymmetric adjustment in any case of the

US macroeconomic variables. For Portugal, we 

found that only 2 is significantly different from zero

in the TAR specification, and 1 is significantly dif-

ferent from zero in the M-TAR specification. Lo-

cally, however, it seems that the convergence crite-

rion of the model is not violated, although testing the

threshold could perhaps add something more on this 

issue. A general acceptation of the error correction 

model given by (2), entails testing for asymmetric

adjustment using the standard F critical values. The

test procedures carried out for Portugal leads to the 

conclusion that there is no asymmetry in the TAR 

mechanism but there is asymmetry in the M-TAR 

mechanism for 3 of the 4 macroeconomic variables. 

The 3 cases of asymmetric co-movements in Portu-

gal using refer to dividend yields, earnings price 

ratios, and industrial growth rates. As can be seen, in

all cases |

ˆ
tv

1| > | 2|, which means that the model ex-

hibits little decay for negative changes but substan-

tial decay for positive changes in volatility relative 

to changes in macroeconomic factors. In other 

words, we may conclude that in the Portuguese stock 

market, volatility decreases tend to persist but in-

creases tend to revert quickly toward the attractor.

The M-TAR results for the Portuguese stock market

volatility suggest that volatility is obtained via an
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accumulation of changes in t 1 above the threshold

followed by a sharp drop to the threshold. However, 

a similar pattern is not observed for changes in t 1

below the threshold, thus causing asymmetry. That

is, volatility departs from its equilibrium level (given 

by the threshold) relative to the macroeconomic fac-

tors and periodically collapses to the threshold, 

sharply for positive and smoothly for negative 

changes.

In contrast with the case of the US, the asymmetric

results for Portugal may challenge market efficiency

according to the efficient market hypothesis. The 

EMH holds that stock prices adjust rapidly and un-

biasedly to new and relevant price sensitive informa-

tion. Under and over price adjustments relative to its 

fundamental value are unpredictable so that price 

changes are independent and random. Given the in-

formation provided by the macroeconomic variables, 

one would then expect that prices adjust rapidly and

symmetrically toward the equilibrium level, which is 

consistent with cointegration (for non-stationary

variables) and symmetric adjustment. This behav-

iour of prices would be transmitted to variables that

capture stock returns and the corresponding volatil-

ity. Volatility itself would be unpredictable under 

the EMH. However, predictability is not a sufficient

condition for market inefficiency. It is also need to 

prove that predictability allows for the possibility of 

generating systematic abnormal gains. 

Stock market asymmetry may arise because inves-

tors are risk and loss averse. Risk aversion may en-

courage economic agents to react quickly to bad 

news while reacting more reluctantly to good news. 

On the other hand, asymmetries may arise driven by

the potential loss in an overvalued stock market. Al-

ternative explanations based on models of structural 

slumps and booms are also possible [Siklos (2002)].

In our context, the volatility in the Portuguese stock 

market drops suddenly and periodically toward the

attractor when it is substantially above the equilib-

rium level. Higher volatility induces greater risk and

potentially larger losses, so it may be seen as a sign

of bad news to the investor, which prompts him to

react quickly to such news, and conversely for lower

volatility. For our results, however, we found no evi-

dence of such type of behaviour in the US market.

4 CONCLUSIONS

This paper employs a threshold adjustment method-

ology to inquire the asymmetric nature of stock 

market volatility in Portugal and the US. We found 

no evidence of asymmetric volatility behaviour in 

the US relative to changes in macroeconomic vari-

ables, but evidence of “sharp” movement asymmetry

of volatility in some cases of the Portuguese stock

market. The results for Portugal do not seem to be

consistent with the general efficient market hypothe-

sis.
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Table 1. TAR and M-TAR results for Portugal 

 = 0 1 = 2 = 0 1 = 2Economic

factor 1 2
t-max F

p-

value

TAR

(dyt)
0.093
(0.053)

0.156
(0.042)

8.301 ** 0.853 0.357

(eprt)
0.080
(0.054)

0.169
(0.043)

8.940 ** 1.710 0.193

(lncpit)
0.097
(0.052)

0.135
(0.045)

6.281 ** 0.305 0.582

(lnipit)
0.075
(0.042)

0.094
(0.035)

5.206 ** 0.115 0.736

M-TAR

(dyt)
0.201
(0.047)

0.023
(0.050)

9.240 ** 6.735 * 0.011

(eprt)
0.220
(0.047)

0.029
(0.052)

11.304 ** 7.465 ** 0.007

(lncpit)
0.180
(0.049)

0.066
(0.045)

7.711 ** 2.906 0.091

(lnipit)
0.190
(0.040)

0.013
(0.033)

11.406 ** 11.527 ** 0.000

Notes: Dependent variable is  ~ I(0); * significant at the 5% level; ** significant at the 1% level; asymptotic standard

errors are in parentheses.

ˆ
tv

Table 2. TAR and M-TAR results for the US 

 = 0 1 = 2 = 0 1 = 2Economic

factor 1 2
t-max F

p-

value

TAR

dyt 0.758 0.639 3.161 ** 37.568 ** 0.292 0.590

eprt 0.722 0.509 2.617 ** 34.121 ** 0.987 0.322

lncpit 0.814 0.599 3.096 ** 39.763 ** 0.978 0.325

lnipit 0.809 0.635 3.200 ** 40.197 ** 0.617 0.434

M-TAR

dyt 0.759 0.652 3.490 ** 37.209 ** 0.263 0.609

eprt 0.692 0.659 3.492 ** 33.150 ** 0.024 0.877

lncpit 0.812 0.592 2.952 ** 39.430 ** 0.978 0.325

lnipit 0.805 0.656 3.355 ** 39.769 ** 0.468 0.495

Notes: Dependent variable is v  ~ I(1); ** significant at the 1% level; critical values for t-max in the TAR and M-TAR

models are -2.55 and -2.47 (1%); critical values for  in the TAR and M-TAR models are, respectively, 9.27 and 9.14

(1%).

ˆ
t
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Abstract

Jointly modeling chaotic maps as LPV systems and
using Unknown Input Observers for retrieving the infor-
mation in a secure communication scheme has previously
been motivated in a deterministic context [1]. In this paper,
some new theoretical results from a control theory point
of view, concerning the design in a stochastic and so more
realistic context of Unknown Input Observers for chaotic
LPV systems is provided. The design of such observers
is expressed in terms of the resolution of a finite set of
Matrix Inequalities constraints and guarantees some pre-
scribed performances on the state reconstruction error.

I. INTRODUCTION

The well-known practical interest of chaos syn-
chronization lies in the potential applications in com-
munications and more specifically in the possibilities
of encoding or masking messages by embedding the
information into the dynamics of a chaotic system.
The information to be masked plays the role of an
external input for the dynamical system and is not
transmitted to the receiver. Hence, the receiver sys-
tem must be designed such that the information can
be unmasked, given the only available output data
consisting of a function of the state vector. In [1], a
brief survey of the main approaches proposed in the
literature is given. Then, a novel approach based on
Unknown Input Observer (UIO) for a noise-free con-
text is proposed.
In a deterministic context, Unknown Input Observers
have been largely investigated for linear systems
[2][3][4][5]. On the other hand, in a stochastic con-
text, there does not exist a lot of results. For time-
invariant systems, we can mention the works of [6]
while for linear time-varying systems, the reader can
refer to [7], but none of those classes of systems can
exhibit chaotic behaviors and so have no interest for
chaos-based communications purposes.

The aim of this paper is to state some new results
concerning the design of Unknown Input Observers

for Linear Parameter Varying Systems in a stochastic
context. The interest of LPV systems lies in the fact
that a large amount of chaotic systems enter this class.
Furthermore, the UIO design guaranteeing some pre-
scribed performances can be carried out in a tractable
way by solving Matrix Inequalities.
Notation :

� � � �
stands for the symmetric block of

a positive definite matrix, � and � stand for the
zero and the identity matrix of appropriate size.� � � � 	 
 � � � � �

,
� � � � 	 �  �� � � � � � �

and
� � � � 	


 � �� � � � � � � �
.

II. UNKNOWN INPUT OBSERVERS FOR LPV
SYSTEMS

Consider the general state space realization of LPV
discrete-time systems in a noisy context.� � � � � 	 � � � � � � � � � � � � � � �� � 	 � � � �  � � (1)

where
� � ! " #

, � � ! " $
,

� ! " # % #
,

� ! " # % &
,� ! " $ % #

,
 ! " $ % &

.
� � ! " &

is the input,
� � !" '

is the disturbance acting on the dynamics through�
and acting on the measurement through

 
.

�
is of

class
� �

with respect to the entries of a ( -dimensional
time-varying parameter vector

� � 	 � � �� ) * * * ) � + � � �
.

In [8], it has been shown that a lot of chaotic maps
can be modeled by LPV discrete-time systems with� �

being a function of the state vector
� �

. Since
� �

evolves chaotically,
� �

is bounded in a hypercube , .
As a result,

�
lies in a compact set which can always

be embedded in a polytope, that is :

� � � � � 	 -. / � � 0
/� � � � � � /

(2)

where the
� /

’s correspond to the vertices of the
convex hull 1 2 3 � � ) * * * ) � - 4 . The 0 �

’s belong
to the compact set 5 	 3 6 � ! " - ) 6 � 	� 6 �� ) * * * ) 6 -� � � ) 6

/ � 7 8 9 :
and

� -/ � � 6
/
� 	 ; 4 and
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they can always be expressed as functions of class
� �

with respect to the
� �

’s. The advantage of such a de-
composition lies in the fact that the design problems
turn into the resolution of a finite set of constraints in-
volving only the vertices of the convex hull.
For secure communication purposes,

� �
plays the role

of the information to be masked and acts as an un-
known input. � �

is the signal transmitted to the re-
ceiver. The structure of the required Unknown Input
Observers for the recovering of

� �
is reminded from

[1].

�� � � � � 	 � 
 	 � � � � � 	 � � � � � �� �  � 	 � � � � �  � � � � �
(3)

with
� � � � � � �

and � 	 � � � � � �
� � � �

�
� 	 � � � �

�
.

The gains
�

and �
�
’s (

� � � � � � � � �
) are unknown

matrices to be computed.

From (1) and (3), it is straightforward to show that

the state reconstruction error � � �� � � � �� �
is governed

by :

� � � � � � 	 � � � � �  � � � �  � 	 � � � � � � � � � � � �
(4)

with
� 	 � � � � � �

� � � �
�

� 	 � 
 � � �
� � �

and
� 	 � � � �� �

� � � �
�

� 	 � � � �
� � �

.
Before dealing with the performances on the state re-
construction when disturbances act on the system, it
is necessary to remind how the global stability of the
null solution of (4) can be guaranteed when

� � � �
.

Some details can be found in [1].

Theorem 1. The global stability of the null solution
of (4) with

� � � �
is ensured if

i) 	 
 � � 	 � � � � 	 
 � � 	 � � � 	 ,
ii) there exist symmetric matrices

� �
, matrices 

�
and� �

such that,
� 	 � � � � �  � � � � � � � ! �  � � � � � � � ! , the

following set of Linear Matrix Inequalities is feasible.� � � 	 " � #� � � 
 � � 
� � � # �  � � � � � � � �

(5)

The time-varying gain is given by � 	 � � � �� �
� � � �

�
� �

�
with �

� � � � �� 
�
.

Proof: On one hand, according to the definition of�
, the equality

� � � �
entails that

�
must be subject

to � � � � �
(6)

and i) ensures the existence of the solution
�

of (6).
Its general expression is :� � � 	 � � � �  � 	 � $ � 	 � � � 	 � � � � �

(7)

with
�

an arbitrary matrix. Then, whenever
�

satis-
fies (7),

� � � �
and so (4) turns into an input inde-

pendent dynamics :

� � � � � � 	 � � � � �  � 	 � � � � � � � � � � � �
(8)

On the other hand, the proof follows a reasoning sim-
ilar to the one carried out in [9]. All the relations are
valid

� 	 � � � � �  � � � � � � � ! �  � � � � � � � ! .
a) Since

� �
is strictly positive, one has :� � � � �� � # � % � �  � # � � � �

b) Substitute 
�

by
� �

�
�

in (5) and take into account
the inequality above yields :� � � 	 " � #� � 	 � 
 � � �

� � � � � � � �� � # � � � �
(9)

which is equivalent to

� � � � � 	 " � #� � 	 � 
 � � �
� � � � � � � � #

(10)

with � � � � && � � � � �� �
and so to � � � 	 " � #� � 	 � 
 � � �

� � � � � � � �
(11)

since
� �

and
� �

are full rank matrices.
c) For each

� � � � � � � � �
, multiply the correspond-

ing
� � � � � � � � �

inequalities (11) by � �� � �
and sum.

Then, multiply the resulting
� � � � � � � � �

inequalities
by �

�
�

and sum again. We obtain :� � � 	 " � #� � � � � � � � � � � �
(12)

with
� � � � �

� � � �
�

� � �
and

� � � � � � �
� � � �

�
� � � � �

.
Applying the Schur complement formula gives :� # � � � � � � � � � � � � (13)

It is shown in [9] that � � ' � � ' �
, a function de-

fined by � 	 � � � � � � � � #� � � � �
with

� � � � �
� � � �

�
� � �

and � � � ( acts as a Lyapunov function for (4) when� � � �
and ensures the poly-quadratic stability of

(4) which is sufficient to global asymptotical stability.
This completes the proof.

In the forthcoming sections, the case
� �  � �

, that
is the stochastic context, is considered and constitutes
the main result of the paper.
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III. OBSERVER DESIGN WITH PRESCRIBED

PERFORMANCES

A. Bounded � �
gain

We define the upper bound denoted � of the � �
gain as a scalar verifying :

� � �� �� � � �� � � � � �� �� � � � � (14)

where
� � 	 �
 � �

,
�� � 	 	 � �� � �� �  
 �

.

Theorem 2. The � �
gain corresponding to (4) with� � �	 �

is less than � if
i) � � � � � 
 � � 	 � � � � � � � 	 � ,
ii) there exist symmetric matrices

� �
, matrices 	

�
and
 �

such that
� � � � � � � � � � � � � � � �  � � � � � � � � � , the

set (21) of Linear Matrix Inequalities is feasible.
The time-varying gain is given by � � � � � 	� �

� �  �
�

� �
�

with �
� 	 
 � � 	

�
.

Proof : For the same reason motivated in the proof
of Theorem 1, condition i) ensures the existence of a
matrix

�
such that

� � 	 �
holds and turns (4) into

an input independent dynamics. Besides, define the
matrices

� � 	 � 
 �
   � !    � !

�� � � � 	 � � �
   � !    � !

��

and

� � 	 � � " � � �
� 
 � � # � �

� $ � � $� �  �
      
��

(21) can be rewritten :� � � � % � �� � � � � � � & � � � � � � � �  (15)

Following the same three steps a) to c) as in the proof
of Theorem 1, feasibility of (15) implies that� � � � �  � � � � � �

(16)

with

� � 	 � � �    � !    � !
�� � � � �  	 � � � �     � !    � !

��

and � 	 � � � � � $� �  !      
��

Equation (16) can be rewritten like (22). Then, multi-
ply left and right respectively by

	 � � �� � 

and its trans-

pose gives :

� � � � �  � � � �  � � � � � � � � � � & � �  � �
 � � � � � �
 � � � � � �� �� �� � � �
(17)

Consider (17) from � 	 �
to

�
and sum leads to:

� � � � �  � � � �  � & � �  �'� � � � �
 � � � � � �
 � � � � � �'� � � �� �� �� � � �
(18)

Yet, � � � � �  � � � �  � 	 � � � �  � � � � �  � �
. Hence :

� �  �'� � � � �
 � � � � � �
 � � � � � �'� � � �� �� �� �
(19)

When
�

tends toward infinity, this relation is equiva-
lent to (14). This completes the proof.

B. Peak-to-peak gain

Let � be the upper bound of the peak-to-peak gain
defined as the ratio between

� � � (
and

� �� � (
� � �� � � �� � � � ( � � � (� �� � ( � � (20)

�������
� � � % � � � % � � � % � � � % � � � % � �

 � ! � % � � � % � � � % � � � % � �
  � ! � % � � � % � � � % � �
 � � " � � 	

� 
 
 � � # � 	
� $ � 
 � � $ 
 � & 
 � � � � � � % � � � % � ��
    � ! � % � �

     � !

� ������� � �
(21)

� � � � � �  � � � � & � �  �� � �� � % � � � % � �� � � � �  � � � � � �  � � � ! � % � �� � � $ � � � � �  � � � � $ � � � � �  � � � $ � � � � �  � � $ � � � !
��

� �
(22)
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Theorem 3. The peak-to-peak gain corresponding to
(4) with

� � �� �
is less than � � �

if
i) � � � � � � � � � � � � � � � � � � ,
ii) there exist symmetric positive definite matrices

� �
,

matrices
� �

, scalars �
	 � � 
 � �

, � � �
such that, � � 
 � � 	 � � 
 � � � 
 	 � 
 � � 
 � � � 
 	 � , the Matrix In-

equalities (29) are fulfilled.
The time-varying gain is given by � � � � � �� �

� � � �
�

� �
�

with �
� � � � �� �

�
.

Proof: For the same reason motivated in the proof
of Theorem 1, condition i) turns (4) into an input in-
dependent dynamics. On one hand, again, consider-
ing the first inequality of (29) and following the same
steps from a) to c) as in the proof of Theorem 1 yields :���� � � 

�
� � � � � � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � �� � � � � � � � � �  � � � � � � � � � �

� � �� � �
(23)

Applying the Schur complement formula and somes
basic manipulations yields (30). Then, multiply (30)
left and right respectively by

� � � 	� � �
and its transpose,

entails that :

� � � � � � 
 � � � � � � � � 
�

� � � � � 
 � � � � �  	� �  !  �
(24)

Applying the Gronwall-lemma in the discrete case
gives : � � � � 
 � � � � �

�

 	�  ! "  � (25)

On the other hand, multiplying the second inequality
of (29) by �

�
�

and sum from
� � �

to
	

gives :�
�

� �  �
� � �� � �  � � � � � �

(26)

Besides, multiply (26) left and right respectively by� � � 	� � �
and its transpose leads to :��  � �  ! �

� � � � � 
 � � � � � �  � �  � �  !  � (27)

Finally, combining (25) and (27) and taking into ac-
count that �  � � �

from the second inequality of
(29) leads to :  �  ! " � � !  �  ! "

(28)

And yet, (28) is equivalent to (20).
Remark
Note that the Matrix Inequalities coresponding to the
peak-to-peak performances are not linear unlike the
ones related to the 
 !

gain. They involve a product of
two unknowns, say � and

� �
, and a nonlinear depen-

dence on � which prevents the convexity.
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Abstract— Attempting to model the processes re-
sulting in complex pattern formation and small-scale
roughness of surfaces and to compare with exper-
imental measurements calls for numerical methods
which allow a quantitative characterization being as
complete as possible. New methods incorporating
wavelets and stochastic approaches based on the the-
ory of Markov processes allow a stepwise characteri-
zation of increasing completeness and unambiguous-
ness. In this paper we demonstrate the underlying nu-
merical approaches taking electropolished and laser-
jet etched surfaces for demonstration.

I. INTRODUCTION

The development of new technologies like high-
precision microstructuring of metals calls for numeri-
cal methods which allow a characterization of the to-
pography and a stochastic description of the surface
roughness [1]. The aim is not only to classify differ-
ent surface structures but also to ensure that model de-
scriptions do not contradict the measured data. Since
the nineteen-eighties surface roughness has predom-
inantly been analyzed on the basis of self- or multi-
affinity and has thus been described within the frame-
work of fractal dimensions or multifractal spectra.
However, many surfaces although sharing the same
multifractal properties and thus having the same 2-
point correlations, might still differ in their N-point
correlations [2]. Here, we present a number of nu-
merical approaches which allow a description of in-
creasing completeness. These include in addition to
classical spectral methods more recently developed
wavelet approaches which allow to determine char-
acteristic length scales and provide robust methods
for the calculation of multifractal spectra. In order
to incorporate the complete stochastic information in
the description a new method based on the theory of
Markov processes is applied [2], [3].

The paper is organized as follows. In section 2,
we analyze the characteristic wavelengths and scaling

regions for two exemplary surface profiles, an elec-
tropolished brass sheet and a laser-jet etched steel sur-
face. In contrast to the classical Fourier techniques,
the continuous wavelet transform (CWT) allows a
space-scale resolution of the surface profile. After a
brief review of the wavelet transform modulus max-
ima (WTMM) method [4], [5], the multifractal spectra
for the electropolished surface are estimated in sec-
tion 3. As can be seen from the power spectra, two
processes are interacting leading to different multi-
fractal behaviour on different scales. Section 4 deals
with the evolution of the probability density functions
(pdf) of surface height increments for varying scales
and gives a short introduction into the recently devel-
oped stochastic approach, which is used for a com-
plete stochastic characterization of the profiles [2],
[3]. Finally, section 5 presents our conclusions and
perspectives of further investigations.

h
µm[

]

y cm[ ]

x cm[ ]

Fig. 1. Laser scan of the height profile of a brass surface
electropolished in Methanol-electrolyte.

II. CHARACTERISTIC LENGTH SCALES AND

SCALING PROPERTIES

Figure 1 shows a laser-profilometer scan of a sur-
face which is obtained by electropolishing a brass
sheet in a electrolyte solution containing Methanol
(fig. 1a) [6], [7]. Electropolishing was performed in
the transpassive region with vertically arranged elec-
trodes, the workpiece acting as an anode. The sur-
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face structure is a result of two competing processes,
namely the dissolution of metal leading to a falling
film of spent electrolyte containing dissoluted metal
and the hydrolysis of water, where oxygen is formed
at the anode causing gas bubbles to rise forming an
unwanted pattern of so-called gas lines [6]. Charac-
teristic length scales can easily be obtained by classi-
cal Fourier methods. For the spectrum transversal to
the gas lines (fig. 2a), two regions with different decay
can be seen, indicating the interplay of two different
processes. We estimate the bandwidth of scales intro-
duced by the gaslines from the ratio the power spectral
density of ensemble averages transversal and parallel
to the gas lines (fig. 2b).
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b)

Fig. 2. a) Power spectra of ensemble averages transver-
sal and parallel to gas lines for electropolished brass
sheet, b) Ratio of power spectral densities measures the
anisotropy of the surface.

Figure 3a shows a scanning electron microscope
(SEM) image of a kerf in a steel sheet structured by a
recently developed laser-jet assisted wet etching pro-
cess [8]. In fig.3b the average profile in the bottom
of the kerf is shown together with the power spectral
density displaying a sharp peak for a wavelength of� � � �

(fig. 3c). In order to resolve the profile in space
and scale, we apply a continuous wavelet transform
(CWT) to the profile

� � � � � 	 
 � ��
 ��

� � � � � 
 � � � � 	� � � � �
(1)

where
� � 	 � � � � � �

. The CWT decomposes the
function

� � � 
 � � � � � 

hierarchically in terms of

elementary components
� � � � ��  which are obtained

from a single mother wavelet
� � � 


by dilations and
translations. Here,

� � � 

denotes the complex conju-

gate of
� � � 


,
�

the scale and
	

the shift parameter. A

4.e3 8.e3
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z x( )

x µm[ ]
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k 1 µm⁄[ ]

λ 1 k⁄ 40 µm= =

x

ln a
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λ 1 k⁄ 40 µm= =

a λ~

Fig. 3. a) SEM micrograph of a kerf obtained by laser-jet
etching, b) Average profile in the bottom of the kerf,
c) Power spectral density ! " # $ , d) Wavelet transform
(Morlet wavelet, % & ' ( ) ).

unique reconstruction of the function
� � � 


is ensured
if

� � � 
 � � * � � 

has zero mean.

Figure 3d shows the CWT using a Morlet-type pro-
gressive wavelet:

� � � 
 � + ,+ � , � - � � , . � - / 0 1 �  . At
a scale correponding to 2 � � � � �

, a dominant
band can be seen displaying a strong variation of the
wavelet coefficients of the ripple structure.

III. MULTIFRACTAL ANALYSIS USING WAVELET

TECHNIQUES

The power spectral density 3 � 4 

gives only limited

information about the mono- or multifractal proper-
ties of the surface roughness. It only allows to es-
timate a global Hölder exponent 5 via the relation3 � 4 
 6 4 � * � � 7

. Local fluctuations in the degree of
roughness call for a location-dependent Hölder expo-
nent 5 � � 


. In turbulence, the standard way to extract
the multiscaling properties of a function

� � � 

is to

study the scaling behaviour of the structure functions
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� � � � � � � � � � � � � � � �
of order � of the increments� � � � � � � 	 � 
 � � � � � � � � 
 � �

. Multifractal be-
haviour leads to a nonlinear scaling exponent � �

. The
spectrum  � � �

of Hölder exponents is obtained by
Legendre transforming the exponents � �

leading to [9] � � � � 	 � � � � � � � � � 	 
 �
. A severe drawback of

this method is, that one has only access to Hölder ex-
ponents

� � � � 
 , i.e. singularities in the derivatives
of the function can not be identified. In addition, neg-
ative moments � � �

lead to divergencies.
These limitations can be circumvented using the

wavelet framework [4]. Choosing derivatives of the
Gaussian function as wavelets in eq.1,

� � � � � �
 � � � � � � � � � � � � �� � � � � � � � �

with � � � � � � 
 ,
and assuming a cusp singularity with Hölder exponent

� � � � � � � � � � 	 
 �
at

� �
, the CWT scales like� � � � � � � � � � � � � � � � � � � � � � � �

(2)

provided the analyzing wavelet chosen has � � �
� � � � �

vanishing moments. In contrast, if one chooses
a wavelet with � � � � � � � �

, the CWT scales with an
exponent � �

. It can be shown, that this scaling be-
haviour is also valid along the maxima lines of the
modulus of the CWT, which point to the singulari-
ties [4]. The so-called wavelet transform modulus
maxima (WTMM) method [4], [5] is a generalization
of the classical multifractal formalism [9], [10], [11]
and allows a robust estimation of the full spectrum of
singularities. A partition function � � � � � �

is defined

� � � � � � � �
� � � �  ! " # $ % & ' ( ) * +

� , - � .. � � � � � / � � � � .. 0
�

(3)

containing the � th moments of the contributions of� � � � �
along the maximal lines, where the supremum

in eq. (3) is related to a Hausdorff-like covering with
scale-adapted wavelets removing divergencies due to
negative order moments [4]. From the power-law be-
haviour of the partition function (cf. eq.1), � � � � � � �

� 1 � � � � � � � �
, the whole spectrum of Hölder expo-

nents  � � �
is obtained by Legendre transforming the

scaling exponents 2 � � �
:  � � � � 	 � � � � � � � 2 � � � �

.
Fig. 4 shows the spectra of Hölder exponents for the
electropolished surface. An ensemble of five profiles
transversal to the direction of the gas lines containing
12800 maxima lines is used for the calculation of the
partition function � � � � � �

. According to the observa-
tion of two different scaling regions in the transversal
power spectrum (fig. 2a), two regions with different
power law behaviour occur, which lead to different
distributions of the corresponding Hölder exponents.
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IV. STOCHASTIC APPROACH BASED ON THE

THEORY OF MARKOV PROCESSES
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Fig. 5. Probability density functions for electropolished
surface.

From a stochastic point of view, the multifractal
characterization is still incomplete, since only 2-point
correlations are involved in this formulation. The
height increment 5 � � � � � 5 � � 	 � 
 � � � 5 � � � � 
 � �
of the surface profile 5 � � �

can be considered as a
stochastic variable in the length scale

�
[2]. Fig. 5

displays the evolution of pdfs of 5 �
as

�
is varied. The

distributions are normalized to their respective stan-
dard deviations 6 �

and shifted in vertical direction for
clarity. For small scales the shapes of the curves de-
viate strongly from Gaussian distributions indicating
pronounced intermittency effects.

In a series of papers a new approach for the stochas-
tic analysis has been proposed which allows to extract
the explicit form of the underlying stochastic pro-
cess directly from experimentally measured data with-
out making any assumptions, provided the process is
Markovian [2], [3]. The aim is to describe the evolu-
tion of the conditional probability density functions as�

is varied, where the conditional pdf 7 � 5 � � � � � 5 � � � � �
describes the probability for finding the increment 5 �
on scale

� � provided that the increment 5 � is given on
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scale
� � . A stochastic process is Markovian, if the

conditional probability densities fulfill the relations

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
(4)

where
� � � � � � � � � � � �

. In this case, the condi-
tional pdf satisfies a master equation. Expanding the
distribution function into a Taylor series, the evolution
equation can be written as [3]

� � �
� � � � � � � � � � � � � � � �

� �
�

� � � � � �
� � � 	 �

	 � � � � � � � � � � � � � � � � � � � �
(5)

where the so-called Kramers-Moyal coefficients
	 � � � � � � � � � 
 
 � � � � � � � � � � � � 	 � �

can be directly
estimated from experimental data:

� � � � � � � � 	 � � �
(6)� �� 
 	 �

�  �
� � �� � � � � �

� � �� � � � 	 � � � � � � � � �� �

Fig. 6 shows a test of Markov properties of the
electropolished surface data. In Fig. 6a, the con-
tour plots of � � � � � � � � � � � � � � �  � �  �

(black lines) and
� � � � � � � � � � � � � �

(grey lines) are shown in units of the
standard deviation � of the � -data. The good corre-
spondence over several orders of magnitude is cor-
roborated by two cuts for � � � � � � 

displayed in
figs. 6b,c indicating the validity of the necessary con-
dition eq. (4). However, choosing different scale in-
crements, for example

� � � �  � 

,

� � � � � � 

,

�  �
� � � 


, the two sets of contour lines strongly devi-
ate from each other. The minimal increment

� � � � � � � ,
for which Markovian properties hold, is the so-called
Markov length.

In the Markovian range, drift and diffusion coeffi-
cients 	 � � 	 � can be estimated directly from the mea-
sured data without making any assumption for the un-
derlying process. If 	 � is small as compared to 	 �
and 	 � , the evolution of conditional probabilities can
be described by a Fokker-Planck equation.

V. CONCLUSIONS

We presented various numerical techniques includ-
ing wavelet analysis and stochastic methods for a
characterization of complex surface structures. The
multifractal scaling behaviour is contained in the sin-
gularity spectra 	 � � �

which are estimated using the
WTMM method. If Markov properties can be veri-
fied, a complete stochastic description of the surface
is given by a Fokker-Planck equation (for 	 � negli-
gible), which describes the evolution of conditional
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Fig. 6. a) Contour lines of the conditional pdfs� � � � � � � � � � � � � � (grey lines) and � � � � � � � � � � � � � � �  �! � �  � (black lines) for � � � " ! # $
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, b), c) Cuts through the conditional pdfs
for � � � ' ( ) � .

pdfs over scales. The corresponding Langevin equa-
tion would open the possibility for a direct syntheti-
zation of surface profiles [12]. In addition, dynamical
and measurement noise and even their magnitude can
be extracted from experimental data [13].
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Abstract— In this paper, a contrast enhancement
realized with a lattice of uncoupled nonlinear oscilla-
tors is proposed. We show theoretically and numer-
ically that the gray scale picture contrast is strongly
enhanced even if this one is initially very weak. An
image inversion can be also obtained in real time with
the same Cellular Nonlinear Network (C.N.N.) with-
out reconfiguration of the network. A possible elec-
tronic implementation of this C.N.N. is finally dis-
cussed.

I. INTRODUCTION

Since the past ten years, a growing interest has been
devoted to nonlinear systems for signal processing
purposes. Indeed, unlike linear processing, nonlin-
ear processes present an additional dimension lying
in the signal amplitude, which gives rise to new prop-
erties not shared by linear systems. Noise filtering us-
ing nonlinear dissipative lattices [1], image process-
ing with nonlinear networks [2], [3], [4], [5], [6], are
few examples where nonlinear systems provide effi-
cient tools in signal or image processing fields.
It is important to note that both linear and nonlinear
image processing tasks can be performed in good con-
ditions only if the image to process is sufficiently con-
trasted.
The aim of this paper is to propose a Cellular Nonlin-
ear Network (C.N.N.), built with uncoupled oscilla-
tors, which allows a contrast enhancement and video
inversion in real time.
First, using the mechanical analogy of a particle ex-
periencing a double well potential, we investigate the
oscillators dynamic. Then, we show theoretically and
numerically that two particles (or oscillators) with a
slightly different initial condition can present a maxi-
mum, a minimum or a null difference of amplitude. In
sect. III, we use the previous oscillators properties to
enhance the contrast of the image represented in fig-
ure 1.
An image inversion can be also realized for two very

close but different processing times without reconfig-
uration of the oscillators network. In section IV, an
electronic design of the lattice is finally proposed in
order to incite electronic engineers and real time im-
age processing specialists to include this solution to
their problems.

� � � � � � � � � � � � � � � � � � � � � 	 � � 
 � � � �

�

� � �

� � �

� � �

� � �

� � �

� � �

	 � �


 � �

Fig. 1. Weak contrasted picture of Lena and its histogram.

II. THEORETICAL STUDY

The aim of this section is to present the oscillators
properties which will allow to perform different image
processing tasks. The normalized equation describ-
ing the motion of a harmonical particle submitted to
a nonlinear force f(x) = −ω2

0 x (x2 − α2) deriving
from the double potential of figure (2) is given by

d2x

dt2
= −ω2

0 x (x2 − α2). (1)

Solutions of eq.(1) for a zero initial velocity are given
by the Jacobian elliptic functions of the form:

x(t) = A cn(ωt, k), (2)

where A is the oscillation amplitude. Moreover the
pulsation ω and the modulus 0 ≤ k ≤ 1 of the Jaco-
bian elliptic function cn are given by

ω = ω0

√
A2 − α2 and k =

1
2

A2

A2 − α2
. (3)

The pulsation ω and the modulus k appear then as two
parameters driven by the amplitude of the solution A.
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Fig. 2. Double well potential represented for α = 1, in
which a particle (• symbol) evolves from an arbitrary
initial position x > α

√
2, that is with an initial poten-

tial energy above the barrier EB and with a zero initial
velocity.

Let us consider now two independent oscillators de-
scribed by (1), with a very close amplitude initial con-
dition, and starting at the even time. The initial am-
plitude of the oscillators O1 and O2 will be noted
A+ε, A−ε respectively and their respective displace-
ment x1, x2. The two corresponding pulsations and
modula, are given by

ω−ε = ω0

√
(A − ε)2 − α2

ω+ε = ω0

√
(A + ε)2 − α2 (4)

k−ε =
1
2

(A − ε)2

(A − ε)2 − α2

k+ε =
1
2

(A + ε)2

(A + ε)2 − α2
. (5)

In order to illustrate the oscillators properties, we
have represented Fig. 3.(a) and 3.(b) respectively, the
position-time dependence of the two oscillators O1

and O2, and their relative difference δ in the case
α = 1, ε = 10−1, ω0 = 1 and A = 2.5. The
temporal evolution of the oscillators (figure 3.a) re-
veals a periodic behaviour in their phase difference
and the possibility for the two oscillators to be very
quickly in phase opposition at an optimum time t =
topt = 16.1. As a result, the displacement difference
δ, represented figure 3.b, reaches a maximum in ab-
solute value equal to δ = 2A = 5 at the optimum
time t = topt. This phase opposition, which cor-
responds to x1 = A + ε = 2.5 + 0.1 = 2.6 and
x2 = −A+ε = −2.5+0.1 = −2.4, allows to realize
a strong amplitude contrast enhancement of the weak
initial amplitude difference 2ε = 0.2. This property
will allow in the following section to realize an image
contrast enhancement.
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Fig. 3. (a) Displacement x1 (continuous line) and x2

(dashed line) versus time of the two oscillators O1 and
O2 respectively. (b) Displacement difference or con-
trast amplitude δ = x1 − x2 of the two oscillators ver-
sus time. Parameters are A = 2.5, α = 1, ω0 = 1
and ε = 10−1. The maximum δ = 5 is reached at
t = topt = 16.1.

III. IMAGE PROCESSING

Considering each pixel of an image as an oscillator
with the properties of the previous section, we pro-
pose here two image processing tools.
In order to describe the pixels dynamics between the
range [0; 1] (since the standard coding of images de-
fines a white level for X = 1, and a black level for
X = 0, the others gray levels being included between
these two values), we consider the following system
of equations

d2Xi,j

dt2
= −

(
2Xi,j −

1
2

)
×
(

2Xi,j −
3
2

)

×
(

2Xi,j − 1
)

with i = 1, 2..N, j = 1, 2, ..M, (6)

where Xi,j is the gray level of the pixel repered by the
indexes i, j, N × M being the image size.
This equation describes a network of N × M uncou-
pled harmonical particles. Initially, each particle has
a zero velocity and its initial position corresponds to
the gray level Xi,j(t = 0) = X0

i,j of the pixel number
i, j of the image to process (image of Fig. 1).
As seen in the previous section, the gray level Xi,j of
each pixel will evolve versus time with the same be-
havior depicted by figure 3.(a).
Especially, if i0, j0, and i1, j1 are the respective in-
dexes of the pixels corresponding to the minimum and
maximum gray levels of the initial image, then their
difference ∆(t) = Xi1,j1(t) − Xi0,j0(t) characterizes
at t = 0 the weak contrast of the image to process.
For the considered pixels i0, j0, and i1, j1, this differ-
ence - called Differential Contrast in the whole arti-
cle - will follow the same behavior depicted in figure
3.(b)., with the possibility to maximize this quantity
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for a given processing time t.
Setting Xi,j = (x + 1)/2, eq. (6) can be normalized
under the form of eq. (1) with α = 0.5 and ω0 =

√
2.

Writing the initial gray level of the pixel number i, j
under the form X0

i,j = (1 + A)/2, the solution of (6)
can be straightforwardly deduced from eqs. (2) and
(3) as

Xi,j(t) =
1
2

[
1 + (2X0

i,j − 1)cn(ωi,jt, ki,j)
]
, (7)

where the pulsation of the Jacobian elliptic function is

ωi,j = ω0

√
(2X0

i,j − 1)2 − α2, (8)

and its modulus

ki,j =
1
2

(2X0
i,j − 1)2

(2X0
i,j − 1)2 − α2

, (9)

in the specific case α = 0.5, ω0 =
√

2. An explicit
expression of the Differential Contrast is then avail-
able with equation (7).
For the image of figure 1, since X0

i1,j1
= 0.05 and

X0
i0,j0

= 0, the initial Differential Contrast is ∆(t =
0) = 0.05. Figure 4. shows that starting from its ini-
tial weak value, the Differential Contrast ∆(t) period-
ically decreases and increases revealing the possibility
to realize a contrast enhancement.
Indeed, the Differential Contrast can be nul - for
t = 3.74 and t = 7.31 for instance - or it can reach
local minima-namely for t = 2.87 and t = 16.33 -
else it can also achieve local maxima - for t = 6.24,
t = 12.82, to cite but a few. The maximum value of
the Differential Contrast is obtained at topt = 19.91
and is in good agreement with the theoretical section
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Fig. 4. Differential Contrast ∆(t) defined as the oscillation
difference between the maximum and minimum of the
initial image. Solid line: from the theoretical expres-
sion (7). •: numerical simulation of (6) using a fourth
order Runge-Kutta algorithm with integrating time step
10−3. Parameters: X0

i0 ,j0
= 0, X0

i1,j1
= 0.05, that is

∆(t = 0) = 0.05.

II ∆(topt = 19.91) = 0.95.
Therefore, the image goes through contrast minimum
defined by the zeros of the Differential Contrast ∆(t)
(for t = 3.74 and t = 7.31), as represented in figure
5.(b). and 5.(d).
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Fig. 5. Images and their histogram for different process-
ing times. Parameters (a) : t = 2.87, (b) : t = 3.74,
(c) : t = 6.24, (d) : t = 7.31, (e) : t = 12.82, (f) :
t = 16.33, (g) : t = 19.91. (b) and (d) represent lo-
cal minima of contrast provided by the zeros of ∆. (c),
(e) and (g), corresponding to contrast enhancements,
are obtained with the local maxima of ∆ whereas the
minima of ∆, images (a) and (f), allow a contrast en-
hancement with image inversion.

On the other hand, the local maxima of ∆ correspond
to contrast enhancements of the initial picture with
a growing quality versus the processing time (figure
5.(c) 5.(e) and 5.(g) for t = 6.24, t = 12.82 and
t = 19.91 respectively). A contrast optimum for a
processing time topt = 19.91 is then reached (figure
5.(g)) as predicted by figure 4. (dotted lines).
The local minima, achieved namely for processing
times t = 2.87 and t = 16.33, give also good con-
trast enhancements (figure 5.(a) and 5.(f)). However,
the resulting images are inverted since the minima of
the Differential Contrast are negative (see figure 4.).
In fact, the pixel corresponding to the maximum gray
level of the initial image becomes the minimum of
the processed image and vice versa. This is the main
property of this C.N.N.: at two closely different pro-
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cessing times, it is possible, without reconfiguration
of the oscillators network, to obtain a contrast en-
hancement with or without image inversion (fig 5.(f)
for t = 16.33 and 5.(g) for t = 19.91).
Moreover, for a given processing time text corre-
sponding to a local extremum of ∆(t), | ∆(text) |
represents the range of gray level of the resulting im-
age. For instance, since for t = 19.91 the Differential
Contrast predicted by figure 4 is ∆(19.91) = 0.95,
the image histogram of figure 5.(g) extends over 0.95
gray levels.
Note that the histogram of each resulting image shows
clearly the oscillators network dynamic. Indeed, from
an histogram corresponding to a weak contrasted im-
age (figure 1), the histogram evolution versus time
reveals that the range of gray levels periodically in-
creases (figures 5.(a),(c),(e)) and decreases (figures
5.(b) and 5.(d)), conveying that the picture goes pe-
riodically from a weak contrasted situation to a higher
contrasted one.

IV. ELECTRONIC IMPLEMENTATION

In this last section, we present an analog electrical
lattice based on the properties of (6), which realizes in
real time a contrast enhancement of an image loaded
at the node of this lattice. This Cellular Nonlinear
Network (C.N.N.) is constructed with N ×M uncou-
pled elementary cells. Each elementary cell, repre-
sented in Fig. 6, consists of a basic operational ampli-
fier circuit in parallel with a nonlinear resistor RNL,
whose current voltage characteristic obeys to the fol-
lowing cubic law (see ref. [7] for the electronic real-
ization of this resistor):

INL(U) =
−1

R0V 2

(
2U − 1

2

)

×
(

2U − 3
2

)(
2U − 1

)
(10)

R0 is a linear resistor while V is a weighting coeffi-
cient analog to a voltage. According to the notation
of Fig. 6, and provided that the operational amplifier
works in linear regime, we obtain

C
dU1

dt
= −IN,L(Ui,j) and

U1

R
= −C

dUi,j

dt
. (11)

Therefore, the differential equation describing the
evolution of the Voltage Ui,j at the node number i, j
of the C.N.N. writes:

d2Ui,j

dt2
=

−1
RC2R0V 2

(
2Ui,j − 1

2

)(
2Ui,j −

3
2

)

×
(

2Ui,j − 1
)

. (12)
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Fig. 6. Sketch of an electronic elementary cell of the
C.N.N.. RNL is a nonlinear resistor with a cubic cur-
rent voltage characteristic, whereas C and R are linear
components. The operational amplifier is supposed to
work in linear regime, involving U1 = U2.

Eq. (12) appears as an analog simulation of equa-
tion (6) with a scale factor on the nonlinearity

β =
1

R0RC2V 2
. Therefore, the experimental pro-

cessing time to obtain the best contrast enhancement
can then be adjusted with R, R0, C or V to match real
time processing constraints.

V. CONCLUSION

Considering uncoupled nonlinear oscillators, we
have presented a Cellular Nonlinear Network which
offer the advantage to perform two basic image pro-
cessing tasks (contrast enhancement and image inver-
sion) at two closely different times without needing a
network reconfiguration. Moreover, an electronic im-
plementation of this C.N.N. is proposed to realize real
time image processing.
On the other hand, one might think that coupling os-
cillators with linear or nonlinear couplings could al-
low the extraction of interest region, which is also a
current task performed in image processing. There-
fore, this C.N.N. constitutes a framework for further
investigations in nonlinear image processing.

REFERENCES
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Abstract—The variational equations of nonlin-
ear dynamical systems are addressed. It is shown
that their dynamics is fully characterized by a set
of polynomials of decreasing order.

I. Introduction

As is well known, small variations around a
solution trajectory of general dynamical systems
satisfy a linear time-varying (LTV) equation [1].
On their turn, the modal solutions of LTV equa-
tions are fully characterized by the earlier intro-
duced dynamical eigenvalues [2].
In this paper, it is shown that the dynamical
eigenvalues satisfy a scheme of polynomial equa-
tions of decreasing order. The time-dependent co-
efficients of each polynomial equations incorper-
ate a dynamical eigenvalue solution of a lower or-
der polynomial.
At first glance this seems to be in contradiction
with the theory of linear time-invariant (LTI) sys-
tems with precisely one characteristic equation for
the complete eigenspectrum.
However, in Section 2 it will be shown that also for
LTI systems there is a set of characteristic equa-
tions corresponding to the set of eigenvalues.
It is derived with respect to single-input single-
output (SISO) systems. In Section 3, the state
space approach for time-varying systems is used
in order to obtain the dynamic eigenvalues and
the corresponding characteristic equations. The
results are in agreement with LTI systems. It is
demonstrated that the set of characteristic equa-
tions for LTV systems cannot be reduced to one
and the same characteristic equation. As a conse-
quence, our results are generalizations of the work
of Kamen [3] and Zhu [4], respectively.
Finally, it is shown how the Cauchy-Floquet de-
composition can be obtained without using the
state space approach.

II. Scheme Of Characteristic Equations
For Lti-Systems

Assume that the homogeneous input-output re-
lation for SISO-LTI-systems is given by

a0D
nx+a1D

n−1x+ · · ·+an−1Dx+anx = 0 , (1)

where D = d/dt and a0, a1, . . . , an are constant
coefficients, respectively. Relation (1) will be nor-
malized by setting

a0 = 1 . (2)

In (1) we write, for each time derivative

Dkx = Dk−1[D − λ]x + λDk−1x . (3)

Then, the input-output equation (1) can be
rewritten as

n−1∑
i=0

αiD
n−1−i[D−λ]x+

(
n∑

i=0

aiλ
n−i

)
x = 0, (4)

in which

αi =
i∑

j=0

ajλ
i−j (i = 0, 1, . . . , n − 1) . (5)

Equation (4) shows that a modal solution of the
form

x = exp(λt) (6)

satisfies (1) if and only if eigenvalue λ is a solution
of the polynomial equation

n∑
i=0

aiλ
n−i = 0 , (7)

which at this place is called the first characteristic
equation. Note that in view of (7) it follows that
αn = 0. In a further expansion, equation (4) can
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be written as

n−2∑
i=0

βiD
n−2−i[D − µ][D − λ]x+

+

(
n−1∑
i=0

αiµ
n−1−i

)
[D−λ]x+

(
n∑

i=0

aiλ
n−i

)
x = 0

(8)

in which

βi =
i∑

j=0

αjµ
i−j (i = 0, 1, . . . , n − 1) . (9)

Now, equation (8) shows that the modal solution

x = exp(µt) (10)

satisfies the LTI input-output equation (1) if and
only if
(

n−1∑
i=0

αiµ
n−1−i

)
[µ − λ] +

n∑
i=0

aiλ
n−i = 0 . (11)

Next, if (6) is a solution of (1), equation (11)
reduces in view of (7) to a so-called second char-
acteristic equation

n−1∑
i=0

αiµ
n−1−i = 0 . (12)

Moreover, the solution (11) yields by substituting
of (5) for αi

(
n−1∑
i=0

αiµ
n−1−i

)
[µ − λ] +

n∑
i=0

aiλ
n−i =

=
n∑

i=0

aiλ
n−i −

n−1∑
i=0

ajλ
n−j +

⎛⎝ 0∑
j=0

ajλ
0−j

⎞⎠µn+

+

⎛⎝ 1∑
j=0

ajλ
1−j −

0∑
j=0

ajλ
1−j

⎞⎠µn−1 + . . .

