Along with Constructal Theory A. Bejan S. Lorente

A. F. Miguel A. H. Reis

> UNIL • FGSE Workshop series N° 1 Editors: J. Hernandez & M. Cosinschi

Faculté des géosciences et de l'environnement

FGSE - Workshop series N° 1 Faculty of geosciences and environment University of Lausanne Quartier Sorge - Amphipôle CH-1015 Lausanne Switzerland

A. Bejan, S. Lorente, A. F. Miguel, A. H. Reis - Along with Constructal Theory Editors: J. Hernandez & M. Cosinschi ISBN-10/ISBN-13: 2-8399-0203-6/978-2-8399-0203-8

Titre: Along with Constructal Theory, Workshop series N° 1, 2006, 204pp, 96 text-figures, 14 tabs. © University of Lausanne (Switzerland), Faculty of geosciences and environment

To order:

University of Lausanne Faculty of geosciences and environment Décanat FGSE Quartier Sorge - Amphipôle CH-1015 Lausanne Switzerland

Price of this volume: CHF 90.00 not including postage and handling

Imprimerie Chabloz S.A. Lausanne www.imprimeriechabloz.ch Cover composition: V. J. - design graphique, Lausanne

Contents

	Foreword	9	
1.	Constructal Theory in Geosciences and Environnement Adrian Bejan	13	
1.1	Constructal Theory versus Biomimetics	15	
1.2	The Broad View: B§iology, Physics and Engineering Unified		
1.3	Tree Architectures for Traffic and Transportation		
1.4	Trees for Fluid Flow	23	
1.5	River Channels	35	
1.6	Turbulent Flow Architecture	42	
1.7	Snowflakes	57	
1.8	Mud Cracks	59	
1.9	The Generation of Flow Configuration is a Natural Phenomenon	63	
	References	65	
2.	Dendritic Networks for the Distribution		
	and Collection of Fluids	69	
	Sylvie Lorente		
2.1	Flow architecture in Civil and Environmental Engineering	71	
2.2	The Fluid Mechanics Problem	72	
2.3	T- and Y-Shaped Constructs of Streams	74	
2.4	The Distribution of Hot Water	77	
2.5	Tree Network Developed by Adding New Users to an Existing Network	84	
2.6	Tree Networks on a Disc-Shaped Area	86	
2.7	Minimization of Flow Path Lengths		
2.8	Tree Networks with Loops		
2.9	Conclusion: Multi-Scale Flow Structures, Nonuniformly Distributed	108	
	References	111	

3.	Agglomeration and Deposition of Aerosol Particles:				
	Classical Approach and Constructal Model				
	Antonio F. Miguel				
3.1	Nature and Importance of Aerosol Particles	117			
3.2	Particle Coagulation and Deposition onto Surfaces				
3.3	Particle Tracking, Agglomeration and Deposition				
3.4	Constructal Agglomeration and Deposition				
3.5	Removal of Aerosol Particles by Deposition				
3.6	Design of Air-Cleaning Devices: Constructal Model				
	References	136			
4.	Shape and Complexity in Living Systems	137			
	Antonio F. Miguel				
4.1.	The Shape and Living Systems	140			
4.2	