· · · +

⎛⎝n−1∑
j=0

ajλ
n−1−j −

n−1∑
j=0

ajλ
n−1−j

⎞⎠µ1 =

a0µ
n + a1µ

n−1 + · · · + an−1µ
1 + an . (13)

Thus, for LTI systems the second characteristic
equation is observed to be equivalent to the first
characteristic equation.
From another point of view, equation (7) gives an

algebraic polynomial of degree n, while (12) yields
an algebraic polynomial of degree n − 1.
Furthermore, relation (5) directly implies for (i =
1, 2, . . . , n − 1)

λαn−i = −an−i+1 + αn−i+1 (14)

and for i = 0

a0λ = −a1 + α1 with a0 = 1 . (15)

Now, if λ is eliminated from (14) and (15), we
obtain for i = 1, 2, . . . , n − 1

(α1 − a1)αn−i − αn−i+1 + an−i+1 = 0 . (16)

Next, we introduce the row vectors

αT = [αn−1, . . . , α1 ]

aT = [ an, . . . , a2 ]

eT
n−1 = [ 0, . . . , 0, 1 ]

⎫⎪⎬⎪⎭ (17)

in which T stands for the transpose and the shift-
matrix

I+
n−1 =

⎡⎢⎢⎢⎢⎣
0 1 . . . 0
...

. . . . . .
...

...
. . . 1

0 . . . . . . 0

⎤⎥⎥⎥⎥⎦ . (18)

As a consequence, (16) can be written as the vec-
tor algebraic Riccati equation [5]

αT en−1α
T − a1α

T −αT I+
n−1 + aT = 0T . (19)

In the same way, the characteristic equation (12)
together with (9) induces a second algebraic Ric-
cati equation, namely

βT en−2β
T − b1β

T − βT I+
n−2 + bT = 0T (20)

with

βT = [βn−2, . . . , β1 ], bT = [αn−1 , . . . , α2 ], b1 = α1 .
(21)

This process can be continued (n− 1) times. The
final result is that the original input-output equa-
tion (1) is replaced by

[D−λ1][. . . ][D−λn]x+
1∑

i=0

α
(n−1)
i λ1−i

1 [D−λ2][. . . ]

×[D−λn]x+
2∑

i=0

α
(n−2)
i λ2−i

2 [D−λ3][. . . ][D−λn]x+

· · ·+
n−1∑
i=0

α
(1)
i λn−1−i

n−1 [D−λn]x+
n∑

i=0

α
(0)
i λn−i

n x = 0.

(22)
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It is concluded that the original differential
polynomial with constant coefficients in (1) is
factorized from the right with the eigenvalues
λn, λn−1, . . . , λ1. The coefficients α

(j)
i (j =

0, 1, . . . , n − 1) are obtained as

α
(0)
i = ai (i = 0, 1, . . . , n) , (23)

α
(j)
i =

i∑
k=0

α
(j−1)
k λn+1−j

j for

{
(i = 0, 1, . . . , n − j)
(j = 1, 2, . . . , n − 1) ,

(24)

with
α

(j)
0 = 1 . (25)

The elimination of the eigenvalues λj from (24)
with i = 1 leads to

α
(j)
1 = α

(j−1)
1 + λj (26)

which on its turn yields on account of (25) a set
algebraic Riccati equations a for lower dimension.

III. Scheme Of Characteristic Equations
For Ltv-Systems

In the preceding section a scheme of charac-
teristic equations for a LTI system has been de-
rived. In it, each equation corresponds to a sin-
gle algebraic Riccati equation. In this section the
reverse problem will be considered: the Riccati
equation will be obtained directly from the differ-
ential equation, and afterwards the characteristic
equation from the Riccati equation (compare [6]).
For that purpose, the input-output equation (1)
is rewritten in the state space description

ẋ =
[
I+
n−1 en−1

−aT −a1

]
x , (27)

where the dot stands for a differentiation with re-
spect to the time t. This equation will be trans-
formed to a second state space description accord-
ing to the transformation

x =
[
In−1 0
pT 1

]
y , (28)

in which
pT = [p1, . . . , pn−1] . (29)

The result of this transformation can be stated as

ẏ =
[
I+
n−1 + en−1p

T en−1

0T λ̃n

]
y , (30)

where
λ̃n = −a1 − pn−1 (31)

and pT satisfies the vector Riccati differential
equation

ṗT = −pT I+
n−1 − aT + λ̃np

T . (32)

It may be clear that in (28) we have assumed
that the vector p is a function of time, thus
pT = pT (t). This allows a generalization to LTV
systems.
If pT is assumed to be a constant, then the left-
hand side of (32) reduces to zero and we have
an algebraic Riccati equation. In that case, (30)
shows that λ̃n is an classical eigenvalue of system
given by (30) and thus of system (27). As a conse-
quence, λ̃n is an eigenvalue of the original system,
given by (1).
Next, we have to show that λ̃n = λ̃n(t) satisfies a
characteristic equation. For that purpose (32) is
rewritten as

−pi + λ̃npi+1 = an−i + ṗi+1 (i = 0, 1, . . . , n − 2)
(33)

with p0 = 0. If the equations in (33) are multi-
plied by λ̃i

n and subsequently added together, we
obtain

λ̃n−1
n pn−1 =

n∑
i=2

(ai + ṗn−i+1)λ̃n−i
n . (34)

Elimination of pn−1 from (33) with the aid of (31)
yields

n∑
i=1

āiλ̃
n−i
n = 0 , (35)

in which the modified polynomial time-dependent
coefficients āi = āi(t) are given by

āi = ai + ṗn−i+1 , (36)

with pn = 0. Thus for LTI systems, where pT

is a constant vector (ṗn−i+1 = 0), equation (35)
equals indeed the classical characteristic equation
with λ̃n an eigenvalue of the input-output equa-
tion (1).
Next, we show

λ̃n = λ1 . (37)

To that aim, we remark that (30) yields

ẏi = yi+1 (i = 1, 2, . . . , n − 2)
ẏn−1 = p1y1 + · · · + pn−1yn−1 + yn

ẏn = λ̃nyn

⎫⎪⎬⎪⎭ . (38)
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As a consequence, we have

Dn−1y1 − pn−1D
n−2y1 − . . .

· · ·− p2Dy1 − p1y1 = yn

ẏn = λ̃nyn

⎫⎪⎬⎪⎭ . (39)

Hence, yn has the modal form [7]

yn(t) = C exp[
t
∫ λ̃(τ)dτ ] , (40)

with C a constant. In addition, we have

[D−λ̃n](Dn−1−pn−1D
n−2−· · ·−p2D−p1)y1 = 0.

(41)
It is observed that the original differential poly-
nomial in (1) will be factorized from the left this
time. Since the transformation (28) implies

y1 = x1 = x , (42)

equation (41) directly results into the identity
(37).
It should be remarked, again, that (41) remains
valid if the coefficients ai are functions of time.
To show this directly without the use of any state
space description, write

Dnx = [D − λ̃n]Dn−1x + λ̃nDn−1x (43)

and substitute (31), resulting into

Dnx = [D− λ̃n]Dn−1x−(a1 +pn−1)Dn−1x . (44)

As a consequence, we obtain

Dnx + a1D
n−1x = [D− λ̃n]Dn−1x− pn−1D

n−1x .
(45)

Next in (45) we apply

pn−1D
n−1x = D(pn−1D

n−2x) − ṗn−1D
n−2x =

[D − λ̃n]pn−1D
n−2x + (λ̃npn−1 − ṗn−2)Dn−2x

(46)

and subsequently use the expression (33) for i =
n − 2 This yields

Dnx + a1D
n−1x + a2D

n−2x =

[D − λ̃n](Dn−1x − pn−1D
n−2x) − pn−2D

n−2x .
(47)

By repetition of the above arguments we get

Dnx + a1D
n−1x + a2D

n−2x + · · · + an−1Dx =

[D−λ̃n](Dn−1x−pn−1D
n−2x−· · ·−p2Dx)−p1Dx.

(48)

Finally, with

p1Dx = [D − λ̃n]p1x + anx , (49)

we arrive at

Dnx+a1D
n−1x+a2D

n−2x+· · ·+an−1Dx+anx =

[D−λ̃n](Dn−1x−pn−1D
n−2x−· · ·−p2Dx−p1x).

(50)

It is clear that this process can be continued until
the Cauchy-Floquet decomposition is obtained.

IV. Conclusions

In this paper, it is argued that for linear time-
invariant (LTI) as well as for time-varying (LTV)
systems each term of the Cauchy-Floquet factor-
ization of the differential operator induces a char-
acteristic polynomial and a set of coupled Ric-
cati equations. For a n-th order system, the first
right placed factor gives a n-th order characteris-
tic polynomial and n−1 coupled algebraic Riccati
equations, with n− 1 solutions. For constant sys-
tems, these n − 1 solutions are the coefficients in
the remaining differential polynomial. For LTV-
systems, the vector algebraic Riccati equation is
replaced by a vector differential Riccati equation,
resulting in modified time dependent coefficients
of the polynomials.
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Abstract— The classical PFC design is based on
stable periodic orbit which has desired characteris-
tics. In this paper, the main bifurcations, which may
undergo this orbit, when the parameters of the circuit
change, are described. Also, the regions of instability
phenomena of the PFC converter are delimited, which
is of practical interest for engineering design. Beside,
a prototype design of the PFC circuit is introduced to
detect these instability experimentally. Results show a
good agreement between the analysis and experiment.

I. INTRODUCTION

Electronic equipment typically has the problem that
a diode bridge-capacitor rectifier at the front end of
the power circuit results in distorted input current
waveform with high crest factor and harmonic con-
tent. Such a problem has prompted the development
of Power Factor Correction (PFC) converter. PFC can
be modelled in many approaches. From them, boost
PFC with average current mode control approach is
the common and most attractive. It has the advan-
tage of improved noise, less total harmonic distortion
and easy to shape sinusoidal waveform [1]. Many re-
searchers have worked to investigate and to analysis
the dynamic behavior of PFC. Most of them have in-
troduced some assumptions, which have reduced the
non-linear system to a linear system. The output volt-
age has been considered as constant employing the
assumption of a very large capacitance in the output
of the pre-regulator PFC stage. Therefore, the feed-
back signal has became time-invariant. Also, the time-
varying input voltage has been replaced by its root-
mean-square (rms) value, neglecting the effect of its
time varying. Under these assumptions, small-signal
equivalent circuits have been introduced. Stability
problems have been studied on the basis of the linear
system [2]-[3]. Also, there was no explanation for the
instability waveforms and their frequencies on these
linear models. Then, the price that must be paid is
the inaccurate results and the disappearance for non-
linear phenomena that can be found in practical sys-

tems. Thus, it is very essential to investigate the PFC
converter from a nonlinear point of view and without
any assumptions or limitation.
Recently the discussion of nonlinear analysis of PFC
converter is highlighted. In [4] fast scale instability
is detected in PFC converter, which has a slight ef-
fect on the power factor values. On the other hand,
the authors have detected and introduced new low-
frequency instabilities in the boost PFC converter [5]-
[6]. These instability broke the converter operation,
where the power factor is moved from a near unity to
0.5.
Boost PFC converter uses more complex circuitry in
control than simpler cases which most commonly are
analyzed from the nonlinear and bifurcation point of
view in the literature [7]-[8]. Hence, the input voltage
is a time varying, it is obvious that it is very difficult
to deal with a complete bifurcation analysis. In this
issue, our aim is to provide a clear design procedure
to identify and diagnose the instability phenomena.
Through these investigation, the difference between
the unstable phenomena and input current distortion
is made clear.

II. SYSTEM DESCRIPTION

Boost PFC circuit consists of a main power circuit
and a control circuit. The main feature of this system
is the output bulk capacitance and using multiplier
and two control loops, feedback and feed-forward,
in control circuit. That assures the non-linearity of
the PFC converter. The main power circuit is con-
structed of full diode bridge circuit follows by dc/dc
boost converter. The control circuit is the known used
UC-3854A that operates at average current mode con-
trol [9]. Fig. 1 shows the detailed circuit of the
boost PFC converter with average-current-mode con-
trol. The basic circuit of the converter consists of in-
ductor L, diode D, switch Q and capacitor C con-
nected in parallel to load R. The switch Q and the
diode D are always in complementary operating states
during the continuous-conduction-mode CCM opera-
tion. Essentially, it is a typical current- programmed
boost converter, with the inductor current iL chosen as
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the programming variable and the programming tem-
plate Iref being the input voltage waveform. Obvi-
ously the average input current is programmed to track
the input voltage, and hence the power factor is kept
near unity. In addition, a feedback loop comprising a
first-order filter serves to control the output voltage
vc. In breve, this done by adjusting the amplitude
of the reference current Iref , which is tracking the
shape of the input voltage waveform vin. The nonlin-
ear model of the boost PFC converter has been proved
though the average-state-space equation without aver-
aging through the main frequency. It is constructed
from two equations, one for the main power circuit
and the second for the feedback loop [6]. These equa-
tions are(no description for these equation because of
the limited space):

vc
dvc

dt
+

v2
c

CR
=

1
K1

(1 − cos 2ωt)(vvea(t) − 1.5)

− ωL

K2
1V 2

sin(2ωt)(vvea(t) − 1.5)2 (1)

− L

K2
1V 2

(1 − cos 2ωt)(vvea(t) − 1.5)

τ
dvvea(t)

dt
+ vvea(t) = Vref + Gfb(KfVref − vc(t))

(2)

where
Kf =

Rvd + Rvi

Rvd
, Gfb =

Rvf

Rvi
, andτ = RvfCvf

(3)
vvea, Vref1, Kf1, Gfb1, τ1, Cvf , Rvf , K1and Rvd

& Rvi are feedback voltage,reference voltage, a con-
stant, feedback gain, feedback gain time constant,
feedback capacitor, feedback resistor, constant, and
feedback divider resistors of the PFC boost converter,
respectively.

From the nonlinear model (1),(2), There are six
parametric, which can be varied (R, C, Gfb, τ , V ,
and ω ) and three state variables vc, iL, vvea. The in-
ductor L has a relation to the fast current control loop
with the switching frequency only. The fact that the
input voltage of the PFC vg is a time varying makes
the system more complex and difficult to deal with a
complete bifurcation analysis. Therefore, in this is-
sue, an attempt to give a general outstanding about
the stability condition and their borderline using this
nonlinear PFC model.

III. A PROTOTYPE OF BOOST CONVERTER

A prototype of PFC boost converter using UC
3854A for average-current-mode control [9] is con-
structed in Lab to test the circuit stability under the

-
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Fig. 1. Boost PFC converter with average-current-mode
control circuit diagram.

parameters variation. The tested circuit are 100 kHz
switching frequency, 100 Watt, 70-120 input voltage
and 180 output voltage. The inductor L is chosen to be
equal 700µH to achieve continuous-conduction-mode
CCM operation. Operating conditions have been cho-
sen as: output capacitor ranges are 22/47/60/100µF,
feedback capacitor ranges are 22/47/60/100 nF, feed-
back resistor ranges are 100/183/260 Kohm.

It is cleared that there are six parameters (R, V , ω,
C, Cvf , Rvf ) controls the system bifurcation. The
first three parameters (R,V , and ω) are given data for
every converter, and so the design must satisfy their
ranges. The next three parameters (C, Cvf , Rvf ) are
the design parameters to make the converter stable. A
lot of detailed experimental examples are investigated,
but only two example is reported here for the limited
space. One stable PFC operation point is explained
as shown in Fig.2. The input current, iin is periodi-
cally, sinusoidal, and in phase with input voltage, vin.
In this case, the test parameters have been 100 V in-
put voltage, 60 Hz, 50% load, output capacitance, C
= 47µ F, 183 Kohm feedback resistor (0.31 feedback
gain), and feedback capacitance, Cvf = 100 nF. The
output voltage ripple, �vc is periodic with double fre-
quency of the input line voltage. This is the features of
stable operation. Then, for the same choosing param-
eters in Fig.2, stable operation, the circuit is examined
with taking the feedback capacitor parametric in con-
sideration. Figure 3 shows the unstable period dou-
bling bifurcation as the feedback capacitor Cvf para-
metric decreased to 47nF. Period doubling bifurcation
has the features of double period (half frequency ω )
of that in the stable case for the output voltage. More-
over, another instability kind is detected in the system,
which is chaotic instability. It is detected for the same
parameters in Fig. 3 with 10% load. Chaotic phenom-
ena appear clearly with non-repeating waveforms as
shown in Fig.4.
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Fig. 2. stable operation of boost PFC converter.

Fig. 3. Period doubling bifurcation operation of same PFC
converter operating condition shown in Fig. 2 as the
feedback capacitor parametric is decreased to 47 nF.

Therefore, it is important to clarify the whole PFC
converter dynamics behavior and its stability border-
lines in the parameter space. Testing all other operat-
ing points clears that instability phenomena appears as
period doubling bifurcation at first and moves finally
to chaotic instability with more change in the control
bifurcation parameter.

IV. NUMERICAL ANALYSIS AND BIFURCATION

MAPS

To help visualize the above results and prove the
experiment observation, the nonlinear PFC model is
used to plot a few indicative boundary surfaces and
curves. Our purpose is to highlight the regions in the
parameter space where normal operation is expected.
The output voltage vc is chosen as the judgment sig-
nal for the PFC converter stability. As reported in the
above section from the experimental results and ex-
plained in Fig. 5 that stable operation has output volt-
age periodic at twice line frequency 2ω. However, pe-
riod doubling bifurcation has output voltage periodic
at line frequency . Also, the output voltage is non-
repeating points in chaotic operation case. Therefore,
sampling this output voltage every half line period
(double line frequency) 2ω provides fixed points every
half line period and so on a fixed surface is obtained
in stable operation. Period doubling bifurcation gives
two different fixed points at every half line period,
which provides two different surfaces. Chaotic in-
stability appears as non-repeating two different points
every half line period, which can not provide any sur-
face and gives different points only. Beside, high dis-

Fig. 4. Chaotic operation of boost PFC converter of same
PFC converter operating condition shown in Fig. 3 as
the feedback load parametric is decreased to 10%.
1-input voltage 2- input current 3- output ripple voltage

vin
100V/div

v
c

5V/div
(a)

vc
5V/div

(b)

vc
5V/div

(c)

1             2               3          4            5 ----------------------------------------- sampling points

Fig. 5. The sampled output voltage at different cases and
what it give in the bifurcation maps. (a) stable opera-
tion, region-1, appears as one fixed line. (b) period dou-
bling bifurcation, region-2, appears as two fixed lines.
(c) chaos instability, region-3, appears as multi differ-
ent points.

torted area means a high output ripple values giving a
lower output voltages surface than regular output sur-
face values in stable case as shown in Fig. 6. That
clears the difference between the instability and high
distorted input current cases, which can be explained
from linear models, that occurs because of high out-
put ripple. As reported in this figure, as the operation
move to region-4, the output voltage values become
lower due to the higher output ripple, that results in a
lower voltage surface.

Therefore, the bifurcation surface can be repre-
sented as:

vc = f(R, V, ω) + g(C,Gfb, τ) (4)

Moreover, choosing the output capacitor voltage vc

as a stability signal provides more information about
the PFC converter dynamics, such as its power fac-
tor values and output voltage regulation. This can be
cleared from the following bifurcation maps. The val-
ues of the sampling output voltage Vc,s have its influ-
ence corresponding to the DC and AC values of the
output voltage as shown in Fig. 5 and Fig. 6 for all
different possible cases. The DC values are mainly
depending on the output load R and the feedback DC
gain Gfb parametric. Also, the AC values are mainly
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1             2               3          4            5 ----------------------------------------- sampling points

vin

100V/div

vc
20V/div

(a)

vc
20V/div

(b)

vc

20V/div
(c)

Fig. 6. The sampled output voltage at different cases and
what it give in the bifurcation maps. (a) stable op-
eration, region-1, appears as one fixed line. (b) high
distorted area, region-4, appears as one lower voltage
fixed line. (c) high distorted area, region-4, appears as
one more lower voltage fixed line.

depending on output capacitor C parametric. Fixing
one parametric and changing the other to establish the
bifurcation maps, gives the understanding of the sta-
bility and the converter dynamics.

2-D bifurcation diagram is introduced in Fig. 7
for the same tested example. The stability judgment
taken from the color difference. In these maps, yel-
low color indicates higher values of the sampled out-
put voltage. Beside, lower output voltage has been
indicated with a red color. Therefore, stable areas
can be appears as clean and one color surface. In-
terpreting more colors in same surface means unsta-
ble operation. Clean surface with red color express
the low output voltage, which means high output rip-
ple result in a high distorted area as explained before
in Fig. 6, unused area. Using this method, the bor-
derline between stable and unstable regions can be
made clear. This can be understood easy from Figs.
7(a) and 7(b) for different loads. Moreover, the con-
verter power factor information can be provided from
the same maps. Higher output ripple, lower sampled
voltage surfaces, gives larger phase shift between the
output voltage (and so the input current, where estab-
lish the reference current)and the input voltage. This
results in a lower power factor. Then, yellow colors
indicates high power factor and vise versa. Also, the
changing from region-1 to region-4 occurs gradually
as shown in the maps by graduate colors between yel-
low and red. On the other hand, moving from stable
to unstable operation occurs suddenly. This clear any
misunderstanding between moving from region-1 to
region-4 or to other instability regions, region-2 and
region-3.

Second, for varying the DC voltage parametric
which is controlled mainly through the feedback gain
and fixing the AC parametric, Fig. 8 is constructed.

Region-1

Region-4

Unstable
Region-2

and Region-
3

Gradually change

Sudden change

Region-1

Region-4

(a) (b)

Fig. 7. 2-D bifurcation diagram between the output ca-
pacitor C (horizontal) and the feedback capacitor Cvf

(vertical)at (a) full load and (b) 10% load.

Unstable
Region-2 and

Region-3

Interface of more
colors

Region-1

Gradually change

Region-1

Unstable
Region-2

and Region-
3Gradually

change

Interface of two
colors

(a) (b)

Fig. 8. 2-D bifurcation diagram between the DC feed-
back gain Gfb (horizontal) and the feedback cut-off
frequency (vertical)at (a) C =220µF and (b) C =60µF.

These maps explain another example for boost PFC
converter with the tested parameters 100V, 50 Hz,
10%load (10 W). In this Figure, the feedback para-
metric effect on the system stability is explained to
give guidelines for the feedback design. Fig.8(a)
shows the 2-D bifurcation diagram at C= 220µF. It
is cleared that small instability area appears at higher
feedback DC gain. On the other hand, a larger unsta-
ble area appears at C= 60µ F as shown in Fig. 8(b).
In these maps, stable operation, region-1, is indicated
as a black color, where a clean surface is obtained.
Therefore, unstable regions appear as an interface be-
tween the black and weight color together as shown in
the maps. Moreover, higher Dc feedback gain means
more regulated output voltage and so lower sampled
output voltage (black color) means regulated system
. Therefore, wight color indicates less regulation sys-
tem. It is cleared that higher DC gain force the sys-
tem to be unstable especially at lower output capaci-
tor. Higher cut-off frequency increases the distortion
in the system and so not good for practical design.

Generally the aim of these bifurcation maps is to
provide an indication about system stability in the pa-
rameters space and shows the borderlines between sta-
ble and unstable operation. The details of the classi-
fication of each unstable area is not as of the interest
here in this issue. If this needed another map can be
introduced to shows every instable region and its spec-
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ified area as will be done as a future work.

V. CONCLUSION

PFC converter has been studied as a nonlinear
model. Three-dimensional and two-dimension bifur-
cation diagram are introduced to discuss the stability
problems for boost PFC converter from the bifurca-
tion view point. The instability area can be delimited
using these bifurcation maps and it is clearly how to
choose the circuit parameters that assures stability at
all conditions. Moreover, these bifurcation maps give
an indication about converter performance such as its
input power factor values and output regulation.
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Abstract—In this paper we present an analytic 
methodology for the analysis of harmonic oscilla-
tors. By this we combine geometric methods with the 
theory of singularly perturbed systems, which we use 
as tool for reduced order modeling. Through this we 
get a model for the start-up behavior of sinusoidal 
oscillators. Furthermore, we demonstrate our tech-
nique by means of the Clapp Oscillator. 

I. INTRODUCTION

Circuits like the Wien-Bridge, Hartley or Colpitts 
Oscillator are nonlinear networks since a nonlinear 
gain element is necessary to compensate the damp-
ing as well as for the stabilization of the amplitude. 
Oscillators are often modeled by linearized equa-
tions. It seems to be the main restriction of the lin-
earization that the amplitude is not computable. 
However, the difference between a nonlinear oscilla-
tory circuit and its linearization is more fundamen-
tal. The nonlinearity of an oscillator is an integral 
part of its functionality [13]. Moreover, by means of 
the nonlinear model an approximate amplitude of the 
oscillation can be calculated.  

Oscillators are often modeled using a nonlinear 
dynamic system ( )=x f x� , where f: n n→� � and 

n∈x � . The vector x corresponds to time depending 
currents or voltages of the circuit while f is a nonlin-
ear vector field containing the influence of the gain 
element. A decomposition of f gives  

     
2 3 m-1

( )

( ) ( ) ( ) ( )

= +
= + + + + +

x Ax f x

Ax f x f x f x O m

��

…

, (1) 

where n n×∈A �  is the Jacobian matrix Dxf(0)
evaluated at the equilibrium point and the fields fk(x)
contain the nonlinear terms in the Taylor expansion 
of f of precise order k. It is well-known that (1) is 
locally stable if A has only eigenvalues λi, i=1…n, 
with Re(λi)<0 and unstable for Re(λj)>0, j∈[1,n]. In 
that case a system is called hyperbolic. It is an also 
well-establish condition for a steady state oscillation 
that a system has a pair of conjugate complex eigen-

values with vanishing real parts - related criteria 
were presented by Barkhausen and Nyquist [17]. In 
this case the circuit is called non-hyperbolic. Since 
the Hartman Grobman Theorem tells us that if a 
system is hyperbolic, i.e. there exist no pure imagi-
nary eigenvalues, a nonlinear system will possess 
the same behavior as its linearization. Otherwise we 
cannot neglect the nonlinearity.  

A planar nonlinear dynamical system has primary 
two different types of solutions: Equilibrium points 
and periodic solutions. The relationship between 
these solutions is given by the Andronov Hopf 
Theorem. Originally this theorem was proved by 
Andronov in 1935 for the analysis of tube oscillators 
[14]. In this context we consider a dynamic system, 
which additionally depends on the parameter µ:

                            ( , )=x f x� µ                          (2) 

Let f(x,µ) be a C3 vector field such that f(0,0)=0 
and Dxf(0,0) has a pair of imaginary eigenvalues 
λ±(µ=0)= ±jω. A so-called Hopf Bifurcation occurs 
when a pair of eigenvalues crosses the imaginary 
axis. The main conclusion of the Andronov Hopf 
Theorem is the condition that an asymptotic stable 
equilibrium is necessary for a stable limit cycle. 
Thus the Andronov-Hopf theorem is the basis for the 
operating mode of oscillators. For further informa-
tion see [2], [7] and [16]. 

 In the following we present qualitative methods 
in order to analyze the stability of the equilibrium 
point and show techniques which are useful to calcu-
late the amplitude. Since it is difficult to apply sym-
bolic methods for high dimensional systems we also 
show that the presence of singularities can be an 
useful tool for an analytic reduction of the dimen-
sion of Harmonic Oscillators. This point of view is 
different to that of Abed [1], who also introduced 
singular perturbed harmonic oscillators. While in [1] 
is shown how to neglect parasitic elements in a van 
der Pol Oscillator, we demonstrate that a singularity, 
which also can be an important design part of a high 
dimensional oscillatory circuit, is usable for reduced 
order modeling. Thus, we model the start-up behav-
ior of sinusoidal oscillators, which is described in 
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[15], [20] and [21]. Through this, we are able to 
analyze high dimensional oscillators like the 4th

Order Clapp Oscillator.  

II. STABILITY

In order to analyze the stability of the equilibrium 
point Normal Form Transformations are powerful 
methods. We consider a nonlinear vector field lo-
cally in a neighborhood of equilibrium and try to 
simplify the linear and nonlinear parts. The initial 
point for our analysis is (1). The matrix A possesses 
the eigenvalues λ1,λ2,…,λn. The idea is to choose a 
coordinate transformation so as to simplify the terms 
of the vector field. In order to simplify the linear part 
of the field f(x), we use the Jordan Form Theorem: 

                          1 ( )−= +y Jy T f Ty�

� ,        (3)

with J=T-1AT and x=Ty. The invertible transfor-
mation T, which diagonalizes A or at least puts it 
into Jordan Form, consists mostly of the eigenvec-
tors of A. Since A is diagonalizable, the qualitative 
behavior is identical to that of a diagonal matrix with 
the eigenvalues λ1,λ2,…,λn.

In order to simplify the nonlinear terms in (1) we 
try to find a sequence of coordinate transformations 
x=y+hk(y) which remove terms of increasing degree 
from the Taylor series. This equation is a so called 
near identity transformation. The terms which can-
not be eliminated are called resonant terms. A dy-
namic system which has an equilibrium with eigen-
values ±jω can be expressed in the so called Poin-
care Normal Form  

( )i i i 12 2
1 2

i=1 i i 2

a b y0 ω

y +y
-b a y-ω 0

∞ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= + ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∑y y� ,   (4) 

where the coefficients ai and bi are 0 for even i. 
The reader should note that the equilibrium is    
asymptotically stable, if a1<0. So the Poincare Nor-
mal Form is a primary key for fulfilling the An-
dronov Hopf Theorem. How to perform this method 
in detail is described in [3], [4] and [11]. 

II. SINGULARITIES

Since (4) is a two-dimensional system a model or-
der reduction for high dimensional systems is neces-
sary, wherefore the Center Manifold Theorem is 
often used [5], [19]. However, to apply this method 
the eigenvalues have to be calculated. This leads to a 
numerical computation, if the dimension of the sys-
tem is greater than four. We find a remedy if the 
oscillatory system has singularities, which can be 
used to apply a reduced order modeling by means of 

the Theory of Singularly Perturbed Systems [6]. The 
initial point is a system ( )=x f x� where x is an n-
vector. To reduce the number of differential equa-
tions the quasi-steady state assumption (QSSA) is 
common practice. Therefore, first we have to detect 
the singularity δ which transfers our system into 

( , , )

( , , )

= δ
δ = δ
y f y z

z g y z

�

�

,        (5) 

where m∈y � , l∈z � and m+l=n. Under some 
additional conditions, (5) represents a dynamic sys-
tem on a constrained manifold [6],[9]. Under the 
assumption that the Jacobian Dzg (y,z,0) is invertible 
on a solution g(y,z,0)=0, the vector y represents the 
fast variables near the solution for small δ. For δ=0 
we get 

( , ,0)

( , ,0)

=
=

y f y z

0 g y z

�

,       (6) 

which is called the degenerate system to (5). Now 
we can rewrite (5) in the form 

         ( , ( ),0)= ϕy f y z� ,      (7) 

where z=ϕ(y) and g(y,ϕ(z))=0. Thus (7) repre-
sents the steady state oscillation, while the so-called 
fast system in the fast time scale τ=t/ε represents the 
start-up behavior for ε small. 

If the reduced system (7) is not equivalent to the 
two dimensional center manifold, another reduction 
to the center manifold is necessary. However, be-
cause of the QSSA we have in that case to reduce 
(7), which possesses a lower dimension as (2). Typi-
cally, systems like (5) are used for the modeling of 
relaxation oscillators. But it is also possible to re-
duce harmonic oscillators [1], since the Andronov 
Hopf Theorem is also valid for singularly perturbed 
Harmonic Oscillators [23]. 

III. AMPLITUDE

In order to calculate an approximate amplitude the 
initial point is (2), which depends additionally on µ.
That is why the Center Manifold Theorem has to be 
modified. We consider the system (2), where 

1,0
,Cx λ∈f  and f(0,λ)=0∀ λn. If we assume that the 

Jacobian Dfx(0,0) possesses k>2 eigenvalues with 
vanishing real parts, then there exists a k-
dimensional integral manifold in a sufficient small 
neighborhood of x=0 and for small |λ|. Similar to the 
center manifold we can express the system which is 
perturbed by µ in the form

c c c c s= ( ) + ( , , )x J x f x x� µ µ ,        (8)

where Jc possesses a pair of conjugate complex 
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eienvalues. A detailed description provides [22].  
In order to calculate the amplitude of a sinusoidal 

oscillator it is suitable to transform the reduced sys-
tem to polar coordinates: 

         PC

ω

= + ( , r)
0r

⎡ ⎤Θ ⎡ ⎤
Θ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
f

�

�

     (9) 

Since the equation r=0� is mostly a function of Θ,
i.e. both equations of (9) are coupled; we cannot 
calculate the amplitude directly. To produce a relief 
we use an average technique – a perturbation 
method. Our approach of Lie series averaging is 
based upon the results from [8] and [12]. Like the 
normal form transformation, averaging uses a near 
identity transformation to simplify the given system. 
The transformation is to be chosen to transform the 
original system into the so called averaged system. 
By means of this method it is our goal to eliminate 
the action of Θ in the second equation of the system 
(9). The method hinges on the identification of a 
small parameter ε which marks the perturbation. In 
Cartesian coordinates we get for µ=0

     S S

0 ω

= +ε ( )= +ε ( )
-ω 0

⎡ ⎤
⎢ ⎥
⎣ ⎦

�y y f y Jy f y .      (10)

 In polar coordinates we can write the following 
system, where mostly both equations are coupled 

     
ω R( , r)

= + ε

0 T( , r)r

Θ⎡ ⎤Θ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥Θ⎣ ⎦ ⎣ ⎦⎣ ⎦

�

�

.      (11)

By using a suitable transformation we find the av-
eraged system 

       
ω R( r)

= + ε

0 T( r)r

⎡ ⎤ ⎡ ⎤⎡ ⎤Θ
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

�

�

 .      (12)

Here we have assumed that already one averaging 
gives a usable result. But sometimes a sequence of 
coordinate transformations is necessary. Especially 
in this case our approach which is based upon Lie 
series is advantageous [12]. 

IV. CASE STUDY

The methods which are previously listed have 
been implemented with MATLAB - especially using 
the symbolic toolbox. By means of these routines we 
have analyzed the so-called Clapp Oscillator (Fig. 
1).  

The Clapp Circuit is a member of Colpitts, Clapp 
and Pierce Oscillator Family [18], so that this circuit 
is just an example. Our methodology – especially the 

reduced order modeling by means of singular per-
turbations - is also applicable to other sinusoidal 
Oscillators like the crystal based Pierce Oscillators. 

Fig. 1  The Clapp Oscillator 

We model the collector-emitter current iC of the 
Transistor T for iB≈0 by 

        
BE

T

v

V 3
C S 1 2 BE 3 BEi I e 1 k k v k v

⎛ ⎞
= − = + +⎜ ⎟

⎜ ⎟
⎝ ⎠

.    (13) 

The model of this circuit is given by 

30 L 0
1 C1 C1 2 C2 S 3 C2 1

0 L 1

01 2
2 C2 C2 S

1 2 1

S S S

S S C1 C2 C3 S S

R R V
C v v k v i k v k

R R R

VR R
C v v i

R R R

C v i

L i v v v R i

+= − − − − − −

+= − + +

=

= − − −

�

�

�

�

 (14)

Typically, analog designers choose CS�C1,C2. In 
order to transform (14) into a singular perturbed 
system, time scale modeling is a promising tech-
nique [9]. A systematic approach to identify ade-
quate time scales is presented in [10] and [11]. If we 
choose τ=(LC)½t=ω1t as a capable unit for the time 
and C1=C2=C we get 

   
( )

3
S

1 2
1

2 1 S 2 1 2

3S 1 31 1 2 1
1 1 2 2 2

S 1
22 2 1 2

CL
y y

L
y y R y z z

C

C cc
z z z y z

C RC C C C

C
z z y

C RC

=
ω

= − − + −

ωω ω ω
=− − − −

ω= − +ω

�

�

�

, (15) 

where 

              0 L 1 2

0 L 1 2

R R R R
R

R R R R
= =

+ +
.                   (16) 
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Because of the Andronov Hopf Theorem the equi-
librium of the model must be located at the origin. 
This is guaranteed by a coordinate transformation, 
where c2 und c3 are the modified coefficients of the 
nonlinearity. For presentation we neglect quadratic 
terms. If we choose δ=√(Cs/C)� 1 as the perturba-
tion parameter and under the QSSA we get for δ=0
the reduced system, which is for a suitable choice of 
the coefficient c2 equal to the center manifold. With 
RS=µ*-2R/Lµ, c=c3 R3/L and µ small, we get di-
rectly the integral manifold of the reduced system in 
the original time scale  

    3
2

01

cy1

µ ⎡ ⎤⎡ ⎤
= + ⎢ ⎥⎢ ⎥ −− µ⎣ ⎦ ⎣ ⎦

y y� ,       (17) 

where we choose LS=CS=R=1. µ*>0 is an arbi-
trary value and µ the bifurcation parameter. For µ=0
we get the following Poincare Normal Form: 

( ) 12 2
1 2

2

3
0 y0 1 8y y c

y1 0 3
0

8

⎡ ⎤−⎢ ⎥ ⎡ ⎤⎡ ⎤
= + + +⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎢ ⎥ ⎣ ⎦−

⎢ ⎥⎣ ⎦

� …y y (18)

We get the so-called Poincare Coefficient        
a1=-3/8c. For c>0 the equilibrium is asymptotic 
stable and so there exists a variation of circuit 
parameter c which generates the birth of a limit 
cycle. In order to predict the amplitude of the limit 
cycle we have to identify and mark the perturbation 
of the linear oscillator by means of the parameter ε.
Then we can transform (17) to polar coordinates: 

   
2

2

1 r sin cos
ε

0r r + cos

⎡ ⎤ ⎡ ⎤Θ Θ Θ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥ Θ +⎣ ⎦⎣ ⎦ ⎣ ⎦

�

� …µ µ
        (19) 

Since both equations of (19) are coupled averag-
ing is necessary. We calculate 

                    
3

1

3
ε r ε crr

8

⎡ ⎤⎡ ⎤Θ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

�

� µ
,             (20)

where already one averaging removes the terms 
depending on Θ. The roots of r 0=� are 

                  1 2

8
r =0, r =

3 c
± µ

     (21) 

The value 
1r  defines the averaged amplitude for 

an unstable equilibrium. If the Andronov Hopf 
Theorem is fulfilled, the Clapp Oscillator has the 

amplitude
2r .

V. CONCLUSION

In this work we have presented a dynamic systems 
approach for analyzing nearly sinusoidal oscillators 
by using geometrical methods. It turns out that geo-
metric methods are powerful tools for investigations 
of nonlinear oscillators and singularities are useful 
properties of Harmonic Oscillators for reduced order 
modeling and the modeling of the start-up behavior. 
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Abstract – We propose a method that allows one 

to estimate the parameters of driven time-delay sys-

tems and coupled time-delay systems from time se-

ries. The method can be successfully applied to short

time series under sufficiently high levels of noise. 

I. INTRODUCTION

The problem of recovery of nonlinear dynamical

models of time-delay systems from time series has

received much attention in recent years [1–7]. The 

importance of this problem research is determined

by the fact that time-delay systems are wide spread 

in nature. The behavior of such systems is affected 

not only by the present state, but also by past states. 

These systems are usually modeled by delay-

differential equations. Such models are successfully

used in many scientific disciplines, like physics,

physiology, biology, economic, and cognitive sci-

ences. However, the reconstruction of model equa-

tions of time-delay systems from time series has not

been practically considered for the cases when these 

systems are coupled to each other or affected by the

systems without delay. At the same time such situa-

tion is typical for many important applications. In

this paper we extend the methods recently proposed 

by us for the estimation of the parameters of time-

delay systems from chaotic time series [5, 6] to the

cases of driven and two coupled time-delay systems.

We consider a delayed nonlinear feedback system

X described by the following first-order delay-

differential equation 

1 1( ) ( ) ( )x t x t f x t 1

1

1

1

,              (1) 

where x(t) is the system state at time t, function f

defines nonlocal correlations in time, 1 is the delay

time, and parameter 1 characterizes the inertial 

properties of the system. In general case Eq. (1) is a 

mathematical model of an oscillating system com-

posed of a ring with three ideal elements: nonlinear,

inertial, and delay ones. In Fig. 1 these elements are 

denoted respectively as f1, 1, and 1. Let us consider 

the case when the system X is driven by a system Y.

The system Y variable can be injected into the ring

system X at different input points indicated in Fig. 1

by the numerals I-III. Depending on the point of the

signal y(t) input the system X dynamics is described 

by one of the following equations 

1 1 1 1I: ( ) ( ) ( ) ( )x t x t f x t k y t ,  (2) 

1 1 1II: ( ) ( ) ( ) ( )x t x t f x t k y t ,         (3) 

1 1 1III: ( ) ( ) ( ) ( )x t x t f x t k y t ,        (4) 

where k1 is the coupling coefficient characterizing

the system Y action at the system X.

Figure 1. Block diagram of a time-delay system X.

We propose a method that allows one to recon-

struct the time-delay system X from the time series 

of systems X and Y and to define the type of cou-

pling (to distinguish the situations described by

Eqs. (2)–(4)) and its strength. 

II. METHOD DESCRIPTION

To recover the delay time 1 from the temporal re-

alization x(t) we exploit the method proposed re-

cently in [5], where we have shown that there are

practically no extrema separated in time by 1 in the

time series of time-delay system (1). Then, for 1

definition one has to determine the extrema in the

time series and after that to define for different val-

ues of time  the number N of pairs of extrema sepa-

rated in time by  and to construct the N( ) plot. If N

is normalized to the total number of extrema, then

for sufficiently large extrema number it can be used

as an estimation of probability to find a pair of ex-

trema in the time series, separated by the interval .
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The absolute minimum of N( ) is observed at the 

delay time 1. We show that this method of the delay

time estimation can be successfully applied in the 

case when the system X is affected by the system Y.

The method is still efficient for sufficiently high lev-

els of the Y action at X, if this action is not followed 

by the appearance of a great number of additional

extrema in the time series of X.

To recover the parameter 1, the nonlinear func-

tion f1 and the coupling coefficient k1 we propose a 

method using time series of both variables x(t) and 

y(t). Let us assume first that the type of action of Y at 

X is known a priori, i.e., we know the structure of 

equation governing the dynamics of driven time-

delay system. As an example, we consider the case I 

described by Eq. (2), when y(t) is injected into the 

system X after the inertial element. Then, it is possi-

ble to reconstruct the nonlinear function by plotting

in a plane a set of points with coordinates

. According to 

Eq. (2), the constructed set of points reproduces the

function f

1 1 1 1( ) ( ), ( ) (x t k y t x t x t

1 1( ) ( )x t ky t

1 1( ) ( ), ( )x t ky t x t

1 1 1 1( ) ( ), ( ) (x t k y t x t x t

)

)

1. Since the parameters 1 and k1 are a pri-

ori unknown, one needs to plot  versus 

 under variation of  and k,

searching for a single-valued dependence in the

plane , which is 

possible only for =

( ) ( )x t x t

( )x t

)

1, k=k1. As a quantitative cri-

terion of single-valuedness in searching for 1 and k1

we use the minimal length of a line L( , k), connect-

ing all points ordered with respect to the abscissa in

the mentioned plane. The minimum of L( , k) is ob-

served at = 1, k=k1. The set of points constructed 

for the defined 1 and k1 in the plane 

 reproduces the

nonlinear function, which can be approximated if 

necessary. The proposed technique uses all points of

the time series. It allows one to estimate the parame-

ters 1 and k1 and to reconstruct the nonlinear func-

tion from short time series even in the regimes of 

weakly developed chaos. 

Similarly it is possible to recover the nonlinear

function and the parameters 1 and k1 for the systems

(3) and (4) by plotting  versus 

 and  versus 

, respectively, under variation of  and k. If 

we do not know a priori the point at which the sys-

tem Y variable is injected into the system X we have 

to reconstruct each of the model equation (2)–(4). 

The single-valuedness of the recovered nonlinear

function can be achieved only in the case of true

choice of model structure. Thus, the method allows

one to estimate the parameters of driven time-delay

system from time series and to define the structure

of model equation. If the system Y is also a time-

delay system, then we have the case of two coupled 

time-delay systems and the method is able to recon-

struct both of them.

( ) ( )x t x t

( ) ( )x t ky t1( ) (x t ky t

1( )x t

( )x t

III. METHOD APPLICATION

To verify the method we consider the case when

the system X is described by the Mackey-Glass

equation

1

1

( )
( ) ( )

1 (c

ax t
x t bx t

x t )
             (5) 

and the driving signal of the system Y is harmonic or 

a chaotic one. Eq. (5) can be converted to Eq. (1)

with 1 = 1/b and

1
1 1

1

( )
( )

(1 ( ))c

ax t
f x t

b x t
.           (6) 

Figure 2 illustrates the results of reconstruction of

the Mackey-Glass system X at a = 0.2, b = 0.1,

c = 10, 1 = 300 driven by the harmonic signal

 with the amplitude A = 1 and the pe-

riod . The driving signal is injected 

into the system X at the point I with a coupling coef-

ficient k

( ) siny t A t

2 /T

( )x t

130

1 = 0.1. To construct the N( ) plot, Fig. 2(a),

we use 5000 points of the realization x(t). The de-

rivative  is estimated from the time series by

applying a local parabolic approximation. The loca-

tion of the absolute minimum of N( ) allows us to 

estimate the delay time accurately, 1 = 300.

Assuming that the point of the driving signal in-

jection is unknown we reconstruct each of the model

equation (2)–(4). Figures 2(b)–(d) illustrate the re-

sults of the nonlinear function recovery for the 

choice of model equation in the form of Eqs. (2)–(4), 

respectively, with the parameters  and k corre-

sponding to the minimal length of the line L( , k). To 

construct these plots we use only 1000 points of x(t)

and y(t) realizations. Searching for Lmin( , k) we set 

the step of  variation equal to 0.1 ( 1 = 1/b = 10) and 

the set of k1 variation equal to 0.01. For the case of 

model reconstruction in the form of Eq. (2) the

minimal value of L( , k) normalized to the number of

points is Lmin( , k) = L(10.1,0.10) = 0.007. Recon-

structing a model in the form of Eqs. (3) and (4) we 

obtain Lmin( , k)=L(7.4, -0.05)=0.153 and Lmin( , k)=

L(7.3, 0.06) = 0.147, respectively. Only one of the 
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three plots (Fig. 2(b)) demonstrates a practically sin-

gle-valued curve with Lmin( , k) significantly smaller

than in the two other cases. This result indicates that

the model equation has the form of Eq. (2) and the

parameters 1 and k1 of this equation are recovered 

with a good accuracy.

Figure 2. Reconstruction of the harmonically driven

Mackey-Glass system. (a) Number N of pairs of extrema

in a realization of the system X separated in time by , as 

a function of . N( ) is normalized to the total number of

extrema in time series; Nmin( ) = N(300). (b)–(d) Results

of nonlinear function reconstruction for the choice of

model equation in the form of Eqs. (2)–(4), respectively,

with the recovered parameters = 10.1, k = 0.10 (b), 

= 7.4, k = -0.05 (c), = 7.3, k = 0.06 (d). 

To investigate the robustness of the method to ad-

ditional noise we analyze the data corrupted with 

noise. The method is more critical to the presence of

noise in the time-delay system. It is still efficient if 

the level of noise in the system X is about 10% or 

less. The level of noise in the system Y can be sev-

eral times higher. 

We consider also the case when the time-delay

system X is affected by the system Y that is also a 

time-delay system of form (1). Time-delay systems

X and Y can be coupled by different ways and this

coupling can be unidirectional as well as bidirec-

tional. Let us examine a more general case of mutu-

ally coupled time-delay systems. As an example, we 

consider the coupled systems presented in Fig. 3.

For this type of coupling (type III in our classifica-

tion) the coupled time-delay systems are described

by the following equations 

1 1 1

2 2 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ).

x t x t f x t k y t

y t y t f y t k x t

1

2

    (7) 

Figure 3. Block diagram of two coupled time-delay

systems X and Y.

Figure 4 illustrates the results of reconstruction of

the Mackey-Glass system X at a = 0.2, b = 0.1,

c = 10, 1 = 300 coupled with another Mackey-Glass

system Y at the same values of a, b, c and 2 = 400.

The coupling coefficients k1=k2 = 0.1. The both sys-

tems X and Y are affected by zero-mean Gaussian 

white noise with a standard deviation of 10% of the

standard deviation of the data without noise. 

In spite of the noise presence the location of the 

absolute minimum of N( ) (Fig. 4(a)) allows one to

estimate the delay time, and the minimum of L( , k)

(Fig. 4(b)) to recover the parameters 1 and k1. To 

construct the L( , k) we use 2000 points of x(t) and 

y(t) realizations. The step of  variation is set 0.1 and

the step of k variation is equal to 0.01. The presence

of noise results in the deterioration of quality of the 

nonlinear function recovery (Fig. 4(c)). If the type of

coupling is a priori unknown one has to recover all 

the three forms ((2), (3) and (4)) of the system X

model equation and to choose from them the model

demonstrating the minimal value of Lmin( , k). For 

the true choice of model structure in the form of 

Eq. (4) we obtain Lmin( , k) = L(10.0, 0.10) = 0.026.

Reconstructing the system X in the form of Eqs. (2)

and (3) we obtain Lmin( , k) = L(10.1, 0.01) = 0.042

and Lmin( , k) = L(10.0, -0.02) = 0.039, respectively.

The parameters 2 and 2, the nonlinear function f2

of the system Y and the coupling coefficient k2 can 

be recovered in a similar way. The values of the re-
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covered coupling coefficients k1 and k2 allow one to 

characterize the strength of coupling between X and 

Y. For the considered values of the system X and Y

parameters the method allows us to define the type

of the model equations and to reconstruct the sys-

tems X and Y for 1,20.01 0.5k . The proposed 

technique has several advantages in comparison with

the other methods of detection of coupling between

the systems from the time series [8, 9]. In contrast to 

the directionality indices [9] our method can be ap-

plied to the synchronized systems and defines not 

only the direction but also the value of coupling 

even in the case of coupling of different systems.

Figure 4. Reconstruction of the Mackey-Glass system

X coupled with another Mackey-Glass system in the pres-

ence of noise. (a) Number N of pairs of extrema in a reali-

zation of the system X separated in time by , as a func-

tion of . N( ) is normalized to the total number of ex-

trema in time series; Nmin( ) = N(300). (b) Length L of a

line connecting points ordered with respect to abscissa

value in the plane  as a 

function of  and k. L( , k) is normalized to the number of 

points; L

1( ), ( ) ( ) (x t x t x t ky t)

min( , k) = L(10.0, 0.10) = 0.026. (c) The recov-

ered nonlinear function f1 at = 10, k = 0.1.

IV. CONCLUSION

We have proposed the method for reconstruction

of driven time-delay systems from time series. Dif-

ferent variants of the external signal injection into

the time-delay system are considered. The method

can be used for the analysis of two unidirectionally

or bidirectionally coupled time-delay systems. It al-

lows one to reconstruct both time-delay systems

from their time series and to define the coupling co-

efficients between them. The method can be suc-

cessfully applied to short time series under suffi-

ciently high levels of noise. 
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Departamento de Matemática, Instituto Superior Técnico
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Abstract— In this work we introduce a noncom-
mutative conductance in the context of Cuntz-Krieger
C∗- algebras. We study the relation of this conduc-
tance with the KMS state for the Cuntz-Krieger alge-
bra.

I. INTRODUCTION

In this work we are interested to study conductance
in the context of dynamical systems and C∗- algebras.
In a similar way to the concept of entropy which ap-
peared in thermodynamics and has been sucessively
generalized in areas such as statistical physics, dy-
namical systems and C∗- algebras, always related
with the complexity of a given system, conductance
appeared also in physics, in electric circuits, and now
appears in graph theory, random walks, knot theory,
related with mixing, or convergence of the system to
an equilibrium state, see for example [2], [13], [10],
[8]. In [6] is studied the connection of the conduc-
tance from graph theory with Markov subshifts, in
particular with the second eigenvalue of the Markov
matrix. This allows to distinguish systems with the
same entropy, see also [12]. Our approach is based
on a noncommutative version of a topological Markov
subshift, a Cuntz-Krieger algebra. It is interesting to
note that conductance, in the physical sense, also ap-
pears as a topological invariant, more precisely as a
Fredholm index, in the quantum Hall effect, which is
related with the irrational rotation algebra.

This article is organized as follows. In the second
section we introduce some definitions and notation
concerning Markov subshifts and graphs associated to
it. In section III we present Cuntz-Krieger algebras
and show how is possible to determine the isoperi-
metric number of a graph (also called conductance in
some contexts, see [7]), using a realization of the al-
gebra in a Fock space associated to the graph. Finally

in section IV we show how is possible, in the con-
text of Cuntz-Krieger algebras, to define and extend
conductance for an infinite graph, choosing an appro-
priate measure, which is associated to a KMS state for
the Cuntz-Krieger algebra.

II. DEFINITIONS

Consider a Markov subshift ΣA = (Σ∗

A, σ), where
Σ∗

A = ∪∞

k=1Σ
k
A, and Σk

A is the space of admissible
symbolic sequences of size k in the alphabet Σ =
{1, 2, . . . , n}. The admissibility of a sequence is de-
termined by the Markov matrix A = (aij)n

i,j=1 in the
usual way, i.e., ij occurs if and only if aij = 1.

The directed graph G associated to the subshift is
defined by (Σ0,Σ1) where Σ0 is the vertex set equal
to Σ and Σ1 denote the edge set. The edges are formed
by the oriented pairs (ij) such that aij = 1. By this
definition the Markov matrix is the adjacency matrix
of the graph G.

Define the vector space C0 (G) generated by
(vi : i ∈ Σ0) and C1 (G) the vector space generated
by (eij : (ij) ∈ Σ1). We will consider the matrices
acting on the left on vectors in C0 (G) or C1 (G), to
have the interpretation of aij as the transition between
the vector vi to the vector vj .

Other type of matrices, incidence matrices, can be
defined, which relates vertices and edges in the graph.
We define two types of incidence matrices: Let ∂−

be the matrix defined by vi.∂
− =

∑
j∈Σ0

eij and ∂+

the matrix defined by vj .∂
+ =

∑
(ij)∈Σ1

eij . The ma-
trix ∂− correspond to the incident edges going out of
the vertices, and ∂+ correspond to the incident edges
going into the vertices (these matrices are the linear
maps version of the sometimes called range map and
source map of the graph). The usual incidence matrix
is simply ∂ = ∂+ − ∂−, apart from the loops.

The importance of distinguish two incidence matri-
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ces is that the Markov matrix, i.e., adjacency matrix
of the graph, is given by ∂−.∂+∗

. Furthermore, the
matrix ∂+∗

∂− represents an adjacency matrix for a
graph obtained considering the edges as the vertices.
Consider the basis vector vi (which corresponds to
the vertex i). By definition vi.∂

− =
∑

j∈Σ0
eij =∑

j∈Σ0
aijeij . Now as eij .∂

+∗

= vj we have that

∂−.∂+∗

= A = (aij).

III. CUNTZ-KRIEGER ALGEBRAS

Cuntz-Krieger algebras are related with topological
Markov chains, or Markov subshifts, since its appear-
ance[1]. The Cuntz-Krieger algebra OA, associated to
a Markov subshift ΣA, characterized by Markov ma-
trix A = (aij)i,j=1,...,n, is the universal C∗- algebra
generated by the partial isometries si, i = 1, ..., n,
satisfying the following relations∑

i

sis
∗

i = 1, s∗i si =
∑

i

aijsjs
∗

j .

Now let us consider the Fock space, HA, associated
with the Markov subshift, see [4], [11], [3]. It is pos-
sible to give a realization of the algebra OA as a con-
crete subalgebra of B (HA), the algebra of bounded
linear operators in HA. We will see that this realiza-
tion is interesting from the graph theory point of view.
Consider (v1, v2, . . . , vn) an orthonormal basis of the
n-dimensional Hilbert space H1

∼= C
�. Define the se-

quence of finite Hilbert spaces Hk, each generated by
the orthonormal basis

(
vξ : ξ ∈ Σk

A

)
. The Fock space

associated to the subshift ΣA is defined as HA := C

v0 ⊕∞

k=1 Hk (v0 is the usually called vacuum vector).
Now consider the partial isometries acting on HA

as creation operators Tivξ1...ξk
= aiξ1

viξ1...ξk
, for i ∈

Σ. Let TA be the C∗- algebra generated by Ti. These
partial isometries satisfies

∑n
i=1 TiT

∗

i = 1−p0 where
p0 is the projection on the subspace C v0. The ideal
generated by the projection p0 is the C∗ algebra of
compact operators K, so the quotient TA/K (F ) is a
C∗- algebra which turns out to be isomorphic to OA.
The image of Ti under the canonical projection is Si

which will satisfy the Cuntz-Krieger relations

n∑
i=1

SiS
∗

i = 1 and S∗

i Si =
n∑

j=1

aijSjS
∗

j

The interest of this particular realization of Cuntz-
Krieger algebra, concerning graph aspects of the sub-
shift, is the following: first note that the vector space
H1 is isomorphic to the space C0 (G) introduced
above. Next consider the sequence of graphs Gk =

(
Σk

0,Σ
k
1

)
such that the vertex set Σk

0 is the set of ad-
missible sequences of size k (we identify Σk

0 with Σk)
and Σk

1 the set of edges. An edge occur connecting
a vertex labeled with ξ1...ξk with the vertex labeled
with η1...ηk if and only if ξ2 = η1, ..., ξk = ηk−1 and
aξ1ηk

= 1. So we can label the edge that connects
the vertices ξ1...ξk and ξ2...ξkηk with the sequence of
size k + 1, ξ1...ξkηk. The consequence is that Σk+1

0

is naturally identified with Σk
1 . The graph Gk can be

considered as the graph of the paths of size k in G1.
Each vector space Hk is isomorphic to C0 (Gk),

so the Fock space presented previously is isomor-
phic to C v0 ⊕∞

k=1 C0 (Gk). With the identification
Σk+1

0 → Σk
1 we have that Hk+1 is isomorphic to

C1 (Gk) which will be useful as we will see.
Any operator T acting on HA has a block structure

T = ⊕∞

k=0Tk, such that the domain of Tk is Hk. In
particular the partial isometries Si = ⊕∞

k=0Sk,i, where
Sk,i : Hk → Hk+1 will be (assuming action on the
left) matrices of dimension nk×nk+1, and the projec-
tions pi = SiS

∗

i = ⊕∞

k=0pk,i, where pk,i = Sk,iS
∗

k,i

are matrices of dimension nk. Each graph Gk has
adjacency matrix denoted by Ak and incidence ma-
trices ∂−

k , ∂+
k , which satisfy the following relations,

Ak = ∂−

k .∂+∗

k and Ak+1 = ∂+∗

k ∂−

k .

Aspects of a graph G concerning subsets of ver-
tices can be put in C∗- algebraic formulation consid-
ering instead of subsets of vertices projections of the
type p1,i = S1,iS

∗

1,i, i.e., projections in H1. Fur-
thermore, a consequence of the isomorphism H2 �
C1 (G) is that aspects of the graph G concerning sub-
sets of edges can be put in C∗- algebraic formula-
tion considering instead of subsets of edges projec-
tions p2,ij = S2,ijS

∗

2,ij = S1,iS1,jS
∗

1,iS
∗

1,j .
To give a vertex subset S or to give a projection p in

H1 is the same and we have |S| = Tr (p). The same
for subsets of edges and projections in H2.

Other consequence of the isomorphism C1 (G1) �
H2 is that the incidence matrices ∂−

k , ∂+
k can be

given in terms of the Sk,ξ matrices. In fact ∂−

k =∑
ξ∈Σk

0

Sk,ξ, and ∂+
k =

∑
ξ∈Σk

0

JkSk,ξJk+1, where
Jk is a permutation matrix such that vξ1ξ2...ξk

.Jk =
viξk...ξ2ξ1

.

Consider a subset S of Σ0. The isoperimetric num-
ber i (S), which is related to conductance, see [7], as-
sociated to this subset S of vertices is defined by the
number of edges with one vertex in S and the other
in Σ0 − S divided by the number of vertices in S.
The isoperimetric number associated to the graph is
the minimum of i (S) over the vertex subsets S such
that |S| ≤ |Σ0| /2. This number associated to the
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graph can be presented in an algebraic way. In fact
we can extend the isoperimetric number to the graph
sequence Gk. We have, for a projection p in Hk,

ik (p) =
1

Tr (p)
Tr

(
∂−

∗

k p∂−

k + ∂+∗

k p∂+
k −

−2∂−
∗

k p∂−

k .∂+∗

k p∂+
k

)

ik = min
p

φk (p)

over all projections in Hk � C0 (Gk).
Consider S as the range of the projection p. The di-

agonal entries of ∂−
∗

k p∂−

k correspond to the edges that
go out of S. On the other hand the diagonal entries of
∂+∗

k p∂+
k correspond to the edges that go in S. The di-

agonal entries of
(
∂−

∗

k p∂−

k

)
.
(
∂+∗

k p∂+
k

)
correspond

to the edges that go out and go in S. So the trace

of the matrix ∂−
∗

k p∂−

k − 2
(
∂−

∗

k p∂−

k

)
.
(
∂+∗

k p∂+
k

)
+

∂+∗

k p∂+
k is the number of edges that connects S and

its complementary vertex set Σ0 − S.

IV. RANDOM WALKS

In this section we will consider random walks on a
graph arising from a given Markov subshift. Suppose
that is given a Markov subshift ΣA = (Σ∗

A, σ). As-
sociated to it is a graph G1 = (Σ0,Σ1) and there is a
Cuntz-Krieger C∗- algebra OA, as we saw previously.
Instead of the interpretation given in last section with
the realization of OA as an subalgebra of B (HA) for
the Fock space HA, we will give a different interpre-
tation associated to a different kind of realization of
the Cuntz-Krieger algebra. We will consider instead
of HA the inductive limit space H∞ = limk→∞ Hk,
where Hk are defined as in last section, with the
difference that we have the inclusion Hk ⊂ Hk+1,
given by the following: any vector vξ in Hk satisfies
vξ =

∑
i∈Σ0

vξi, for every vξi in Hk+1, i.e., the inclu-
sion map is the incidence matrix ∂−

k . The projections
pk,i as well as the operators Sk,i, Ak and Mk defined
in Hk will correspond to operators pi, Si, Ai, Mi in
H∞, via the inclusion map.

Set uL,k and uR,k the left and right Perron
eigenvectors of Ak. Define the diagonal matrix
Uk = diag (uR,k). The probabilistic matrix Mk =
1
β U−1

k AkUk, will define a random walk in the graph
Gk . The left Perron eigenvector of Mk, denoted by
µk, correspond to the invariant equilibrium state, and
is the one associated to maximum entropy measure,
or Parry measure, see [14],[9]. We will have µ, eigen-
vector of M , as the inductive limit of µk.

As we saw last section the graph Gk can be seen as
the graph of the paths of size k on G1. In the limit

we get an infinite graph G∞. Reversing the perspec-
tive, each Gk can be seen as a coarse-grained graph
associated to G∞. A vertex i ∈ Σ0 will represent the
class of vertices in G∞ such the label start with the
symbol i, in other words, is the class of paths starting
in that precise vertex. The weight, arising from the
Perron eigenvector µ, on a vertex will correspond to
the density of vertices.

In terms of the Cuntz-Krieger algebra the eigen-
vector µ induces a state τ on the algebra which will
correspond to the KMS - state at inverse temperature
β considered in theorem 18.5 in [5], where β is the
topological entropy of the subshift. This state applied
to projections pi will give τ (pi) = µ1,i. For a gen-
eral projection pξ , we get τ

(
pξ1...ξk

)
= µk−1,ξ1...ξk

.
Note that we have

∑
i∈Σ τ

(
pξ1...ξki

)
= τ

(
pξ1...ξk

)
.

The projections pξ1...ξk
in the algebra correspond to

the classes of vertices the class labeled by ξ1...ξk, and
the value τ

(
pξ1...ξk

)
correspond to the density of the

vertices in that particular class.
The conductance for a random walk, see for ex-

ample [13], [8], with probability transition matrix
W = (wij), and with invariant measure u is given
by

φ (S) =

∑
i∈S,j /∈S uiwij∑

i∈S ui

and
φ = min

S:
P

i∈S ui≤1/2
φ (S) .

The next result allow us to define conductance for a
Cuntz-Krieger C∗- algebra and at the same time to
extend the notion to the infinite graph G∞. First we
define a noncommutative conductance associated to
a projection of OA. Consider D the operator such
that D = lim→∞ Dk, where Dk = (dk,ξη), d2

k,ξη =
Mk,ξη.

Definition 1: The conductance associated to a pro-
jection pξ is given by

φ (pξ) =
τ (pξD(1 − pξ)D∗)

τ (pξ)
.

(Note that 1 − pξ correspond to the projection on the
complementary vertex set relatively to the range of
pξ).

Then we have the following result
Theorem 1: The conductance for any coarse grained

Gk , is
φ = min

p:τ(p)<1/2
φ (p) .

in particular the conductance for the infinite graph
G∞ is φ.

N  D  E  S        2  0  0  4

286



The conductance for the infinite graph is a finite
number because of the inequality that relates the con-
ductance of a random walk and the second eigenvalue
λ2 of the probability transition matrix M (the first is
1). This inequality is 1 − 2φ ≤ λ2, see . As the
second eigenvalue is the same for every matrices Mk

then λ2 is also the second eigenvalue for M . So the
conductance of the graphs Gk must be bounded by
(λ2 − 1) /2.

In future work we pretend to see if this conductance
appears also in the context of an index theorem, in a
similar way as the Hall conductance in quantum Hall
effect.
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Abstract—Experimental observations on the
effect of coupling on synchronization of two
mutually coupled nonidentical Chua’s oscillators
are presented.  We observe that in the very weak
coupling region the coupled oscillators gradually
move from nonsynchrony to out-of-phase and then to
antiphase synchronization with coupling. With
further increase of the coupling strength, coexisiting
antiphase and in-phase states are found in the
intermediate range. For strong coupling, stable in-
phase synchronization is observed.

I.INTRODUCTION

The studies on synchronization of interacting
oscillators are of fundamental importance in many
areas of nonlinear dynamics [1-3]. Since 1990 [4]
many researchers concentrated on synchronization
of chaotic systems [5-6] with evidences of different
types of correlation between similar variables of
interacting oscillators. Of this phase synchronization
(PS) [7] is ubiquitous in nature and found to play
important roles in many weakly interacting living
systems [8]. Biological examples include cardio-
respiratory rhythm [9-10], neural oscillator [11] and
cognitive behavior [12]. Many physical systems [13]
and electronic circuit [14] also show PS for weaker
coupling. Coupling suppresses the natural frequency
mismatch in oscillators and they adjust their
frequencies to a common locking frequency during
PS although the amplitudes are weakly correlated.

In case of PS, two coupled oscillators develop a
n:m phase locking relation above a critical coupling
when the instantaneous phase difference remain

bounded,⏐φn-φm⏐<constant (n, m are integers). In
simplest case of 1:1 phase locking,

⏐φ1-φ2⏐<constant, which is defined as in-phase
synchrony. Other phase locking relations as

antiphase with⏐φ1-φ2⏐=π and out-of-phase

synchronization with 0<⏐φ1-φ2⏐<π are observed in

many systems [15-17]. Antiphase and out-of-phase
states lie on the synchronization manifold transverse
to the in-phase manifold.

Similar systems in nature have parameter
mismatch, which induces variations in the natural
frequency of individual oscillators. The difference in
natural frequency is defined as frequency disorder.
A common notion is that coupling induces a
monotonic decrease in the frequency disorder and it
disappears above a critical coupling. A mark
departure from this notion denoted as anomalous
phase synchronization has been observed recently in
Foodweb model [18] where an initial increase in
frequency disorder with coupling has been observed
before following the usual transition to in-phase
synchrony. Experimental evidence of such
anomalous transition to both in-phase and antiphase
synchrony has been found in coupled Chua's circuit
[19] for separate set of parameters.

Fig.1. Coupled Chua’s Oscillator
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Most recent observations on spatio-temporal
synchronization of recurrent childhood epidemics
[15] show transition from antiphase to in-phase
synchronization at a critical coupling while both in-
phase and antiphase synchronization co-exist for
intermediate coupling. Such in-phase and antiphase
synchronization is quite prevalent in neural
oscillations like gamma-beta rhythm [16] and in
brain function [17]. Different bifurcation phenomena
in transition from antiphase to in-phase
synchronization has been elaborated in coupled limit
cycle neural oscillators [20], nevertheless a complete
understanding of the mechanism of this transition
with a turbulent phase for intermediate coupling is
yet to be made. Similar turbulent phase has been
observed in distributed parametric oscillators [21].

II.EXPERIMENTAL CIRCUIT

Experimental circuit is shown Fig.1 where each
oscillator consists of linear inductor L1,2, capacitors
C1,3, C2,4,  resistor R1,2 and one nonlinear resistance.
The nonlinear resistance is approximated [22] by a
piecewise linear function, which is designed by
using two Op-amps (uA741). The governing
equations of the coupled circuit are

where the piecewise linear function is

The measured voltages VC1,C3,VC2,C4 at corresponding
capacitor nodes and the inductor current I1,2 are the
state variables. The coupling resistance Rc

determines the strength of coupling. The slopes a1,2

and b1,2 of the piecewise linear function are given by

All the circuit components have mismatches
since no two similar off-the-shelf components are

found identical as inevitable in nature. So we started
with two nonidentical Chua's oscillators, where the
parameter mismatch induces a natural frequency
disorder between the two uncoupled oscillators. All
components remain fixed throughout this paper
except R1,8, which is varied to obtain different
oscillatory states, periodic to chaotic. The voltages
VC1,C3,VC2,C4 at capacitor nodes C1,3, C2,4 are
measured for different coupling resistance Rc using a

digital oscilloscope with sampling rate of 40µs. The

instantaneous phases φ(t) of the state variables are
determined using Hilbert transform on the measured

scalar signals and the mean frequencies Ωi(ε) of the
coupled oscillators are estimated as mean rate of

change of φ(t). A simple index of relative phase,

∆Ω=2(Ω1+Ω2)/(Ω1+Ω2) is taken as a measure [8] of
synchronization, which is the frequency difference
as percentage of mean frequencies of the coupled

oscillators Ωi(ε) (i=1,2). Zero difference in mean

frequency (∆Ω≈0) between the oscillators indicates
phase synchronization.

III.RESULTS

We find that the weakly coupled oscillators move
from nonsynchrony to out-of-phase above a
coupling threshold and then gradually move to
antiphase synchronization with coupling. With
further increase in coupling above another
threshold, the coupled oscillators show
desynchronization bursts over a range of coupling
strength until they stabilize to in-phase
synchronization above a strong coupling. The

coupled limit cycle oscillators (R1=1552Ω,

R2=1447Ω) show stable out-of-phase and antiphase

above a coupling strength ε≥εC1≈5.952×10
-6

 as
shown in Fig.2(a). The time series of out-of-phase
and antiphase are shown in Fig.3. Onset of

desynchronization starts at a critical coupling ε≥εC2

(≈1.26610
-5

) when the frequency disorder (∆Ω)
suddenly jumps high and fluctuates over a range of
intermediate coupling strength. With strong

coupling, ∆Ω decreases and finally disappears at a

large coupling threshold (ε≥εC3≈5.952×10
-5

).
We note that the frequencies in Fig.2(b) of the

individual oscillators rotate at a common frequency

for ε>εC1 although the oscillators remain in either
out-of-phase or antiphase. However, individual
frequencies increase monotonically until
desynchronization starts. At the onset of

desynchronization at ε≥εC2 the frequencies of
individual oscillators bifurcate again. It is found that
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the oscillator with higher frequency is less sensitive
to coupling as indicated by its slower rate of change
than that of the oscillator of lower frequency. This
behavior has similarity with the dephasing effect
[23] observed in weakly coupled neural oscillators.
Alternate cycles of in-phase and antiphase states are
observed during the desynchronization bursts in the
intermediate coupling range as shown in the time

series in Fig.4. ∆Ω starts decreasing once again at
intermediate coupling and accordingly, the
individual frequencies also start coming closer and
finally converge at stronger coupling above a

coupling ε≥εC3 in the in-phase regime as shown in
Figs.2(a) and 2(b).

All three coupling thresholds shift with natural

frequency mismatch (∆ω) of the uncoupled
oscillators, which actually depends upon the
parameter set of individual oscillators. The two
parameter bifurcation of frequency mismatch

(∆ω) and  coupling (ε) is shown in Fig.5 for three
different regions. The bifurcation diagram is
obtained from numerical results closely matching
with the behaviors of experimental circuit. It shows
striking similarities with the behaviours of simple
phase oscillator model as discussed in Ref.24.

III. CONCLUSION

Antiphase, out-of-phase ant in-phase regimes are
observed in two Chua’s oscillators coupled
diffusively by one variable. Bifurcation of parameter
mismatch and coupling is obtained numerically.
Interesting features of coexisting in-phase and
antiphase states are observed for intermidiate range
of coupling in the turbulent phase.
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Fig.2. Antiphase, out-of phase and in-phase: ∆Ω  and

individual frequenices Ω i (dashed and bold lines) with

coupling are plotted in (a) and (b) respectively.

R1=1552Ω , R2=1447Ω

Fig.5. Two parameter bifurcation of ε and ∆ω: Open

circle for in-phase, bold square for antiphase and solid

circle for out-of-phase thresholds.

Fig.3. Time series of VC1 (light line), VC3 (bold line) for

parameters: R1=1552Ω , R2=1447Ω  (a) out-of-phase,

RC=168kΩ   (b) antiphase, RC=79kΩ.

Fig.4. Time series of VC1,  VC3 for intermediate coupling

RC= 30.5kΩ [and R1=1552Ω , R2=1447Ω].
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Abstract - Limit cycles in the two-dimensional first 

order recursive digital filter with saturation 

nonlinearity are investigated. Areas, in which concrete 

types of two-dimensional limit cycles in space of 

coefficients of the filter can exist, are received. 

Bifurcation diagram of two-dimensional first order 

recursive digital filters is analyzed. 

I. INTRODUCTION 

Nonlinear problems in digital filters can be divided 

into three main classes [1]: 

1) research of processes in the systems with the 

linear adder and quantization; 

2) research of processes in the systems with the 

nonlinear adder and quantization; 

3) research of processes in the systems with the 

nonlinear adder without quantization. 

The problems connected with the research of the 

first class for two-dimensional systems are in an initial 

stage, though similar one-dimensional problems are 

well studied. The majority of works is dedicated to the 

analysis of one-dimensional nonlinear systems with 

the use of statistical approach [2]. With its help it is 

possible to determine an average level of noise of 

quantization on an output of nonlinear system and its 

capacity.  The disadvantage of the statistical approach 

is the certain rigidity of initial requirements for its 

application that is not always carried out in practice.  

Systems with the nonlinear adder and quantization 

typically have two-dimensional limit cycles on their 

output. Considering this, the research of the given 

class of systems is conducted using the determined 

approach, thus allowing us to find areas of existence 

and parameters of two-dimensional limit cycles. The 

definitions of two-dimensional limit cycles are given 

in [3]. Necessary and sufficient conditions for 

appearance of confluent limit cycles in first order 

filters with three quantizers and necessary conditions 

for appearance of diagonal limit cycles in the special 

case of first order equation are found in [4]. 

Theorems, reflecting some general properties of 

two-dimensional first order digital filters with two 

nonzero coefficients and with one quantizer, working 

on a principle of a roundoff are proved in [5]. For a 

case of three-level quantization, areas of existence of 

two-dimensional limit cycles in space of coefficients 

of the filter are found in [6]. Also such parameters of 

cycles as an amplitude and a period are determined 

there. 

In the works dedicated to research of systems with 

the nonlinear adder without quantization, conditions of 

stability in state-space are considered. Sufficient 

conditions of stability of Fornasini-Marchesini state-

space model are found in [7]. Sufficient conditions of 

asymptotic stability of the nonlinear two-dimensional 

filter are also considered there. Lyapunov second 

method for a determination of sufficient conditions of 

global asymptotic stability of two-dimensional filter 

state-space model is used in [8]. Observance of 

conditions of stability guarantees the absence of limit 

cycles on an output of the filter. During solution of the 

given class of problems not much attention is usually 

paid to areas of existence of two-dimensional limit 

cycles and their analysis. 

 Practical interest represents detection of various 

cycles, which can exist in autonomous system with the 

nonlinear adder without quantization and areas of their 

existence in the coefficients space. 
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The problems connected with studying  conditions 

of existence of limit cycles with the different periods 

as a result of the adders nonlinearity and with an 

estimation of their amplitude taking into account the 

effects of quantization, can be solved with the help of 

the determined approach [9, 10]. The essence of the 

approach consists in splitting a range of definition of 

function of nonlinearity into zones with various 

values.  Then, consistently analyzing possible 

transitions of system on these zones, restrictions on 

the parameters of the system corresponding to certain 

movements are determined. As a result all space of 

parameters of system can be split into areas with 

various types of movements. In addition it is necessary 

to consider function of nonlinearity of the adder in an 

explicit form. 

II. MODEL FORMULATIONS

Let's consider the autonomous two-dimensional first 

order recursive digital filter with the account of only 

nonlinearity of the adder. Such model is correct in 

case when the number of levels of quantization of 

arithmetic operations is sufficiently large, i.e. effects 

of quantization do not affect work of the filter. 

In this work the two-dimensional first order 

recursive digital filter, described by the following 

nonlinear difference equation is considered: 

)),1m,1n(yb

)1m,n(yb

)m,1n(yb(f)m,n(y

11
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(1) 

where 10b , 01b , 11b  - coefficients of the filter, and 

function f ( ) – is the characteristic of the adder. In 

practice commonly the following characteristic of the 

adder with saturation (Fig. 1)  is used 
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Fig. 1. Saturation nonlinearity  

Initial conditions are set as follows: 

.1n,1mfor,0)1,n(y)m,1(y

,1mnfor,1)m,1(y)1,n(y
(3)

III. MAIN RESULTS

The area of a linear mode of the filter is defined by 

the inequality: 

1|b||b||b| 110110 .

According to the method of research, the 

characteristic of the adder is divided into three zones

(Fig. 1). 

Let's consider behavior of system (1) for n .

Taking the initial conditions (3) into account, we have: 

)b(f))1,1(yb(f)0,0(y 1111 ,

)bb(f))0,0(yb(f)0,1(y 111010 ,

)bb(f))0,1(yb(f)0,2(y 1110
2

10 ,

…

)bb(f))0,1n(yb(f)0,n(y 1110
n

10 .

Thus, for a case 1b10 , beginning with some 

Nn1 , the mode 1)0,n(y is established, and in 

case that 1b10  sequence is alternating in sign. 

From Fig. 1 it is visible, that transition from a zone II 

of function of nonlinearity is carried out when the 

module of function argument (2) achieves 1. The 

value of transient time N can be found using the 

following expression 

1bb 1110
N
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)blog1mod(N 11b10
.

Applying the formula of transformation of 

logarithms we derive the final formula of calculation 

of the transient time )0,n(y  receive 

)
bln

bln
1mod(N

11

11
.

If 1|b| 10 , then 0)0,n(y  and periodic 

movements are impossible. Let’s consider the 

following iteration on an axis m

))0,1n(yb

)0,n(yb)1,1n(yb(f)1,n(y

11

0110 .

For prescribed value 1b10

))bb()1,1n(yb(f)1,n(y 110110 ;

for the case 1b10

))bb()1,1n(yb(f)1,n(y 110110 ,

i.e. since the NN1 , the sequence )1,n(y  becomes 

periodic with the period 1 or 2 and amplitude 

1|)1,n(y| . Arguing in the same way for a 

case ,...,3,2m , we have received, that for given 

constm  sequence )m,n(y  is periodic with the 

period which is not exceeding 2, and 

amplitude 1|)m,n(y| . Character of oscillations is 

similar for constn,m . Thus, existence of 

diagonal limit cycles with the various periods is 

possible in the system. It is determined, that the basic 

types of the periods are (1,1), (1,2), (2,1), (2,2). Thus, 

the amplitude of cycles is equal to 1, and the values 

)m,n(y belonging to a cycle, are in zones I and-or III 

(according to Fig. 1).  

At Fig. 2 the bifurcation diagram is given and 

possible kinds of 2-D limit cycles on a plane ( 10b ,

01b ) for 1b1 11  are represented. It is necessary 

to note, that values of sequence )m,n(y  in a cycle of 

period (1,1) for the case 0b1 11 belong to zone 

I, and for 1b0 11  - to a zone III.

Further, row and column limit cycles of the various 

periods can exist in some zones. For a case when the 

coefficient 11b  changes in limits from -1 up to 0, 

column cycles appear in areas with the periods (1,1) 

along an axis m  and (2,2) along an axis m . If the 

coefficient 11b belongs to an interval from 0 to 1, 

column cycles appear in areas with the periods (1,2) 

along an axis m  and (2,1) along an axis m .

Fig. 2. Bifurcation diagram for a case 111b1

In the cube in coefficients space 1b10 , 1b01 ,

1b11  there can exist two kinds of movements 

essentially differing in character. In the tetrahedron of 

stability, movements arise in a zone II, then gradually 

fade and converge to zero. In the rest of space of a 

cube outside a tetrahedron of stability can exist some 

periodic movements with sector character, and their 

kind is defined by areas, adjacent with given. The 

example of such sector periodic movements is 

represented at Fig. 3. There black color designates 

values 1)m,n(y , (zone I), white color – values 

1)m,n(y (zone III), and gradations of grey 
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correspond to values )1,1()m,n(y , belonging to 

a zone II. 

Fig. 3. An example of movements in areas for 111b0

Existence of row limit cycles is probable in areas 

with the periods (1,1) and (2,2) along an axis n  for 

0b1 11 and in areas with the periods (1,2) and 

(2,1) along an axis n  for 1b0 11 .

IV. CONCLUSIONS 

The opportunity of existence of various types of 

limit cycles in the two-dimensional first order 

recursive digital filter with saturation nonlinearity is 

investigated. Areas, in which concrete types of 2-D 

limit cycles can exist, are received in coefficients 

space of the filter. Results are shown in the convenient 

graphic form. Knowledge of 2-D limit cycles 

peculiarities can help to avoid some undesirable 

effects connected with it. 
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A model of klystron oscillator with delayed feedback 

is studied in details in a wide range of bifurcation 

parameters. Due to an infinite-dimensional nature of 

the system its dynamics is found to be very complex 

and including a lot of peculiarities that are met 

among finite-dimensional systems. Presented results 

help to find the common features specific for 

distributed systems with delayed feedback and may 

also have practical implementation. 

I INTRODUCTION 

One of the topical problems of contemporary 

radio physics and electronics is a study of complex 

nonlinear behavior and chaos in RF-oscillators based 

on interaction between electron beam and 

electromagnetic fields. An interest in this field is 

twofold. On the one hand it corresponds to study of 

extraneous unstabilities in order to avoid them, on 

the other — to the need of powerful HF-generators 

capable of producing wide-spectrum radiation that 

can be achieved in chaotic oscillation regimes. Such 

devices have applications in design of linear 

accelerators of charged particles, noise radars [1], 

microwave plasma heating, etc. Delayed feedback 

generators based on multiple cavity klystrons appear 

to be very prospective for these purposes due to 

theirs high power and efficiency. However the 

dynamics of such systems is still practically 

unexplored. 

Mathematical model of delayed-feedback two-

cavity klystron oscillator was developed in [2] and 

basic peculiarities of its dynamics were studied. 

Qualitative agreement with experimental results was 

also shown. Dynamics was studied in the particular 

case of the center of oscillation zone whereas it 

appears to be most interesting nearby the edges. 

Complete bifurcation pattern of the system in the 

whole parameter space is a topic of the research 

underlying this work. 

Following our previous work [2], a model of the 

two-cavity klystron oscillator is studied. It is 

described by the system of delayed differential 

equations: 

( )( ) ( )
( )

1
1 1 1 2

12
2 2 1 1

1

,

1
2 1 .

1

i

dF
F F

d

FdF
F e J F

d F

ψ

+ γ = γ
τ

τ −
+ γ = α τ −

τ τ −

(1)

Here 1,2F  are slow varying envelopes of oscillations 

in the input and output cavities, respectively, α  is 

the excitation parameter proportional to the beam 

current and the feedback ratio, 1,2γ  are the 

dissipation parameters of the cavities, ψ is a signal 

phase shift during delay time (that is normalized to 

unity), and 1J  is the Bessel function of the 1
st
 order. 

In the following we consider 1 2γ = γ = γ .

II SELF-EXCITATION CONDITIONS, 

STATIONARY REGIMES AND THEIR 

STABILITY 

Linearizing the studied system and considering 

1,2 ~ p
F e

τ  we derive a characteristic equation 

( ) ( )2 p i
p i e

− + ψ+ γ = − αγ  (2) 

Taking into account that p  is purely imaginary 

on the stability threshold, p i= ω , where ω  — 

oscillation frequency, we obtain equations for 

eigenfrequencies 

2 2

2
tg + +

2

ωγ π⎛ ⎞= − ω ψ⎜ ⎟γ − ω ⎝ ⎠
 (3) 

and stability threshold of n
th
 eigenmode 

2 2

n
st

γ + ωα =
γ

. (4) 

An example of graphical solution of (3) in case of 

high quality factors of resonators, namely 2γ < π , is 

shown on Fig. 1. 
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Fig. 1. An example of solution of (3) 

It can be shown that eigenfrequencies with even 

numbers correspond to eigenmodes of the system 

that can be excited on basis of small fluctuations 

whereas odd numbers denote self-oscillation modes 

that can be excited basing on violent eigenmode 

oscillations. We denote latter eigenfrequencies as 

self-modulation modes. One can reveal from (4) an 

existence of the so-called oscillation zones — 

a pattern on the parameters plane depicted on Fig. 2. 

Fig. 2. Self-excitation threshold at 1.0γ =

Self-excitation occurs at lower bifurcation 

parameter ( α ) value at the center of a zone and is 

impeded at its edges. 

 Farther, let us consider an important case of 

generation of the signal with certain frequency, 

phase and amplitude. Following conventional 

terminology we call such a regime stationary. In this 

case
( )0

1,2 1,2 ,i
F F e

ωτ=  (5) 

where 
( )0

1,2F  are constant. Inserting (5) into (1) we 

derive an equation for amplitude of stationary 

generation 

( ) ( )2 2

0 1 02F J Fω + γ = αγ . (6) 

So long as 0ω =  at the center of oscillation zone, 

we obtain an equation for an amplitude of stationary 

generation at a given eigenmode 

( )0 1 02F J Fγ = α . (7) 

Graphical solution of this equation is presented at 

Fig. 3. It can be shown that solutions marked as nS

are always aperiodically unstable, whereas nP  can 

become unstable only at certain bifurcation 

parameters values. Analysis of stability conditions 

shows that nP  is stable at low α . Increase of α
leads to the loss of stability and soft inception of a 

limit cycle in vicinity of nP  that corresponds to 

excitation of self-modulation mode. The origin of 

the instability is an amplitude nonlinearity of the 

device, i.e. a driving curve (output power vs. input 

power) must exhibit a branch with sufficiently high 

negative slope. Following [3] this is called an 

amplitude mechanism of self-modulation. 

Fig. 3. Graphical solution of (7) 

The number of stable solutions nP  increases with 

the increase of α  that lead to multistability. 

All the results derived in theoretical analysis were 

verified numerically. 

III NUMERICAL SIMULATION 

Simulation of non-stationary processes reveals 

existence of a variety of limit cycles of different 

shapes corresponding to regimes of periodical self-

modulation. The studied system demonstrates 

continuous complication of shapes of limit cycles 

and hard transitions between them. The latter is 

attended with a hopping of frequency of self-

modulation. At 1γ �  transitions between cycles are 

soft while at larger γ  hard transitions are 

dominating. 

As it was predicted by theoretical analysis, 

multistability between different stationary regimes is 
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observed at large α . This effect is illustrated by 

bifurcation diagrams (maxima of output signal 

versus α ) shown on Fig. 4. 

Fig. 4. Bifurcation diagrams at 1.0, 0.0γ = ψ = .

Transitions to chaos with the increase of α  were 

studied numerically in details. When ψ  lies near the 

center of oscillation zone the Feigenbaum scenario 

takes place (see Fig. 4). An example of chaotic 

attractor exhibited by the system at 1.0, 0γ ψ= =
and 12.875α =  is shown on Fig. 5. 

Fig. 5. Phase portrait and spectrum of output signal. 

1.0, 0, 12.875γ ψ α= = =

Much more complicated dynamics is exhibited by 

the system at the edges of oscillation zones. 

Depending on initial conditions one of two 

neighboring eigenmodes could be excited. Each of 

these modes exhibit own route to chaos. 

Farther, let us consider the case of ψ  lying close 

to π  so that two adjacent eigenmodes with 0n =
and 2n =  can be excited. Parameter plane shown on 

Fig. 6 gives a notion of dynamic in this case. Firm 

lines correspond to dynamics on the mode with 

0n =  whereas dashed lines correspond to 2n = .

Since the mode with 0n =  is fundamental (has a 

lower threshold of self-excitation) on the left side of 

a figure and the mode with 2n =  — on the right and 

they are symmetric in that sense, the figure itself is 

also symmetric — mirroring firm lines with respect 

to ψ = π  yields dashed lines. 

Fig. 6. Parameter plane near the edge of oscillation zones 

SE denotes self-excitation, SM — self-modulation, 

T2 (T4) — self-modulation with doubled 

(quadrupled) period, Q — quasi-periodicity, 

SMsym — self-modulation with symmetric limit 

cycle, Ch — chaos. 

Dynamics of the system on fundamental mode is 

as follows. Increase of α  far above the threshold of 

self-modulation leads to cascade of period-

doublings. But near the edge the cascade can not 

develop and the system undergoes several 

bifurcations that are reverse to period-doubling. 

Further increase of  α  at [ ]0.97;1ψ ∈  leads to the 

rise of quasi-periodic motion with subsequent 

transition via Ruelle-Takens scenario. Increase of α
with dynamics based on non-fundamental mode 
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always leads to quasi-periodicity and transition to 

chaos via Ruelle-Takens scenario. 

An important bifurcation that is met in dynamics 

of system (1) is marked by the upper line on Fig. 6. 

This line is common for both adjacent modes and 

corresponds to transition to a limit cycle of specific 

shape that is shown on Fig. 7. Spectrum of this limit 

cycle is symmetric with respect to zero-frequency 

and has its maxima at frequencies of two adjacent 

eigenmodes. We call this limit cycle “symmetric” 

since it expresses symmetry of generator’s 

eigenmodes near the edge of oscillation zones. A 

distinctive feature of dynamics on this cycle is that it 

is based equally on both eigenmodes.  

Fig. 7. Phase portrait and spectrum of symmetric limit 

cycle. 1γ = , 0.95ψ = , 9.875α =

An increase of α  after transition to symmetric 

cycle leads to a cascade of period-doubling on its 

base and transition to chaos via Feugenbaum 

scenario. 

CONCLUSION 

Two-cavity klystron oscillator with delayed 

feedback appears to be relatively simple and very 

practical object of experimental study of chaotic 

oscillations in HF range. This device is a typical 

representative of distributed self-oscillating system 

with delayed feedback and exhibits numerous 

peculiarities of complex dynamics incidental to this 

class of systems. We believe that it will take its 

stand among reference models of HF-electronics 

exhibiting complex dynamics such as TWT and 

BWO. 
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Abstract— This paper studies cyclic D/A convert-
ers (DACs) as an application of iterated function sys-
tems (IFSs) consisting of contractive maps. Opera-
tion of basic DACs is described in terms of IFSs and
two examples for binary and Gray decodings are in-
troduced. The DACs are compared with an IFS for
analysis of DNA structures. We then present a sim-
ple implementation circuit of the DAC for Gray de-
coding. The circuit is based on intermittently coupled
switched capacitors.

I. INTRODUCTION

Cyclic A/D converters (ADCs) and D/A convert-
ers (DACs) are indispensable tools in various signal
processing systems. There exist various ADC archi-
tectures including binary-coding-based ADCs, Gray-
coding-based ADCs and their analogues [1]-[3]. The
architectures of DACs are usually based on inverse op-
eration of the ADCs. In order to realize these data
conversion systems, switched-capacitor-based imple-
mentation has been studied intensively [1] [4] [5]. On
the other hand, iterated function systems (IFSs [7] )
have been studied as interesting dynamical systems
with rich phenomena. Although the IFSs include wide
class of dynamical systems, this paper focuses on IFSs
consisting of contractive mappings such as Sierpinski
triangle generators. Applications of the IFSs include
DNA sequence analysis, image information compres-
sion and encryption [7]-[9].

This paper discusses cyclic DAC as an application
of the IFSs. First, as a preparation, we introduce ba-
sic cyclic ADCs in terms of 1D maps [10]. Two ba-
sic ADC examples for binary and Gray codings [1]-
[3] are shown. Cyclic DACs are inverse systems of
the ADCs Second, we describe operation of the cyclic
DACs in terms of IFSs. Among many applications
of the IFSs, we introduce chaos game representation
(CGR [8]) for analysis of DNA structures. We then
compare the CGR with the DACs and discuss the dif-
ferences. Third, a novel simple implementation cir-

cuit of the DAC for Gray-decoding is presented. The
circuit is based on intermittently coupled switched ca-
pacitors (ICC [11]).

It should be noted that Refs. [1]-[6] discuss cyclic
ADCs and DACs, however, the Refs do not cite IFSs.
This paper discusses relationship between the DACs
and IFSs. The discussion is important to develop ef-
ficient DACs and to introduce new researchers to the
nonlinear field.

II. ADCS AND CHAOS

As a preparation to consider the DACs, we intro-
duce basic cyclic ADCs in terms of 1D maps [1]. Let
us consider ADCs which convert a constant analog in-
put X ∈ I ≡ [0, 1] to a digital output sequence y ≡
{y(1), · · · , y(l)}, yi ∈ {0, 1}, where l is a finite code
length. The operation be described by Equation (1).

x(n + 1) = f(x(n)) =

{
f0(x(n)) for x(n) ∈ I0

f1(x(n)) for x(n) ∈ I1

y(n) = Q(x(n)) =

{
0 for x(n) ∈ I0

1 for x(n) ∈ I1

x(1) = X, 1 ≤ n ≤ l < ∞,
(1)

where n denotes discrete time, the input X is applied
as an initial value x(1) and the output is given via one-
bit quantizer Q. Also, f0 and f1 are expanding affine
mappings:

f0 : I0 → I | d
dxf0(x)| > 1 for x ∈ I0

f1 : I1 → I | d
dxf1(x)| > 1 for x ∈ I1

where I = I0 ∪ I1 and I0 ∩ I1 = ∅. Since f is ex-
panding, the 1-D map f can generate chaos if l = ∞
[10] . Although the 1-D map can be a common mathe-
matical model for cyclic ADCs and chaos generators,
we should note the following. First, the ADCs oper-
ate within finite time (l < ∞), and chaos can not be
recognized within finite time. Second, in the ADCs,
we pay attention to the output sequence y depend-
ing on the initial state X that is an analog input. In
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Fig. 1. Cyclic ADCs based on chaotic maps (xn ≡ x(n)).
(a) Cut map, (b) Valley map.

the chaos from ergodic theoretical viewpoint, we pay
attention to statistic properties of infinite sequence
{x(n)} which is independent of the initial state [10].
Equation (1) includes the following two typical exam-
ples. Fig. 1 (a) shows the first example:

x(n + 1) =

{
2x(n) for x(n) ∈ I0

2x(n) − 1 for x(n) ∈ I1
(2)

where I0 = [0, 0.5) and I1 = [0.5, 1]. This is the cut
map [10] and is used as an ADC for binary coding [1].
Fig. 1 (b) shows the second example:

x(n + 1) =

{
−2x(n) + 1 for x(n) ∈ I0

2x(n) − 1 for x(n) ∈ I1
(3)

where I0 = [0, 0.5) and I1 = [0.5, 1]. This is the
valley map ( an analogue of the tent map [10] ) and is
used as an ADC for Gray coding [3]. The binary and
Gray codes for l = 3 ( code length 3 ) are shown in
the Fig. 1 with the 3-fold compositions of the map.

III. DACS AND CGRS

We have cyclic DACs corresponding to the cyclic
ADCs in Section II. Let an ADC of Equation (1) con-
vert an analog value X to a digital sequence y. In

nX
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1+nX

0 1
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)(b
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1 01
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1 0 1
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1 11

"1"

"1"

"0"

"0"

Fig. 2. (a) DAC for binary decoding from Y ≡ (1, 0, 0),
(b) DAC for Gray decoding from Y ≡ (0, 1, 0).

order to decode y, the DAC uses the following digital
input Y that is the inverse sequence of y:

Y ≡ {Y (1), · · · , Y (l)} = {y(l), · · · , y(1)}

where Y (i) = y(l − i + 1). Let X̃ ∈ I be the output
of the DACs. X̃ is often referred to as an estimation
of X . The operation of the DAC can be described by

X(n + 1) =

{
f− 1
0 (X(n)) for Y (n) = 0

f− 1
1 (X(n)) for Y (n) = 1,

(4)

where 1 ≤ n ≤ l < ∞. If an initial value X(1) and
an input Y are given, Equation (4) is updated and the
final value is to be the estimation X̃ = X(l). Since
f0 and f1 are affine mappings, we can guarantee ex-
istence of their inverse mappings f − 1

0 : I→ I0 and
f− 1
1 : I→ I1. It should be noted that f − 1

0 and f− 1
1 are

contractive since f0 and f1 are expanding: Equation
(4) is the IFSs consisting of contractive mappings.

Based on Equation (4), we can give two DACs cor-
responding to two ADCs examples in Equations (2)
and (3). If Y is given by Equation (2) for binary cod-
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ing, the decoding is realized by the following DAC.

X(n+1) =

⎧⎨
⎩

1
2(X(n) + 0) for Y (n) = 0

1
2(X(n) + 1) for Y (n) = 1,

(5)

where Y (n) ∈ {0, 1}. If Y is given by Equation (3)
for Gray coding, the decoding is realized by the fol-
lowing DAC.

X(n + 1) =

⎧⎨
⎩

1
2 (−X(n) + 1) for Y (n) = 0

1
2 (X(n) + 1) for Y (n) = 1,

(6)
Fig. 2 illustrates these maps with binary and Gray
codes. DACs (5) and (6) can provide estimation X̃ =
x(l) from Y of binary and Gray codings, respectively.
For these two DACs, we have following criterion for
the estimation error.

| X̃ − X |< 2− l for any X(1) ∈ I. (7)

This is an important factor to evaluate performance of
the DACs, however, it is hard to give such factor for
the generalized cases of Equation (4).

As shown in Section I, the IFSs have rich dynam-
ics and have many applications. Since it is hard to
discuss such many applications, we focus on an inter-
esting one: the chaos game representation ( CGR [8] )
for analysis of DNA sequences. The dynamics of the
CGR is two dimensional analogue of Equation (5):

X(n + 1) =
1
2
(X(n) + Y (n)) (8)

where X ≡ (X1, X2) and Y ≡ (Y1, Y2). Y can
take four values corresponding to four bases of DNA

)0,0(a )0,1(t

)1,0(c )1,1(g

Fig. 3. The result of the chaos game on three points

sequences: Y ∈{a, t, c, g}, a ≡ (0, 0), t ≡ (1, 0),
c ≡ (0, 1) and g ≡ (1, 1). As a DNA sequence is
applied to the CGR, the sequence {X(n)} may con-
struct a proper image for any X(1) ∈I × I that can
be used to investigate/classify patterns in the DNA se-
quence. In addition, if one element of the four bases
lacks, e. g., Y ∈{a, t, g}, the image is to be the Sier-
pinski triangle as shown in Fig. 3: it corresponds to
the chaos game [8]. Although IFS is a common math-
ematical model for cyclic DACs and CGRs, we should
note the contrasts including the following:

1. In the DACs, Y is an encoded digital input. In
the CGRs, Y is a DNA sequence data.

2. In the DACs, the output is a point X l at finite
time l. In the CGRs, we pay attention to the limit
set {Xn} ( such as Sierpinski triangle ).

3. Requests of DACs researchers include simple
and concrete circuit implementation with effi-
cient performances such as high-resolution and
low-distortion. Interests of CGRs researchers in-
clude generalized system description and classi-
fication/recognition of the phenomena.

IV. IMPLEMENTATION

Fig. 4 shows implementation examples of DACs in
Equations (5) and (6), where y ∈ {0, E} is an input
signal with clock period T . Fig. 4 (a) shows the circuit
in [5] that can realize Equation (5) for binary decod-
ing. Fig. 4 (b) shows our circuit in order to realize
Equation (6) for Gray decoding. In the circuit, switch
Su is closed only if y = 0. If behavior of switches
and capacitor voltages are ideal [11], the dynamics is
described by the followings.

v1(t) ≡ vh(n) =

{
v3(t) for y = E

−v3(t) for y = 0

v2(t) = E, v3(t) = v1(n − 1)

for S = on (nT ≤ t < (n + 0.5)T )

(9)

v1(t) = 1
2(vh(n) + E) ≡ v1(n) = v2(t) = v3(t)

for S = off ((n + 0.5)T ≤ t < (n + 1)T )
(10)

This circuit can realize DAC for Gray decoding,
where v1(n) and y are proportional to X(n) and Y ,
respectively. Since these circuits correspond to IFSs
consisting of contractive maps, the circuits behavior is
stable and are suitable for hardware implementation.

N  D  E  S        2  0  0  4

302



S

1v
1C2C 2vy

)(aS

1v
2C 2v

C

1

3v

1

S

S 0=y

E

)(b

S

S

1C

uS

S

S

Fig. 4. Implementation examples where C1
.= C2. (a)

DAC for binary decoding (cut map), (b) DAC for Gray
decoding (valley map). S =on for nT ≤ t < (n +
0.5)T and S =off for (n + 0.5)T ≤ t < (n + 1)T ,
where T is period of clock signal. S̄ operates in inverse
phase of S.

Fig. 5 shows laboratory measurement by test cir-
cuits. In the figure the output y corresponds to 4-bit
sequences (0101) and (1010). The circuit in Fig. 4
(b) can realize Gray decoding as shown in Fig. 5 (b):
capacitor voltage v1 enters alternately into two bins
corresponding to (0101) and (1010). In a likewise
manner, we have confirmed operation of circuit in Fig.
4 (a). Some effective compensation methods for fur-
ther improvements of the circuits performance can be
found in [4] [5].

V. CONCLUSIONS

We have considered cyclic DACs as an application
of IFSs and have discussed similarities and differences
between DACs and CGRs. A simple implementation
circuits of the basic DACs for Gray decoding is also
presented. Future problems include the followings.

1. Analysis of encoding/decoding properties for
wider class of ADCs/DACs based on IFSs.

2. Extension to higher dimensional systems.
3. Practical circuit implementation.
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Abstract— The synthesis of the nonlinear circuits
using the wavelet domain techniques has been accom-
plished in this study. When the time-frequency domain
specifications have been given as the wavelet ridges,
the signal with the given ridges has been synthesized.
Then, the dynamical wavelet network has been trained
for the synthesized signal. The circuit of the wavelet
network has been designed and simulated.

I. INTRODUCTION

In this study, a synthesis procedure for the nonlin-
ear circuits with desired time-frequency domain be-
havior using wavelet domain methods has been pro-
posed [1]. The system includes four main blocks:
signals synthesis, system modelling, circuit synthesis
and verification which are shown in Figure 1. The sig-
nal synthesis block synthesizes the signal with the de-
sired time-frequency domain properties using wavelet
ridges method. The system modelling block deter-
mines the parameters of the dynamical wavelet net-
work using the time-series synthesized by the first
block. In the circuit synthesis block, the wavelet net-
work circuit has been realized with the wavelon circuit
proposed. In the verification phase, the wavelet ridges
of the output of the wavelet network have been cal-
culated by singular value decomposition based ridge
determination method proposed in [2].

II. SIGNAL SYNTHESIS

The signal synthesis block synthesizes the signal
with given time-frequency domain specifications as
follows:

E(t, f) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E1(t, f) t0 ≤ t < t1 & f0 ≤ f < f1

...
En(t, f) tn−1 ≤ t < tn &fn−1 ≤ f < fn

0 otherwise
(1)

Time
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Time
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Vout
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Synthesis

System
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Circuit
SynthesisVerification

Fig. 1. The block diagram of the system

where E(t, f) represents the energy distribution in the
time-frequency plane.

Before introducing the details of these methods,
brief explanation about wavelet transform should be
given. In continuous wavelet transform (CWT), the
signal is projected on a family of zero-mean functions
called wavelets, deduced from a mother wavelet by
translations and dilations

Ws (a, b; Ψ) �

∞∫
−∞

s (t) Ψ∗

a,b (t) dt (2)

where a and b are the dilation (scale) and transla-
tion coefficients, respectively; the scaled and trans-
lated wavelet is obtained as

Ψa,b (t) �
1√
a
Ψ

(
t − b

a

)
, a ∈ R

+, b ∈ R (3)

where Ψ (·) is the mother wavelet and * denotes the
complex conjugate . The mother wavelet must satisfy
the admissibility condition which implies zero mean
as

cψ =

∫
∞

0
|Ψ(ω)|2 dω

ω
< ∞. (4)

as given in [3].
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The time-frequency domain specifications have
been given as the ridges of the wavelet transforms.
The multi-component signal with the instantaneous
amplitudes Al(t) and the instantaneous phases φl(t)
can be described by

s(t) =

L∑
l=1

Al(t) ejφl(t) (5)

where L is the number of the components, then the
wavelet transform can be written as

Ws(a, b; Ψ) =
1

2

L∑
l=1

Al(b)e
jφl(b)Ψ̂∗(aφ′

l(b))+r(a, b)

(6)
with r(a, b) ∼ O(|A′

l|, |φ′′

l |) where the prime denotes
the derivative [4], [5]. Therefore, if the Fourier trans-
form of the mother wavelet “Ψ̂(ω)” is localized near a
certain frequency ω = ω0, the scalogram is localized
around L curves

al = al(b) =
ω0

φ′

l(b)
, l = 1, ..., L (7)

which are called ridges of the wavelet transform. The
values of the scalogram along the ridge construct the
transform skeleton or wavelet curve. Thus, the origi-
nal signal s(t) can be recovered using the skeleton of
the transform.

The real part of the signal s(t) given in Eq.(5) can
be constructed from the skeleton of the transform us-
ing the approximate formula given in Eq.(6) as

sr(b) = 2Re{
L∑

l=1

Ws(a
l(b), b; Ψ)} (8)

where L is the number of the ridges [5]. The re-
construction using the transform skeleton is a simple
scheme and it produces good approximations. In or-
der to synthesize a signal from the given ridges a code
in MATLAB has been written.

III. SYSTEM MODELLING

Any finite energy multivariate function can be ap-
proximated by wavelets using the multiresolution ap-
proximation property of the wavelet decomposition.
In order to approximate arbitrary nonlinear functions
the wavelet network which combines feedforward
neural networks and wavelet decompositions has been
proposed in [6].

When the input-output pairs measured from the
system to be modelled is given as

{x(tk), y(tk)| y(tk) = f(x(tk)) + εk}
k = 1, . . . , K, f(·) : R → R (9)

where εk is the measurement noise, the problem is to
minimize the mean square error between the actual
output and the output of the wavelet network

MSE �
1

2
E

{
( y − fw (x))2

}
(10)

where the output of the wavelet network is defined as

fw(x) =
N∑

i=1

wi Ψ (Dix − bi) + cT x + f (11)

where N is the number of d − dimensional
wavelons, wi is the wavelet coefficients for each
wavelon, Di = diag(di

11, . . . , d
i
mm) ∈ R

d×d where
d i

jj = 1/aij and aij is the dilation coefficient,
Ψ(·) : R

d → R is the mother wavelet function,
bi ∈ R

d is the translation coefficient vector, c ∈ R
d

represents the coefficient of the linear term and b is the
bias term to approximate the functions with nonzero
mean.

The wavelet networks have also been used in the
identification of the dynamical systems or in the pre-
diction of the future outputs of the systems. Assume
that a dynamical system is defined as

y(k) = F (x(k)) + εk, F (·) : R
d → R. (12)

According to the Taken’s time-delay embedding theo-
rem [7], the multidimensional dynamical structure of
the system can be retrieved from single scalar variable
observed from the system. Let a vector xs ∈ R

d be
constructed from the observations as

xs(k) = [y(k − T ) y(k − 2T ) . . . y(k − dT )] (13)

where d is the embedding dimension and T is the em-
bedding delay. Then

y(k) = F (xs(k)) (14)

follows the dynamical evolution of the original sys-
tem. Therefore, the next state of the system is pre-
dicted form the previous observations.

The system evolution function F is approximated
by some arbitrary set of basis functions for the mod-
elling or identification of the nonlinear dynamical sys-
tems [8],[9],[10]. The purpose is to represent Eq.14
with the suitable wavelet network. Since the obser-
vations can be expressed as a function of past mea-
surements, the past values are used as inputs and the
present values are used as output for the wavelet net-
work to approximate the function F (·). The output of
the wavelet network Fw is

y(k) = Fw(xs(k)) =

N∑
i=1

wiΨd (Di xs(k) − bi)+cT x+f

(15)
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IV. CIRCUIT SYNTHESIS

The static and dynamical wavelet networks suc-
cessfully model the nonlinear systems. The circuit
implementation of the wavelet network with Mexican
Hat mother wavelet [11] will be introduced in this sec-
tion.

The Mexican Hat mother wavelet is one of the com-
monly used real mother wavelet because of its good
approximation ability. The mother wavelet is defined
as

Ψ(x) = (d − ‖x‖2) exp (−‖x‖2

2
) Ψ(·) : R

d → R.

(16)
where ‖x‖2 = xT x. The circuit implementation of
the Mexican Hat mother wavelet has been accom-
plished using antilog amplifier, operational amplifiers
and passive circuit components.

A. The Circuit Implementation of Dynamical Wavelet
Network

The wavelet network can be used for modelling the
nonlinear dynamical systems. The dynamics given
in Eq.(15)has been implemented by the dynamical
wavelet network circuit shown in Figure 2.

Static
Wavelet
Network

G=1

C
V0

. . .

Vp

Cd C1

. .
 .

z1

zd

y(k) y(k-T) y(k-dT)

G=1 G=1

V1

Fig. 2. Dynamical wavelet network circuit.

The capacitances are used as the memory elements
which stores the previous outputs of the wavelet net-
work. The voltage controlled switches are controlled
by the external pulse generators which are triggered
sequentially. Therefore, when the related voltage con-
trolled switch is in “ON” state, the voltage is stored
in the capacitance and it is ready as an input to
the static wavelet network for the calculation of the
next state. The order of the switch control pulses is
Vcont, Vcont1 , . . . , Vcontd for a d−dimensional wavelet
network. The switching effects have been filtered out
by the low-pass filter.

V. VERIFICATION

In the proposed nonlinear circuit synthesis system
the circuit has been designed according to the spec-
ifications given in the time-frequency domain. Giv-
ing the specific wavelet ridges is one of the proposed

methods for signal synthesis [1] and it is more natural
way of determination of the signal properties. When
the design process has been completed, the output of
the system must be tested to determine whether the
proposed circuit satisfies the given conditions. There-
fore, the wavelet ridges of the obtained signal should
be determined. There are several ridge determination
algorithms. although the method proposed in [5] for
noisy multicomponent signals are successful in deter-
mination of the actual ridges, the proposed method in
[2] which is based on the singular value decomposi-
tion (SVD) of the scalogram matrix is computation-
ally more effective. In the proposed method the sin-
gular value decomposition of the scalogram matrix of
the related signal has been obtained. The effects of
the Additive White Gaussian Noise (AWGN) is higher
on the smaller singular values which correspond to
the components of the signal with lower energy lev-
els. Therefore, the effect of the noise is reduced by
truncating the lower singular values. The approxi-
mated scalogram has been obtained by reconstructing
the matrix only by using the larger singular values.

VI. APPLICATION

The time-frequency domain specifications of the
desired signal is as following

E(t, f) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.2 0.2 ≤ t < 0.8 sec and f = 4Hz
0.3 0.2 ≤ t < 0.5 sec and f = 7Hz
0.2 0.4 ≤ t < 0.7 sec and f = 8Hz
0.1 0.3 ≤ t < 0.6 sec and f = 11Hz
0.2 0.5 ≤ t < 0.8 sec and f = 13Hz
1 0.2 ≤ t < 0.8 sec and f = 15Hz
0 otherwise

(17)
and the desired signal, target time-frequency plane,
the synthesized signal and the wavelet transform of
the synthesized signal are shown in Figure 3.
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Fig. 3. The synthesized multicomponent aperiodic signal
by wavelet ridges method.

In order to train the wavelet network the embedding
delay has been chosen as T = τs where the sampling
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period is τs = 0.002sec for embedding dimension of
de = 3. Seven wavelons have been used and the net-
work has been trained for 1000 epochs. The obtained
mean squared error is mse = 0.000375857. The out-
put of the wavelet network in the phase space and in
the time domain are shown in Figure 4.

The wavelet network circuit has been simulated in
PSpice and the output signal of the circuit is shown in
Figure 5. The wavelet ridges of the output signal have
been obtained by the SVD-based ridge determination
algorithm. The results are shown in Figure 6.

VII. CONCLUSIONS

A nonlinear circuit synthesis method in wavelet do-
main has been proposed in this paper. When the de-
sired time-frequency domain specifications are given,
the values of the parameters of the dynamical wavelet
circuit have been determined in three steps: The signal
synthesis, the system modelling and the circuit syn-
thesis. As the last step of the procedure, the accuracy
of the synthesis has been investigated by the verifica-
tion block.

REFERENCES

[1] Ozkurt, N., “Synthesis of Nonlinear Circuits in Time-
Frequency Domain”, Ph.D. Thesis submitted to Dokuz Eylul
University, The Graduate School of Natural and Applied Sci-
ences, Turkey, Dec.2003.

[2] Ozkurt N., Savacı, F.A. “Determination of Wavelet Ridges
of Nonstationary Signals by Singular Value Decomposition
Method”, ECCTD’2003, Krakow, Poland.

[3] Mallat, S. A Wavelet Tour of Signal Processing, 2nd ed., Aca-
demic Press, San Diego, CA, 1999.

[4] Delprat, N., Escudie, B., Guillemain, P., Kronland-Martinet,
R., Tchamitchian, P., Torresani,B. “Asymptotic Wavelet and
Gabor Analysis: Extraction of Instantaneous Frequencies”,
IEEE Trans. on Information Theory, vol.38, no:12, pp:644-
664, March 1992.

[5] Carmona, R.A., Hwang, W.L., Torresani, B. “Multiridge de-
tection and time-frequency reconstruction”, IEEE Trans. on
Signal Processing, vol.47, pp.480-492,1999.

[6] Zhang, Q., Benveniste, A. “Wavelet Networks”, IEEE Trans.
on Neural Networks Vol. 3, No:6 , Page(s): 889 -898, Novem-
ber 1992.

[7] Abarbanel, H.D.I. Analysis of Observed Chaotic Data.
Springer,1996.

[8] Allingham, D., West, M., Mees, A. “Wavelet reconstruction
of nonlinear dynamics”, Int. Jour. Of Bifurcation and Chaos,
Vol.8, No.11, pp.2191-2201, 1998.

[9] Cao, L. , Hong, Y., Fang, H., He, G. “Predicting chaotic time
series with wavelet networks”, Physica D, Vol. 85, pp.225-238,
1995.

[10] Zhang, Q. “Using wavelet network in nonparametric estima-
tion”, IEEE Trans. on Neural Networks, Vol. 8, pp.227 -236,
March 1997.

[11] Ozkurt, N., Savacı, F.A., Gunduzalp, M.,“The Circuit Real-
ization of Mexican Hat Wavelet Function”, submitted to AEU
Int. Jour. of Electronics and Communications,2004.

100 200 300 400 500 600 700 800 900 1000 1100

−1

−0.5

0

0.5

1

1.5

Number of Iterations

−1 −0.5 0 0.5 1 1.5

−1

0

1

−1

0

1

xx−τ
s

x
−

2
τ
s

Fig. 4. The embedded multicomponent aperiodic signal in
phase space and the output of the wavelet network.

Fig. 5. The output of the circuit for multicomponent ape-
riodic signal in Spice.

1 1.5 2

−1

−0.5

0

0.5

1

1.5

Time

M
ag

ni
tu

de

Time

Fr
eq

ue
nc

y

1 1.5 2

5

10

15

20

Time

Fr
eq

ue
nc

y

1 1.5 2

5

10

15

20

Time

f in
st

1 1.5 2

5

10

15

20

(a) (b)

(c) (d)

Fig. 6. The wavelet transform and the instantaneous fre-
quency of the output of the wavelet network for multi-
component aperiodic signal.

N  D  E  S        2  0  0  4

307



� � � � � � � � � � � � � � 	 
 � � � � � � �  � � � � � � � � � 
 � � 
 � � � 
 � � � 
 �

� � 
 � � � � � � � � 	 � � � � � � � � � � � � � � � 
 � � 
 � � � � � �

� � � � � �  ! " � # � # ! $ ! % & ' ! ( � � # ( ) � ! * ! % & + � ,  � - ! . (  � � � ! / ! 0 & ! � 1 2 � 3 (  � � 4 ! $ ! # ! 5 � % %
% 6 ! 7 � 8 , - ( 9 : � / � � � � 3 � � / & ; ,  � � ( 5 � - ! ; � � < � 3  � , - = ! > ! �

0 " 7 � ( ( 8 ( 9 � � 1 � 7 � � � & , � � ; � � < < � 3  � , - ( 9 + ( # �  � � 5 ! = ! > ! �
% % 6 ! 7 � 8 , - ( 9 : � / � � � � 3 � � / & , � � ; � � < < � 3  � , - ( 9 + ( # �  � � 5 ! = ! > ! �

? @ A B C D E B F G H I J K L H M N O O L K P Q L H I N I O R M S O I M T
J U V N U K V L W H V U H X I S I N J L I O L H I P K U Y O M Z K L V M S [ W H I N I
J S I \ L N I ] I Z Q O ] J Z Z R I N V M P V U R I N L K N ^ J L V M S V O J R _

R Z V I P ` a V T K N U J L V M S O L N K U L K N I O M T T K S P J ] I S L J Z H J N _
] M S V U I S L N J V S ] I S L [ b c d O K ^ _ H J N ] M S V U I S L N J V S _
] I S L J S P b c e O K ^ _ H J N ] M S V U I S L N J V S ] I S L J N I J S J _
Z Q f I P ` g I N V M P P M K ^ Z V S X ^ V T K N U J L V M S V O M ^ O I N h I P I h I S

V T R I N V M P V U R I N L K N ^ J L V M S V O I \ L N I ] I Z Q O ] J Z Z ` G H V O
R I N L K N ^ J L V M S ^ N I J Y O P M W S L H I P K U Y O M Z K L V M S I h I S _

L K J Z Z Q [ J S P L H I S U H J M O M U U K N O J T L I N W J N P O ` i M I \ V O _
L I S U I M T L W M P K U Y O M Z K L V M S O V O J Z O M M ^ O I N h I P K S P I N
L H I I \ L N I ] I Z Q O ] J Z Z R I N L K N ^ J L V M S `

j k j l m n o p q r m s o l

t u v w v u x y z { | } | ~ � � } } v � | z � � � y z y v z y ~ | � y � v ~ y ~
� � y z y v } � � � � � � � } y � � | ~ y v � � } � � � x y � z | � ~ v � �
u | z � v } } � � v ~ � v ~ v � | u � z | } � v z v � y � y z w v z � y ~ � � � �

� � � ~ � � y u | � y u | u � ~ � v } } y x � x � � � ~ | } � � � | u � � � � � � y �
� v � ~ y � � y | ~ � � } } v � � | u � z v � y � � | z � � u � � y � � v ~ y ~ � v � y
} | | � ~ } � � y v x � � � � t � � ~ v } ~ | � v } } y x � } | ~ � ~ | } � �
� � | u � � � � � � � � � � y � v � ~ y � � � ~ ~ | } � � � | u � y � v w y ~ v ~ � � � � y
| ~ � � } } v � � | u � � � � v � y x � � � ~ � � y v � � } � � � x y ~ y y � ~
u | � � | v � � y v z � � � y x � � � ~ | } � � � | u � ~ | � ~ y z w y x � u

~ } | � � � v ~ � ~ � ~ � y � � � � � � � | u � v � u ~ ~ � v } } � v z v � y � y z� � t � � ~ � } v z � � y x � z | � � � y u | u � ~ � v u x v z x v u v } � ~ � ~
� � v � � � y v � � } � � � x y � ~ � � v u � y x � � � � � � y | z x y z �
� � y u � � y ~ � ~ � y � � v z v � y � y z � � � � � � � | z z y ~ � | u x ~
� | x � z y � � � � z z y u � � y z � � � ~ w v z � y x � � � � y | z x y z | �
y � � � � � � � 	 � � � � � � y � v � u � � � x y | � y � � � � � � � 	 v � �
� z | � � � v � y ~ � | � 
 � � �  � � � � � �  
 � � v u x � | z y | w y z �
� � v � � z | � � � v � y ~ � | � 
 � � �  � � � � � � �  
  � � � � � ~
� � y u | � y u | u � ~ � v } } y x � � � u � � } v z � | � � � � � � z � v � � | u �
� u � � y � y } x | � � v � � y � v � � � ~ � � � � � � � �

t � | � � � � � 
 � v z z � y x | � � x y � v � } y x } v � | z v � | z � y � �
� y z � � y u � v u x z y � | z � y x � � v � � � y x � � � ~ | } � � � | u � v u
� y | � ~ y z w y x � � | � y w y z � ~ | } � � � | u ~ � � � � w v z � | � ~
� � } � � � } y � y z � | x ~ v u x � � v | ~ v z y v } ~ | | � ~ y z w y x � u

� � y � z } v � | z v � | z � y � � y z � � y u � � � � � � � � � � y z � | x � � ~ | �
} � � � | u | z � � v | ~ � v u u | � � y y � � } v � u y x � z | � � � y ~ y � �
| u x | z x y z v � � | u | � | � ~ y � � v � � | u � � | � � w v � y x � z | �

� � � � �  ! " ! # $ % & � % ' ( � ' ) � � & $ * + ' % * , % - .

~ � � � � u � y z y ~ � � u � y � � y z � � y u � v } � � y u | � y u v � � � y v � �
� � | z ~ � y } � y w y � � v � � � � ~ | � � z y v � � � � | z � v u � y � | � } v z �
� � � � � y x � u v � � � ~ � � � � � � � } } � � y } x � � v | ~ w � v x � � �
~ | } � � � | u � z y v � x | � u �

t u � � � ~ � v � y z � � u | z x y z � | y � � } v � u � � y y � � y z �
� � y u � v } z y ~ � } � ~ � v z z � y x | � � � � t � | � � � � � 
 � � � y
v � � � | z ~ v � � } � v u y � � z y � y } � ~ � v } } � y z � | x � � � | z � y/ ~ � u 0 1 v ~ � y z � � z � v � � | u � | v w v u x y z { | } | ~ � � } �

} v � | z � � � � ~ � y z � � z � v � � | u � | z z y ~ � | u x ~ � | � u 2 � �
y u � y | � u | � ~ y y � � ~ � � u � � u z y v } � � z � � � � � � � y v � � � | z ~
� v � y v � � | � � v z v � y � y z � � � � z � v � � | u x � v � z v � � � � � y
� y � � | x � z y ~ y u � y x � u 3 y � � � � � � t � � ~ � } v z � � y x � � v �
� y z � | x x | � � } � u � � � � � z � v � � | u | � � � z ~ ~ � � � y ~ ~ � w y } � �

� � y u � � y v � � } � � � x y | � ~ � v } } ~ � u � ~ | � x v } � | z � y � ~
v � | � � � � �  4    � v u x � � v | ~ | � � � z ~ � 5 | y � � ~ � y u � y

| � � � | x � � � ~ | } � � � | u ~ � ~ v } ~ | | � ~ y z w y x � u x y z � � y
y � � z y � y } � ~ � v } } � y z � � z � v � � | u �

j j k 6 s n r q s m 7 o p 8 9 : l p s m ; < = q : m s o l

i i
L

C

N.C.

d

v

E sinω t2 ’

E 1

> ? @ A B A C ? D E F ? G H ? I @ D I J A
K � � � z y � � } } � ~ � z v � y ~ � � z � � � � � | x y } � t u � � � ~ � � � z y �L � 5 � � ~ v u | u } � u y v z u y � v � � w y � | u x � � � v u � y � v u x � � yM N O � � v z v � � y z � ~ � � � | � L � 5 � � ~ z y � z y ~ y u � y x � � � � y

� | } } | � � u � � � � z x | z x y z � | } � u | � � v } � � u � � � | u P
O Q � M 	 � � R S M T R U M U 
 � � 	

� � y u | z � v } � � y x � | w y z u � u � y � � v � � | u | � � � � ~ | ~ � � } �
} v � | z � ~ � z y ~ y u � y x � � � � y � | } } | � � u � y � � v � � | u P

V � WX � Y T X � � � X Z 	WY � � X T � / [ T / ~ � u 0 1 	 4 � � 	
� � y z y � v z v � y � y z / [ � / � v u x � � | z z y ~ � | u x � |
x � z y � � � � z z y u � � y z � � v � � } � � � x y | � v u y � � z y � y } �

N  D  E  S        2  0  0  4

308



� � � � � � � � � � � � � � � 	 � 
 � �  � � � � � � � � � � � � � � 
 � 
 � �
� � � � � � � � � � � � � � � � � � � � 
  � � � � � � � � � � � � � 
 � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � �
� � � � 
 � � � 
 � � � � � 
 � � � � � �

� � � � � � � � � � � � � � � � � � �  � � � � 	 � � � �

 � � ! � 	 � � � � 	 � � � 
 � ! � � ! � � � � � �

" � � � � � � � � � � � �  � � � � � 
 � � � � # � � � � � � � � � � 
 � 	 � � �
� � � $ � � � � � � � � � � � � � � � � 
 % � � � � � � � � � � � 
 �  � � �
� 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � �  � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � �  � � � � � � � � � � � � � � 
 � � � � � � � �  # � � � � � � � � �
� � � � � � 	 � 
 �  � � � � �  � � � � � � � � � � � � � �  � � � # � � � �
� � � � � � � � 	 � 
  � � � �  � � � � � � # � � � � � & � ' � � � �
� 
 � � � 
 $ � � � � � � � � � � � � � � � � � � � � 
 � � � # � � �  �
� � � � � � � � � � � & � � � � � � � � � � 
 � � � � � �  � � � � � 	 � � 	 � 
 �
� � � � � � � � � � 
 � � �  � � � �  � � � � � � � � � � � � � � � � �
� � � � � � � � � 
 � � � � � � 
 � � � � �  � � � � � � � � � � � � � # �
� � � � & � ' � � � � � � # � � � 
  � � 
 & � � � � � � � � � � � � � � � � � � � � �
� � � � � � 
 � � � � 	  � � � � � � � � � � � � � � � � � � � � � � 
 � � � �
 � � � � � � � � � � � � � # � � � � � & � ' � � � � " � � � � � � � � � �

� � � $ � � � � � � 
 � � � � � � � � 
 � � � � 
 # � � � � � � � � � � � � � � �
� � � � � �  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

	 � � � � � �  � � � � � � �  # � � � � � � � � � � ! � � � � � � � � � 

� � � �  � � � � � � � � � � � � � � & � ' � � � � � � � � � � � � � � � � �
� � � � � � � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � 
 � � � & � � � 
 � � � 	 � � �
	 � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � 	 � � � � � � � � � � � ( � )  ( ' )  ( � ) � � � � � 
 � � � & � � � � �
� � � � � � � � � � 
 � � � � � � � � �  � � � � $ � � # � � � � � � � � � � �

-1.5

0

1.5

-1.5 0 1.5

y

x
-1.5

0

1.5

-1.5 0 1.5

y

x
� � � � � 
 & � � � � � � � � � � � � � � � � $ � � � � � � � �

� � � � � � � � � � � �  � � � � � � �  � �
�  � � � � � � �

-1.5

0

1.5

-1.5 0 1.5

y

x
-1.5

0

1.5

-1.5 0 1.5

y

x
� � � " � � � � � � � � � � � � � � � � " � � � � � � � � � � � � 
 � � �

� � � � � � � � � � � � � � � �
�  � � � � � � � � � � �  � � � � � � �

# $ % & � & � ' ' ( ) * ' � ( � � � � � � + � � � � � &

-1.5

0

1.5

-1.5 0 1.5

y

x

# $ % &  & , ! ) � ' $ * ) ' ' ( ) * ' � (
� � � � � �   � � � � � � �    � � � � � � �  - � � � � ' � � �

� � � � � � � � 	 � � � � � � � � � � � � � � � � � � & � � # � � � � � � � 
 � � 

� � � � � � � & � � &  � # � � � � � � � 
 � � 
 � 	 � � � � � � � � � �

" � � � � � � � � � � � � � � " # � $ . %  � � / � � 0 1  � � � � � � � � �
� � � � � � 
 � � � � � � � � � � � � � � � � � � 
 � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � 
 � * � � � � 
 � � 	 � � � � � � � � � � � � � � � � � � �
� � � � � � � � � $ � � � $ � � � � � $ � � � � � # � � � � � & � ' � � � �
� � � � �  � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � $
� � � � � � � � ( ' ) � 2 � � 
 � � � � 
 � � � � � � 	 � � � � � � � 
 � � � � 
 � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � ( ' ) �

" � � � 3 4 5 6 � � � 
 
 � � � � � � � � � � 
 � � � 
 � � � � � 
 � � � � �
� � � � � � # � � � � � � � � � � � � $ � � � � � � � � # � � � � � � 
 � �
� � � � ( � ) � � � # � � � 
  � � � � � � � � � � � � � � 
 # � � � 	 � � �
� � � � 
 � � � � � � � � � � � & � � � 
 � � � � � 	 � � � � � 
 � � � � � 


# � � 
 � � � � � � � $ � � � � � � � � # � � � � � � 
 � � � � � � � � � �
� � 
 � � � � � � � � � 
 � � � � � � � 
 � � � � �  � � � � � � � � 
 � � 
 � � � � �
� � � � � � 
 % � � � � � � � � � � � 
 # � � � � � � � 
 � � � � � � � �
� � � 
 � � � � � � � � � � � � 
 � � � � � � � 
 � � 
 � � � � � �  � � � - 7 

# � � 
 �  & � � � � � � � � � � � � � � � � � � � � � � � � � �  �
� � � � � � � � � � $ � � � � � � � � � � � � � 
 � � � � � � � �   � � �
� � � � � � � � � � �  � � � � � � � � � � � � 	  � # � � � � � � � � �
� 
 � � 
 � � � � 	 � 
 � � $ � � & � � 
 
 � � � � � � � � � � # � � � � � � � � � �
� � � � � �  # � � � � � 
 � � � � � 
 � � � � � � � � � 
 � � � 
 � � � � � 
 � �
� � � � ( � ) � 2 � � � � � � � � � 
 � � � � 
  # � � � � � � & � � � 
 � � � � � �

� � � � � � 
 � � 
 � � � � � �  � � � � � � 
 � � � � � � � � # � � � � � & � � �

� ' � 8 � � � �  � ( ) � � � � 	 � 	

� � � � � � � � � � 
 � � � � � � � � � � � 	 � ( � ) � � � � � � 	 � 
 � � �
� � � � � � � � � � � � � � � 
 � � 	 � � � � � � � � � � � � 
 � � � � � � �
� � � � # � � � � � � � � � � � � � � � � 	 * � � � ' � � � � � � � & � � 
 � � & �

� � � � � � � � � � � � � � � + � , � � �

+ � 7 � � - � 7 ! , � ! . � ! � � �

# � � 
 � + � � � ! � � /  � � � . 0 � � !  � !  ! - � � � �
� � 
 � � � � � 
 � 1 � � � � � �  � � � � � � � 
 � � � 	 � 
 � � 	 � 
 * � � � ' �
� � � � � 
 � � � � � 	 � � � � � � � � 	 ' 2 � -  � � � � � � � � � � � � � � �
7 � � � � � � � � � � � 7 � ' 2 � - � � � � � � � � � � � � 
 � �
� � � � � � � � � � � � � � � �  � � � 	 � � � � # � � & % � � � � � 
 3� � � �
� . � � � � � � � � � � � 9

� . 9 � � 4 � �
, � 54 � . � , � � � - � ' 2 � - ! , � ! . � � �  �

N  D  E  S        2  0  0  4

309



� � � � � � � � � � � 	 � 
 � � � �  � � � �  � �  � � � 	 � �  � � � � 	 � 	 �
� � � � � � � � 	 � �  � 	 � � � � � � � � � � � � � � � �  � � � � � �

� � � � � 	 �  � � � � � � � � � � � � �  � � � � � � � � �  � �
	 � � � 	 � � 	 � � � � � 
 
 � � �  � � � � � � � �  �

� � � � � � � � � � � � 	 � 
 �

� � � � � � � � � 	 � � � � � � � � � � 	 � � � � � � � � � � � � � �
� � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � �  � � � � 	 � 
 � 	 	 � � � �
�  � � � � 	 � � � � � � � � � � � � � � � � � 
 
 � � �  � � � � � � � � � � �
� 	 � � � � � � � � � �  �

�
�
�
�

�

� � � � � � � � � � � � �
�
�
�
�

� � � � � �

� � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 � � � � � � � � � �  � � �  �
�

�
� � �  � � � �

�
� � � � � � � � � � � � � � � � �  � � 	 	 � � � 
 � � � � 

� �  � � � � � � � 	 	 � � � 
 � � � �  � �  � � � � � �
�

� � �  � � 	
� � � � 
 � � � 
 � �  	 � � � 
 � � � �  � �

�
� � � � � � � � � � � � � � 

� � � � � 	 � � �  � � � � � � � � � � � � �  � � � � � � �  � 
 � 	 � 	 � �
� � � � � � � � � � � � 
 
 � � �  � � � � � � � � � � �  	 � � � � � 	 � � � � � �

� � � � � 
 � �  � � � � � � � � � � � � �  � � � � 	 � � � � � � � � � �  � � �
� � � 	 � � �  � � � � � � � � � � � � � � � � � � 	 � � � � � � � � �
�  	 � � � � � � � � � � � � � � � � � � � � � � � �  	 � � � 	 � � � �

� � � 	 � � � � 	 � � � 
 � � � �  � �  � � 	 � � � 
 � � � � � � � � �
� � �  � � � � � � � � 	 � � � � � � � � � � 	 � � � � � � � � 	 � � � �
� � � � � � � � �  � 	 � � � � � � � � � �  � � � �  � � � � � 
 
 � � �
�  � � � � � 	 � � � � � � � � � �  � � � � � � � � � 	 � � � 	 � �  � � � �
� 	 � � � � � � � � � � � �  	 � � � � � � �

� � � � � � � � � � � 
 �  � � � � � � � � � � �  � � � � 	 � � � � � � � � � � 
� � � � � 	 � � �  � � � � � � 	 � � � 
 � � � � � � � � � � �
� � �  � � � � � � � 	 � 	 � � � 
 � � � �  � �  � � 	 � � � 
 �
� � � � � � � � � � � � � �  � � 	 � �  � � � � � � �  � � � � 	 � � � 	

� � � � � 	 	 � � � 
 � � � �  � � � � � 	 �  � �  � � � � � � � � � �
� � � � 
 �  � � � � � � � � � � �  � � � � � 	 	 � � � � 	 	 � � � 
 � �  �
� � � 	 � � � � 	 � � � � � 	 � �  � � � � � 
 
 � � �  � � � � � 	 � � �
� � � � � � � �  � � � � � � � � � 	 � � � 	 � �  � � � � � 	 � � �

� � � 	 � � � � � � � � � � �  	 � � � � �  � � � � 	 � 
 � �  � 	 � � � 
 � � �
 � � � 	 � � � � � � �  	 � � � � 	 � � 
 � �  � � � � � � � � � � �  	 	
� � � � � � �

	 � 
 � � � 
 �  � � � ! �   " � #  $ � ! " � %  " � �  � �

�  � � � 	 	 � � � � �  � � � � � � � � � � � � � �  	 � � � � � � � � � � � � �
� � � � �  � �  � � � � � 
 � 	 � � 
 
 � � � � � 	 � � � � � � � 	 
 � �  � � 	 � � �
� � � � � � �  � � � � � 
 
 � � �  � � � 	 � � 	 	 � �  	 � � � � � � � � � � � � 	

� �  � � � � � � � � � � � � � � � � �  � � � 
 � � � � � 	 � � � � � � � 
 � �
� � � � � � � � 
 
 � 	 � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � �  � � �
� � � � � � � � 	 � � 	 	 � � � � � � 	 �  � 	 � � � �  � � 
 � � � � � � � �  � �

� �  � � � � �  � � � � 	 � � � � � � 
 � � � � � � � � � � � � � 
 � � � �
� � � � �  � � � � � 
 
 � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

� � � � � � � � � � �  � � � �  � � 
 � � � � �  � � �  � � � �  � �  � �
� � � 	 � � � � � � � �  � � �  � � � �  � �  � � �  � � � � � � � 	 � � � �

� � � � 
 � � � � � 	 � �  � � � �  � �  � 	 � � � � 	 � � � 
 � � 	 � � � � � � � � �

G

I IGG

1/1 1/2 1/3

G

ω

0

0.001

0.002

B

1.0 2.0 3.0 4.0 5.0 6.0

I

GG

III

G

1

1 1

1

G2

2

2 3

3 3

3 3 3

3

� � � � � � � � � � � �  � ! � " �  � � � #  $ � " � � � % � � �  � ! �
� � � � � � � � � � � � 
 � � � �

ω

B

1.17 1.18 1.19 1.20 1.21 1.22

G

G

I

0

2e-5

4e-5

6e-5

8e-5

10e-5

12e-5

l1

G
P

1

1

1

1

ω

B

0

2e-5

4e-5

6e-5

8e-5

10e-5

12e-5

2.34 2.36 2.38 2.40 2.42 2.44

G2

G2

I2

G2

� � � � � �

ω

B

0

2e-5

4e-5

6e-5

8e-5

10e-5

12e-5

14e-5

3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66

G3

G3

G3

I3

� � �
� � � � � � � � � � � �  � ! � " �  � � � #  $ � " � � � % � � �  � ! � � �

� � & � � � � � � � � � � � � � � � � # � % � ! � � " � � � �  ! � � � $
� � "  � � � ! � � " � � � � & � � � # � � � �  ! � � � $ � � "  � � � ! � � " �

� $ � & � � � # � � � �  ! � � � $ � � "  � � � ! � � " �

� � � � �  � � � � � �  �  � � 	 � � 
 � � 
 � � � �  � � � � � � � 
 
 � � �
� � � � � � � 	 	 � � � � � � � � � & � ' � �  � � � � � 	 � �  � � � � �  � � � �

� � �  � 	 	 � � � � � �  � � � � 
 �

� � � � � � � � 
 
 � 	 � � � � � 	 � � � � 
 � � � � � � � � � � � � � � � �  �
� �  � � � 
 � � �  � � � 	 � � � � � � � � � � � � � � � 	 � � 
 � � � �  � �

� � �  � � � 	 � ' �  � � � � � � �  � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � 
 �  � � ( � � � � � � � � �  � � � 	 � � � � � � � � � � �
� � �  � & ) ' � � � � 	 � � � � � � � � � � � � � � � � �  � �  � � � � � � 	 � � � �
� � �  � � � � � � � � � � � � � � � � � 	 � � � � � 
 � � � 
 � � � � 	 � � �  � � � �

� � � � � � � � � �  �  � � � � � � 	 � � � �  	 � � � � 
 � � � � � � �  �
	 � �  �  � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � �  � �

� � � � � � � � � 	 � � � � � � � � � � � � � � � �  � � � � � � � � � � � 	 � 
 �
� � � � � � � 	 � �  � � � �  � �  � 	 � � � � � � � � � � � � � �  � � � �
� � � � � � � � �  � � �  � � � 
 � � 	 	 � � �  �  � � � � � � � � � � �

N  D  E  S        2  0  0  4

310



ω

B

ω

y

G
G

I I

d0

d1

d0

d1

m

m

m

m

G

 G 

P

m

m

m

m

m m

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	 � � � � � � �

� � � � � � � � � 	 
 � � � � � � � 
 �  � � � � � 	 � 	 � � 	 � � � � � � �

� � 	 � 	 � � � 
 � � � � � � � � �  
 � � � � � 	 � 	 � � � 	 � � 	 � � � � � �


 	 � � � � � 
 � � � � � � 	 � � � � � � � � � � � � � � � � � � � 	 � � � � 
 � �

	 � � � � 	 � � � 
 � � � � � � � � � 	 � � � � � � � � � 	 � � � � � � � � � 	 


� � � � � � � � 	 � 	 � � 
 
 � 	 � � 
 	 � � � � � � � � � � � � � � � 	 � � � �

� � � � 	 � � � � 	 � � � 	 � � � � � � � � � � 	 � � � � 	 � � � � � � 	 � � �

� � � � 
 � � � 	 � � � � 
 
 � 	 � � 
 	 � � � � � � � � � � � � � � � 	 � � � � �

� � 	 � 
 � � � � � � � � � � �  	 � � 	 � �

-1.5

0

1.5

-1.5 0 1.5

y

x
-1.5

0

1.5

-1.5 0 1.5

y

x
� � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � �  � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � 	 � � � � � � 	 
 � � � � � � � � � � � � � � � � � � � 	 � � � � 	 


� � � � � � � � � � 
 �  � � � � 	 � � � � � � 	 � � 	 � � � � 	 � � 	 � �

� � � � �  � � � � � � � � � � � � � � � � � � � � 
 �  � � � � � � 
 �  � � 	

� � � � � � � � � � 	 � � � 	 � � � � � �  � � � � � � � � � � � � � � � 
 � � 	 � � � �

� � � � � � � � 	 � � � � � � � 	 � � � � 	 � � � � 	 	 � � � � � � 	 � 	 � � �

� � � � � � � � � � � � � � � 	 � � 
 � � � � � � � 	 � � � � 	 � � 	 � � � � �


 � � � � � � � � � � � � � � � � � 	 � � 	 
 � � 
 	 � � � 	 	 � � � 	 � 	 � �

� � � � � � 	 � � � � � � � � � � � � � 	 � 	 � � 	 � � � � 	 � � 	 � � 
 � � � � � �

� � � � � � � � � � � � � � � � 	 � � 	 
 � � � � � � � � � � � � � � � � � 	 � �

� � � � � � 	 � � � � 
 � � � � � � � � � � � � � � � 	 � � � � � � � 	 � � �


 �  � � 	 � � � � � � � � � � 	 � � 	 � � � � � � � � � � 	 � � �  	 � � � � � �

� � � � � 	 � � � � 	 � � � � � � 	 � � � 	  ! � � 
 �  � � � � � � � �

� � � � "  � � 	 � � 	 � � � � 	 	 � � � � � � � � � � � � � � � � � � � 	 � �

� � � � � � 	 � � � � 	 � � 	 � � �  	 � � � � � � � � � � 	 � � � � 	 � � � �

� � � � � � # 	 � � � � � 	 � � 	 � � � � 	 � � 	 � � � � � 	 � 	 � �  � � 	 �

B
0 2e-5 4e-5 6e-5 8e-5 10e-5 12e-5

λ

-4

1

0

-1

-2

-3

� � � � � � � � � � 	 � � � � � 	 
 	 � � � � � � � � � � � � �
� � � � � � � �  � � � � � � � � � � � � � � � �

� � � 
 
 � � � � � �  � � � � � � � � � � � � � � � � � � � � � 	 � � � � 	 � � � � 


� � � � � � � � � � � � � � 	 
 � � � � � � � � � � � � � � � � � 	 � 
 � � �

� � � � � � 	 � � � 	 � 	 � � � � � � � � 	 � � � � � � � � � � � � � 	 � 	 � � � 	 �

� � � � � � � � � � 	 � � � 	 � � 	 
 � � � 	 � � � � � � � � � � � � 	 � � 	 � � �

� 	 � � � � � � � � $ % &  � � � � � 	 
 �

� �  ' ! " # ( $ ) % ! "

� � 	 � � � � � � � � � � 
 � 	 
 � � 	 � 	 � � � � � 	 � � � � � � � � � �

� � � � �  	 � 	 � � � 	 � � � 	 
 � � � � � � � � � � � � � � 	 � 	 � � 	 � �

� � 	 � 	 � � � � � � � � 	 � � � 
 � � � 	 � � � � � � � � � � � � � � � � � 	 
 �

& 	 � � � 
 
 � � � � � �  � � � � � � � � � � � � � 
 � � � � � � � 	 � � �

� 	 � � 	 
 � � � � 	 � � � 	 � 	 � � � � � � � � 	 � � � 
 � � � 	 � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	 � � � * � + � � 	 
 �  � ! � � � 	 � � � � 	 � � 	 � � � � � 
 � � � � � � � �

� � � � � � � � � � � � � � 	 � � 	 
 � � 
 	 � � � 	 	 � � � 	 � 	 � � � � � � �

� 	 � � � � � � � � � � �

 ,  , ' , " # , )
� � � � - � . / 0 / 1 � � � � / � 2 0 2 1 � 3 0 4 � 2 . 0 / � 5 1 � 5 � � 2 6 7 � 6 � 5 �

� 8 0 2 9 . 4 2 � 6 8 6 7 / 9 6 � . � 3 1 4 2 7 / � � �  ! " # $ % ! & ' ' $ ( & % ) & * �
+ 5 � - , � - 5 - . � : : - . / 0 1 2 � � 2 / 1 -

� 3 � + - 4 5 1 0 5 � 6 � 7 / � - 8 � � � 8 0 2 9 . 4 2 � 6 8 6 7 / 9 6 + � � 9 % ) : ) ' ; <
= & > $  ; ? �  ! " & @  ! $ )  ' A ) $ & % ) & B � + 5 � - C � D : 1 . 0 E / 1 � � 2 2 1 -

� . � � - 4 7 5 � 2 0 � F - � 5 9 . 8 2 6 3 � � G H : / 1 . 9 / 0 7 2 � D 7 3 � 8 5 � 7 � /
9 . 6 6 . 0 E 6 5 � 3 7 . 5 0 6 I � 2 0 2 1 � 6 6 � � J 9 J K 9 L *  % B # � + 5 � - G M . �
- 5 - , � : : - / 1 / 0 / C 1 � � 2 2 N -

� 1 � 5 - O - P ; 5 0 < . 0 2 0 � � - 5 - D � 3 � . 0 � � - 5 0 = 6 7 2 0 � 2 1 � 2 0 2 � =
8 6 . 6 2 0 � 6 . 0 E 3 � 2 1 : / 1 7 3 1 � 2 7 . 5 0 6 5 � 5 1 � . 0 2 1 8 � . Q / 1 / 0 =
7 . 2 � / R 3 2 7 . 5 0 6 � � S T B B $  % �  ! " # A T * U & : B � + 5 � - . 2 � - 5 - 3 �
: : - , 2 0 � . � � � 2 / 1 -

� C � D - � - V 2 / 1 2 0 � � - G 1 0 / 3 H � � D . 0 E 3 � 2 1 W 5 : � � . � 3 1 4 2 =
7 . 5 0 7 5 1 / � 2 H 2 7 . 5 0 5 6 4 . � � 2 7 . 5 0 6 � � A J X � Y # X = = ' # �  ! " �
+ 5 � - 1 , � : : - M 3 � 0 M . 2 � � 2 / , -

� , � V - V 1 2 2 < 6 9 2 � � D . 0 E 3 � 2 1 W 5 : � � . � 3 1 4 2 7 . 5 0 . 0 6 8 6 7 / 9 6
� . 7 � � 2 6 7 2 0 � 6 � 5 � ; 2 1 . 2 � � / 6 � � Y # Z ; % ' $ % &  * A ) $ � + 5 � - / �
: : - 1 C M 0 1 2 N � � 2 2 / -

� M � W - O 2 � 2 < 2 9 . � � V . � 3 1 4 2 7 . 5 0 5 � : / 1 . 5 � . 4 1 / 6 : 5 0 6 / 6 . 0
� 5 1 4 / � � 8 0 2 9 . 4 0 5 0 � . 0 / 2 1 4 . 1 4 3 . 7 6 [ 4 5 9 : 3 7 2 7 . 5 0 5 �
� . � 3 1 4 2 7 . 5 0 ; 2 � 3 / 6 5 � 7 � / 6 8 6 7 / 9 : 2 1 2 9 / 7 / 1 6 � � J 9 9 9

L *  % B # K $ * ) T $ ! B A : B ! # � ; 5 � - � 5 D = . � � : : - 3 1 / 0 3 , N � � 2 / 1 -
� / � 4 - D � . 9 2 � 2 2 0 � � - - 2 E 2 6 � . 9 2 � � 5 0 3 9 / 1 . 4 2 � 2 : =

: 1 5 2 4 � 7 5 / 1 E 5 � . 4 : 1 5 � � / 9 5 � � . 6 6 . : 2 7 . ; / � 8 0 2 9 . =
4 2 � 6 8 6 7 / 9 6 � � \ * ; ( * & B B ; ? L " & ; * & ! $ )  ' \ " : B $ ) B � + 5 � - , � �

- 5 - , � : : - � , N C 0 � , � C � � 2 M 2 -

N  D  E  S        2  0  0  4

311



TOPOLOGICAL INVARIANTS IN A MODEL OF A TIME-DELAYED
CHUA’S CIRCUIT

R. Severino, A. Sharkovsky, J. Sousa Ramos and S. Vinagre
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Abstract—In the last 30 years, some authors have
been studying several classes of boundary value prob-
lems (BVP) for partial differential equations (PDE)
using the method of reduction to obtain a difference
equation with continuous argument which behavior is
determined by the iteration of a one-dimensional (1D)
map (see, for example, [8], [11], [12], [13], [14] and
[16]).

In this paper we consider the time-delayed Chua’s
circuit introduced in [10] and [15] which behavior
is determined by properties of one-dimensional map,
[4], [10], [14] and [15]. To characterize the time evo-
lution of these circuits we can compute the topological
entropy and to distinguish systems with equal topolog-
ical entropy we introduce a second topological invari-
ant.

I. INTRODUCTION

In the last 30 years, some authors have been study-
ing several classes of boundary value problems (BVP)
for partial differential equations (PDE) using the
method of reduction to obtain a difference equation
with continuous argument which behavior is deter-
mined by the iteration of a one-dimensional (1D) map
(see, for example, [8], [11], [12], [13], [14] and [16]).
These classes consist mainly of problems for which
the representation of general solution is known.

Thus, the notion of chaos can be taken from discrete
dynamical systems: we say that such a PDE system is
chaotic if the map that determines its solution exhibits
chaos as a discrete dynamical system.

In this paper we consider the time-delayed Chua’s

circuit introduced in [10] and [15], which is an
infinite-dimensional generalization of Chua’s circuit,
obtained by replacing the LC resonant circuit by a
lossless transmission line of length l, terminated on
its left, x = 0, by a short circuit, as shown in Fig. 1.

( )�� �� ( )��� � ( )��� � 	


�

��

�
�

� �

� � �( )��� �( )��� �( ) ��� =��

���

Fig. 1. The time-delayed Chua’s circuit.

The contents in this paper are organized as follows:
in the next section we present the problem following
to [10]. In the section 3, we give a brief description of
the kneading theory and we apply symbolic dynami-
cal techniques to study the one-dimensional map as-
sociated with the difference equation. The properties
of this one-dimensional map determine the qualitative
behavior of the difference equation with continuous
argument. Finally, we introduce a second topological
invariant to distinguish systems with equal topological
entropy.

With this approach we study the solutions of PDE
using the symbolic dynamics, see [9], [17].
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II. REDUCTION OF BVP TO DE

Following [10], let the transmission line be defined
by the linear partial differential equations

∂v (x, t)
∂x

= −L
∂i (x, t)

∂t
, (1)

∂i (x, t)
∂x

= −C
∂v (x, t)

∂t
, (2)

where L and C denote the inductance and the
capacitance per unit length of the transmission
line. The boundary conditions are given respec-
tively at x = 0 and x = l by v (0, t) =
0 and i (l, t) = G (v (l, t) − E − R i (l, t)) +
C1 ∂ (v (l, t) − R i (l, t)) /∂t, where G is defined by

G (u) =
{

m0u if |u| ≤ 1,
m1u − (m1 − m0) sgn u if |u| ≥ 1.

(3)
The general solutions of equations (1) and (2) are

of the form

v (x, t) = α
(
t − x

ν

)
− α

(
t +

x

ν

)
, (4)

i (x, t) =
1
Z

[
α
(
t − x

ν

)
+ α

(
t +

x

ν

)]
, (5)

where ν =
√

1/LC is the velocity of the incident
and reflected waves, Z =

√
L/C is the characteris-

tic impedance of the transmission line and α is an ar-
bitrary C1− smooth function. This boundary value
problem is a system of two linear partial differen-
tial equations with a nonlinear boundary condition at
x = l. Substituting (4) and (5) into the boundary con-
dition at x = l with C1 = 0 and introducing the new
variables τ = tν/ (2l)− 1/2 and β (τ) = α (2lτ/ν) ,
one obtain the difference equation with continuous ar-
gument

β (τ + 1) = f (β (τ)) . (6)

The function f is a piecewise-linear single-valued or
multivalued function defined by

f (β) = Akβ − Bk, (7)

where β ∈ Ik, k = ±1, 0 and

Ak = −1 + qk,

Bk =
qk

2

[
E + k

(
1 − m0

mk

)]
,

qk =
2Z

1
mk

+ R + Z
, (8)

I0 =
{

β :
∣∣∣∣β − E

2

∣∣∣∣ ≤ |δ|
}

,

I±1 =
{

β : ±
(

β − E

2

)
> δ

}
,

with m−1 = m+1 and δ = m0Z/q0.
The initial values of voltage v (x, 0) = v0 (x) and

current i (x, 0) = i0 (x) implies, for the difference
equation (6), the following initial conditions

ϕ (τ) =

⎧⎪⎨⎪⎩
v0 (−y) + Zi0 (−y)

2
if − 1 ≤ τ < −1

2
,

−v0 (y) + Zi0 (y)
2

if − 1
2
≤ τ < 0,

(9)
with y = l (1 + 2τ) .

Thus the time evolution of the time-delayed Chua’s
circuit with C1 = 0 is governed by a scalar nonlin-
ear difference equation with continuous argument (6)
(see [10]). The qualitative behavior of this equation is
determined by the properties of the one-dimensional
(1D) map

β �−→ f (β) (10)

where f is defined in (7)-(8).
From now on we will write fm0,m1,R,Z instead of f

for the map in (7) and ϕc instead of ϕ for the initial
function in (9).

III. SYMBOLIC DYNAMICS

Given a bimodal map F in a interval I = [a, b] ,
with F (a) = a and F (b) = b, and denote by c1

and c2 the turning points. Next, assign the symbols
L (left), M (middle) and R (right) to each point x of
the subintervals of monotonicity [a, c1) , (c1, c2) and
(c2, b] , respectively, and the symbols A and B to their
turning points c1 and c2. It is called the address of
x and it is denoted ad (x) . By doing this, we get a
correspondence between orbits of points and symbolic
sequences of the alphabet A = {L,A,M,B, R}, the
itinerary by the map F,

itF (x) = ad (x) ad (F (x)) ad
(
F 2 (x)

)
. . . .

The kneading invariant of the map F is the pair of
itineraries of the image of each turning point,

K (F ) = (itF (F (c1)) , itF (F (c2))) .

Given a finite symbolic sequence S of AN, we de-
note by nM the frequency of the symbol M in S
and we define the M -parity of this sequence, ρ(S),
according to whether nM is even or odd, that is, in
the first case we have ρ(S) = +1 and in the second
ρ(S) = −1.

From the order relation L ≺ M ≺ R, inherited
from the order of the interval, we introduce an or-
der relation between sequences as follows: given any
distinct sequences P and Q of AN, admitting that
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they have a common initial subsequence, i.e., there
is a k ≥ 0 such that P1 . . . Pk = Q1 . . . Qk and
Pk+1 �= Qk+1, we will say that P ≺ Q if and
only if Pk+1 ≺ Qk+1 and ρ(P1 . . . Pk) = +1, or
Qk+1 ≺ Pk+1 and ρ(P1 . . . Pk) = −1.

Let V be a vector space of three dimension de-
fined over the rationals having as a basis the formal
symbols {L,M,R}, then to each sequence of sym-
bols S = S1S2 . . . Sj . . . we can associate a se-
quence θ = θ0 . . . θj . . . of vectors from V , setting
θj =

∏j−1
i=0 ε(Si)Sj with j > 0, θ0 = S0, when

i = 0, and ε(L) = −ε(M) = ε(R) = 1, where
to the symbols corresponding to the turning points
c1 and c2 we associate the vectors (L + M) /2 and
(M + R) /2. Thus ε(A) = ε(B) = 0. Choosing then
a linear order in the vector space V in such a way that
the base vectors satisfy L ≺ M ≺ R we are able to
order the sequence θ lexicographically, that is, θ ≺ θ̄
iff θ0 = θ̄0, . . . , θj−1 = θ̄j−1 and θj ≺ θ̄j for some
integer j ≥ 0. Finally, introducing t as an undeter-
mined variable and taking θj as the coefficients of a
formal power series θ (invariant coordinate) we obtain
θ = θ0 + θ1t + . . . =

∑
∞

j=0 θjt
j .

In [5] Milnor and Thurston introduced basic in-
variants called kneading increments, kneading matrix
and kneading determinant. The kneading increments
are formal power series that measure the discontinuity
evaluated at the turning points. For the case of a bi-
modal map we have two kneading increments defined
by

νi (t) = θc+i
(t) − θc−i

(t) , i = 1, 2, (11)

where θ is the invariant coordinate defined previously
and θc±i

(t) = limx→c±i
θx (t) . After separating the

terms associated with the different symbols in (11) we
get νi (t) = Ni1 (t)L + Ni2 (t) M + Ni3 (t) R with
i = 1, 2, and from these we can define the kneading
matrix by

N (t) =
(

N11 (t) N12 (t) N13 (t)
N21 (t) N22 (t) N23 (t)

)
.

Closely related is the kneading determinant which
is defined from the kneading matrix according to
the following formula D (t) = D1 (t) /(1 − t) =
−D2 (t) /(1+t) = D3 (t) /(1−t), where Di (t) is the
determinant obtained by eliminating the i−th column
of the kneading matrix.

It is possible to determine the growth number
s (F ) , using this formalism introduced by Milnor and
Thurston. Let F be a bimodal map in the interval
with kneading invariant K(F ) and s (F ) > 1. Then,

s (F ) is given by the inverse of the smallest zero of
the kneading determinant associated to K(F ) and the
entropy is given by the logarithm of s (F ), (see [5],
[6]).

Finally, we introduce a second topological invariant
to distinguish systems with equal topological entropy,
that is, to distinguish isentropic dynamical systems.

Theorem 1: Let F be a bimodal map, J =
[F (c2) , c1] and I = [F (c2) , F (c1)] . Then the sec-
ond topological invariant r (F ) is a function of the
conductance and it is given by

r (F ) = lim
t→1/s

L (J, t)
L (I, t)

,

with the formal power series L (J, t) =
∞∑

n=1

l (fn) tn−1,

with the radius of convergence s = limn→∞ l (fn)1/n

= 1/t∗, which verifies D (t∗) = 0, where D (t) is the
kneading determinant.

Proof: We can conjugate a bimodal map to a
piecewise linear map with different slopes and as sim-
ilar steps like in [7] we can prove the topological in-
variance of r(F ). See Fig. 5 to look in what way we
identify r(F ) with the conductance.

Example 1: To illustrate the previous results, we
consider m0 = −0.1, m1 = 2.3, E = 0.3, Z = 5.5
and c = 1/R between 0.5 and 10.

-0.8-0.6 -0.4-0.2 0 0.2 0.4 0.6

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

b�

a�

Fig. 2. The graph of the map fm0 ,m1,R,Z , with m0 =
−0.1, m1 = 2.3, E = 0.3, Z = 5.5, a) c = 1/R =
0.5, b) c = 1/R = 10.

Although this system depends on many parameters
(m0, m1, R, Z and E), the family of bimodal maps
depends essentially on two parameters, in what refers
to the dynamics, that are functions of the previous
ones. This dependence reflects the existence of two
topological invariants: the topological entropy and an-
other that is introduced here to distinguish the isen-
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1

Fig. 3. The bifurcation diagram of the map fm0 ,m1,R,Z ,
with m0 = −0.1, m1 = 2.3, E = 0.3, Z = 5.5,
c = 1/R ∈ [0.5, 10] .
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1.1

1.2
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Fig. 4. The graph of the Lyapunov multiplier of the map
fm0 ,m1,R,Z , with m0 = −0.1, m1 = 2.3, E = 0.3,
Z = 5.5, c = 1/R ∈ [2, 10] .

tropic systems. The calculation of these invariants de-
pends only on the pair of kneading sequences, thus
they are topological invariants. We identify this in-
variant with the conductance, that is, with the inverse
of the resistance, see Fig. 5.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

-0.05

0

0.05

0.1

Fig. 5. The graph of the topological invariant
r (fm0 ,m1,R,Z) , with m0 = −0.1, m1 = 2.3, E =
0.3, Z = 5.5, R ∈ [0.1, 2] .

The complexity of the dynamical behavior of this
type of Chua’s circuit can be completely determined
by two topological invariants which can be explicitly
calculated, as we demonstrate in this paper.

In future work, we will study the dependence of

these topological invariants with the variation of the
more relevant physical parameters.
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Abstract— Fractal dimension as a parameter de-
scribing the structure of an object seems useful in
medical images processing [5]. We examine X-ray im-
ages of lungs. For that case, a special algorithm is
designed and the value of fractal dimension is calcu-
lated. Its certain values allow one to suspect pathol-
ogy.

I. INTRODUCTION

Before the development of fractal geometry, com-
plex biological structures have only been described in
terms of idealized Euclidean geometry models. The
results used to occur incomplete because the true com-
plexity of the subject could not be modelled prop-
erly. The fractal geometry proves more effective when
complex or irregular natural shapes are concerned.
Application of this geometry is necessary because
self-similarity can often be observed in natural ob-
jects, as the structure of many plants or animal organs
may witness (e.g., the branched structure of blood ves-
sels in lungs). Thus, it is reasonable to treat images
as fractal structures and calculate their fractal dimen-
sions [8]. Fractal dimension is one of the most impor-
tant parameters describing fractals, as well as natu-
ral objects. Artificial, man-made objects have integer
dimensions, while natural ones are characterized by
non-integer (fractional) dimension. It turns out to be
a good measure of how rapidly the texture changes.
The more rapid the changes, the higher the fractal di-
mension.

There are a variety of different definitions of di-
mension: topological dimension, Hausdorff dimen-
sion, box dimension, correlation dimension, and oth-
ers [1],[9]. The box counting method is the most pop-
ular fractal dimension method. It is used mainly for
binary images. For our purpose, the exact value of
fractal dimension is not crucial. What is really impor-
tant is the monotonic behavior of the algorithm in the
whole range of values that can be achieved.
Until now, research has been focused on application
of fractal analysis to medical cases, such as trabecular

bones [4], retinal vessels [7][2], renal arteries, mam-
mographic patterns, EEG, ECG signals [3].

This paper presents some results of fractal analy-
sis supporting the diagnosis of X-ray images of lungs.
We have analyzed 8-bit greyscale images in various
resolutions.

II. FRACTAL DIMENSION METHODS

A. Numerical problems

There are some numerical problems common for
all algorithms. They are connected with reliability of
results and efficiency of the applied methods.
• We have tested efficiency and accuracy of the nu-
merical methods in the following way. Basing on two-
dimensional Weierstrass-Mandelbrot functions, we
have constructed surfaces whose dimension had been
assumed before. 1D Weierstrass-Mandelbrot func-
tions are given by the formula:

WH(t) =
M∑
i=0

λ− iH cos(2πλit), 0 < H < 1 (1)

where λ = 5,M = 26. The fractal dimension is equal
to d = 2 − H .
• Practically, fractal dimension can only be roughly
estimated in finite range of scales. It is confusing
that different methods vary in results they give. Fortu-
nately, for all tested algorithms the higher theoretical
fractal dimension is, the higher numerical value is ob-
tained. We have only been interested in segmentation
of the image into parts with the same fractal dimen-
sion, so the exact value of the local fractal dimension
has been unimportant.
We had also to solve other problems:
• Noise sensitivity for some types of noise, e.g., salt
and pepper, so the filtering methods are recommended
at the very beginning, otherwise we can obtain the
fractal dimension of a noise, not of the proper image.
• Proper size of analyzed blocks.
• Normalization of the data.
• Influence of the finite resolution of real data on the
accuracy of results.
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All fractal dimension algorithms use the linear regres-
sion method to compute the closest line parameters.
Fractal dimension is obtained from the slope of the
line. The method must be applied carefully because
the results are always obtained but sometimes they are
senseless. It is connected with the fact that the plot
can be nonlinear. It means that the object is not self-
similar in the tested range, so it is not a fractal. Cal-
culation of the variance of data points from the linear
regression line is recommended. The large value of
the variance weakens the results.

B. Box counting method

The box counting method is the most popular frac-
tal dimension method. It is mainly used for binary
images.

Def. For F ⊂ Rn, let Nε(F ) denote the smallest
number of squares with the side ε that can cover F .
The box dimension d of the set F is given by the for-
mula:

d = lim
ε 0

Nε(F )
− log ε

(2)

if the above limit exists. Unfortunately, the algorithm
based on (2) in its simplest version is inefficient due
to slow and very often non-monotone convergence.

The method has many parameters to be optimized;
for example, we must choice:
• proper minimum and maximum sizes of mesh
squares,
• an orientation and emplacement of the mesh over
the image.
The wrong choice of one of these parameters may
rapidly decrease accuracy of the results. It is re-
commended to convert grey-scale images into binary
images, so we must define a binary threshold. Of
course, for different threshold values the results dif-
fer. In some algorithms squares are divided into three
groups: squares with only black points, those with
only white, and those with white and black points.

C. Epsilon Blanket method

This method can be applied for digitized signals
and grey-scale images. We will present the method for
a 2D image G. Let us assign a grey level value g(i, j)
to the pixel (i, j). The measurement scales into x and
y directions are identical, the scale unit beeing a pixel.
We perform iterative calculations to get two blanket
surfaces un(i, j) — the upper one, and bn(i, j) — the
bottom one.
• At the beginning, we set

u0(i, j) = b0(i, j) = g(i, j) (3)

• In the nth step we obtain:

un(i, j) = max[un− 1(i, j) + 1,

max
||(m,l)− (i,j)|| 1

un− 1(m, l)] (4)

bn(i, j) = min[bn− 1(i, j) − 1,

min
||(m,l)− (i,j)|| 1

bn− 1(m, l)] (5)

• Then the volume of the blanket is evaluated

vn =
∑
i,j

(un(i, j) − bn(i, j)) (6)

• The surface area is finally computed from

A(n) =
vn − vn− 1

2
(7)

• It can be shown that the value of A depends on frac-
tal dimension A(n) = cn2− d

• Finally, we apply the linear regression method to the
plot of log(A(n)) versus log(n).
The main features of the algorithm are the following:
• the algorithm is relatively fast;
• the successive iterations are connected with changes
in resolutions;
• sometimes the value of d lies outside the proper
interval [2, 3], it occurs for objects with non-fractal
structure;
• the maximal proper number n of the iterations
strictly depends on the range of the data;
• we can notice that after a finite number of iterations,
the value A is constant: the blanket is too thick.

III. MEDICAL DATA

Chest X-ray is the most commonly performed diag-
nostic X-ray examination. Approximately half of all
X-rays obtained in medical institutions are chest im-
ages. They are used for lungs, heart, and chest wall
diagnosis purpose. Pneumonia, heart failure, emphy-
sema, lung cancer and other medical cases are cus-
tomarily discovered on the bases of such images.
This paper presents some results of fractal analysis
supporting the diagnosis of X-ray images of lungs.
We have analyzed 8-bit greyscale images in various
resolutions. We examine 2 diseases: tuberculosis and
cancer.

IV. DESCRIPTION OF THE DISEASES

A. Tuberculosis (TB)

The chest X-ray is useful for TB diagnosis because
about 85% of TB patients have pulmonary TB. Usu-
ally, patiens with TB in the lungs have abnormal chest
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Fig. 1. A — X-ray of healthy chests, B — X-ray of chests
with tuberculosis, C — X-ray of chests with cancer

X-rays (Fig.1B). It may reveal infiltrates (collections
of fluid and cells in the tissues of the lung) or cavities
(hollow spaces within the lung that may contain many
tubercle bacilli).

B. Cancer

Cancer of a lung is the most common malignant tu-
mour. When the patient is suspected to suffer from
that, usually X-ray photography of their chest is made
first. In the image, the light areas that appear as subtle
branches extending from the center into the lungs are
cancerous (Fig.1C).

V. FRACTAL ANALYSIS

The analysis consists of two steps. In the first step,
local fractal dimension is calculated and the output
images are subject to further analysis. In the second
step the global fractal dimension is obtained.

A. Step I — local fractal dimension

• The image is divided into square blocks. For each
block, the value of the local fractal dimension is cal-
culated using blanket method [1].
• Fractal dimension values from the interval [2, 3] are
transformed into grey-scale values from the interval

[0, 255]. The greater fractal dimension is, the brighter
colour is assigned.
In this way, we obtain what can be called “dimension
image” — an image where the colour of each pixel
is calculated basing on the local fractal dimension of
its surrounding, i.e., the block. The algorithm makes
changes of texture in the original image more visible
(Fig.2).

Fig. 2. Dimension images

B. Step II — global fractal dimension algorithm

In step II, the box counting method [1], recom-
mended for binary images, is applied.
• Dimension images are transformed into 256 1-bit
images with the threshold method (Fig.3). The thresh-
old values are from the interval [0, 255].
• The box counting method is applied to the images
and fractal dimension is calculated.
In Fig.4, black and gray lines correspond to healthy
lungs, blue and green lines are obtained for cancer,
while red and violet lines — tuberculosis.

VI. CONCLUSIONS

• Fractal dimension analysis of medical images may
support diagnosis of pathological changes.
• The results of fractal dimension calculation require
interpretation. Pathologies are suggested by abnormal
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Fig. 4. Fractal dimension — function of threshold level for chest images

Fig. 3. Threshold images

values of fractal dimension.
• Automatic fractal-based analysis is capable of rec-
ognizing features that are beyond the range of human-
eye perception.
At present, further developments of the methods are
under way, as well as research on other medical cases.
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Abstract— A square lattice is introduced into the
Penna model for biological aging in order to study the
evolution of diploid sexual populations under certain
conditions when one single locus in the individual’s
genome is considered as identifier of species. The
simulation results show, after several generations, the
flourishing and coexistence of two separate species in
the same environment, i.e., one original species splits
up into two on the same territory (sympatric specia-
tion). As well, the mortalities obtained are in a good
agreement with the Gompertz law of exponential in-
crease of mortality with age.

I. INTRODUCTION

The understanding of species formation - groups
of actually or potentially inter-breeding populations,
which are reproductively isolated from other such
groups - is still a fundamental problem in biology [1].
Speciation usually occurs when a pre-existing popu-
lation is divided into two or more smaller populations
by a geographical barrier, like an island, river, isolated
valley, or mountain range. Once reproductively iso-
lated by the barrier, the gene pools in the two popu-
lations can diverge due to natural selection, genetic
drift, or gene flow, and if they sufficiently diverge,
then the inter-breeding between the populations will
not occur if the barrier is removed. As a result, new
species have been formed.

In spite of theoretical difficulties to show convinc-
ingly how speciation might occur without physical
separation [2], there is an increasing evidence for the
process of sympatric speciation, in which the ori-
gin of two or more species from a single ancestral
one occurs without geographical isolation [3]. The
most straightforward scenario for sympatric specia-
tion requires disruptive selection favoring two sub-
stantially different phenotypes, followed by the elim-
ination of all intermediate phenotypes. In sexual pop-
ulations, the stumbling block preventing sympatric
speciation is that mating between divergent ecotypes
constantly scrambles gene combinations, creating or-
ganisms with intermediate phenotypes. However, this
mixing can be prevented if there is assortative [4] in-

stead of random mating, i.e., mating of individuals
that are phenotypically similar. It can be based on
ecologically important traits such as body size (as in
stickle-backs) [5] or on marker traits that co-vary with
ecological traits (such as coloration or breeding be-
havior in cichlids)[6].

The present paper reports on a attempt to address
the challenging problem of sympatric speciation us-
ing the widespread Penna bit-string model [7], [8] for
age-structured populations, which is based on the mu-
tation accumulation theory for biological aging. It
has successfully reproduced many different character-
istics of living species, as the catastrophic senescence
of pacific salmon [9], the inheritance of longevity [10]
and the evolutionary advantages of sexual reproduc-
tion [11], as well as a particular case of sympatric spe-
ciation [12].

II. THE MODEL

Each individual of the population is represented by
a “chronological genome”, which consists of two bit-
strings of 32 bits (32 loci or positions) each, that are
read in parallel. One string contains the genetic infor-
mation inherited from the mother and the other, from
the father. Each position of the bit-strings is associ-
ated to a period of the individual’s life, which means
that each individual can live at most for 32 periods
(“years”). Each step of the simulation corresponds to
reading one new position of all individuals’ genomes.
Genetic defects are represented by bits 1. If an indi-
vidual has two bits 1 at the

�
-th position of both bit-

strings (homozygote), it will start to suffer the effects
of a genetic disease at its

�
-th year of life. If the indi-

vidual is homozygous with two bits zero, no disease
appears in that age. If the individual is heterozygous
in that position, it will become sick only if that locus
is one for which the harmful allele is dominant. The
dominant loci are randomly chosen at the beginning of
the simulation and remain fixed. If the current num-
ber of accumulated diseases reaches a threshold � , the
individual dies.

If a female succeeds in surviving until the minimum
reproduction age � , it generates � offspring every year
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until death. The female randomly chooses a male to
mate, the age of which must also be greater or equal
to � . The offspring’s genome is constructed from the
parent’s ones; first the strings of the mother are ran-
domly crossed, and a female gamete is produced. � �
deleterious mutations are then randomly introduced.
The same process occurs with the father’s genome
(with � � mutations), and the union of the two remain-
ing gametes form the new genome. This procedure is
repeated for each of the � offspring. The sex of the
baby is randomly chosen, each one with probability� � �

.
The description given above corresponds to the

original sexual version of the Penna model [13], in
which at every time step each individual of the popu-
lation, independently of its age or current number of
accumulated diseases, can be killed with a probability� 	 
 � �  	 �  � � �

;
 � � �

is the maximum population
size (the carrying capacity of the environment) and 	

is the current population size. This random time-
dependent death, well known as the Verhulst factor, is
introduced in order to avoid the unlimited growth of
the population and to take into account the dispute for
food and space. Since there seems to be no biologi-
cal justification for considering random deaths in real
populations, as well as a controversial importance of
its role in the Penna model [14], in our simulations
we do not consider random deaths. Instead, we adopt
a simple lattice dynamics which also avoids the expo-
nential increase of the population. The details will be
presented in the next subsection.

A. Speciation model on a lattice

In the present case each individual lives on a given
site � � � � � of a square lattice and, at every time-step,
has a probability � � to move to the neighboring site
that presents the smallest occupation, if this occupa-
tion is also smaller or equal to that of the current in-
dividual’s site. We start the simulations randomly dis-
tributing one individual per site on a diluted square
lattice. That is, if an already occupied site is chosen
for a new individual, the choice is disregarded and an-
other random site is picked out.

At any bit position a diploid individual can have �
= 0, 1 or 2 bits set. The process of sympatric speci-
ation is now attempted by defining one single bit po-
sition, which we take as position 11, as an identifier
of the species. Mating occurs only among individuals
of the same species (same value of � at position 11),
which means that this locus also defines the mating
preferences. Each able female (with age � � ) with

� such bits randomly selects a neighboring able male
with the same � value to breed. If she succeeds, she
generates � offspring. Then she chooses at random,
again among its four neighboring sites, a place to put
each baby, according to the rules below. The newborn
dies if it is not possible to find a site respecting these
rules:
1) the selected site occupation must be � 1;
2) If the newborn has � 
 �

, then it can occupy an
empty site or a site already occupied by a single indi-
vidual with � 
 �

;
3) If the newborn has � 
 �

, then it can occupy an
empty site or a site already occupied by a single indi-
vidual with � 
 �

;
4) If the newborn has � 
 �

, it can occupy only an
empty site.

Rules 2 and 3 mean that the � 
 �
and the � 
 �

populations can share the same habitat, that is, they
do not dispute for the same food resources. Rule 4
means that the � 
 �

population feeds at both niches,
competing with the other two. Theses rules replace
the random killing Verhulst factor pointed out in the
previous section.

We start our simulations only with � 
 �
indi-

viduals. Due to the randomness of mutations and
crossover, the offspring does not necessarily have the
same � value of the parents. In our model it is exactly
this randomness which allows the emergence of new
species out of the original one. These populations co-
exist in a stable equilibrium but without cross-mating.

III. SIMULATION RESULTS

The simulation starts with
 �

individuals, half
males and half females, and runs for a pre-specified
number of time steps, at the end of which averages are
taken over the population(s). The general parameters
of the simulations are:

� Minimum age of reproduction � 
 �
;

� Birth rate � 
  
;

� Mutation rate � 
 �
per bit-string (or gamete);

� Maximum number of genetic diseases ! 
 �
;

� Probability to walk � � 
 � " �
.

Fig. 1 shows how the new species
 #

emerges,
within about a hundred iterations, from the origi-
nal species

 $
. The intermediate population

 %
is

only about
� " � � �

of the total population. Since the
rule for an individual to move on the lattice depends
only on the existence of a site with an occupation
smaller or equal to that of the current individual’s
site and is completely non-related to the individual
species, the different species may bunch together at
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Fig. 1. Time evolution of � � (line, original species), � �
(+, mixed genomes) and � � (x, new species), for one
diploid sexual population simulated on a � � � square
lattice with � � � � � and � 	 � 
 � � � individuals.

the same site of the lattice. Then, due to the re-
production rules quoted above, after several genera-
tions we obtain a great predominance of the two non-
competing species �  and � � living at the same ge-
ographic position (sympatric speciation). Our results
with � � � � � � � are confirmed by larger simulations
with � � � � � � � � � , and also by larger simulations
with � � � time steps.

It must be remarked that the assumptions we make
concerning mating choice and conditions for a new-
born to survive were adopted in order to capture some
features of field observations and laboratory experi-
ments of species which seems to speciate via disrup-
tive selection on habitat/food preferences and assorta-
tive mating.

For instance, in a series of papers Rice and Salt [15]
presented experimental evidence for the possibility
of sympatric speciation in Drosophila melanogaster.
They started from the premise that whenever organ-
isms sort themselves into the environment first and
then mate locally, individuals with the same habitat
preferences will necessarily mate assortatively. Oth-
ers examples of sympatric speciation can be found for
canids [16], lizards [17] and pandas [18]. In this latter
example, the Giant Panda (Ailuropoda melanoleuca)
and the Red Panda (Ailurus fulgens) are vegetarian
carnivores that specialize in eating bamboo in Sichuan
Province, China. The two species share the same
habitats and bamboo plants. Both pandas feed on the
same species of bamboo, but specialize in eating dif-
ferent parts of the bamboo plant. The Giant Panda
feeds more frequently on bamboo stems, while the
Red Panda feeds more frequently on bamboo leaves
[18]. In our simulation, disruptive selection explicitly
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Fig. 2. Mortality as a function of age averaged over � �
diploid sexual populations simulated on a square lattice
with � � � � � and � 	 � � � � individuals. The dashed
line corresponds to the fit � � � � � � � � � � � � � � � �  � � � ! "

� � � � in this semilogarithmic plot.

arises from competition for a single resource (a po-
tentially more common ecological situation). In this
way, we may imagine, for instance, that the original
population # � � is vegetarian, and the second popu-
lation # � $ emerging out of it consists of carnivore
(thus, there is no competition between the two differ-
ent populations). However, since the individuals with

# � � feed from the same resources of both popula-
tions ( # � � and # � $ ), this competition for food re-
duces its abundance in the system and, combined with
assortative mating, leads to evolutionary branching.

The situation that better fits our simulations oc-
curs in the Australian Fogg Dam Nature Reserve,
where data have been collected [19] from three dif-
ferent snake species: water phytons (Liasis fuscus,
Pythonidae), keelbacks (Tropidonophis mairii, Col-
ubridae) and slatey-grey snakes (Stegonotus cuculla-
tus, Colubridae). All are non-venous, oviparous and
active foragers, but they differ considerably in body
sizes and dietary habits. Water phytons feed almost
exclusively on a single species of native rodent; keel-
backs feed primarily on frogs and slatey-grey snakes
have extremely broad diets (reptile eggs, frogs, small
mammals and lizards). According to Ref.[19], the
population of slatey-grey snakes is smaller than the
other two during the whole year. Particularly from
April to May (when neither the rats nor the frogs are
in their peaks of abundance), the water phyton and
the keelbacks populations are almost of the same size
while the slatey-grey snakes population size is around

� % & of this value.

As a final study, we examine our populations mor-
talities. In 1825, based on observed death and pop-
ulation records of people in England, Sweden, and
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France between ages � � and � � in the nineteenth cen-
tury, the British actuary Benjamin Gompertz derived a
simple formula describing the exponential increase in
death rates between sexual maturity and extreme old
ages [20]. This formula, � � � � � � 	 � 
 � �  � � 
 � � � � , is
commonly referred to as the Gompertz’s law of mor-
tality. As Fig. 2 shows, our results for the mortality
above the minimum reproduction age � 	 � , are in a
good agreement with the Gompertz law.

In conclusion, the results presented here are based
on a very simple assumption that a single locus in the
individual’s genome identifies its species. Despite this
simplicity, they clearly show the emergence of sym-
patric speciation in diploid sexual age-structured pop-
ulations of individuals that are distributed on a square
lattice. The non-random mating depends on the num-
ber of alleles � at this single locus and the probability
to find a place for a newborn is related to the com-
petition between the species for food resources. The
results also present a good agreement with the Gom-
pertz law of mortality.
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de Oliveira for very important discussions and a crit-
ical reading of the manuscript. This work was sup-
ported by a grant from Alexander von Humboldt
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Abstract— The complexity measure from Shiner et
al.[1] (henceforth abbreviated as SDL-measure) has re-
cently been the subject of a fierce debate. We discuss the
properties and shortcomings of this measure, from the point
of view of our recently constructed fundamental, statistical
mechanics-based measures of complexity

� � � � � 	 

[2]. We

show explicitly, what the shortcomings of the SDL-measure
are: It is over-universal, and the implemented temperature
dependence is trivial. We, however, also show, how the
original SDL-approach can be modified to rule out these
points of critique. Results of this modification are shown
for the logistic parabola.

I. INTRODUCTION

The question of complexity measures has continu-
ally attracted interest over the last decade, from the
theoretical and the experimental points of view [1-
21]. The Kolmogorov/Solomonoff algorithmic com-
plexity [3,4,18] has been the most influential concept
of complexity. The algorithmic complexity � of an
object � expressed in terms of bits, is defined as the
length of the shortest program  (in bits) that pro-
duces (prints) the object �

� � � � � � � �� � � � � � � � � � � � � � � � � � �  �  � � ! (1)

where " is a computer. As there exists a universal
computer, called the Turing machine, which is able to
simulate any other computer, � � � � is a well-defined
quantity.

The problem with this measure is that it violates
basic conceptions of complexity. For example, ran-
dom sequences are assigned the maximal complex-
ity. However, computer-generated random sequences
are generally the result of a simple random generator,
which, obviously, has a finite algorithmic complex-
ity. Moreover, using an intrinsic notion of complex-
ity, truly random sequences appear no more complex
than any pseudo-random sequences, even though the
latter have a much shorter description length. In fact,

finding the shortest description length isn’t that easy,
as there are at least infinitely many programs to be
checked. In particular, the product of the algorith-
mic complexity and the difficulty of finding the right
program can be considered an approximation to the
perceived, human, notion of complexity. Contrast-
ing a plot of a two-dimensional embedded (pseudo-
)random generator output against the output of the
two-dimensional circle-standard map, illustrates the
dilemma [8]: Whereas the random output is dull and
void of structure, the output of the standard map ap-
pears as ”interesting” and ”complex”. The reason for
this inappropriateness as a natural perception of com-
plexity, can be traced to the fact that the algorithmic
complexity has been devised as a measure of the com-
plexity of objects generated by computers, or com-
puter programs. In this context, the world appears to
be rational (in the sense of rational numbers), allow-
ing only a countable number of states to be distin-
guished. The real world as, e.g. generated by analog
electronic circuits, however, is based upon real num-
bers (even when rational numbers are measured), as
is any biological or physical system. The reason for
this, is that G ödel’s Theorem [23] requires small dig-
its in the measurements, due to coupling to the rest
of the world, to be unpredictable per se (and not as
a consequence of chaos theory). Therefore, the need
to properly define measures of complexity for natural
and physical systems emerges.

II. THE SDL-MEASURE OF COMPLEXITY

One recent approach to define complexity therefore
builds on the requirement that the measure should be
zero for truly random, as well as completely ordered,
objects. Moreover, this complexity measure should be
easy to evaluate; it should, in particular, not require
hierarchical decomposition of the system. Starting
from this position, Shiner, Dawison and Landsberg
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[1] defined their complexity measure as

� � � � � � �
� � � � �

�
� (2)

where � � � � � � 	 
 , with � being the Boltzmann-
Gibbs-Shannon-entropy. They have interpreted � as
the disorder, and � � � � � as the order in the system.
The rescaling by � � 	 
 maps measured order / disor-
der into the unit interval. However, the SDL-measure,
as has been pointed out by several authors [21,22], has
some important shortcomings. To elucidate the origin
of these, and to point out ways to correct them, is the
main content of our contribution.

III. A RECENT THERMODYNAMIC-FORMALISM

BASED MEASURE OF COMPLEXITY

In order to achieve this, we contrast SDL with
our previously proposed measure of complexity [2].
The latter is probably the most general statistical me-
chanics approach to complexity. For an observer-
dependent variable � , the fluctuation entropy spec-
trum � � � � is derived, using the thermodynamic for-
malism of dynamical systems [12]. This is achieved
by a Legendre transform, applied to the free energy
associated with the natural partition sum induced by
the temporal evolution of the system. In more detail,
the thermodynamic formalism departs from a parti-
tion function � �  � � � � � , where  is the level or depth
of the partition and � can be viewed as an inverse tem-
perature. With � �  � � � � � , a free energy

� � � � � � � �� � � � � � 	 � � �  � � � � � � (3)

is associated, where in
� � � � we suppressed the de-

pendence on the observable. � can be interpretated
as an artificial temperature (that has no absolute zero,
though). In the absence of phase transitions, an en-
tropy function is obtained by means of the Legendre
transform � � � � � � � � � � � � � (4)

Requirements that apply to entropy functions are
strict convexity with infinite derivatives at the two
end-points of the curve (in the absence of phase tran-
sition effects). From the large deviation entropy � � � � ,
the complexity measure (for details see [2]) is calcu-
lated as


 � � � � � � � � � � � � 
�  � �

� � � � �
� ��

� � �� � �� � � �� � � � �� � (5)

0 1 2
0

1

2

S(ε)

ε
Fig. 1. Fluctuation spectrum of different maps and specifi c

entropy measures  ! and  " # $ , respectively. Thick
full lines, fi lled dots: Convex entropy functions  � % �
obtained for two asymmetric tent maps of varying
asymmetry. Dashed line, open dot: Numerical ap-
proximation of  � % �

obtained for the fully developed
parabola (partition level & ' ( ) ), which slowly con-
verges towards the triangular function (thin full lines).
In this case,  ! and  " # $ coincide. In the presence of
fi rst order phase transitions, piecewise linear parts of
the graph emerge, as is demonstrated by the parabola.

Here, � denotes a potential escape rate (which is
nonzero only for repellors). The fluctuation spectrum
generally has the convex form shown in Fig. 1 for
the asymmetric tent maps. In the presence of first-
order phase transitions, straight-line parts emerge,
as is shown by the example of the fully developed
parabola. For the measure, the graph of � � � � vs. �
has been rescaled by extracting the topological length
scale � � on both axes, which is indicated by the tildes
applied to � and � , respectively, see (5).

In the context of the fluctuation entropy spectrum� � � � , the SDL-complexity measure obtains a simple
interpretation: � in their formula corresponds to the
observable measure � * in the fluctuation spectrum,
defined by � * � � � � � , whereas � � 	 
 corresponds to
the topological entropy (the maximum of � � � � ). Their
quantitiy is therefore proportional to the product of� * � � � 	 
 � � * � . Geometrically, this measure there-
fore amounts to the grey area of Fig. 2.
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0 1 2
0

1

2

S(ε)

ε
ε ε maxI

S I

S max

S(ε) = ε

Fig. 2. Geometric meaning of the SDL-complexity mea-
sure: The hatched area has the size of � � � � � � � � � � �

.
For the fully developed parabola (see Fig. 1), area zero
would be obtained.

IV. PROPERTIES OF THE SDL-MEASURE

By construction, the SDL-measure has the follow-
ing obvious properties:

� The SDL-measure only depends on two particu-
larly significant points of the fluctuation spectrum:
The natural measure � � and the topological measure

� � � 	 (the latter sometimes also referred to as the bal-
anced measure). As such, the remaining shape of
the fluctuation spectrum � � 
 � does not influence the
SDL-measure. This leads to an over-unversality in
the following sense: Dynamical systems that have
entirely different properties may be attributed iden-
tical complexities. This feature is most dramatically
illustrated by hyperbolic maps vs. maps displaying
phase-transition phenomenona, in particular intermit-
tent maps, that can be made to have identical values of

� � and � � � 	 , and hence complexity. Obviously, how-
ever, the intermittent maps are much more difficult
to predict than hyperbolic ones, yet they are mapped
on the identical family of complexity measures

� � �  .
Statistical averaging in terms of the exponents � , �
does not add new information f applied to these two
two points. Therefore, the detailed behavior of the
system is not recovered by this approach. Instead, the
information contained in the two points of the spec-
trum is diluted over the infinite real axis.

� For the actual computation, mixing of measures

should be avoided and well-defined measures should
be used. This implies that in the application of the
complexity calculation for the logistic map � � � � �

� � � � � � � � � , natural partitions should be used.
� Using the natural partition, zero complexity is ob-
tained, irrespective of the fact that the entropy func-
tion extends to the r.h.s. We suspect that the nonzero
SDL-complexity

� � � � obtained for the parabola at
� � �

is due to the lack of asymptoticity.

V. MODIFICATION OF THE SDL-MEASURE

To obtain measures based on the order-disorder ap-
proach originally considered, we propose to remove
from the SDL-measure the trivial temperature depen-
dence. This can be achieved in the following way.
First, the Stoop-complexity integrand

� �� � �
 � � �
 � � (6)

may be viewed as being related to complexities based
upon the product integrand

� � � � � 
 � � 
 �
�

� � � 
 � � 
 �


� (7)

We therefore propose to instead consider an over all
possible length scales integrated variant of their mea-
sure. The result of this calculation for the logistic map
is shown in Fig. 3 for � � � � � . Note, however,
that for this measure, intermittent length scales do not
contribute, something that we would prefer to avoid.
As a more promising generalization of our measure,
we propose to consider independent exponentiation to
the denominator of the integrand instead.

VI. RESULTS

This modification removes the over-universality
criticized. A comparison of the SDL-complexity with
the one obtained in the proposed way clearly elu-
cidates notable differences between the two results
(compare the results shown in Fig. 3 with Fig. 3
of Shiner et al.[1]): Whereas for the first complex-
ity measure we obtain an overall monotoneously de-
creasing function, this is no longer the case with our
measure. Moreover, the scaling yielding a nonzero
complexity for completely ordered systems (period-
doubling cascade cases or period-3 window) look sus-
picious to us. The results obtained by our computa-
tion seem to fit much better the requirements asked
for in the definition of a measure of complexity: that
it should be zero when either the system is completely
ordered or random.
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Fig. 3. Modifi ed SDL-complexity

� � �
and Lyapunov ex-

ponent
�

for the logistic map, as a function of the order
parameter � .

VII. CONCLUSIONS

In this way, the SDL-measure can be modified
to invalidate the most pertinent critiques. The non-
trivial temperature dependence will remove the over-
universality. In particular, the requirements by Binder
and Perry [22], that at least some classes of sys-
tems known from hierarchical analysis should be dis-
cernible, is satisfied: Different dynamical systems
will have distinct complexity measure families. In the
comment by Crutchfield, Feldmann and Shalizi [21],
the authors criticized that any measure of complexity
must be tied intrinsically to a process. In our modifi-
cation, this is now indeed the case. Starting from the
fundamental observations of complexity based upon
order and disorder, we have arrived at a measure that
is no longer subject to the most pertinent critiques,
and whose construction is entirely transparent. How-
ever, it remains to be seen whether a deeper signif-
icance can be attributed to the integrand of Eq. (7),
and, connected to this question, how useful the mea-
sure could be for practical applications.

R.S. acknowledges original discussions with J.S.
Shiner that triggered this work. The work was par-
tially supported by the SNF.
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Abstract—PSpice simulation and experimental 

results demonstrating chaotic performance of the 
Colpitts oscillator in the very high frequency (30 to 
300 MHz) and the ultrahigh frequency (300 to 000 

MHz) ranges are reported. Period-doubling route to 
chaos has been detected experimentally confirming 

dynamical origin of chaotic oscillations. 

I. INTRODUCTION

The classical Colpitts oscillator has been 

originally designed to generate periodic waveforms. 

Meanwhile with special sets of the circuit 

parameters it can exhibit chaotic behaviour as well. 

The first experiment on chaos in the Colpitts 

oscillator was carried out at the kHz frequencies [1]. 

Later the oscillator was investigated in the high 

frequency (HF: 3 to 30 MHz) range and chaos was 

demonstrated at the fundamental frequency 

f*=23 MHz using the 2N2222A [2] also at 

f*=26 MHz using the 2N3904 [3] bipolar junction 

transistors (both with approximately the same 

threshold frequency fT of 300 MHz). By means of 

the PSpice simulations chaos was predicted at 

f*=500 MHz using the Avantek transistor AT41486 

with fT of 3 GHz [2] and at f*=1000 MHz employing 

the BFG520 with fT of 9 GHz [3,4]. However these 

results were not confirmed experimentally as yet. 

In this paper we describe chaotic Colpitts 

oscillator operating in the very high frequency 

(VHF: 30 to 300 MHz) and the ultrahigh frequency 

(UHF: 300 to 1000 MHz) ranges. 

II. CIRCUITRY

A specific implementation of the Colpitts 

oscillator is presented in Fig. 1. The Q1-based stage 

is the intrinsic Colpitts oscillator while the Q2-based 

one is an emitter follower. The resonance tank 

combines the inductor L, two series capacitors C1, 

C2, and the loss resistor R. The C3 is a coupling 

capacitor. The DC supply voltages and the AC 

signals are separated by means of the chokes L0 and 

the blocking capacitors C0. The bias emitter current 

Ie0 can be tuned by varying the voltage source V2. 

The output load is 50 Ω.

Fig. 1. Circuit diagram of the chaotic Colpitts oscillator. 

The values of the tank elements L, C1, C2 depend on 

the chosen fundamental frequency LCf 1*2 =π ,

(C=C1C2/(C1+C2) and are discussed in Section III. 
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Other circuit elements were the following: 

C3=1 pF, C4=270 pF, R1=5.1 kΩ, R2=3 kΩ,

R3=200 Ω, Re=510 Ω, L0=10 µH, C0=47 nH. To 

improve the filtering performance of the L0−C0 

networks small additional capacitors of 300 pF were 

connected in parallel to the main filter capacitors C0. 

The microwave transistors BFG520 with fT of 9 GHz 

were employed in the circuit (Q1 and Q2). All the 

circuit elements are small-size surface mount 

devices (SMD). The V1 was varied from 8 to 9 volts 

and the V2 was tuned from 0 to 13 volts (thus the 

bias current Ie0 was varied from 0 to 24 mA).  

III. SIMULATION RESULTS

Simulations of the circuit in Fig. 1 were 

performed by means of the Electronics Workbench 

Professional simulator, based on the PSpice 

software. The Gummel-Poon model of the 

transistors was employed. 

A. Parameters 

The values of the tank elements depending on the 

fundamental frequency f* are listed in Table 1. 

Experience shows [1-4] that the loss resistance R
should be approximately half of the characteristic 

tank resistance, R ≈ 0.5 CL=ρ . The specific 

values of the loss resistor R as well as the supply 

voltages V1 and V2 (thereby Ie0) were adjusted 

empirically to achieve the most complicated 

behaviour the oscillators (see Table 2). In Table 1 

the total inductance L consists of: (1) the inductance 

Lext controlled by an external SMD inductive 

element; (2) the parasitic inductance of the loss 

resistor LR; and (3) the parasitic inductance LC0 of 

the filter capacitor C0. So, L=Lext+LR+LC0. The two 

latter parasitic values are approx. 2 nH each.  

Table 1. Tank parameters. 

Case f*,

MHz 

Lext,

nH

L,

nH

C1/C2,

pF

C,

pF
ρ,

Ω
1 500 12 16 10/10 5 56.6 

2.1 1000 4 8 5.1/5.1 2.5 56.6 

2.2 1000 12 16 2.4/2.4 1.2 115 

2.3 1000 − 4 10/10 5 28.3 

2.4 2000 12 16 −*/10 0.4 200 

*) Parasitic collector-emitter capacitance CCE ≈ 0.35 pF. 

Table 2. Adjustable parameters and results. 

Case f*,

MHz

V1,

V

Ie0,

mA

R,

Ω
Result 

1a 500 8 5.5 27 Period-2, Fig. 2 

1b 500 8 20 27 Chaos, Fig. 2,3 

2.1a 1000 8 20 27 Period-2, Fig. 4 

2.1b 1000 15 20 27 Chaos, Fig. 4 

2.2 1000 8 20 56 Period-1, Fig. 5 

2.3 1000 8 20 13 Period-4, Fig. 5 

2.4a 1600 8 19 78 Period-1, Fig. 6 

2.4b 1100 8 19 78/x Chaos, Fig. 6,7 
x) The base of the transistor is grounded via a circuit 

consisting of a small wiring inductance of 3 nH coupled 

in series with a wiring loss resistance of 5 Ω.

B. “Pure” cases 

At relatively “low” frequencies (f*=500 MHz) 

chaos can be easily generated at higher bias current 

Ie0 of 20 mA (Fig. 2, right and Fig. 3). 
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V
C

Fig. 2. Simulated phase portraits, emitter voltage VE

versus collector voltage VC . f*=500 MHz, 

case 1a, Ie0=5.5 mA (left), case 1b, Ie0=20 mA (right). 
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Fig. 3. Simulated power spectrum, case 1b.

To increase the f*, say by a factor of 2, there are 

several possibilities to change the tank values: (1) to 

decrease the both values L and C proportionally 

(case 2.1); (2) to keep the same value of L and to 

lower the C by a factor of 4 (case 2.2); (3) to lower L
by a factor of 4, but to keep the same C (case 2.3). 
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In case 2.1 at V1=8 V (Fig. 4, left) the most 

complicated oscillations like period-2 ones are 

observed. Formally, by increasing the supply voltage 

V1 up to 15 V [4] chaos can occur (Fig. 4, right), 

apparently due to the decrease of the collector-base 

capacitance. However, this is an impractical supply 

condition, since 15 V is close to the limiting value 

for the BFG520 type transistor. 
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C

Fig. 4. Simulated phase portraits, emitter voltage VE

versus collector voltage VC . f*=1000 MHz, 

case 2.1a, V1=8 V (left), case 2.1b,  V1=15 V (right).

In case 2.2 with small capacitances of 2.4 pF in 

the tank only simple period-1 oscillations can be 

observed (Fig. 5, left). The reason is that at low 

values of C1 and C2 the stronger is the damping 

influence of the junction capacitances CCB and CEB

[3]. Somewhat better result can be obtained in 

case 2.3 with larger capacitances of 10 pF and lower 

inductance L=4 nH (the external inductive element is 

removed). However, the most complicated 

oscillations observed in this case are the period-4 

ones (Fig. 5, right), i.e. there are no chaotic 

oscillations. Most probably this is caused by the fact 

that at low values of L the characteristic resistance of 

the tank is also low (ρ = 28 Ω). Consequently, the 

effective loop gain parameter defined as a=ρ/r [3] 

(here r is the small signal differential resistance of 

the forward biased emitter-base junction) is 

insufficient for chaotic oscillations. 
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Fig. 5. Simulated phase portraits, emitter voltage VE

versus collector voltage VC . f*=1000 MHz, 

case 2.2, small C (left), case 2.3, small L (right).

C. “Parasitic” cases 

Another way to increase the f* considerably is to 

remove one of the tank capacitors, say C1, and let 

play the role of the feedback capacitance the CCE

(case 2.4). However, the straightforward result is 

similar to case 2.2 when only simple period-1 

oscillations are observed (compare Fig. 5, left and 

Fig. 6, left). 

Along with the parasitic capacitance CCE some 

other mounting/wiring parasitic elements should be 

taken into account. For example, nonideal grounding 

of the base of the transistor should be considered. 

Indeed, simulations show that even small wiring 

inductance from the base to ground and small loss 

resistance appearing due to the skin effect can play 

an important role, thus giving rise to chaos 

(Fig. 6, right and Fig. 7). The experimental results 

presented in Section IV confirm existence of chaos 

in a circuit with a removed capacitor C1. 
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Fig. 6. Simulated phase portraits, emitter voltage VE

versus collector voltage VC ,

case 2.4a (left), case 2.4b (right).
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Fig. 7. Simulated power spectrum, case 2.4b.

IV. EXPERIMENTAL RESULTS

A. Bifurcations 

The evolution of the output signals with the 

increase of the emitter bias current Ie0 is illustrated 

with the one-dimensional bifurcation diagram in 
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Fig. 8. The steady state (s) becomes unstable and 

simple periodic oscillations (period−1) appear in the 

interval 1.5 to 3.5 mA. With the further increase of 

Ie0 the oscillator undergoes the period−doubling 

bifurcations (period−2, period−4, up to period−32) 

eventually resulting in chaotic oscillations at 

approximately 10 mA. This route to chaos is a 

universal scenario observed in a variety of nonlinear 

dynamical systems. Meanwhile in the chaotic 

domain (ch) narrow periodic windows are observed, 

e.g. period−5 and period−9 ones. 

Fig. 8. Bifurcation diagram. 

C1=C2=10 pF, R=26 Ω, V1= 8.0 V. 

B. Spectra 

To characterize the chaotic oscillations the power 

spectra taken at different fundamental frequencies f*

are presented in Figs. 9,10. In the case of f*≈1000

MHz (Fig. 10) the capacitor C1 is simply removed 

from the circuit. Thus the parasitic capacitance CCE

plays its role. Both spectra taken with spectral 

resolution of 120 kHz are broadband continuous 

ones with typical peaks at the fundamental 

frequency f* and with local rises at the 

subharmonics f*/2 (in some cases also at f*/4, 3f*/4 

and 5f*/4). The power spectrum in Fig. 9 covers 

within the unevenness of approximately 20 dB the 

VHF range, while the power spectrum in Fig. 10 

covers the UHF range. 
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Fig. 9. Experimental power spectrum. 

C1=C2=10 pF, R=26 Ω, V1= 8.0 V, Ie0=20 mA. 
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Fig. 10. Experimental power spectrum. 

C1=0.4 pF, C2=10 pF, R=39 Ω, V1= 8.7 V, Ie0=21 mA. 

V. CONCLUSION

The classical Colpitts oscillator has been 

demonstrated to generate chaos in the VHF and the 

UHF ranges both by means of PSpice simulations 

and experimentally. 
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Abstract— The present paper studies a con-
figuration of 2D slow-fast maps replicating neural
bursting activity. We primarily focus on deter-
ministic aspects of the model, where the relation
of bifurcations between the fast subsystem and the
total system is explained. Secondary a specific
family of bursting maps is proposed in order to
investigate irregular interburst intervals. Using
the notion of relative size of the escape interval,
we clarify a cause of the variability of the interval
length in the deterministic model.

I. Introduction

Statistics of the interspike intervals for spik-
ing neurons (or interburst intervals for bursting
neurons) are important for comprehension of the
information coding of the biological neural net-
works [1,2]. The high variability of responses ex-
hibited by neurons has been pointed out [3] and
a number of models have been produced to ex-
plain its mechanism [4,5]. The irregular timing of
successive action potentials have been often de-
scribed stochastically with Poisson processes. On
the other hand, the issue has not attracted much
attention in the deterministic dynamical neuron
models. However, it has not been clarified yet
whether the irregular intervals result from the
timing variety of the input spikes or the inherent
dynamics of the neuron.

Differential equation models exhibiting burst-
ing responses have been intensively studied since
the first clarification of slow-fast dynamics in
bursting systems by Rinzel [6]. 3D continuous
bursting systems have been classified based on the
type of bifurcations at the onset and the termina-
tion of bursts in fast subsystems [7]. Recently
map-based models with analogous slow-fast dy-
namics have been proposed [8–13]. Classification
of bifurcations for emergence and destruction of
bursting behavior in the fast subsystem has also
been performed [13], though examples for several

types are absent. Most of these studies on map-
based models have focused on synchronization of
bursts when coupled [8] and bifurcation scenario
leading to chaotic bursting behavior [12].

This paper investigates irregular interburst in-
tervals in a family of maps with 2D slow-fast dy-
namics. First we emphasize deterministic proper-
ties of the model in order to understand the role
of the fast subsystem. We show that bifurcations
of the fast subsystem determine those of the total
system. Next proposing a specific family of 2D
maps, we examine the mechanism of the irregu-
lar bursting behavior in the deterministic model
in terms of the relative size of the escape interval.
We illustrate changes of the distributions of inter-
burst intervals with variation of one parameter in
the proposed model, keeping the minimum inter-
val length which may be regarded as a refractory
period.

II. Deterministic Properties of 2D
slow-fast maps

Let us consider a configuration of 2D slow-fast
maps in the form [8]:

x(t + 1) = f(x(t)) + y(t),
y(t + 1) = y(t) − ε(x(t) − σ),

(1)

where x and y indicate the fast variable represent-
ing the membrane potential of the neuron and the
slow variable, respectively. The parameter σ de-
notes the threshold value and the time scale ratio
of the two variables, ε, is set as a sufficiently small
value.

Equation (1), called the total system, is in-
volved in the fast subsystem:

x(t + 1) = f(x(t)) + p. (2)

Here we suppose that the fast subsystem exhibits
coexistence of a stable node and a chaotic attract-
ing state in a certain parameter range of p accom-
panying with a hysteresis. An example of such sit-
uation is illustrated in Fig. 1(a). The fixed point
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Fig. 1. (a) Attracting states after transition period

of the fast subsystem with change of p (α = 4.3).
The notations pcr and psn indicate a crisis and
a saddle-node bifurcation paramter value, respec-
tively. (b) Trajectory of a bursting response in
the total system over the left figure (α = 4.3,
σ = −1.5). (c) Corresponding time series.

transits to the chaotic state at the saddle-node bi-
furcation parameter value p = psn as p increases,
while the chaotic state jumps to the fixed point at
the crisis parameter value p = pcr as p decreases.

The function f generating such fast system dy-
namics enables the total system to exhibit burst-
ing behavior as shown in Fig. 1(b). When x(t) <
σ, the trajectory moves along the stable node of
the fast subsystem with increasing y(t) and tran-
sits to the bursting state at y(t) ∼ psn. Since
y(t) decreases if x(t) > σ, the trajectory moves
with decrease of y(t) and finally jumps to the sub-
threshold with irregular timing. In Fig. 1(b), the
locus of the transition from the chaotic state to
the resting state seems to be highly irregular com-
pared with the almost fixed position at the tran-
sition to the bursting state. Figure 1(c) shows an
example of bursting response. The chaotic fluc-
tuation of the transition points essentially causes
the irregularity of interburst intervals as consid-
ered in Sec. III. As a result of indefinite iteration
of the transition among two states, the bursting
behavior continues forever. More detailed anal-
yses of the bursting mechanism through the fast
dynamics can be seen in Refs. [8,10,11].

Although the total system can often show prop-
erties unexpected from the dynamics of the fast
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Fig. 2. (a) Bifurcation sets in the fast subsystem. (b)

Bifurcation sets in the total system. The Neimark-
Sacker bifurcation separates the silence and the
bursting region.

subsystem, we can here show that bifurcations of
the 1D map are closely related to those of the to-
tal system. If the fast subsystem (2) exhibits a
saddle-node bifurcation at (x, p) = (x0, p0), then
there exists a point (x, y) = (xδ, yδ) in the neigh-
borhood of the point (x, y) = (x0, p0) for any suf-
ficiently small ε such that the total system (1) ex-
hibits a Neimark-Sacker bifurcation. From the as-
sumption,

x0 = f(x0) + p0, (3)
f ′(x0) = 1. (4)

Since the fixed point of the total system is given
as (x, y) = (σ, σ − f(σ)), the Jacobian matrix at
the fixed point is described as

J =

(
f ′(σ) 1
−ε 1

)
, (5)

which leads to the characteristic equation:

χ(µ) = µ2 − (f ′(σ) + 1)µ + f ′(σ) + ε = 0.

We can take a point (x, y) = (xδ, yδ) in the neigh-
borhood of (x0, p0) such that f ′(α) = 1 − ε from
Eqs. (3) and (4). Then, the solutions of the char-
acteristic equation are given by a pair of com-
plex conjugate numbers on the unit circle. This
means that a Neimark-Sacker bifurcation occurs
with σ = xδ, because the bifurcation is not de-
generated due to f ′(σ) + 1 = 2 − ε �= 2.

In the similar way, a period-doubling bifur-
cation in the fast subsystem implies a period-
doubling bifurcation in the total system. We illus-
trate a corresponding bifurcation sets in both sys-
tems with f(x) = α/(1+x2) in Figs. 2(a) and (b).
The Neimark-Sacker bifurcation separates the si-
lence region and the bursting region.
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Fig. 3. (a) Return map of the fast subsystem with

Eq. (6) for five different values of β (α = 4.3,
p = −2.9). (b) The box size b determined by the
unstable node xf and the escape interval a.

III. Irregular interburst intervals

The two bifurcation points, pcr and psn, of the
fast subsystem are expected to regulate the onset
and the termination of the bursts respectively in
the total system. In fact, the solution orbit is far
from regular motion due to the fluctuation of the
transition point from the chaotic state to the sub-
threshold state. Thus, in this section, we explore
the factors which control the distribution of the
irregular interburst intervals.

We use the fast subsystem Eq. (2) and the total
system Eq. (1) with the following function:

f(x) =

{
α

1+(−x)β (x < 0),
α

1+xβ (x ≥ 0).
(6)

This function is an even function and takes the
muximum value at the origin independent of the
value of β. The value of β controls the sharpness
of the central peak. The function can be approx-
imated as f(x) ∼ α(1 − xβ + x2β − · · ·) near the
peak (x ∼ 0). Thus the peak is more circular for
larger β while it is cusp-like for smaller β. When
β = 2.0, this model is equivalent to the map pro-
posed by Rulkov [8]. Examples of the fast sub-
system for five different values of β are shown in
Fig. 3(a). The bifurcation structure of the fast
subsytem with f in Eq. (6) is qualitatively the
same as that shown in Fig. 1(a).

Now we assume that a trajectory of the total
system exists in the bursting state and y(t) > pcr.
As the time step goes, y(t) decreases with small
variation ∆t = ε(x(t) − σ). When y(t) > pcr,
the trajectory can not escape from the chaotic
state because even the maximum value is mapped
into the chaotic region above the unstable node.
With further decrease of y(t), a crisis occurs at

 0
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 0.15

 0.2

r(
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p

β=2.2

β=2.0

β=1.8

β=1.6

β=1.4

pcr

Fig. 4. The relative size of the escape window,
r(p) = a/b, for the distance from the crisis pa-
rameter value pcr.

y(t) = pcr. At that time the maximum value
is just mapped into the unstable node xf . Fig-
ure 3(b) shows the relation between the second
preimage of the unstable node and the peak. That
is, it depends on the relation whether the trajec-
tory can excape from the chaotic region or not.
When y(t) < pcr, the peak is over the box as
shown in Fig. 3(b). The relative size of the cen-
tral interval [−a, a] via which the trajectory can
escape for the box size [−b, b] is defined as r = a/b.

The probability that a number of uniformly dis-
tributed initial points in [−b, b] escape from the
chaotic region in the next time is given as r. If
r is constant, then the situation is similar to the
transient chaos. Therefore, the number of time
steps staying in the chaotic region after the crisis
corresponds to the mean lifetime staying in the
transient chaos. In such static case, if an initial
point belongs to the k-th preimages of the escape
interval [−a, a], the point remains in the chaotic
state for k steps. When a number of initial points
are distributed uniformly, the distribution of the
mean lifetime is known to be an exponential dis-
tribution with the exponent called the escape rate
[14].

However, in our case, both of the box size b and
the escape interval length a vary with y(t). Thus
it is convenient for extimating the relative size r
of the escape interval to use the fast subsystem.
We numerically calculate r for p. If p > pcr, then
obviously r = 0. Since a and b satisfy the follow-
ing equations:

−b =
α

1 + bβ
+ p, (7)

b =
α

1 + aβ
+ p, (8)
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Fig. 5. Histgram of the interburst interval length

for ε = 0.001 (a) and ε = 0.002 (b). In both
graphs the distribution changes with the value of
β keeping the same minimum interval length.

we obtain

r(p) =

(
−

(α + 2p)bβ + 2(p + α)
bβ(2pbβ + α + 2p)

)1/β

. (9)

Therefore, we get the relative size of the escape in-
terval by substituting the numerically computed
value of b from Eq. (7) into Eq. (9). As the cri-
sis point is different for different values of β, we
illustrate the ratio r for a distance from the crisis
point in Fig. 4 for comparison. As the exponent
β increases, the differential of r(p) at pcr become
larger. This means that the number of time steps
until the escape time is shorter for larger value
of β. Accordingly the distribution of interburst
intervals must reflect the difference of values of β.

Figure 5(a) shows the normalized histgram of
the interburst intervals for ε = 0.001 and three
different β values. We can see that the variance
of the distribution increases as the value of β de-
creases with holding constant minimum interval
length. Figure 5(b) shows the same for ε = 0.002.
Although the minimum length and the average
length varies compared with the case of ε = 0.001,
it is qualitatively invariant how the distribution
changes with the value of β.

The distributions are different depending on the
relative escape interval size r. Therefore, when
the neural bursting behavior is described by the
phenomenological model, we can select an appro-
priate model with the desirable distribution of in-
tervals by adjusting the value of β. On the con-
trary, ε corresponding to the time scale ratio of
the fast system and the slow system can be used
to control the average of the interval length.

IV. Conclusions

We have considered a family of 2D slow-fast
discrete maps exhibiting neural bursting behav-
ior with irregular interburst intervals. In spite of
the deterministic relation between the fast sub-
system and the total system, interburst intervals
(and burst duration) of the total system are ir-
regular. The notion of relative escape interval size
and the comparison with the transient chaos have
helped understanding of the unpredictable escape
timing from the chaotic attracting state.
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Abstract—We further develop the theory of energy-
based control of nonlinear oscillators. Controlling the
chaotic Colpitts oscillator is considered. The oscilla-
tor unstable fixed point and UPOs are stabilized by
adjusting the system oscillation energy to levels cor-
responding to these repellors stable counterparts. The
technique does not require knowledge of the system
equations and performance of any computation of the
control signal, and, hence, can be useful for control
and identification of unknown systems.

I. INTRODUCTION

The chaotic attractors have been observed in sev-
eral electronic circuits. One of such circuit is the Col-
pitts oscillator [1–3]. It consists of a bipolar junction
transistor (the circuit active nonlinear element) and a
resonant L-C circuit. The oscillator is widely used in
electronic devices and communication systems.

In this paper, the energy-based control of the
chaotic Colpitts oscillator is considered. The tech-
nique is based on altering the system oscillation en-
ergy [4]. To any type of the system behavior, we put in
correspondence the value of the averaged oscillation
energy that is an averaged (over the time) compound
of the system kinetic and potential energy. The objec-
tive is to alter this energy so as to correspond to the
desired behavior. This is a general approach that does
not depend on particular oscillator equations. Simple
feedback depending solely on the output signal is uti-
lized for this purpose. Generally, two strategies of the
control are possible. In the first strategy, one simply
increases the feedback strength, and, thus, depend-
ing on the perturbation phase, increases or decreases
the oscillation energy. The strategy does not require
knowledge of the system equations and computation
of the control signal. It is applicable, hence, for con-
trol and identification of unknown systems. In this
paper, we follow the above approach. Another strat-
egy is based on goal-oriented control of the desired
target when the perturbation strength is calculated for
stabilization of an a priori chosen orbit.

II. GENERAL APPROACH

Let us consider controlling a general type nonlinear
oscillator

ẍ + χ(x, ẋ) + ξ(x) = F (t) + g(x, ẋ) (1)

where χ(x, ẋ), ξ(x) and g(x, ẋ) are dissipative or
energy-generating component, restoring force, and
control force, respectively. These functions are non-
linear in general case. Also, χ(x, ẋ) and g(x) are as-
sumed not contain an additive function of x. F (t) is
an external time-dependent driving force.

At F (t) = 0 and g(x, ẋ) = 0, Eq. (1) possesses the
equilibriums defined by the equation ξ(x) = 0. We
assume that at some parameter values, the limit cycle
becomes saddle, and a new attractor, say a period-2
cycle, arises. In many well-known example, this sce-
nario leads, through sequence of bifurcations, to the
birth of chaotic attractor.

One can define an energy of oscillations as a sum
of the “potential” energy and “kinetic” energy

E(t) =
∫

ξ(x) dx +
1
2
ẋ2 (2)

and an averaged over the period T energy

〈E〉 =
1
T

∫ T

0

( ∫
ξ(x) dx +

1
2
ẋ2
)
dt . (3)

For periodic dynamics T is the oscillation period, and
for chaotic one T → ∞. Each behavior of the os-
cillator is assigned to the value of the averaged en-
ergy (3). If the oscillation amplitude is sufficiently
small, the limit cycle oscillations can be approximated
as x � ρ sin ωt, which gives 〈E〉 = 1

2ρ2.
The following control strategy can be proposed.

Starting at the lower energy attractor, one stabilizes
the higher energy repellors by sequential increasing
the averaged oscillation energy. On the contrary, de-
creasing this energy leads to stabilization of the lower
energy repellors.
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The change of the energy (2) yields

Ė(t) = ξ(x)ẋ + ẋẍ

=
(− χ(x, ẋ) + F (t) + g(x, ẋ)

)
ẋ . (4)

The last term of (4) represents the energy change
caused solely by the control. We require that

g(x, ẋ) ẋ > 0 (< 0) (5)

for ∀(x, ẋ). The minimal feedback satisfying (5) is
achieved at g = g(ẋ). Indeed, a simple linear (relative
to the velocity) control g(ẋ) ∼ ẋ suffices. However,
this type of control as well as nonlinear controls of
higher power, say g(ẋ) ∼ ẋ3 can lead to undesirable
instabilities in the system. Therefore, the controller
dynamics should be described by the bounded func-
tions. In this paper, we consider

g(ẋ) = kh(ẋ) (6)

where

h(ẋ)

⎧⎪⎨
⎪⎩

> 0 (→ a), if ẋ > 0 (→ ∞)
= 0, if ẋ = 0
< 0 (→ −a), if ẋ < 0 (→ −∞)

(7)

with a > 0 and finite. The h(ẋ) = −h(−ẋ), i.e.
it is assumed to be odd. Throughout, we consider
g(ẋ) = k tanh(βẋ) with 0 < β � ∞ determining
the function slope.

The perturbation (6-7) is specially tuned to control
the equilibriums — their positions are not changed by
the control as it vanishes at ẋ = 0. Ė = 0 at the
equilibriums respectively. The above control does not
vanish at the dynamic attractors. Our aim, however, is
not stabilization of the UPOs of the unperturbed sys-
tem existing at given parameter values, but rather shift
the system into the region of the desired behavior (say,
stable or unstable region if one requires to stabilize or
destabilizes the system, respectively). The energy (3)
will be changed so as to much the energy of the de-
sired stable orbit or chaotic attractor, respectively.

For small oscillations, one can find their amplitude
ρ by substituting x = ρ sin ωt to the averaged over the
period T energy change and solving the equation

〈Ė〉=1
T

∫ T

0
Ė(t) dt

=
1
T

∫ T

0

(− χ(x, ẋ) + F (t) + g(x, ẋ)
)
ẋdt

= 0 . (8)

The equation (8) describes a balance of dissipation
and supply the energy brought by damping, driving,
and control forces. For a general orbit defined by in-
finite series of periodic modes, the fundamental fre-
quency as well as its harmonics should, in principle,
be counted.

In this paper, we simply increase the feedback
strength to adjust the oscillation energy to different
levels. The above strategy does not require any com-
putation of the control signal and, hence, is applicable
for control as well as identification of unknown sys-
tems.

Another strategy is based on goal-oriented control
of the desired target. It can be applied in cases when
the system equations are known or the desired target
can be identified (say, UPO extracted from the system
time series). The amplitude of system’s natural re-
sponse (i.e. an orbit stable at some parameter values)
is derived from the equation

1
T

∫ T

0

(− χ(x, ẋ) + F (t))
)
ẋdt = 0 . (9)

The equation (9) describes a balance of dissipation
and supply of the system intrinsic energy. For free
self-sustained oscillations, this balance is supported
entirely by the nonlinear damping. To eliminate the
natural response distortion imposed by the control, the
following condition must be satisfied:

1
T

∫ T

0

(
g(x, ẋ)

)
ẋdt = 0 . (10)

For small oscillations, substitution of g(x, ẋ) =
k tanh(βẋ) ≈ k(βẋ − 1

3β3ẋ3) into (10) yields

β =
2

ρω
. (11)

The distortion can be minimized, thus, by solely tun-
ing the perturbation shape. If ρ � 1, β should be
sufficiently large so as to preserve the underlying nat-
ural response. For an a priori chosen small amplitude
orbit, find first β from the condition (11) and then,
by solving the equation (9), k sufficient for stabilizing
this orbit. For an arbitrary amplitude orbit, that gener-
ally is a superposition of different periodic modes, one
should utilize parameters of the fundamental mode
and its harmonics to find β and k.

The control (6-7) does not depend on type of the
function χ(x, ẋ), ξ(x), and F (t), and, hence, can be
applied to linear and nonlinear oscillators, to regular
and chaotic dynamics.
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The approach can be generalized to the case of cou-
pled oscillator networks [4].

Three-dimensional autonomous dynamical system
can be presented in oscillatory form — the oscillator
with a dynamically changing feedback. Then, the pro-
posed approach can be applied. Application of the ap-
proach to one of such system, the Colpitts oscillator,
is considered below.

III. THE COLPITTS OSCILLATOR EXAMPLE

The Colpitts oscillator dynamics can be described
by a 3-D autonomous dynamical system [3]:

ẋ = y − f(x)
ẏ = c − x − by − z (12)

εż = y − d

where the function

f(x) =

{
−a(z + 1), z < −1,

0, z � −1 ,

the dimensionless variables x and z correspond to
circuit’s capacitor voltages and the variable y corre-
sponds to circuit’s inductor current. a, b, c, d are the
dimensionless parameters. This model is equivalent
to so-called ideal model of the circuit model [2]. It
maintains, however, all essential features exhibited by
the real Colpitts oscillator. For z < −1, the transistor
works in its forward-active region, while for z � −1,
it is cut-off.

Substituting y = εż + d to the second equation of
(13), obtain

εz̈ + εbż + z = c − bd − x

ẋ = −f(x) + εż + d (13)

To apply the above approach, one need to add the
feedback g(ẋ) to the first equation of system (13).
For the above oscillator, the change of the energy (2)
caused by this control yields żg(ż). If g(ż) takes
the form (6-7), the latter term always provides the in-
crease (decrease) of the oscillation energy for positive
(negative) perturbation magnitudes. We, thus, con-
sider g(ż) = k tanh(βż). Taking the inverse change
of the variables ż = 1

ε (y−d), obtain the control feed-
back to be applied to 2-nd equation of the system (13):

g(y) = k tanh
(1
ε
β(y − d)

)
. (14)

The perturbation (14) is specially tuned to stabilize the
fixed point of the system (13). Figure 1 demonstrates
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Fig. 1. Dynamics of the state variable y of the oscillator
(13) at ε = 1, a = 30, b = 0.8, c = 20, d = 0.6,
β = 10, and k = 0 (t < 200); k = −1.6 (t � 200).
Dashed line indicates the time of starting the control.

controlling of this point. k is chosen to be negative,
which results in decreasing the averaged oscillation
energy. Increasing |k|, thus, leads to the oscillation
amplitude decrease and, eventually, to suppression of
the oscillations.

Note, that stationary point exists only in the
forward-active region. Unlike, the (a)periodic orbit
trajectories spend most of their times in the cut-off
region. Circuit’s oscillations are balanced, thus, not
around the above stationary point but rather around
the total collector voltage equilibrium. The latter is
proportional to x + z. Let us consider ε = 1 and de-
fine w = x + z. In the cut-off region, summation
of 1-st and 3-rd equations of the system (13) yields
ẇ = 2y − d. Substitution of y = 1

2(ẇ + d) to 2-nd
equation of the system (13) results in the following
dynamics of the total collector voltage:

ẅ + bẇ + 2w = 2c − bd (15)

Applying the perturbation g(ẇ satisfying the condi-
tions (6-7) to the oscillator (15) results in the feedback

g(y) = k tanh
(
β(y − d

2
)
)

(16)

to be applied to 2-nd equation of the system (13) to
control circuit’s periodic orbits.

Figures 2 and 3 demonstrate controlling the oscil-
lator periodic orbits. At k = 0, the system exhibits
chaotic oscillations (Fig. 2(a), grey line). Let us
apply the feedback that decreases the oscillation en-
ergy. Strengthening its force, one sequentially sta-
bilizes the orbit corresponding to windows in the
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Fig. 2. Phase space of the oscillator (13) at ε = 1, a = 30,
b = 0.8, c = 20, d = 0.6, β = 10, and (a): k = 0 (grey
line); k = −0.009 (bold black line); (b): k = −0.012
(solid line); k = −0.24 (dot-dashed line)

chaotic attractor and the period-doubling orbits in
the reverse order. At k � −0.009, one obtains
the period-3 orbit corresponding to largest window
of the chaotic attractor (Fig. 2(a), bold black line).
The period-8, -4, -2, and -1 orbits are stabilized at
k � −0.11,−0.12,−0.14,−0.22 respectively. Fig-
ure 2(b) demonstrates stabilized period-4 (solid line)
and period-1 (dot-dashed line) orbit respectively.

Increasing the oscillation energy leads to stabiliza-
tion of orbits corresponding to these energy levels.
Figure 3 demonstrates stabilization of so-called 2-
pulse orbit.

IV. DISCUSSION AND CONCLUSIONS

The control technique was successfully applied to
stabilize the unstable fixed point and UPOs of the Col-
pitts oscillator. The technique is capable of control-

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

y

Fig. 3. Dynamics of the state variable y of the oscillator
(13) at ε = 1, a = 30, b = 0.8, c = 20, d = 0.6,
β = 10, and k = 0 (t < 125); k = 0.08 (t � 125).
Dashed line indicates the time of starting the control.

ling the chaotic repellors too. Indeed, one can con-
vert the equilibrium or periodic dynamics to a chaotic
one, or switch the dynamics, say, from the spiral-type
chaos to the screw-type one and vise versa by simply
altering the circuit oscillation energy.

The technique is applicable to controlling coupled
oscillators. We considered a chain (ring) of 10 Col-
pitts oscillators with diffusion-type couplings (with
coupled emitters and collectors of the circuit transis-
tor, respectively [3]). Different UPOs were stabilized
with a control perturbations applied to only single os-
cillators.

The approach utilizes simple feedback depending
solely on the output signal and, hence, is especially
useful when the system parameters are inaccessible or
are costly to adjust. The particular type of the pertur-
bation is rather relative — most important, it should
comply with the condition (5).
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Abstract—The dynamical process properties of 

chaotic discrete map in reverse time is considered. 

The fractal structure of reverse iteration points 

ordering is investigated. As an application the data 

encryption algorithm is proposed.

I. INTRODUCTION

In literature the investigations of secure 

communication methods with the use of dynamical 

chaos are well-known and wide-spreading [1]. The 

majority of approaches proposed are in hiding of the 

fact of information transmission by means of its 

masking in random-like chaotic signal or other 

methods [2]. The novel and deeply studied enough 

theoretical and experimental results have described 

in a lot of papers, for instance [3,4]. 

So far relatively new but progressive principle is 

in active development, that connected with 

researches of information encryption algorithm 

based on chaotic properties of nonlinear dynamical 

systems [5]. By now, there are several of 

inconsistent opinions about perspectives of this 

approach. But due to a small number of publications 

in this direction for the final solution of existing 

problems, certainly, it’s necessary to conduct further 

goal-directed studies with the help of new ideas and 

approaches to application of dynamical chaos for 

data protection. 

In given work, as such new idea, it’s proposed to 

use the chaotic processes of the dynamical systems 

not in "direct", as it’s traditionally offered in 

scientific works, but in "reverse" time. This 

approach is connected with inverse problem of 

nonlinear dynamics [6], having polymorphism 

(ambiguous solution) and possessing in general case, 

exceeding difficulty for research. 

This idea is in some relation with several 

problems of various approaches to solution of 

inverse problem for dynamical systems and its 

practical applications, that are investigated in 

literature. They are separation of chaotic signals into 

components from its sum with the noise [7], 

decoding the information stored in chaotic sequence 

by symbolic dynamics [8], restoration of initial 

conditions, parameters and nonlinearly of the model 

from observed chaotic waveform in the presence of 

noise and other disturbing factors, by means of so 

called reverse iteration [9], the optimization of the 

most convenient structure of equations and 

dynamical variables for chaotic waveform 

simulation [10], error estimation of parameter 

reconstruction from modulated chaotic signal [11], 

and etc. 

In these works, as a rule, only partial questions of 

reverse time system applications for radiophysical

and telecommunication problems are considered. At 

the same time, reverse dynamics itself is greatly 

interesting media for research and has varied 

properties, that are not enough investigated in 

literature. For this reason we propose for beginning 

to pay the attention to some basic theoretical 

characteristics of chaotic processes in reverse time, 

but under special practical point of view, and then to 

consider how that properties can be used in concrete 

application to information communication system. 

The structure of the paper is as following. In 

Chapter II, a selection of dynamical system as the 

discrete map is explained and their basic dynamical 

and statistical characteristics in direct time are 

discussed. In Chapter III, properties of these systems 

for motion in reverse time are investigated and 

compared with characteristics obtained in previous 

Chapter II. There is a small discussion about 

example application of reverse map complex 

structure order for information encryption In 

Chapter IV. 

II. BASIC PROPERTIES OF THE MAP IN DIRECT TIME

Let’s take as our object of investigation the class 

of dynamical systems with discrete time tk in the 

form 
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xk+1=F(xk; a),                           (1) 

where xk – state vector of the system in the moment 

of time k= tk/T=0,1,2…, T – sample period, F – 

vector map functions, a – vector of constant 

parameters. State vectors and map functions have 

the dimension Nx, vector of parameters – Na. In 

given paper we consider the simplest example of 1-

dimension single-mode map, i.e. Nx=Na=1.

One of the simplest and widely-used types of 

maps from this class, that providing the chaotic 

behavior is piecewise-linear map with single 

maximum (or minimum), that is will-known also as 

tent map (2).

.1,)1()1(

,0,
);(1

kk

kk

kk
xaax

axax
axFx  (2) 

In our case we present a modification of 

asymmetrical tent map with fixed maximum, i.e the 

tent with top, that changing along the line of F(xk;

a)=1, when varying the parameter, but the base of 

tent is fixed in the definitional domain borders of xk,

i.e. F(0;a)=F(1;a)=0 (Fig. 1,a). In this instance we 

deal with asymmetrical linear maximum, that formed 

by two closing straight line with different tangents, 

depending on the value of parameter a. Map 

function becomes symmetrical only in the single 

situation: a=0.5. Exactly the same map was 

investigated in [12] and was called there as skew 

tent map. 

In this map the band of changing the parameter, 

corresponding to global stable dynamics, is 

)1,0(a ; initial condition definitional domain also 

is the unit interval: )1,0(kx .

The reason, why we have selected this type of 

map function is as followings. The map (2) is non-

compressing and non-expanding, i.e. it converts the 

unit interval (0,1) into itself. Thereby reverse map 

also will be non-compressing and non-expanding. 

This provides the existence of iteration point of 

reverse map function for all points from definitional 

domain of the direct map function, and signifies the 

mutual correspondence of any reverse dynamical 

process to direct one for all parameter values and 

initial conditions. While there is no such a 

correspondence, in general, in compressing or 

expanding maps. 

Let’s consider a little bit more in detail some 

properties and characteristics of our piecewise-linear 

map. This map generates a dynamical chaos for all 

allowed values of parameter, that is confirmed by 

solid form of bifurcation diagram and positive 

Lyapunov exponent, when a is changed (Fig. 1,c-d).

An example of the chaotic behavior for the fixed 

parameter is shown in phase plane (Lamerey-Königs

diagram) in Fig. 1,a.

a) b)

c) d)

Fig. 1. Characteristics of piecewise-linear map (2):       (a)

– Lamerey-Königs diagram example; (b)– density of 

distribution (for (a-b) – a=0.25); (c) – bifurcation 

diagram; (d) – Lyapunov exponent 

This is very notable that density of distribution 

P(x) the chaotic process when increasing of duration 

of the time sample tends to uniform law for nearly 

any )1,0(a  (Fig. 1,b). This is also tracked on 

bifurcation diagram in Fig. 1,c, on which almost the 

whole volume of phase space is filled uniformly. As 

an exception are narrow areas, that are visited by 

trajectory comparatively less, than all rest space – 

these areas are concentrated near the fixed points of 

the system (2). One of them is always in origin 

x1*=0, but coordinate of the other point is defined by 

expression x2*=1/(2–a) (this curve is also shown in 

diagram of Fig. 1,c).

The dependency of Lyapunov exponent on the 

system parameter, calculated numerically and 

plotted in Fig. 1,d, can be also derived analytically 

[12]: 

)1ln()1(ln)( aaaaa               (3) 
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As you see, 0)(a  for any )1,0(a .

The map presented very suitable from the 

standpoint of chaos control in secure communication 

system, since if the parameter is varied slowly the 

oscillation characteristics practically are not 

changed, but density of distribution function 

(consequently mean value, dispersion and etc) is not 

changed at all. 

III. FEATURES OF THE SYSTEM IN REVERSE TIME

The reverse map law in general form is written as 

following

xk=F
 -1(xk+1; a),                        (4) 

which for 1-dimention system with single maximum 

has ambiguous functional dependence. In particular, 

for the map (2) 

;)1(1);(

,);(

11

1

2

11

1

1

kk

kk
k

xaaxF

axaxF
x       (5) 

Thereby, for every value xk+1 we have two 

preceding values xk (figuratively expressing, for each 

"effects" we have two possible "reasons"). Hence, at 

every n-th step of the motion backwards, where 

],0[ Nn , ambiguity increases as 2n. Graphically 

this phenomenon can be imaged in the manner of 

tree of reverse iteration, Fig. 2, on which all 

possible trajectories in the time interval (k-N, k), 

where k>N, getting through given value xk=0.2 (the 

time axis positive direction – on the left)*. All 

trajectories, starting from manifold {xk-N}, – values 

at the right border of the “tree” in Fig. 2 (top of tree)

– for direct iteration in n steps will reach the value xk

(base of tree). As it is shown this process (branches

of tree) tries to fill the whole volume of source 

attractor (for direct dynamics) when n increases. 

However the question appears: what is the structure 

of top tree manifold? 

The density of distribution function Prtt(x) of the 

top tree manifold is presented in Fig. 3. This is quite 

different distribution as of direct process (compare 

with Fig. 1,b) and, hence, not the same as of single 

* In the paper [7] a calculation of such multiple backward 

trajectories by means of reverse iteration was used for increasing 

the separation quality of chaotic process from mixture of a 

number of signals with noise in communication channel by 

statistical analysis. 

branch of the tree in Fig. 2 (it seems to be also 

uniform). Only for a=0.5 (symmetric map) Prtt(x) is 

the same as P(x). This means that backward process 

is not ergodic, in general case. 

Fig. 2.Tree of reverse iteration; N=10, a=0.25, xk=0.2

Another difference from the direct process is in 

the dependence of Prtt(x) on the parameter a. So, we 

see, reverse dynamics generates statistically 

different process, then direct one.

a) a=0.25 b) a=0.75

Fig. 3.Density of distribution of top tree manifold; N=20, 

xk=0.2

The characteristics of Fig. 3 already demonstrate 

self-similar (fractal) structure, especially Fig. 3,b.

It’s interesting to present the top tree as some time 

waveform, so we could consider the tree of reverse 

iteration as the generator of complex consequences. 

But a question arises: how to order this manifold or, 

in other words, what parameter of ordering we have 

to choose? 

One of the most convenient algorithms is to order 

in correspondence with branch calculation sequence 

as the following. If at each n-th reverse time step of 

tree when calculating xk-n due to (5) we’ll give to 

every value the symbolic digit “0” for calculation 

via 1
1F , and “1” – for 1

2F , each branch will get the 

symbolic binary sequence of the length equaled to N

(for instance, for most bottom branch of Fig. 2, that 
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was calculated only via 1
1F , we’ve got the 

sequence of “00000…” (N zeros)). 

In general case, this sequence can be interpreted 

as some binary number, where each bit corresponds 

to any reverse iteration n. Then we could link, for 

example, the upper bit with n=N (accordingly the 

lower bit with n=1) and convert it into decimal 

form. In such a manner we obtain the unique number 

of each branch – “branch index” ]2,0[ 1Ni , that 

we’ll use as a parameter of ordering. The 

dependency of top tree values on the branch index is 

shown in Fig. 4. This is the fractal structure – each 

fragment is the similar structure as the whole image. 

The form of fractal depends on the map parameter a,

but not on the xk and N.

Fig. 4. Fractal top tree structure; N=16, a=0.5, xk=0.2

The ordering principle play the key part in 

formation of fractal manifold – any other type of 

ordering leads to different top tree structure. 

IV. APPLICATION EXAMPLE

Fractal properties of ordering of iteration points in 

reverse time is the very interesting result itself from 

theoretical point of view and could find a lot of its 

applications. But one of the simplest application it’s 

possible to propose – this is the data encryption 

algorithm based on reverse maps.  

As an input information can be any value 

)1,0(nkx  – the initial condition for direct map, 

taken with fixed or varied accuracy N. The output 

data is the branch index i, that can be calculated 

during direct iteration as well. Since the index is the 

unique identity of nkx , we could always restore 

input data by means of reverse iterations only from 

the index (it’s supposed, that a map and its 

parameter are known). The table of the 

correspondence is expressed as the fractal structure 

of Fig. 4. 
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Abstract— The BVP oscillator is a simple circuit
implementation of neuronal dynamics. Lately diffu-
sive coupling structure of neurons is attracting atten-
tion since the existence of the gap-junction has been
found in the brain. Such coupling is easily realized by
linear resistor in the circuit implementation, however,
there are not enough investigations about diffusively
coupled BVP oscillators, even a couple of two BVP
oscillators. We have considered several types of cou-
pling structure between two BVP oscillators, and dis-
cussed their dynamical behavior in precedence works.
In this paper, we take up a coupling structure called
current coupling structure, and study dynamical prop-
erties of it by bifurcation theory. As a result, both
completely in-phase and anti-phase synchronization
stably for coupled identical oscillators.

I. INTRODUCTION

A circuit equation of Bonhöffer-van der Pol (abbr.
BVP) oscillator which is also called FitzHugh-
Nagumo model is simplified Hodgkin-Huxley equa-
tion. Since a BVP oscillator is a simple electric cir-
cuit which consists of some simple elements, many
researches have investigated not only about the bifur-
cation phenomena in single BVP oscillator but also
about the various coupled system [1]–[4]. When a lin-
ear resistor is used for coupling, it realize a diffusive
coupling system. Sine a BVP oscillator has a two in-
terfaces, we have the following four coupling types:
voltage-voltage, current-current, voltage-current, and
cross voltage-current coupling. Therefore, it is envis-
aged that various synchronization and asynchronous
phenomena, and the chaos oscillation due to bifurca-
tion phenomena are observed by the interactions of
initial state of each oscillator and the coupling type
although the simple coupling system.

In this paper, we investigate a current coupled BVP
oscillators. We consider both coupling systems of
identical BVP oscillators and different BVP oscilla-
tors, and investigate observed various bifurcation phe-
nomena and chaos oscillation due to changing param-

eter of nonlinear resistor and a linear resistor using
for coupling. Then, we show that a current coupled
BVP oscillators have various phenomena depending
on characteristics of nonlinear resistors although all
internal elements of two oscillators are the same. Ad-
ditionally, when we vary parameters of internal ele-
ments, more complicated phenomena are found. We
show that a chaotic solution changes between two
chaotic solutions in simulation and laboratory experi-
ment.

II. BIFURCATIONS IN SINGLE BVP OSCILLATOR

To analyze bifurcation phenomena in current cou-
pled BVP oscillators, firstly we investigate bifurcation
structures in a single BVP oscillator. The circuit equa-
tions are described as

dv/dt = (−i− g(v))/C, di/dt = (v − ri)/L (1)

where the nonlinear negative conductance is mod-
eled by g(v) = −α tanh(βv). From physical mea-
surement of FET, we can determine parameter values
α = 6.0762 × 10− 3, β = 0.3725. Hence, we have
normalized equations as follows:

dx/dτ = −y + tanh(γx), dy/dτ = x − ky. (2)

Here, we choose the following transformations:

τ =
1√
LC

t, x =
1
α

√
C

L
v, y =

1
α

i,

γ = αβ

√
L

C
, k = r

√
C

L
.

(3)

We also fix parameters as L = 10[mH], C =
0.022[µF]. Figure 1 shows a bifurcation diagram in
γ-k plane. In this bifurcation diagram, h1, h2 and
d indicate supercritical Hopf bifurcation, subcritical
Hopf bifurcation and pitchfork bifurcation of equilib-
rium respectively. G and H indicate tangent bifurca-
tion and homoclinic bifurcation of periodic solution.
Here, subscript number of these symbols intends to
classify the curves of same bifurcation. Figure 1 is di-
vided into six regions by bifurcation curves, and these
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regions are topologically classified as follows: Region
(a): only a stable equilibrium (origin) exists; Region
(b): an unstable equilibrium (origin) and a stable limit
cycle exist; Region (c): two unstable equilibria, a sad-
dle (origin) and a stable limit cycle exist; Region (d):
two unstable equilibria, a saddle (origin), a stable limit
cycle and two unstable limit cycles exist; Region (e):
two unstable equilibria, a saddle (origin), a stable limit
cycle and an unstable limit cycle exist; Region (f):
two unstable equilibria and a saddle (origin) exist. Af-
ter the following section, coupled system is analyzed
based on these topological information.

0

0.5

1

1.5

2

0 0.5 1 1.5 2

k

γ

Quiescent

Oscillatory

1h h2

(a) d

(b)

H

G

(e)
(d)

(f)

(c)

Fig. 1. Bifurcation diagram of equilibria and limit cycles.

III. CURRENT COUPLED BVP OSCILLATORS

We consider the coupled BVP oscillators by a lin-
ear resistor with current ports shown as Fig.2. we
fix parameters L = L1 = L2, C = C1 = C2, and
r = r1 = r2, and then we have normalized equations
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1

dτ
= −y1 + tanh(γ1x1)

dy1

dτ
= x1 − ky1 + δk(y1 − y2)

dx2

dτ
= −y2 + tanh(γ2x2)

dy2

dτ
= x2 − ky2 + δk(y2 − y1)

(4)

Now we choose the same transformations as the pre-
vious section, and we set a linear resistor using for
coupling to δ = Gr/(1 + 2Gr). Notice that δ → 0
means decoupling of oscillators. We investigate bi-
furcation phenomena about two cases that a nonlinear

negative conductance value of two BVP oscillators is
equal and not equal.

i1

g1 g2C
v

LiC 1

1

1

1

C

L

vi

ig2iC

2

2r

2

2

2

2R

i0
1r

ig1

Fig. 2. Current coupled BVP oscillators.

IV. BIFURCATIONS IN γ-δ PLANE

Firstly, we set up nonlinear conductance parame-
ters γ = γ1 = γ2, and we solve the bifurcation
diagram in γ-δ plane as shown Fig.3. h and d in-
dicate Hopf bifurcation and pitchfork bifurcation of
equilibrium respectively. In addition, G, I , NS and
Pf indicate tangent bifurcation, period-doubling bi-
furcation, Neimark-Sacker bifurcation and pitchfork
bifurcation of periodic solutions respectively. Here,
subscript number of these symbols intends to classify
the curves of same bifurcation. These curves are con-
verged on some points of δ = 0 line in this figure.
In this case, parameter k of each oscillator is fixed to
0.82, i.e., δ = 0 line is corresponding to k = 0.82 line
in Fig.1. Therefore, to changing parameter γ from
γ = 0 , topological structure of each single oscilla-
tor changes from (a) to (f) via some bifurcations in
Fig.1. Then each intersecting point corresponds to
four convergence points in Fig.3, so that four bifur-
cation curves cross k = 0.82 line in Fig.1. However,
since it is not solving for homoclinic bifurcations de-
rived from convergence point, five convergence points
exist in a normal situation. For these reasons, some bi-
furcations are generated from five convergence points
due to increasing parameter δ.

The state of each oscillator is quiescent state in the
lower left side of the region in Fig.3. However, there
is only generated oscillation state of anti-phase syn-
chronization as shown Fig.6-(1) via Hopf bifurcation
h1. Moreover, since other bifurcations which generate
the stable limit cycle do not exist, only anti-phase so-
lution exists in the upper side of Fig.3. Hence, when
coupling intensity is comparatively strong, anti-phase
solution is widely observed in this coupled oscillators
compared to voltage coupled oscillators in which in-
phase solution is widely observed. there exist vari-
ous bifurcations of limit cycles in the under side of
Fig.3. Figure4 shows enlargement in the under side of
Fig.3. Anti-phase solution observed on a point (1) as
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shown Fig.6-(1) disappears by Pf . On the other hand,
unstable limit cycle generated by h2 changes stable
limit cycle (in-phase solution) via NS1. This solution
(Fig.6-(2)) is only observed in the region including a
point (2). However, in the region including a point
(3), anti-phase and in-phase solution are coexistent.
In the point (3), anti-phase and quasi-periodic solu-
tion are coexistent so that in-phase solution changes
to quasi-periodic solution via NS1 shown Fig.6-(4),
but it disappears by tours breakdown instantly. More-
over, chaotic solution is observed in the point (5) such
shown Fig.6-(5), although all the parameters of two
oscillators are same. In the under side of Fig.4 such
that the region (Fig.5) where δ is comparatively small,
a solution which changes between two states is ob-
served on the point (6) shown Fig.6-(6) and Fig.7.
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Fig. 3. Bifurcation diagram of equilibria and limit cycles.
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Fig. 6. Phase portraits of coupled oscillators in Fig.4.

V. BIFURCATIONS IN γ2-δ PLANE

Finally, we fix γ1 as 0.825, k = 0.932. Since the
symmetry of each oscillator becomes asymmetrical
except for γ1 = γ2 generally, more complicated bi-
furcation structure would be shown compared with a
previous cases. We obtain the bifurcation diagram in
γ2-δ plane as shown Fig.8. Two small stable period-
1 solutions (Fig.9-(1)) exist in the point (A) of Fig.8,
and a stable equilibrium exists inside each limit cy-
cle. When increasing parameter δ in the direction
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of an arrow from this point, these period-1 solutions
change to period-2 solutions (Fig.9-(2)) via period-
doubling bifurcation I1

1 . Moreover, these period-2 so-
lutions change to quasi-periodic solutions (Fig.9-(3))
via NS2

1 , and thereafter these solutions become sin-
gle chaotic solutions (Fig.9-(4)) by torus breakdown.
These chaotic solutions once disappear, the state of
this system changes to two stable equilibrium. How-
ever, these stable equilibrium change to unstable via
h1, and the state of this system shows a big chaotic
solution (Fig.9-(5)) changing between single chaotic
solutions. this solution can be observed also in a real
circuit, and Fig.10 shows that it is in agreement with
a simulation result (Fig.9-(5)).

VI. CONCLUSIONS

In this paper, we analyzed a current coupled BVP
oscillators about two cases. Firstly, we showed that
various phenomena is observed by the values of non-
linear resistor and linear resistor using for coupling,
although the values of each internal element of two
oscillator are the same. Nextly, when each oscillator
has different internal nonlinear resistor, we found that
the behavior of state switching two single chaotic so-
lutions alternatively shown also by Ref.[4].
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Abstract—Hopf bifurcation analysis is very impor-
tant since both understanding dynamical behavior in a
given system, and design of oscillators. In this paper,
we show an equivalence among Hopf bifurcation anal-
ysis, the phasor method, and Barkhausen criterion ex-
perimentally. The phasor method with a virtual source
is especially convenient to analyze the oscillator be-
havior when some linear elements are attached to a
conventional oscillator. As an example, the extended
BVP oscillator is analyzed by the phasor method. It
is clarified that two different frequency oscillations are
controlled by a resistor. Bifurcation diagrams and lab-
oratory experiments are shown.

I. Introduction

In most electrical circuits with smooth nonlinearity,
a limit cycle is caused by a super critical Hopf bifur-
cation of an equilibrium. As the parameter changes,
a complex conjugate eigenvalues moves from the left-
half plane to the right-half plane in the complex space
with Hopf bifurcation. According to this values, a sink
changes to a center at the critical parameter value,
then it becomes a source. A limit cycle emerges after
this bifurcation for typical nonlinear systems such as
van der Pol oscillator, Lorenz system, and so on. Gen-
eration of oscillatory behavior must be related deeply
with destabilization of the linear stability.

However, there are few issues on relationship among
linear analysis methods, e.g., oscillator design, feed-
back control systems, and Hopf bifurcation analysis.
In this paper, we present a fundamental oscillator de-
sign method by using the phasor method. It is shown
that equations induced from the phasor method with
a nonzero current assumption is equivalent to equa-
tions derived from characteristic equation with a Hopf
bifurcation condition. Moreover, we show Barkhausen
criterion is also coincident with them.

II. Points of the Issue

A transfer function of the system including feedback
is written in the form:

G(s) =
A(s)

1 + A(s)β(s)
(1)

where, A(s) is a transfer function of the amplifier, and
β(s) is of the feedback controller. Then several per-

spectives are possible for this transfer function shown
as the following:

From control system design perspective:
In common sense of the controller design, the unsta-
ble state should be stable, i.e., all real parts of the
roots of 1 + A(s)β(s) = 0 must be negative. However,
the controller is never considered to make the system
be unstable. A negative feedback is widely assumed,
and there is no consideration on oscillation from this
perspective.

From oscillator design perspective:
then Barkhausen criterion is as follows:

Re[A(jω)β(jω)] = 1, Im[A(jω)β(jω)] = 0 (2)

In some textbooks of electronics, this criterion is ex-
plained intuitively, however, they simply ignore the
existence of Hopf bifurcations.

From nonlinear analysis perspective:
The super-critical Hopf bifurcation can be considered
as a generation of a limit cycle. The bifurcation pa-
rameter values might be a clue for understanding the
whole dynamical behavior in the given system.

III. Hopf bifurcation Analysis

Here we briefly state a typical way of Hopf bifur-
cation analysis. Suppose a dynamical system is given
by: dx/dt = f(x), where x ∈ R, and f is C∞-class.
Assume there is an equilibrium point x0 in the state
space. Let J be a Jacobian matrix of f , then the char-
acteristic equation of x0 is given by:

χ(x0) = det(J − µI) = 0 (3)

where, I is an n × n identity matrix. Hopf bifurca-
tion is occurred when a couple of complex conjugate
eigenvalues µ, m̄u moves from the left half plane to
the right half plane with a certain argument. Usually
Hopf bifurcation condition are given by substituting
µ = 0 + jω into Eq.(3), and it gives a bifurcation set
(curve) in a parameter space. In general, after this
bifurcation we have a limit cycle, and its angular ve-
locity is ω. Note that the Jacobian matrix contains a
first-order term of x0 if f is given by an odd function
nonlinearity of x.

IV. phasor method

The phasor method is popular and very useful for
calculating or designing alternative current circuits.
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It is practically applied to not only elementary cir-
cuit theory but advanced circuit technology for a long
time. It can be naturally assumed that every electrical
engineer knows this method nowadays.

There are two ways how to obtain a Hopf bifurcation
condition from linear circuit elements. They are dual:

• insert a virtual voltage source in serial into any
cut set of a closed loop linear circuit. To re-
tain a nonzero current in the circuit, the whole
impedance Z should be 0 when the virtual volt-
age source is removed.

• attach a virtual current source to any closed loop
linear circuit in parallel. To retain a nonzero volt-
age in the circuit, the whole admittance Y should
be 0 when the virtual current source is removed.

These assumptions directly correspond to Hopf bifur-
cation conditions. We show this by using some exam-
ples in the following sections.

v

LCR
I0e jωt

Fig. 1. a virtual alternative current source in an LCR parallel
circuit.

We show an illustrative example. Figure 1 shows an
LCR parallel circuit with a virtual alternative current
source. Suppose that a resistance r is connected to a
coil L in serial. The whole impedance of the circuit is
given by:

Z1 = (r1 + jωL1) ‖ 1
jωC

‖ R (4)

More concretely,

Z1 =
R(r1 + jωL1)

r1 + R − ω2RL1C + jω(L1 + r1RC)
(5)

When the current source is connected, the closed cir-
cuit equation is as follows:

Z−1
1 V = Y V = I

To obtain an autonomous oscillation in this circuit, V
should not be zero constantly when the voltage source
is removed. Therefore, the admittance should be in-
finity: Y = 0, i.e., the denominator of Eq.(5) should
be 0+ j0. From the real and imaginary parts, we have

R + r1 − ω2RL1C = 0 (6)
ω(L1 + Rr1C) = 0. (7)

Thus,

ω =
√

R + r1

RL1C
(8)

Rr1 = −L1

C
. (9)

We assume that L1 > 0, C > 0, Eq. (9) naturally
requires a negative resistance.

If R in Fig.1 is nonlinear, especially, it is given by
an odd function nonlinear conductance g(v), the cir-
cuit without current source can be regarded as a BVP
oscillator. The circuit equation is written in the form:

C
dv

dt
= −g(v) − i, L

di

dt
= v − ri (10)

Usually we try to analyze Hopf bifurcation with the
method shown in Sec.III. The Jacobian matrix of the
equilibrium point is given by:

J =

⎛
⎜⎝ − 1

CR
− 1

C
1
L

− r

L

⎞
⎟⎠ . (11)

where, R is an inverse value of a constant term of
dg(v)/dv. Then the characteristic equation is as fol-
lows:

µ2 +
(

1
CR

+ rL

)
µ +

R + r

CRL
= 0 (12)

By substituting µ = 0 + jω into Eq. (12), finally we
have Eq. (8) and (9). Thus it is intuitively shown
that both the phasor method with a virtual source
and the Hopf bifurcation analysis derive the same Hopf
bifurcation condition.

In a linear circuit, such bifurcation gives a critical
situation, i.e., after the bifurcation, the state diverges
immediately. Thus it is required a global stability in
the system. Typically N-shape conductance is chosen,
that is, the conductance acts as a positive resistance
for large amplitude of v and i.

V. Barkhausen criterion

v

L

R2

R4R3

r

i
C+

−

R2

Z2

Z1

R4
Z4

R3

Z3

C

L

r

+ −

(a) (b)

Fig. 2. Two viewpoints of the BVP oscillator with a nonlinear
conductor composed by an operational amplifier.

An oscillator is designed by circuit including an am-
plifier block and a feedback block. In text books ex-
plain some points of generating and regulating of os-
cillation; positive feedback loop for feeding the output
back to the input with the same phase, and negative
feedback loop for control the amplitude of the oscil-
lation. Barkhausen criterion (2) is instantly induced
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from Eq.(1). This condition also gives a critical pa-
rameter values of the stability of the closed loop con-
taining linear transfer functions, then this condition is
also equivalent to Hopf bifurcation condition.

We show an example. Fig.2 (a) show a BVP oscil-
lator with a nonlinear conductor implemented by an
operational amplifier. An LC tank in positive feed-
back loop creates an oscillation, and divergence of the
amplitude is suppressed by the negative feedback loop
composed by R3 and R4. The feedback ratio of the
positive feedback loop is given as:

β =
Z2

Z1 + Z2

=
R2(1 − ω2LC + jωCr)

r + R2 − ω2LCR2 + jωL + jωCrR2
.

(13)

From the first equation of Eq. (2), we have A(jω) =
1/β(jω) = 1, then A is real. From the second equation
of Eq. (2), the imaginary part of the denominator of
β(jω) determine the frequency condition. By arrang-
ing them, finally we have Eq. (8) and (9).

We also show a bridge formation of the BVP oscil-
lator in Fig. 2 (b). One can see that the equilibrium
condition of the bridge corresponds to the character-
istic equation, i.e, Z1Z3 − Z2Z4 = 0 indicates

χ =
r + jωL

1 − ω2LC + jωCr
· R3 − R2R4 = 0. (14)

If one uses R = R3 = R4, we have exactly Eq. (8) and
(9).

We have seen that the phasor method with a vir-
tual source, Barkhausen criterion and Hopf bifurcation
analysis are equivalent each other unless the system is
considered in linear region. The relationship among
Routh-Hurwitz, Nyquist method and Hopf bifurcation
is an interesting topic. We would like to remark here
that Hopf bifurcation set is obtained from issues on
impedances of the AC circuit theory. Note that there
are some special cases that the equilibrium condition
can be degenerated. No oscillation is occurred in such
cases. Note also that above methods only give crit-
ical curves (bifurcation curves), thus the ’oscillatory
area’ should be confirmed by checking eigenvalues by
numerical simulations and so on.

One of merits of the phasor method is convenience
of calculation for impedances or admittance. As far
as a circuit is composed by linear elements, algebraic
calculation is available consistently.

VI. Extended BVP Oscillator

If the whole impedance is known, one can easily in-
vestigate influence on parameter values and frequency
by the phasor method if a new element is attached into
the system. As an application of the phasor method
with a virtual source, we now consider modification of
the BVP oscillator[1].

The circuit shown in Fig. 3 is obtained by add one
more coil to Fig. 1. If R is expressed as a nonlin-

v

L1

r1

i1 i2

r2

L2C
R

Fig. 3. Extended BVP oscillator—added one more coil into the
circuit shown in Fig.1.

ear function, this circuit is called the extended BVP
oscillator.

The whole impedance is obtained by utilizing Z1

which is already calculated as Eq. (5):

Z2 = Z1 ‖ (r2 + jωL2) (15)

By setting 0 + j0 for the denominator of Z2, we have

R(r1+r2)+r1r2−ω2 (r2RL1C + L2(r1RC + L1)) = 0
(16)

R(L1 +L2)+ r1L2 + r2L1 + r1r2RC −ω2RL1L2C = 0
(17)

Then from Eq. (17), the frequency condition is ob-
tained:

ω =

√
(r1 + r2)R + r1r2

L1L2 + r2RCL1 + r1RL2C
(18)

By substituting this into Eq. (17), Hopf bifurcation
set may be exploited.

Eq.(18) almost equals to the frequency of a limit
cycle generated after Hopf bifurcation. Eq. (18) is
a function of r1 and r2, in other words, resistors can
control frequency of the limit cycle. In the case of
r2 → ∞,

ω∞ =
√

R + r1

RL1C
. (19)

This coincide with Eq. (8), thereby the system degen-
erates to the 2nd dimensional BVP system. On the
other hand, in the case of r2 = 0,

ω0 =
√

Rr1

L1L2 + Rr1L2C
, (20)

it shows an independent frequency compared with ω∞.
This result means that different two frequency is ob-
tained by changing a parameter monotonically.

A nonlinear conductance is approximated as i =
g(v) = a tanh bv. Assume that α = L2/L1, k =
r
√

C/L1, γ = ab
√

L1/C. Then the Hopf bifurca-
tion curve is drawn in Fig. 4.

We notice that two different frequencies are obtained
by changing only k2 from Eqs (19) and (20) and this
bifurcation diagram. We confirm these results by lab-
oratory experiments. Let us choose parameters for
the extended BVP oscillator as: C = 0.022[µF], r1 =
500[Ω], L1 = 10[mH], L2 = 1[mH].
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Fig. 5. Measured waves or v and r1 ·i1. (a) r2 = 100 [kΩ],
L2, r2, 6[kHz]. (b) r2 = 400 [Ω], the oscillation is dead. (c)
r2 = 100 [Ω], rebirth an oscillation, 34[kHz]. (d) r2 = 0 [Ω],
obtained a large amplitude.

Figure 5 show two frequency oscillations by chang-
ing the parameter r2. Therefore, we can control the os-
cillation modes in three-dimensional system with only
one parameter.

Finally we show bifurcation phenomenon of Hopf
bifurcation curves related with above result. Figure 6
show Hopf bifurcation diagrams with various values of
α. One can see merging and separation of bifurcation
curves. Even though this phenomenon can not be con-
firmed with positive values of k1 and k2(equivalently
r1 and r2), it is very important to investigate this phe-
nomenon in dynamical system point of view.
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Fig. 6. Bifurcation Hopf bifurcation set in k1-k2 plane. γ = 1.6.
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Abstract— The relation between Floquet numbers
and dynamic eigenvalues is derived.

I. INTRODUCTION

Electronic circuits are nonlinear by nature. Roughly
speaking, two different kinds of operation can be dis-
tinguished. The first one is described by the behavior
of small signals around a fixed operating point, like
class A amplifiers. The behavior of small signals can
be derived as a set linear algebraic differential equati-
ons with constant coefficients. This set of equations is
used for stability problems, distortion problems, noise
problems and so on. In a mathematical sense, the
set of equations is obtained by considering variations
around the fixed operating point and hence known as
the set of variational equations.
The second kind of operation contains circuits that be-
have in a time-varying mode of operation, like oscilla-
tors. Here also the set of variational quations is iden-
tified as a set of linear differential equations. The co-
efficients, however, are time-dependent. The field of
applications is the same as in the first kind of oper-
ation: stability problems, distortion problems, noise
problems and so on. The time-behavior of the coeffi-
cients in the variational equations is derived from the
time-behavior of the (time-varying) mode of the cir-
cuit. For oscillators, the coefficients of the variational
(differential) equations are periodic functions of time.
In [1] a representation for the solution of linear time-
varying differential equations is derived, either in the
form of the fundamental matrix or in the form of a sum
of modal solutions. Moreover, it is shown there that
these modal solutions reduce to the well-known modal
solutions of the exponential type for invariant sets of
equations. These modal solutions are characterized
for circuits with n dynamical elements as the product
of a n-dimensional dynamic eigenvector and an expo-
nential function containing the dynamic eigenvalues.
For the subclass of linear time-varying differential
equations with periodic coefficients the fundamental
solution can also be represented as the product of a pe-

riodic matrix and an exponential matrix containing the
Floquet numbers [2]. As a consequence there are two
representations for solutions of linear time-varying
differential equations with periodic coefficients.

Since the solution is unique, there must be relations
between the periodic matrix and Floquet numbers on
one hand, and the dynamic eigenvectors and dynamic
eigenvalues on the other. It turns out that the Floquet
numbers are mean values of the dynamic eigenvalues.
As a consequence dynamic eigenvalues contain more
detailed information in comparison with the Floquet
numbers. They are relevant in general stability prob-
lems [3] for nonlinear systems and they might give
a theoretical base of moving poles in oscillator prob-
lems [4].

The paper is divided is 5 sections. After this intro-
duction, in section 2 is shown how modal solutions
can be obtained for second order systems. In sec-
tion 3 two examples, both with periodic coeficients
are discussed. In both examples, the dynamic eigen-
values are collected in a diagonal matrix. This for-
mulation deviates from the Floquet representations in
both cases. It is shown in this section how these devi-
ations can be suppressed. In section 4 some remarks
with respect to the equivalence Floquet numbers and
the mean value of dynamic eigenvalues is discussed.
In section 5 some conclusions are formulated.

II. THE RICCATI EQUATION FOR A SECOND

ORDER SYSTEM

In this section a second order system is treated. It
is shown how a diagonalization process is derived ,
involving two transformations. Both contain one un-
known function. Consider

ẋ1 = a11(t)x1 + a12(t)x2

ẋ2 = a21(t)x1 + a22(t)x2

}
� ẋ = Ax (1)

Apply a first transformation

x1 = y1

x2 = p1(t)y1 + y2

}
� x = P1y (2)
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If p1 satisfies

ṗ = −a12p
2 − (a11 − a22)p + a21 (3)

then we get

ẏ1 = λ1(t, p1)y1 + a12y2

ẏ2 = λ2(t, p1)y2

}
� ẏ = B1y (4)

Here
λ1(t, p1) = a11 + a12p1

λ2(t, p1) = a22 − a12p1

}
(5)

The functions λ1 and λ2 are called the dynamic eigen-
values of (1). Of course λ1 and λ2 depend on the cho-
sen solution p1(t) of the Riccati equation (3), that is
on the initial value p1(0) which generates p1(t). To
show this, transform (4) according to

y1 = y
(1)
1

y2 = v1y
(1)
1 + y

(1)
2

}
� y = P2y

(1) (6)

Remark that the transformation P1P2 can be written
as a single transformation of the same type as P1 and
P2

P1P2 =
[

1
p1 + v1 1

]
(7)

If v1 satisfies

v̇ = −a12v
2 − (a11 − a22 + 2p1a12)v (8)

then (4) and (6) yield

ẏ
(1)
1 = λ1(t, p1 + v1)y

(1)
1 + a12y

(1)
2

ẏ
(1)
2 = λ2(t, p1 + v1)y

(1)
2

}
� ẏ (1) = B2y

(1)

(9)
This suggests that p1 + v1 is also a solution of the
Riccati equation (3). A simple proof confirms the as-
sertion. Moreover it suggests that for our purpose (6)
is redundant and is just a change of the initial value.
Remark that (8) can easily be solved by changing the
dependent variable according to

w = v−1 (10)

so that there results a linear equation

ẇ = a12 + (a11 − a22 + 2p1a12)w (11)

Next (4) will be forced to a diagonal form using the
second transformation

y1 = z1 + q1z2

y2 = z2

}
� y = Q1z (12)

If q1 satisfies

q̇ = {λ1(t, p1) − λ2(t, p1)}q + a12 (13)

then

ż1 = λ1(t, p1)z1

ż2 = λ2(t, p1)z2

}
� ż =

[
λ1 0
0 λ2

]
z (14)

Apply next to (14)

z1 = z
(1)
1 + w1z

(1)
2

z2 = z
(1)
2

}
� z = Q2z

(1) (15)

We get (14) back, but now for z
(1)
1 and z

(1)
2 , if w1

satisfies

ẇ = {λ1(t, p1) − λ2(t, p1)}w (16)

Remark that (13) and (16) yield

(q+w)̇ = {λ1(t, p1)−λ2(t, p1)}(q+w)+a12 (17)

Or in operator formulation, the product operator

Q1Q2 =
[
1 q1 + w1

0 1

]
(18)

is of the same type as the operators itself. So q1 can
be given any initial value to get an unique solution of
(1). We can now state the solution of (1) as

[
x1

x2

]
= Pq(t)

[
eγ1(t) 0

0 eγ2(t)

]
P−1

q (0)
[
x1(0)
x2(0)

]

(19)

where

Pq(t) =
[

1 0
p(t) 1

] [
1 q(t)
0 1

]
(20)

The functions γi(t) are defined by

γi(t) =
t
∫
0

λi(τ)dτ (21)

III. EXAMPLES

In this section two examples will be presented to il-
lustrate the material of section 2. Both examples con-
cern periodic systems. The first example is a classical
one ([5]).Its main purposes are to give an insight in
the presented theory and to show the advantages of
making choices for the initial values of p(t) and q(t).
Moreover, it shows how periodic parts in the dynamic
eigenvalues can be treated in order to obtain the Flo-
quet decomposition. For the second example it is also
the goal to derive the Floquet decomposition. Here
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the matrix in the exponential of this decomposition is
not a diagonal one. We show by choosing two initial
values for p(t) that the Floquet decomposition is not
always obvious.
As first example we have

ẋ1 = (−1 + α cos2 t)x1 + (1 − α sin t cos t)x2

ẋ2 = (−1 − α sin t cos t)x1 + (−1 + α sin2 t)x2

(22)
The system has classical eigenvalues given by

det
[
λ + 1 − α cos2 t −1 + α sin t cos t
1 + α sin t cos t λ + 1 − α sin2 t

]
= 0 ↔

↔λ1,2 = (1
2α − 1) ±

√
1
4α2 − 1

(23)
For α = 2 we have λ1,2 = 0. For α > 2 one eigen-
value is positive. We will show in due course that this
system is unstable for α > 1; this is not in line with
the suggestions given by the eigenvalues. For α < 2
the eigenvalues are complex conjugated with negative
real part. Also here a discrepancy in use of eigenval-
ues. The Riccati equation reads for this example

ṗ + p2 + 1 = α[p cos t + sin t][p sin t − cos t] (24)

This has as a solution

p1 = − tan(t) (25)

With p = p1 + v1, (8), (10) and (11) the general solu-
tion of (24) can be obtained as

p(t) =
p(0) cos t − sin teαt

p(0) sin t + cos teαt
(26)

Remark that for p(0) = ∞ the periodic solution
p2 = cot(t) is obtained. This solution together with
the solution p1 are the only periodic solutions of (24).
All the others are nonperiodic. Moreover, the two so-
lutions p = − tan t and p = cot t do not depend on
the initial conditions. They serve in some way as equi-
librium solutions for the Riccati equations. If α > 0
then p = − tan t can be considered as the stable solu-
tion, while for α < 0 the solution p = cot t is stable.
We get for (5)

λ1(t, p1) = α − 1 − tan t
λ2(t, p1) = −1 + tan t

}
(27)

and for (13) we get

q̇ + (2 tan t)q − 1 = α[q − sin t cos t] (28)

It is easy to see that a solution is

q1(t) = sin t cos t (29)

The general solution of (28) is

q(t) = sin t cos t + q(0) cos2 teαt (30)

which is not periodic unless q(0) = 0 is satisfied.
With (21) it follows that

γ1(t) = (α − 1)t + ln | cos t|
γ2(t) = −t + ln | cos t|−1

}
(31)

The next problem is to obtain the Floquet decomposi-
tion of (22) and the relation with (27). It is remarked
that λi (i = 1, 2) is periodic, but this will not be true
for γi (i = 1, 2). We state that (14) has for this exam-
ple the solution

z1(t) = e(α−1)t cos t
z2(t) = e−t(cos t)−1

}
(32)

In (32) is already build in that we want

z1(0) = z2(0) = 1 (33)

With (25), (29), and (31) we now obtain for (19)

[
x1

x2

]
=
[

1 sin t cos t
− tan t cos2 t

] [
cos t 0

0 (cos t)−1

]
×

×
[
e(α−1)t 0

0 e−t

] [
x1(0)
x2(0)

]
(34)

Thus in the Floquet decomposition

x (t) = F(t)eStx (0) (35)

we have

F(t) =
[

cos t sin t
− sin t cos t

]
S =

[
α − 1 0

0 −1

]
(36)

The second example [5]

ẋ1 = −x1

ẋ2 = − cos tx1

}
(37)

serves to show that the outlined procedure does not
lead to a Floquet decomposition in a direct way.This
depends on the chosen initial values for the Riccati
equation. Secondly, this example shows that the ma-
trix in the exponent of the Floquet decomposition is
not necessarily diagonal. Here, (37) yields a simpli-
fied form of the Riccati equation

ṗ = p − cos t (38)

with as a general solution

p = 1
2(cos t − sin t) + Ket (39)
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If the initial value p(0) = 0 is used, then we find

[
x1

x2

]
=
[

1 0
1
2(cos t − sin t) − 1

2et 1

] [
e−t 0
0 1

]
×

×
[
x1(0)
x2(0)

]
(40)

This is not a Floquet representation. If p(0) = 1
2 , then

we have

[
x1

x2

]
=
[

1 0
1
2(cos t − sin t) 1

] [
e−t 0
0 1

]
×

×
[

1 0
−1

2 1

] [
x1(0)
x2(0)

]
(41)

yielding a periodic part, but now the exponential part
causes trouble. Using

[
1 0
1
2 1

] [
e−t 0
0 1

] [
1 0
−1

2 1

]
= exp

{[
−1 0
−1

2 0

]
t

}

(42)

it becomes obvious that (41) can be rewritten in the
form (35) with

F(t) =
[

1 0
1
2 (cos t − sin t) − 1

2 1

]
, S =

[
−1 0
−1

2 0

]

(43)
Note that S is not diagonal.

IV. THE RELATION BETWEEN FLOQUET

NUMBERS ANS DYNAMIC EIGENVALUES

In the preceding section, we have shown for two ex-
amples, (22) and (37), that their modal solutions can
be transformed into their Floquet representations (35),
(36) and (43). Both examples show that the mean
value of the dynamic eigenvalues equals to the Flo-
quet numbers of the differential equation.
To demonstrate this in a more general sense, the
modal solution (19) of (1) will be written as

x (t) = Pq(t)
[
eγ1(t) 0

0 eγ2(t)

]
P−1

q (0)x (0) (44)

The solution p(t) in Pq(t) is assumed to be a peri-
odic solution of (3). In [6] is indicated when there are
periodic solutions p(t). Then also the dynamic eigen-
values λ1(t) and λ2(t) are periodic. With the theory
of Fourier series, their integrals γ1(t) and γ2(t) thus
have a linear component and a periodic part. Let us
write

γi(t) = {γi(t) − λ̄it} + {λ̄it} (45)

where

λ̄i = 1
T

T
∫
0

λi(τ)dτ (46)

So that
[
eγ1(t) 0

0 eγ2(t)

]
=

[
eγ1(t)−λ̄1t 0

0 eγ2(t)−λ̄2t

][
eλ̄1t 0
0 eλ̄2t

]

(47)
And (19) can be written as (35) with

F(t) = Pq(t)

[
eγ1(t)−λ̄1t 0

0 eγ2(t)−λ̄2t

]
P−1

q (0)

(48)
and

S = Pq(0)
[
λ̄1 0
0 λ̄2

]
P−1

q (0) (49)

V. CONCLUSIONS

In this paper the Floquet representation for the so-
lution of a periodic differential equation is derived.
First the modal solution is obtained which is the sum
of number of modes. Each mode is the product of a
dynamic eigenvector and an exponential whose argu-
ment is the integral of a dynamic eigenvalue.
It is argued that under certain conditions the dynamic
eigenvalues are periodic and that the exponentials are
the product of an exponential with a periodic argu-
ment and a second exponential with a linear argument.
It is remarked that the slope of the linear arguments
equals the mean value of the dynamic eigenvectors
over one period of the coefficients, so this mean value
is a Floquet number. Since the dynamic eigenvector is
obtained solving a differential equation of Riccati, it
is not necessary first to solve the original differential
equation in order to obtain the Floquet numbers!
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Abstract— We investigate the phase synchroniza-
tion of two and three coupled nonlinear oscillators (or
clocks) whose individual dynamics are described by
the shift circle maps. We outline the synchronization
regions and explore the bifurcations through which the
synchronization is achieved and lost.

I. SYNCHRONIZATION IN THE SYSTEM OF TWO

COUPLED PHASE OSCILLATORS

A. The model

Let us consider the system of two coupled oscilla-
tors, or clocks, of the following form

xn+1 = xn + 2πν1 + K
2 sin (yn − xn) ,

yn+1 = yn + 2πν2 + K
2 sin (xn − yn) ,

(1)

where both the variables x and y are calculated mod-
ulo 2π. System (1) describes dynamics of two phase
oscillators with the corresponding frequencies ν1 and
ν2, which are mutually coupled with the sine coupling
and K is the coupling strength. The system (1) may be
considered as a discrete analog of the continuous-time
Kuramoto model [1]:

ψ̇i = ωi +
K

N

N∑
j=1

sin (ψj − ψi) . (2)

The synchronization can be expressed in terms of
the difference between the phase variables xn and yn.
After subtracting the second equation from the first
one the following equation for the phase difference
zn = xn − yn is obtained:

zn+1 = zn + 2π (ν1 − ν2) − K sin zn, (3)

which is well known Arnol’d sine circle map (3).
Therefore synchronization for the system (1) can be
clearly achieved, e.g. with the parameter values for
which the map has an attracting fixed point z =
arcsin2π(ν1− ν2)

K .

B. Synchronization regions for the discrete-time
model

While considering two identical oscillators, i.e.
ν1 = ν2, the map (3) has the fixed point z =
0 which corresponds to full synchronization in (1):
|xn−yn| → 0 as n → ∞. For the oscillators with dif-
ferent frequencies ν1 and ν2 the fixed point is z �= 0,
and its stability, if it takes place, means that the oscil-
lators are synchronized but with a nonzero phase dif-
ference |xn − yn| → z as n → ∞. The map (3) can
also exhibit synchronized periodic orbits of higher pe-
riods as well as synchronized, when there exist C > 0
|zn| < C ∀n.

Figure 1 shows phase-locking regions - so-called
Arnol’d tongues of the following rotation numbers
ρ = 0, 1

3 , 1
2 , 1

1 . Each tongue emanates from a point
(p/q, 0) for integer p and q, and corresponds to the
existence of stable and unstable periodic orbits of pe-
riod q and of the rotation number p/q.

For the values of K such that K ≤ 1 the map
(3) is invertible, the Arnol’d tongues do not intersect,
and the system can exhibit only periodic or quasiperi-
odic dynamics. The widest phase-locking region of
the rotation number ρ = 0 is bounded by the line
K = 2π (ν1 − ν2), which is a saddle-node bifurcation
line for the stable and unstable fixed points. It is the
lower desynchronization line shown in Figure 1. For
the parameters values such that K < 2π (ν1 − ν2) no
fixed point exists.

Beyond the line K = 1 the map (3) becomes non-
invertible. With increasing K inside the 0-tongue
a period-doubling cascade occurs until the dynam-
ics become chaotic. The synchronization is lost at
the other, upper desynchronization line. It is the line
where an internal boundary crisis occurs. Beyond this
line almost all trajectories do not exhibit zero rotation
numbers any more, and consequently, there is no syn-
chronization for these parameter values.
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Fig. 1. Regions of the phase synchronization of the system
(1) and bifurcation curves for the sine circle map (3):
SN - saddle-node, PD - period doubling, BC - bound-
ary crisis; the fractions show the corresponding rota-
tion numbers for the Arnol’d tongues; the points a and
b show the parameter values for the graphs of the map
(3) in Fig.2.

The first boundary crisis line BC1 in Fig. 1 corre-
sponds to the situation when the maximum value of
the map becomes equal to the value of the unstable
fixed point z(u) + 2π. The second boundary crisis
line BC2 represents the analogous situation but for the
minimum value which becomes equal z(u) − 2π. The
line BC3 corresponds to the situation when the mini-
mum value reaches the values of the channel appear-
ing after the first boundary crisis. Then, the trajecto-
ries come to the unstable fixed point z(u) + 2π after
the second iteration.

As shown in Fig. 2(a), after the first crisis BC1, de-
pending on initial conditions a trajectory of the map
(3) can be attracted to the stable fixed point z(s) or it
can make one or more rotations around the circle and
eventually, be attracted by zs. Both these possibilities
lead clearly to zero rotation number for the trajectory
examined. Furthermore, the trajectory can make in-
finitely many rotations, i.e. tends to infinity in the cor-
responding lift from the circle [0; 2π) to R1. This be-
havior can lead to nonzero rotation number and hence,
desynchronization. Therefore for the same parameters
values beyond BC1-crisis one can observe trajectories
with different rotation numbers, which means coexis-
tence of synchronization and desynchronization.

II. DYNAMICS OF THE THREE-DIMENSIONAL

SYSTEM

Now let us continue our analysis for the following
system of three globally coupled phase oscillators

Fig. 2. Appearance of desynchronous orbits in the map
(3) beyond the line BC1 (a) and BC1 and BC3 (b).
In (a) desynchronous orbits coexist with synchronous
ones attracted by the fixed points.

xn+1 = xn + 2πν1 + K
3 [sin (yn − xn) + sin (zn − xn)]

yn+1 = yn + 2πν2 + K
3 [sin (xn − yn) + sin (zn − yn)]

zn+1 = zn + 2πν3 + K
3 [sin (xn − zn) + sin (yn − zn)] .

(4)
System (4) is a discrete analog of the three-
dimensional Kuramoto model (2), and its analysis can
be performed following ideology of the paper [2]. Af-
ter successive subtracting the second and the third
equations from the first one our system is reduced to
the following two-dimensional system

un+1 = un + 2π∆1 + K
3 [−2 sinun

+ sin vn − sin (un + vn)],

vn+1 = vn + 2π∆2 + K
3 [−2 sin vn

+ sinun − sin (un + vn)],

(5)

where un = xn − yn, vn = zn − xn, ∆1 = ν1 − ν2,
∆2 = ν3 − ν1.

Let us consider different cases of the system (5).

A. ∆1 = ∆2 = 0

This is a case of three identical phase oscillators,
i.e. their frequencies are equal: ν1 = ν2 = ν3. The
system (5) has six fixed points with corresponding
eigenvalues:
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Fig. 3. Phase portraits of the system (5) with (a) ∆1 =
∆2 = 0, (b) ∆1 = ∆2 = ∆ > 0 and ∆ and K after the
pitchfork bifurcation P S1&R1&S3, (c), (d) ∆1 = 0,
∆2 and K before and after the saddle-node bifurcations
SN S1&R1 and SN S2&R2.

O (0, 0), λ1 = λ2 = 1 − K, which is an attracting
node for K < 2,

S1 (π, 0), S2 (π, π), S3 (0, π), λ1 = 1−K/3, λ2 =
1 + K, saddles with |λ1| < 1 for K < 6 and λ2 > 1
for all positive K,

R1 (2π/3, 2π/3), R2 (4π/3, 4π/3), λ1 = λ2 =
1 + K/2, repelling nodes for all positive K.

Phase portrait of the system with ∆1 = ∆2 = 0 is
schematically presented in the Figure 3(a).

B. ∆1 = ∆2 > 0

Denote ∆
def
= ∆1 = ∆2. Then for the sys-

tem (5) which is defined on the two-dimensional
torus T2 = [0, 2π) × [0, 2π), diagonal D ={
(un, vn) ∈ T 2 : un = vn

}
is an invariant manifold.

In the manifold D the system (5) is reduced to the
one-dimensional map:

un+1 = un + 2π∆ − K

3
[sin(un) + sin(2un)] (6)

The map has two pairs of fixed points O, R1 and
S2, R2, which are born in saddle-node bifurcations at
K ≈ 1.7 · 2π∆ and K ≈ 8.1 · 2π∆. Figure 4 shows
corresponding saddle-node bifurcation lines as well
as several major Arnol’d tongues. Both stable fixed
points O and S2 lose their stabilities through period-
doubling bifurcations. The bifurcation line for O is
denoted as PD in Fig. 4 (for S2 the bifurcation occurs
for K > 6). As shown in Fig.4 other Arnol’d tongues

Fig. 4. Regions of the phase synchronization of the system
(4) when ∆1 = ∆2 = ∆ and un = vn; the bifur-
cation curves for the map (6) are denoted as follows:
SN O&R1, SN S2&R2 - saddle-node bifurcations for
the corresponding fixed points, BC - boundary crisis;
the curves with hachures show where the correspond-
ing transversal Lyapunov exponents change their signs.

0

0

Fig. 5. Graphs of the map (6) with the parameters values
∆=0.05, K=4.8.

cross the widest tongue of the rotation number ρ = 0
which implies coexistence of the trajectories with dif-
ferent rotation numbers, as was described for the sine
circle map, see Section I.B. Fig. 5 shows an example
of the graph of the map (6) after the first boundary
crisis BC, which nevertheless does not imply desyn-
chronization.

Coming back to the two-dimensional system (5)
first, we shall look at the transverse stability of the
fixed points O and S2 or, more general, transverse
stability of the invariant manifold D. For any orbit
{un}n=1 in the diagonal D the transversal Lyapunov
exponent λ is equal to:

λ = lim
N

1
N

N∑
n=1

ln |1 − K cos un| .

Transversal Lyapunov exponent λ gives an in-
sight into stability of the periodic orbits or chaotic
one-dimensional attractors in the plane. If λ for
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Fig. 6. Regions of the phase synchronization of the system
(4) when the difference ∆1 = 0. The bifurcation lines
are denoted as follows: SN - saddle-node, 2 SNs - two
simultaneous saddle-node bifurcations, PD1 - trans-
verse period-doubling, PD2 - period-doubling on the
manifold V , NS - Naimark-Sacker bifurcations for the
period-2 orbit born in the transverse period-doubling
bifurcation.

an attractor existing on the diagonal is negative then
this attractor attracts almost all trajectories from its
two-dimensional neighborhood. In Figure 4, hatched
lines separate regions where λ is negative (area with
hachures) and positive (the other side).

Figure 4 also shows the line of the transverse pitch-
fork bifurcation denoted as P S1&R1&S3. In the bi-
furcation the saddle point R1 transforms to unstable
node giving rise to two saddles S1 and S3. Phase por-
trait of the system (5) after this bifurcation is shown
in Figure 3(b).

C. ∆1 = 0, ∆2 ∈ [0, 1]

Let us fix the first difference ∆1 = 0 and consider
the parameter plane (∆2;K). In the case, the vn-axis
V0 =

{
(un, vn) ∈ T 2 : un = 0

}
is an invariant man-

ifold, and the dynamics in the manifold are governed
by the sine circle map (3). Therefore, regions of ex-
istence and stability of the fixed point and other peri-
odic orbits inside the manifold coincide with Arnol’d
tongues of the sine circle map (3) - some of these re-
gions are shown in Figure 6. Apart from the manifold
other attractors exist outside the vn-axis. As shown
in Figure 3(a), in the case ∆1 = ∆2 = 0, there ex-
ist 6 fixed points. Four of them S1, S2, R1 and R2

are located outside the manifold V0. We find that with
increasing ∆2 they disappear simultaneously through
the saddle-node bifurcations at K ≈ 4 · 2π∆2. Corre-
sponding phase portraits before and after the bifurca-
tions are presented in Fig.3(c,d). With further increase
in ∆2 the fixed points O and S3 collide and disappear

Fig. 7. Regions of the phase synchronization of the system
(4) when ∆1 = 0.1. The bifurcation lines: SN - saddle-
node, PD - the first period-doubling, NS - Naimark-
Sacker bifurcation for the period-2 orbit born in the first
period-doubling bifurcations.

in the saddle-node bifurcation at K = 2π∆2, and this
implies desynchronization of the system.

With increase in the coupling K the stable fixed
point O loses its transverse stability through period-
doubling bifurcation (PD1 curve in Fig.6) and with
more increase in K, the period-2 orbit which was born
in the PD1 bifurcation, undergoes Naimark-Sacker bi-
furcation (NS curve in Fig.6).

D. General case ∆1 �= ∆2

In Fig.7 several major synchronization regions are
depicted in the (∆2,K) parameter plane with fixed
∆1 = 0.1 . One can see that their symmetry with re-
spect to the line ∆2 = 0.5 is lost. Moreover the syn-
chronization regions do not emerge from the points
on the ∆2-axis and do not have the exact shape of the
tongues any more. This means that for small values
of K ≤ 0.5 the system (4) cannot be synchronized.
With more increase in ∆1 the synchronization regions
move away from the ∆2-axis and become smaller.
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Abstract— This paper presents an application of
fractal analysis in biomedical signals. The investiga-
tion of the X–ray photographs of tibia bone is taken
into account. The proposed analysis method is based
on the calculation of the fractal dimension as a pa-
rameter describing the features of an image texture.
Obtained results show that with the aid of fractal
analysis it is possible to detect changes in the struc-
ture of a bone.

I. INTRODUCTION

In recent years, there have been numerous reports
on possible applications of chaos theory and frac-
tal geometry in natural sciences [1], especially in
medicine [2], [3]. Before fractal geometry fully de-
veloped natural complex objects had been described
using idealized Euclidean geometry models. How-
ever, obtained results were insufficient, because com-
plexity of the objects could not be modeled properly.

Fractal geometry seems to be a more effective tool
to describe complex and irregular shapes of nature.
Consequently, an extensive research on finding appli-
cations of fractal geometry in the analysis of biologi-
cal signals has been conducted. In the range of scien-
tists’ interest were for instance, ECG waveforms [4],
neoplasms microscope images [3], retina images [5]
and brain MR images [6].

This paper presents some results of fractal analysis
supporting the diagnosis of Paget’s disease of bone.
The analysed signals are the X–ray photographs of
human tibia bone. The analysis method is based on
texture classification with the aid of one of the fractal
parameters i.e. fractal dimension.

There is a variety of different definitions of a di-
mension: the topological dimension, the Hausdorff
dimension, the box dimension, the correlation dimen-
sion, and others [7]. Therefore, there are many algo-
rithms to estimate the fractal dimension. Selected al-
gorithms, used to perform the analysis, are presented

in the following sections. The fractal dimension is
closely connected with our perception of roughness.
If a texture is smooth, the fractal dimension takes
lower values. And on the contrary if the texture
is rougher, the fractal dimension is higher. For a
grayscale images the fractal dimension takes values
between 2 and 3.

II. PAGET’S DISEASE OF BONE

Paget’s disease of bone is a chronic disease in
which the bones become enlarged and weakened as
a result of a changed, ‘chaotic’ and brittle bone struc-
ture. The disease leads to deformity, fracture, imbal-
ance in calcium metabolism and carries with it an in-
creased risk of cancer. The most commonly affected
are the long bones, vertebrae, pelvis, and skull.

III. FRACTAL ANALYSIS METHOD

The original X–ray photographs of tibia bone were
digitalized to similar size images of 256 grey levels
of intensity. From the digital images to the further
processing were selected only 100×100 pixel region
of interest (ROI), each containing a different textured
part of a tibia bone. Then, to all ROI images the his-
togram normalization was applied in order to enhance
the contrast and to use the full range of grayscale. Fi-
nally, the image texture within the ROI was charac-
terized by calculating an image surface fractal dimen-
sion. To estimate the fractal dimension three differ-
ent methods were used: Epsilon – Blanket, Triangular
Prism Surface Area and 3–Dimensional Box Counting
algorithm. All are to be described below.

A. Epsilon – Blanket algorithm

The idea of the algorithm is based on covering an
image surface with a blanket having upper surface un

and bottom surface bn [7]. For n = 0 they are ini-
tialized to the values of the image un = g(i, j) = bn,
where g(i, j) represents the value of the pixel image at
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co-ordinates (i, j). Starting from n=1 in the n-th step
the surfaces of the blanket are obtained from equa-
tions:

un(i, j) = max
[
un− 1(i, j) + 1, max

(k,l)− (i,j) 1
un− 1(k, l)

]

bn(i, j) = min
[
bn− 1(i, j) − 1, min

(k,l)− (i,j) 1
bn− 1(k, l)

]

Then the volume of the blanket, enclosed between un

and bn, is computed from:

Vn =
∑
i,j

[
un(i, j) − bn(i, j)

]

and the surface area is defined as:

An =
Vn − Vn− 1

2

The fractal dimension of an image is calculated from
the equation:

DBL = 2 − d

where d is the slope of the linear regression line ap-
plied to a graph of log (An) versus log (n).

B. Triangular Prism Surface Area algorithm

In this method an image is covered with square grid
of a side size r [6]. For each grid of a given square
side size r a triangular prism is constructed, as shown
in Fig. 1. The prism edges are at the square corners
A, B, C, D and have values a, b, c, d of correspond-
ing pixels. Similarly, the height of the prism has value
p of a pixel P placed at the center of a square. The
connections of a, b, c, d and p form four top triangles.
The sum of all prism top surfaces gives the entire im-
age surface area A(r). Calculations are repeated for
an odd side size r, producing a series of surface areas
A(r) at a scale r. Then the double logarithmic plot
of A(r) against r is drawn. The slope d of straight
line, achieved by the least square regression method,
determines the value of the fractal dimension:

DTPSA = 2 − d

C. 3–Dimensional Box Counting algorithm

The algorithm considers an image as a surface
placed above a plane [6]. The distance between the
surface and the plane is determined by the value of
pixel images. The plane is partitioned into square
grids of a side size r. On each grid a column of cubic
boxes of size r×r×r is built, as shown in Fig. 2. For a

Fig. 1. Triangular Prism Surface Area algorithm

certain column, the number of the highest box, which
includes a part of the image, is noted as k. Similarly,
l is the number of the lowest box containing a part of
the image. The number of boxes Nr containing the
whole image is calculated using the equation:

Nr =
∑
each

column

(
k − l + 1

)

Calculation of Nr is repeated for different values of
the square grid side size r. Finally, the fractal dimen-
sion DBC3D of the image is determined as the value
of the slope of the linear regression line applied to a
graph of log (Nr) against log (1

r ).

Fig. 2. 3–Dimensional Box Counting algorithm

IV. MEDICAL DATA AND NUMERICAL RESULTS

The analysis method, presented in section III was
applied, to several X–ray photographs of tibia bone.
Images were diagnosed by specialist physician and
depicted both the healthy bone and the bone affected
by Paget’s disease. The processed ROI images that
correspond to analysed X–ray photographs are shown
in Fig. 3 (healthy bone) and Fig. 4 (Paget’s disease of
bone).

The results of performed analysis are shown in
graphs (Fig. 5) and in Table I.
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Fig. 3. Analysed ROI images of healthy bone

Fig. 4. Analysed ROI images of bone with Paget’s disease

The analysis of the results shows that the images
of the bone with Paget’s disease tend to have lower
fractal dimension values than images of a healthy
bone. This is particularly visible in the case of the
use of Triangular Prism Surface Area algorithm as
an estimation of the fractal dimension. The mean
of fractal dimension of images with Paget’s disease
of bone amounts to DTPSA = 2.2081 and is signif-
icantly lower than the mean of fractal dimension of
the healthy bone images which is DTPSA = 2.5071.
Moreover, these two groups of images can be com-
pletely distinguished, because obtained results are
separable (compare Fig. 5b and minimal and maximal
fractal dimensions in Table I). The 3–Dimensional
Box Counting method produces values that can sep-
arate these images as well. Although in this case,
the difference between the means of fractal dimen-
sions is smaller (means of fractal dimension of Paget’s

disease of bone images and healthy bone images
are DBC3D = 2.1207 and DBC3D = 2.2678, respec-
tively). The Epsilon – Blanket algorithm gives slightly
different results. The classification can not be per-
formed, because fractal dimension values are too
close together (compare Fig. 5a). However, the ten-
dency to get the mean of fractal dimension of bone
images with Paget’s disease lower than the mean of
fractal dimension of healthy bone images is still pre-
served.

V. CONCLUSIONS

The research has proven that:
• It is possible to monitor changes in the structure of
the bone caused by Paget’s disease.
• The fractal analysis may be useful as an aid in the
diagnosis of skeletal diseases.
• The method of analysis and the algorithm to esti-
mate fractal dimension must be suitable for a particu-
lar type of biomedical signal.
• Features of the signal and, consequently, its space–
fill ratio carry diagnostically significant information
and can be approximated by fractal dimension.
• The fractal analysis is a good supplement to tradi-
tional image processing methods.
• The fractal analysis may be useful in other disci-
plines, especially in those where the differences in im-
age texture occur.
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[3] W. Kuźniak, J. R. Jabłoński, E. Oczeretko, I. Kasacka, Fractal
Dimension in morphology of neoplasmas, Advances in Cell
Biology, vol. 28, pp. 561-570, 2001.
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Epsilon – Blanket TPSA 3D Box Counting

Healthy Paget’s Healthy Paget’s Healthy Paget’s
bone disease bone disease bone disease

Dmin 2.4190 2.3231 2.3864 2.1345 2.2279 2.0708
Dmax 2.6175 2.5206 2.5878 2.3261 2.3097 2.1783
µ(D) 2.5151 2.4303 2.5071 2.2081 2.2678 2.1207
σ(D) 0.0566 0.0585 0.0636 0.0542 0.0299 0.0348
Dmin, Dmax — minimal and maximal value of fractal dimension, µ(D) —
mean of fractal dimension, σ(D) — standard deviation of fractal dimension

TABLE I
Results of fractal analysis

(a) Epsilon–Blanket algorithm (b) Triangular Prism Surface algorithm

(c) 3–Dimensional Box Counting algorithm

Fig. 5. Results of fractal analysis
circles – healthy bone, crosses – Paget’s disease of bone, solid lines – µ(D) value, dotted
lines – µ(D)+σ(D) and µ(D)−σ(D) values, dashed lines – Dmin and Dmax values
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Abstract— An extended Bernoulli map driven by
dynamic thresholding is proposed, in which the dis-
continuous point of Bernoulli map is dynamically
changed in every mapping. As the driving option of
the discontinuous point, we present a chaotic driving
method. We investigate the chaotic behavior in the
proposed map and the statistical properties of the dy-
namics derived from the map.

I. INTRODUCTION

In this paper, we propose an extended Bernoulli
map driven by dynamic thresholding, in which the
discontinuous point of Bernoulli map [1] is dynami-
cally changed in every mapping. Because the discon-
tinuous point of Bernoulli map is normally fixed to a
value in [0,1), the dynamics derived from the map is
determined by this parameter as one sequence of or-
bits from an initial point x0. On the other hand, in
the proposed extended Bernoulli map the discontin-
uous point is dynamically altered in every mapping.
Thus we can expect to generate a number of different
orbits depending on the driving method of discontin-
uous point even when we use the same initial point.

The proposed map is originated from a study of the
chaotic behavior observed in the decoding process of
the arithmetic coding [2], [3]. The arithmetic code
(codeword) can be considered an initial point of the
generalized Bernoulli map, in which the discontinu-
ous point of the map is dynamically changed by the
probability of symbols predicted in the context mod-
eling unit. As related studies, Yoshioka et al. [4] have
recently proposed a time-variant 1-dimensional return
map, in which a periodic input is simply introduced to
a nonautonomous manifold piecewise linear circuit.
Also, Miki et al. [5] have presented a time-dependent
Logistic map, in which a simple periodic time depen-
dent parameter is applied to the amplitude of the map.

In this paper, we present a chaotic driving method
as the driving option of the discontinuous point of
Bernoulli map. With this option, we can automati-
cally drive the discontinuous point once we specify
the mapping parameters and an initial point. In this
paper, we first investigate the chaotic behavior in the

proposed map, and then examine the statistical prop-
erties of the dynamics derived from the proposed map,
such as ergodicity and uniformity of the orbits.

II. PROPOSED MAP

We define an extended Bernoulli map driven by dy-
namic thresholding B∗ : I =[0, 1)→I=[0, 1) as

B∗(xk) : xk+1 =

{
xk
αk

(0≤xk <αk)
xk−αk
1−αk

(αk≤xk <1)
(1)

(k = 0, 1, 2, · · ·)

where αk (k = 0, 1, 2, · · ·) denotes the value of dis-
continuous point (threshold) on I =[0, 1). Unlike the
original Bernoulli map, we can remarkably increase
the possibility to change (control) the dynamics of or-
bits derived from the map depending on the way of
driving αk .

Among various options we drive αk ∈I by

αk+1 = A(1 − |1− 2αk|p) (k = 0, 1, · · ·) (2)

where p and A are mapping parameters, which de-
termine the shape and amplitude of the map, respec-
tively. With this option, we can automatically drive
αk (k=1, 2, · · ·) by just specifying (p, A) and an ini-
tial discontinuous point α0.

Because the orbit xk+1 is determined with two pa-
rameters, xk and αk, the proposed map can be also
considered as a 2-dimensional map. From this stand-
point, we show the expansion vectors by the map at
various points in the 2-dimensional xk−αk plane for
p=2.0 and A=1.0 in Fig. 1. Each vector is the com-
posite of the expansion ratios of xk and αk . From this
figure, we can see that the expansion ratio changes de-
pending on the value of discontinuous point αk even
for the same xk.

III. CHAOTIC BEHAVIOR

First of all, we show the stationary distribution of
the orbits of the proposed map when we fix the dis-
continuous point as αk = α in Fig. 2. In this figure,
2,000 points are depicted as xk after the initial tran-
sition (discarded 104 points) for 4,000 kinds of αk in
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Fig. 1. Expansion vectors in 2-dimensional xk−αk plane
(p=2.0, A=1.0)
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Fig. 2. Stationary distribution of the orbits of the proposed
map

[0, 1). From this figure, if we fix α to a value close to
the edge regions (0 or 1), it becomes hard for the or-
bit to visit the opposite edge region. We can say that
the orbits tend to transit uniformly over the mapping
domain if we drive α around the center of the domain.

Next, we show the bifurcation diagrams for the pro-
posed map when we vary the amplitude parameter A

in the range 0 < A ≤ 1 in Fig. 3, where we set
α0 = 0.2 and x0 = 0.2. The depiction was done with
the same manner to Fig. 2. Also, we show the bifur-
cation diagram for the driving map in Fig. 4, where
the conditions are the same to Fig. 3. In the range
that the discontinuous point αk converges to the fixed
point 0, the orbits of the proposed map converge to a
fixed point. In other words, if αk does not converge
to 0, the orbits by the proposed map behave chaotic
spreading in the entire mapping domain. For exam-
ple, when we set p=2.0, the orbits behave chaotic in
the range 0.25 ≤ A ≤ 1.0. When we set p = 0.75,
the range producing chaotic orbits becomes narrow
0.628≤A≤1.0.

Furthermore, we show the 2-dimensional depiction
of bifurcation diagrams as we vary the parameters
(p, A) in Fig. 5, where the gray tone classifies the
orbits into (i) convergence to a fixed point, (ii) several
periodic orbits, and (iii) chaotic orbits. In this figure,
(p, A) that leads αk to a fixed point or to periodic or-
bits occupies a large area of this parameter domain.
In this colored region, whatever we choose the initial
discontinuous point α0, the driving pattern of αk will
become a constant or periodic one. Therefore, if we
want to generate the chaotic orbits diversely spread in

1.00

A

x
k

0.25 0.750.5

1

(a) p=2.0

1.00

A

x
k

0.25 0.750.5

1

0.628

(b) p=0.75
Fig. 3. Bifurcation diagrams of the proposed map
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1

(a) p=2.0

1.00

A

α
k

0.25 0.750.5

1

0.628

(b) p=0.75
Fig. 4. Bifurcation diagrams of the driving map

the mapping domain, it would be better to use in the
white region that the orbits of αk become chaotic.

Finally, we show the Lyapunov exponent [1] cal-
culated by Shimada and Nagashima’s method [7] in
Table I, when we consider the proposed map as a
2-dimensional map having two variables xk and αk .
We have two Lyapunov exponents (λ1, λ2), and the
bigger one is called the maximum Lyapunov expo-
nent. Similar to [7], we regard λ1 as the maximum
exponent in this paper. If λ1 > 0, the proposed
map generates chaotic orbits. In this table, we can
find a few parameters showing λ1 = 0, for example
(p, A) = (0.75, 0.6) which do not show chaotic be-
havior. Also, the parameters showing negative λ2, for
example (p, A)= (2.0, 0.8) converge the driving map
to a fixed point or periodic orbits.
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(a) Proposed map : xk

(b) Driving map : αk

Fig. 5. 2-dimensional bifurcation diagrams for (p, A)

TABLE I
LYAPUNOV EXPONENTS EXPERIMENTALLY OBTAINED

p\A 1.0 0.9 0.8 0.7 0.6 0.5

2.00
0.693 0.538 0.597 0.651 0.679 0.693
0.386 0.183 -0.916 -0.223 -0.916 -13.12

1.75
0.693 0.567 0.599 0.658 0.681 0.693
0.409 0.348 -0.351 -0.103 -0.659 -9.842

1.50
0.693 0.572 0.608 0.660 0.684 0.693
0.435 0.415 -0.111 -0.053 -0.401 -6.561

1.25
0.693 0.575 0.626 0.655 0.686 0.693
0.464 0.492 0.299 -0.018 -0.130 -3.281

1.00
0.693 0.597 0.643 0.668 0.685 0.611
0.500 0.588 0.470 0.336 0.182 0.000

0.75
0.689 0.666 0.652 0.676 0.000 0.000
0.539 0.614 0.629 0.599 -0.105 -0.288

upper : λ1(maximum exponent), lower : λ2

IV. STATISTICAL PROPERTIES

A. Ergodicity

For a complex µ-summable function f∗ of B∗, we
examine if the time average f̃∗ for any initial points
x0 ∈ I is equal to the spatial average f̄∗ [6], i.e.,

f̃∗(x0) = f̄∗. (3)

Since µ(I)=1, the spacial average is

f̄∗ =
∫

I
f∗(x)dµ, (4)

where x is a point on I = [0, 1). In this paper, we
choose

f∗(x) =

⎧⎨
⎩

0,
[

i−1
d , i

d− 1
2d

)
1,

[
i
d− 1

2d , i
d

) (i = 1, 2, · · · , d)

(5)
among possible f̃∗, where d denotes the number of
intervals divided on I . On the other hand, the time

TABLE II
KS-STATISTICS ON ERGODICITY (d=210)

p\A 1.0 0.9 0.8 0.7 0.6 0.5

2.00
0.885 0.829 0.766 0.994 0.991 0.843
15.77 0.912 1.822 0.925 1.122 0.852

1.75
1.116 0.729 0.941 0.758 0.875 0.863
10.19 0.796 1.656 1.080 6.585 0.752

1.50
0.919 0.786 0.994 0.666 0.853 0.833
5.631 0.779 1.108 0.766 1.026 0.915

1.25
0.998 1.139 1.132 0.970 0.858 0.894
2.529 0.837 1.256 1.026 0.845 0.752

1.00
0.779 0.813 0.925 0.821 1.077 0.983
1.271 1.018 0.844 0.796 0.760 0.982

0.75
0.717 0.893 0.799 1.007 31.62 31.62
0.969 0.807 1.015 0.829 19.76 31.62

upper : average of f̃∗, lower : variance of f̃∗

average of f̄∗ under a finite times of mapping n is
defined as

f̃∗(x0) =
1
n

n∑
k=1

f∗(B∗k(x0)), (6)

where f∗(B∗k(x0)) also follows Eq. (5).
Since f̄∗ = 1

2 , the dynamics of the extended
Bernoulli map is considered ergodic if f̃∗ ≈ 1

2 from
any initial point x0 ∈ I . f̃∗(x0) theoretically fol-
lows a binomial distribution B(n, P ) (P = 1

2). Here
we set the times of mapping n = 103 and calculate
f̃∗(x0) by computer simulation. We repeat this op-
eration Nx = 103 times by changing x0 ∈ I to get
one statistic for the average and variance of f̃∗. The
former statistic follows a normal distribution and the
latter a χ2 distribution, respectively. Table II shows
the results by KS(Kolmogorov Smirnov) test [8] for
Nα = 103 pieces of statistics Tl (l = 1, 2, · · · , Nα)
obtained by changing α0. Note that each numerical
data in this table is the median among 10 trials of KS
test. Here we set d = 210 in Eq. (5). If KS-statistic
meets KNα ≤ 1.358, the condition on ergodicity is
satisfied in case of 5% critical region. From the re-
sult, the following observations are relevant: (i) For
p>1.0, as we decrease the amplitude A from 1.0, the
driving range of αk([A (1−|1−2A|p) , A]) gradually
becomes narrow, periodic, and eventually converges
to a fixed point following by the Schwarz’s condition.
Particularly when A approaches to 0.5, the fixed point
also approaches to 0.5, which means the map becomes
equivalent to the original Bernoulli map. Thus, the er-
godicity generally tends to be satisfied by decreasing
A from 1.0 to 0.5. (ii) For p < 1.0, as we decrease
A from 1.0, the driving range of αk simply becomes
narrow centering around 0.5 by degrees. That makes
the characteristic of the map similar to the original
Bernoulli map. Thus, as we decrease A from 1.0, the
ergodicity generally tends to be satisfied analogous to
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TABLE III
KS-STATISTICS ON UNIFORMITY OF ORBITS OVER I

p\A 1.0 0.9 0.8 0.7 0.6 0.5
2.00 9.849 0.696 1.703 1.879 1.873 1.910
1.75 8.519 1.037 1.636 1.813 1.676 1.875
1.50 5.616 0.589 1.057 1.484 1.774 1.799
1.25 2.818 0.800 0.786 1.460 1.835 1.744
1.00 1.125 0.930 0.670 0.780 0.796 2.055
0.75 1.111 0.776 0.904 0.708 10.00 10.00

(i). However, for A≤ 0.6, the orbits of xk converges
to a fixed point (see Fig. 3(b)) since αk converges to 0
(see Fig. 4(b)), and thus the ergodicity is not satisfied.
(iii) In case of A=1.0, as we decrease p from 2.0, the
principal distribution of αk gradually moves from the
edge region (0 or 1) to the center (0.5) of the map-
ping domain, which improves the KS statistics. From
this observation, to satisfy the ergodicity condition,
the discontinuous point αk should be driven around
0.5 avoiding the edge regions. Even periodic orbits or
a fixed point showing negative λ2 are also available
as long as the fixed point 0 is avoided. However, in
the table, we can find a few particular parameters, for
example (p, A)= (2.0, 0.8), which do not follow this
observation. This point should be further examined.

B. Uniformity of the Orbits

We examine the uniformity of the orbits in the map-
ping domain. Here we divide I = [0, 1) into d = 103

sub-intervals and set the iteration number of map-
ping to n = 106. We check the distribution of the
orbits from an initial pair (x0, α0) if they uniformly
visit all sub-intervals by using χ2-statistic [8]. We
apply KS test for Nx = 102 pieces of χ2 statistics
Tl (l = 1, 2, · · · , Nx) obtained by changing x0 in the
interval [0, 1). Here we set α0 =0.2 as an initial driv-
ing point. The result is shown in Table III, where
each numerical data is the median among 10 trials
of KS test similar to Table II. If KS-statistic meets
KNx ≤ 1.340, the orbits satisfy the condition on uni-
formity irrelevant to initial point x0. From the result,
the uniformity (denseness) of the orbits in the map-
ping domain is explicitly satisfied by using the param-
eters which make both Lyapunov exponents λ1 and λ2

positive in Table I. However, in the range of A = 1.0
and p > 1.0, the uniformity condition is not satisfied
similar to the result on ergodicity, because the distri-
bution of αk inclines to the edge region.

Finally, we classify the parameter regions base on
the above observation in Fig. 6. In this figure, we
denote © as the region satisfying both ergodicity and
uniformity conditions, � the one only satisfying er-
godicity condition, and × the one which does not sat-
isfy both conditions. From this figure, to satisfy the

Fig. 6. Classification of mapping parameters

uniformity condition, we should select the parameters
in the white region, which lead the orbits of the dis-
continuous point αk to chaotic.

V. CONCLUSION

In this paper, we have proposed an extended
Bernoulli map driven by dynamic thresholding, in
which the discontinuous point of Bernoulli map is dy-
namically changed in every mapping, and showed the
chaotic behavior and its statistical properties on er-
godicity and uniformity of the orbits. From the ob-
servation of results, we can say that the orbits of the
proposed map behave chaotic as long as we avoid the
discontinuous point αk converges to the fixed point 0.
Also the orbits satisfy both ergodicity and uniformity
conditions if we drive αk so that the density of αk in-
creases around the center of the mapping domain.

As future works, we should further investigate on
the driving method of αk and examine its affection to
the statistical properties of the orbits. Also, we are
planning to increase the dimension of this map, and
develop a random number generator using this map.
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Abstract—Multi-user CSK communication sys-
tems are studied.  A statistical approach is devel-
oped to calculate the system BER by strictly apply-

ing the Central Limit Theorem (CLT).  Further dis-
cussion, mainly on the autocorrelation coefficients

of the chaotic map, is developed to obtain the per-
formance lower bound.  The asymptotically optimal
maps are used to obtain the optimal performance.

This modulation scheme provides a possible choice
for multi-access communication.

I. INTRODUCTION

In the single-user chaos waveforms communication

systems, the system performance is always not better

than corresponding conventional communication

system, such as BPSK [1]-[3].  In the chaos shift

keying (CSK) system, this performance degradation

is mainly due to the non-constant energy per bit,

which is termed estimation problem [1].  Without

further change in the modulation scheme, this esti-

mation problem is always unavoidable.  So a ques-

tion arises: what have we got from chaos?

In this letter, a multi-user CSK system is studied,

which is possible to over-perform its conventional

counterpart. In the conventional multi-access sys-

tem, it is seldom to send the modulated signal di-

rectly.  Some multi-access schemes, such as CDMA,

TDMA, are usually used to distinguish the useful

signal at the receiver.  However, in this letter, the

directly-send model is studied, which is proved to

have a lower bound of single-user BPSK perform-

ance.  So there may be several users in a system

sharing the same frequency, time slot or PN se-

quences, which double or triple the system capacity.

II. MODELS OF MULTI-USER ANTIPODAL CHAOS-

SHIFT-KEYING COMMUNICATION SYSTEMS

In this section, the configuration of multi-user co-

herent antipodal CSK communication systems are

described [4].  The block diagram of this system is

plot in Fig. 1.

A. Modulator Scheme

Assuming there are L  users within the multi-user

antipodal CSK system and that the binary bits are

transmitted at time intervals of length bT . In evalua-

tion of a communication system, the focus is always

on the transmission of one bit. So, denote the trans-

mitted data of the l
th
 user by lb ,where { }1, 1lb ∈ − + .

Fig. 1 Block diagram of multi-user antipodal CSK com-

munication system.

A typical bit lb  uses a segment

{ }, 0,1,..., 1l l ix x i N= = −  of N  successive values

from a chaotic waveform { }lX ; N  is termed the

spreading factor.  These segments are generated by

chaotic maps ( )l xτ  for the l
th
 user, that is,

( ), 1 , 0,1,2,..., 1l i l l ix x i Nτ+ = = −  and 1,2,...,l L= .

The chaotic maps ( )l xτ  may be same for all users,

but also may be not.  The initial value ,0lx  is chosen

from the natural invariant distribution ( )l xρ  of the

map ( )l xτ .  The means of { }lX  are denoted by

( )l lE Xµ =  and the variance by 2

lXσ .  In the fol-

lowing discussion, it is assumed that 0lµ = .  Be-

cause all users have the same average signal energy,

it is reasonable to assume that all maps have the

same variance, denoted by 2

Xσ .

The output of the chaotic signal generator used

by the l th
 user, denoted by ( )lx t , is

( ) ( )
1

,

0
c

N

l l i T c

i

x t x g t iT
−

=

= −∑ , (2.1)
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where cT  is the time interval between change of ,l ix ,

which is always a constant and equals bT N .

( )
cTg t  is a rectangular pulse of unit amplitude and

width cT , i.e. ( ) 1, 0

0,c

c

T

t T
g t

elsewhere

≤ <⎧
= ⎨

⎩
.

In antipodal CSK, the modulation of bit lb  takes

the form as l lb x .  Thus, denoted by ( )ls t , the

transmitted waveform of the l th 
user is

( ) ( )
1

,

0
c

N

l l l i T c

i

s t b x g t iT
−

=

= −∑ . (2.2)

B. Channel Model

Additive white Gaussian noisy (AWGN) channel is

considered in this letter.  Let ( )n t  be the AWGN

with a two-side power spectral density given by

( ) 0 2nS f N= .

For convenience, we replace ( )n t  by an equivalent

noise source ( )n t′  [4], given by

( ) ( )
0

ci T c

i

n t g t iTε
∞

=

′ = −∑ ,  (2.3)

where { }iε  are independent Gaussian random vari-

able with zero mean and variance as 2

0 2n cN Tσ = .

So corrupted by both AWGN and the transmitted

waveforms of the other 1L −  users, which is termed

interference, the received waveform of the l th
 user is

( ) ( ) ( ) ( )
1

L

l l k

k l

r t s t s t n t
= ≠

′= + +∑

                       ( )
1

,

0
c

N

l i T c

i

r g t iT
−

=

= −∑ , (2.4)

where , , , ,

1

L

l i l l i k k i l i

k l

r b x b x ε
= ≠

= + +∑ .  And the per-bit

signal noise ratio is ( ) ( )2 2

0 2b X nE N Nσ σ= .

C. Demodulator scheme

The coherent communication system is considered

in this letter, that is only the user’s own reference

sequence is known exactly at the receiver.  So the

reference sequence is ( ) ( )
1

,

0
c

N

l l i T c

i

u t x g t iT
−

=

= −∑ .

The correlation decoder takes the form

( ) ( )( ) ( )( )
0

,
b

T

l l l lC r u r t u t dtµ µ= − −∫

( )( )
1

, ,

0

N

c l i l i

i

T r uµ µ
−

=

= − −∑ , (2.5)

which calculates the covariance between ( )lr t  and

( )lh t , and take a sample at time bT  to make de-

modulation decision. Finally, lb is estimated by ˆ
lb  as

( )
( )

1 , 0ˆ
1 , 0

l l

l

l l

if C r u
b

if C r u

⎧+ ≥⎪= ⎨− <⎪⎩
. (2.6)

III. STATISTICAL APPROACH TO BER OF MULTI-

USER COHERENT ANTIPODAL CSK SYSTEM

The bit error rates (BER) of a system is the prob-

ability of estimating a bit value 1−  or 1+  given that

1+  or 1−  was transmitted.  So the BER of the l
th

user takes the form

( ) ( )1 ˆ ˆ1 1 1 1
2

l l l l lBER P b b P b b⎡ ⎤== = + = − + = − = +⎢ ⎥⎣ ⎦
with the assumption that ( ) ( )1 1l lP b P b= − = = −

1 2= .  With (2.4) and (2.6), the BER of the 1
st
 user

conditional on 1 1b = +  is

( ) ( )1 1 1 1
ˆ1 1 1BER b P b b= + = = − = +

( ) ( ) ( ) ( ) ( ) ( )
1 12

1 1,0 1 1,0 ,0

0 0 2

N N L
i i i

l l l

i i l

P X X b Xτ τ τ
− −

= = =

⎧ ⎡ ⎤⎡ ⎤= +⎨ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩
∑ ∑ ∑

( ) ( )
1

1, 1,0

0

0
N

i

i

i

Xε τ
−

=

⎫⎡ ⎤+ < ⎬⎣ ⎦ ⎭
∑ , (3.1)

where lb , ,0lX  and 1,iε  are random variables as

described in Section II.  Therefore, to exactly calcu-

late the probability, it will involve an integral with

all these variables.  However to calculate it statisti-

cally, it is reasonable to strictly apply Central Limit

Theorem (CLT) in (3.1).  Because all terms in

( ) ( )
1 2

1 1,0

0

N
i

i

Xτ
−

=

⎡ ⎤⎣ ⎦∑  are not independent to each other, it

is not qualified to be applied CLT.  So the basic idea

is to first calculate the BER conditional on 1,0 1,0X x=

and then integrate over all possible 1,0x .

First, by (3.1), the conditional BER is

( )1 1 1,0 1,01,BER b X x= + =

( ) ( ) ( )
1

1,0 1, 1 1,0

0

N
i

i

i

P Y x xε τ
−

=

⎧ ⎫⎡ ⎤= < −⎨ ⎬⎣ ⎦⎩ ⎭
∑ , (3.2)

where

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1,0 1 1,0 ,0 1, 1,0

0 2 0

N L N
i i i

l l l i

i l i

Y x x b X xτ τ ε τ
− −

= = =

⎡ ⎤ ⎡ ⎤= +⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ .
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Because there is

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1,0 ,0 1 1,0 ,0

0 2 2 0

N L L N
i i i i

l l l l l l

i l l i

x b X b x Xτ τ τ τ
− −

= = = =

⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎣ ⎦⎣ ⎦
∑ ∑ ∑ ∑
which is composed of 1L −  independent random

variable, 
( ) ( ) ( ) ( )

1

1 1,0 ,0

0 2

N L
i i

l l l

i l

x b Xτ τ
−

= =

⎡ ⎤
⎢ ⎥⎣ ⎦

∑ ∑  can be ap-

proximated as a Gaussian random variable.

( ) ( )
1

1, 1 1,0

0

N
i

i

i

xε τ
−

=

⎡ ⎤
⎣ ⎦∑  is inherently a Gaussian random

variable as 1,0x  is known.  So ( )1,0Y x  can be ap-

proximated as a random variable with mean 0 and

variance

( ) ( )
1,0

2

1,0var
Y x

Y xσ ⎡ ⎤≡ ⎣ ⎦

( ) ( ) ( )
1 2

2 2

1 1,0

0

1
N

i

X n

i

L xσ σ τ
−

=

⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦∑
( ) ( ) ( ) ( )

1 1
2

, 1 1,0 1 1,0

1 2 0

2
N L N k

i i k

X l k

k l i

x xσ α τ τ
− − −

+

= = =

⎧ ⎫⎡ ⎤+ ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑ ∑ , (3.3)

where ,l kα  is the k
th
 autocorrelation coefficient of

the chaotic map ( )lτ ⋅ , i.e.

( ) ( )( )
( ) ( ) ( )

( ) ( )
, 2

cov ,

var var

k k

l l

l k
k

X
l

X X E X X

X X

τ τ
α

στ

⎡ ⎤
⎣ ⎦= =

⎡ ⎤
⎣ ⎦

.

With this approximation, the conditional BER is

( )1 1 1,0 1,01,BER b X x= + =

( ) ( ) ( )1,0

1 2

1 1,0

0

N
i

Y x
i

xτ σ
−

=

⎛ ⎞⎡ ⎤= Φ −⎜ ⎟⎣ ⎦⎝ ⎠
∑ . (3.4)

Because (3.4) is independent of 1b , the BER of

1
st
 user is

( ) ( ) ( ) ( )
1,0

1,0

1 2

1 1 1,0 1 1,0 1,0

0

N
i

Y x
iX

BER x x dxτ σ ρ
−

=

⎛ ⎞⎡ ⎤= Φ −⎜ ⎟⎣ ⎦⎝ ⎠
∑∫ .

(3.5)

The BER of other users have the same form as (3.5),

but may have different value as different map is used

to generate the chaos sequence.  Usually, (3.5) is

calculated by numerical integral.  Because the CLT

is strictly applied here, it provides almost exact BER

in the case of large L , regardless of the spreading

factor N .

IV. AUTOCORRELATION COEFFICIENTS AND

OPTIMAL MAPS

The optimal problem is to choose the best maps so

that the average BER of all users is minimized.  In

the results of (3.5), the autocorrelation coefficients

,l kα  of the chaotic map are involved in the variance

of ( )1,0Y x , which make the analysis more compli-

cated.  Usually, the larger is the variance of ( )1,0Y x ,

the larger is the BER.  Approximately, the effect of

the autocorrelation coefficients can be measured by

the expectation of variance of ( )1,0Y x , for example,

for the 1
st
 user the measure is

( ) ( )
1 1,0

2 2 2 2 2
1Y X X nY x

E N Lσ σ σ σ σ⎡ ⎤ ⎡ ⎤≡ = − +⎣ ⎦⎢ ⎥⎣ ⎦

( )
1

4

1, ,

1 2

2
N L

X k l k

k l

N kσ α α
−

= =

⎧ ⎫⎡ ⎤+ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
∑ ∑ . (4.1)

The chaotic maps that having small 
1

2

Yσ  indicates

better performance for the 1
st
 user.  To consider the

overall BER, the average 2

lYσ  should be calculated

( )2 2 2 2 2

1

1
1

l

L

Y Y X X n

l

LN L
L

σ σ σ σ σ
=

⎡ ⎤≡ = − +⎣ ⎦∑

( )( ){ }
1

4 2

1

2
N

X k k

k

N kσ
−

=

+ − Α −Β∑ , (4.2)

where ,

1

L

k l k

l

α
=

Α =∑  and 2

,

1

L

k l k

l

α
=

Β =∑ .

If all the users use the same chaotic map to gen-

erate the chaos sequences, the BER of one user is

same as the overall BER.  And the variance in (4.1),

which is also same for all other users, becomes

( ) ( ) ( )
1

1
2 2 2 2 4 2

1

1 2 1
N

Y X n X X k

k

N L L N kσ σ σ σ σ α
−

=

⎡ ⎤ ⎡ ⎤= + − + − −⎣ ⎦ ⎣ ⎦∑
which is minimized when 0kα = .  It follows that

(3.3) becomes

( ) ( ) ( ) ( )
1,0

1 2
2 2 2

1 1,0

0

1
N

i

X nY x
i

L xσ σ σ τ
−

=

⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦∑
and the overall BER is

( ) ( )
( ) ( )

1,0

1 2

1 1,0

0
1 1,0 1,02 21

N
i

i

X X n

x

BER x dx
L

τ
ρ

σ σ

−

=

⎛ ⎞
⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟= Φ −⎜ ⎟⎡ ⎤− +⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠

∑
∫ ,

which is similar to the BER of single-user coherent

system [3].  So the lower bound of BER is

( ) ( )( )2 2 21X X nBER N Lσ σ σ⎡ ⎤= Φ − − +⎣ ⎦

( ) ( )( )01 2 bN L N E N⎡ ⎤= Φ − − +⎣ ⎦ , (4.3)

and the asymptotically optimal map of the single-

user system [5]
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( )
( )

( ) ( ) ( )

2

2

2 1 2 1 2

2 1 1 2 1 2 1

x i M i M x i M
x

x i M i M x i M
τ

⎧ − + + < < +⎪= ⎨
− − + + + + < < +⎪⎩

where M  is a positive integer, can also be used in

this multi-user system to achieve lower bound per-

formance.

V. SIMULATIONS AND CONCLUSIONS

Simulation BER of the whole system using the

asymptotically optimal map with 1M =  is provided

in Fig. 2 and Fig. 3.  The BER is plotted against

0bE N  in Fig. 2 for fixed 10N =  and against N  in

Fig. 3 for fixed 0 10bE N dB= .  Analysis BER by

(3.5) is also plotted for Chebyshev 3
rd

-order map and

Bernoulli shift map other than the optimal map.  The

performance lower bound of (4.3) is also provided.

A general agreement is shown between the simula-

tion results and the analytical results.

Fig. 2  BER is plotted against 0bE N  for 10N = .

It is known from (4.3) that the lower bound per-

formance is a function of the spreading factor N , as

shown in Fig.3, which has the performance limita-

tion ( )02 bE NΦ −  for given L  and 0bE N  when

N  increase to infinity.  This indicates that in theory

each user in the multi-user system can achieve the

BPSK performance; the interference from other

users is compensated by the spreading factors.

However there is always some performance degra-

dation due to the limitation of N .  If the perform-

ance of the multi-user system is k dB poorer than the

BPSK system, the required spreading factors is
( ) ( )( )( )( )10 10

02 10 1 10 1
k k

bN L E N
− −≥ ⋅ − − .  For

example, if 1k = , then ( )( )07.7 1 bN L E N≥ −  and

if 3k = , then ( )( )02 1 bN L E N≥ − , both of which

are possible to implement.

Another is that the performance lower bound

(4.3) is not limited by the number of users in the

system.  In most conventional multi-user communi-

cation system, there is always a ‘BER-floor’, which

is limited by the interference from other users. How-

ever in this multi-user CSK communication system,

the BER is not limited by L .  The system BER can

achieve any value by increasing N  and 0bE N .

This is due to the excellent cross-correlation prop-

erty of the sequence generated by a chaotic map.

But if N  is fixed, the BER has a limitation of

( )( )1N LΦ − − .

Fig. 3  BER is plotted against N  for 0 10bE N dB= .
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Abstract— Congenital Nystagmus (CN) is a 

pathological involuntary oscillation of the eyes with 
an onset within the first few months of life and with 
an incidence of about 1:3000. It is a life-long ocu-
lomotor disorder that cannot be explained by any 
underlying neurological abnormality which might 
compromise adaptive mechanisms. There is no cure, 
and CN has so far defied explanation in spite of 
numerous attempts to model the disorder. Prelimi-
nary results of an optimal control model are pre-
sented here which attempt to show that the distinc-
tive chaotic oscillations of CN are the direct result 
of the brain trying to produce eye movement trajec-
tories that maximise visual contrast when foveal 
vision is compromised. This model produces realis-
tic ‘chaotic’ waveforms and correlation dimensions 
similar to observations. Thus CN may be a biologi-
cal example of instability as an  optimal behaviour. 
 

I. INTRODUCTION 
 

Congenital Nystagmus (CN) is an unusual patho-
logical condition consisting of a life-long spontane-
ous oscillation of the eyes with an onset around 
birth. CN is non-progressive with no known neuro-
logical ‘lesion’ (unlike acquired nystagmus [1]), and 
life-expectancy is normal. Usually, affected indi-
viduals do not perceive an oscillating visual world 
(‘oscillopsia’) and may be unaware of their nystag-
mus, even though retinal images are moving. Eye 
movement recording has revealed that CN oscilla-
tions are usually conjugate and predominantly hori-
zontal. The oscillations usually consist of an alter-
nating sequence of ‘slow’ and ‘fast’ phases (called 
‘jerk’ nystagmus). During a slow phase, the eyes 
drift away from the point of visual regard with a 
characteristic trajectory in which eye velocity usu-
ally increases before a resetting saccade (fast phase) 
occurs.  Occasionally, the waveform may be quasi-
sinusoidal with no fast phase (called ‘pendular’ 
nystagmus). Remarkably, although a variety of 

waveforms have been observed [2], most are unique 
to CN and not seen in acquired nystagmus. 

The cause of CN is a mystery, but intriguingly, 
the majority of affected individuals are also born 
with a detectable congenital visual defect such as 
oculocutaneous or ocular albinism, aniridia, cone 
dysfunction, congenital stationary night blindness, 
cataract, and many more congenital conditions [3]. 
Seldom does CN have an onset after a few months 
of age [4]. However, when vision can be restored 
(e.g., cataract removal), nystagmus persists [5]. 
Moreover visual deficits with an onset later in life do 
not precipitate CN-like oscillations. Thus, CN is a 
developmental anomaly, but why should poor neo-
natal vision lead to permanently wobbling eyes? We 
propose that CN is a normal adaptive response to 
maximise visual contrast from an abnormal visual 
system in which central (macular) retinal input is 
reduced or absent in early infancy – a time of rapid 
oculomotor development and sensory plasticity. 

 
II. MATHEMATICAL MODEL 

 
It is firmly established that retinal ganglion cells 

(RGCs) have spatial and temporal tuning, with 
maximal responses for stimuli with a given spatial 
frequency and a given temporal frequency depend-
ing on the size of the receptive field (RF). Thus, 
RGCs with the small RFs in the fovea are maximally 
stimulated by stimuli that have high spatial frequen-
cies (fine detail) and with very little motion (al-
though some slight movement is optimal) while the 
RGCs with large RFs dominate the visual periphery 
and are maximally responsive to lower spatial fre-
quencies and faster moving stimuli [6]. Normally, 
there is a huge predominance of RGCs with small 
RFs in the foveal region, so that overall, contrast is 
maximised by moderately high spatial frequencies 
(~4cyc/deg) and almost (but not quite) stationary 
stimuli [7]. Now, if the retina is deficient in small 
central RFs through malformation [8] (e.g., foveal 
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hypoplasia), or cannot use them because of optical 
abnormalities (e.g., cataract, extreme myopia), then 
maximal contrast will be achieved not only at lower 
spatial frequencies, but also by stimuli with some 
degree of motion [9]. This is borne out in patients 
with CN, where contrast sensitivity functions are 
shifted to lower spatial frequencies when gratings 
are presented vertically (i.e., the spatial frequency is 
in the direction of the nystagmus) [10]. The fact that 
nystagmus improves sensitivity at low spatial fre-
quencies in the direction of eye movement is a result 
of the spatiotemporal tuning of the retina. We argue 
that in a retina without the usual foveal dominance 
of high spatial frequency responses, this tuning 
drives oculomotor plasticity towards inducing some 
kind of image movement by moving the eyes, rather 
than keeping them still as in normal vision.  
 To determine the best movement, we couch the 
problem in terms of optimality and solve for the 
optimal movement using the calculus of variations. 
We denote loss of visual contrast as a ‘cost’ to the 
infant visual system, so that as the image moves 
away from the fovea, cost will increase as contrast 
falls. We simplify the total cost over the integration 
period T by the integral: 
 

     (1) [ ] dtptybtayccC
T

22

0
21 )()( −+++= ∫ &

 
where y denotes the position of the image relative to 
the fovea, p denotes the optimal image speed across 
the fovea and  as the speed of the im-
age, and , , a and b are constants. T is the visual 
integration time. For the abnormal retina p is greater 
than zero, depending on the degree of foveal degra-
dation. 

dtdyty /)( =&

1c 2c

 Using the calculus of variations, the general opti-
mal solution is given by 
 
          (2) ττ //)( tt BeAety += −

 
where A and B are undetermined constants that de-
pend on T, p and any boundary conditions and 

ab+=τ  is a constant.  
 

III. RESULTS 
 
From equation (2), we can see that, for , the 
optimal strategy is to move the image away from the 
fovea –  a compromise between keeping the image 

on the fovea and keeping the image as close to the 
optimal speed, p. If the image starts at a different 
position, then there is a different optimal trajectory. 
Thus there is a set of optimal trajectories for each 
initial. Thus, it is necessary for the image position to 
move away from or across the fovea. It can be seen 
from equation 2 that as time progresses (

0>p

τ>>t ) the 
speed will increase and hence eye position would 
need to accelerate exponentially, which is one of the 
unique features of CN. Second, this image move-
ment requires that there is a net change in eye posi-
tion after time T, which will require resetting. Thus 
the optimal solution requires epochs or ‘oscillations’ 
of eye position (which of course we call ‘nystag-
mus’). 
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Fig. 1 a-c Variation of image position relative to the 
fovea for different initial positions (varying from -4 to 4 
degrees in one degree steps) with parameters: T = 0.05, p 
= 13.5, a τ = 0.00001; b τ = 0.001; c τ = 0.1. d-g Typical 
uni-directional jerk nystagmus sequences with saccadic 
return phases d τ = 0.1, x = 0°; e τ = 0.005, x = -3°; f τ = 
0.004, x = 0°; g τ = 0.001, x = -2°; h p = -13.5, τ = 0.004, 
x = 0°; i typical bi-directional jerk nystagmus sequence 
with saccadic return phases p = -/+13.5, τ = 0.004, x = 0°. 
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Equation (2) captures more than the simple expo-
nential runaway. It describes rich sets of optimal 
trajectories depending on the parameters, τ, T, and  
p.We can see that the optimal trajectories described 
by equation 2 capture most of the observed CN 
waveforms. 
 The optimal waveforms in Figure 1 represent 
ideal epochs, and could not be generated by the 
human oculomotor system. The human oculomotor 
system has evolved to service the normal foveate 
visual system, not to generate CN. Eye movement 
performance, especially in infancy, will place con-
straints on how well the ideal epochs can be realised. 
One important constraint is the oculomotor system 
can only make abrupt changes in eye velocity via the 
saccadic system. Thus, to reverse direction abruptly 
requires small ‘braking’ saccades. Saccades are also 
the only means for resetting eye position abruptly at 
the end of an epoch (the fast phase). It is an empiri-
cal observation that the timing of fast phases is quite 
stochastic, with rates no more than 3-4 times per 
second in adults [11], and in our experience this rate 
is about halved in young infants. Thus, epochs will 
usually last longer than the visual integration period, 
T. Due to the accelerative nature of the optimal tra-
jectories, longer epochs will lead to considerably 
greater amplitude of movement and higher velocities 
than the ideal. 
 It is also well-known that the resetting fast phases 
have end-point variability, which tends to increase 
with amplitude [12-14]. This means that the starting 
position of the next epoch is inherently stochastic, 
which has a profound and complex effect on the 
optimal trajectory. As shown above (Fig. 1a-c), 
different starting positions require different optimal 
trajectories (sensitivity to initial conditions) leading 
to complex sequences of epochs, where there may 
even be reversals of slow phase direction. To illus-
trate this process we generated a sequence of epochs 
(Fig. 2b) to compare with empirical data taken from 
a female subject with typical idiopathic congenital 
nystagmus [15] (Fig. 2a). A dynamical systems 
analysis, based on the use of delay embedding tech-
niques [16], was subsequently applied to this data. 
The three-dimensional projection of the recon-
structed phase space trajectory shows a similar pro-
file as observed empirically (Fig. 2c,d). The correla-
tion (or “fractal”) dimension [17] of the phase space 
trajectory revealed little or no difference between the 
empirical data and the simulated data generated by 
the model. Even though the model contains several 
random processes, the correlation dimensions were 
finite and of similar values (empirical data: correla-

tion dimension, D2 = 1.404, model data: correlation 
dimension, D2 = 1.423) providing confidence in the 
fidelity of the model. 
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Fig. 2. Comparison of 5 sec sequence of empirical data 
taken from (a) a female subject with typical idiopathic 
congenital nystagmus with (b) simulated data generated by 
the model (T = 0.05, p = 13.5, τ = 0.0025); (c) and (d) 
associated three-dimensional prejections of the recon-
structed phase space trajectories. 
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IV. DISCUSSION 
 
 We have shown that most of the observed CN 
waveforms are minima depending on the parameters 
τ and p, which are physiological factors determined 
by the degree of foveal dysfunction (whether struc-
tural or functional). It is not possible for the normal 
adult oculomotor system to generate CN. Presuma-
bly, CN is beyond the adaptive capability of the 
mature brain, and so we do not see CN emerging in 
adulthood following acquired loss of foveal function 
(eg. macular degeneration). On the other hand, in-
fant visuomotor development is remarkably plastic, 
with rapid oculomotor and sensory development in 
the first year of life; but how does the immature 
oculomotor system generate CN? 
 In the first year of life, the oculomotor system 
develops the ability to track smoothly a small mov-
ing object (smooth pursuit), and as a corollary, to 
maintain steady eye gaze at an eccentric object. 
These are crucial for foveate vision. A key require-
ment is to generate tonic signals to overcome the 
strong visco-elastic forces that tend to bring the eyes 
back to primary position, which is achieved by the 
much-celebrated ‘neural integrator’ (NI) which 
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mathematically integrates velocity commands to 
generate the appropriate tonic. In turn this allows the 
eyes to be driven with the desired velocity inde-
pendent of eye position, a key oculomotor function. 
Now, for jerk CN the optimal trajectories do not 
(and must not) require steady gaze at any eccentric-
ity. Instead each eccentricity must be associated with 
a specific velocity profile. We argue that this can 
only be achieved by adapting the NI machinery to 
‘programme’ different velocity-position relation-
ships than those normally seen.  
 Thus, as the eye moves away from the equilib-
rium point there will be an ever increasing centripe-
tal force that will eventually reverse eye velocity. 
This has two effects. First exponential runaway will 
be gradually slowed and eventually reversed (assum-
ing a quick phase does not intervene) (Fig. 2e). Sec-
ondly, attempts to fixate eccentric from the equilib-
rium point will have large centripetal velocities 
causing large net movement before a quick phase 
can be generated. This in turn will lead to large am-
plitude quick phases with attendant large variability 
and the pseudo-cyloid waveform would be optimal.  
 

V. CONCLUSION 
 
 A simple model has been presented for congenital 
nystagmus. It implies that the chaotic oscillations are 
the result of a physiological developmental adaptive 
process. This is in contrast to the prevailing view 
that CN is a disease that can be ‘cured’. We argue 
that CN is as adaptive and permanent as normal eye 
movements are in a normally sighted individual.  
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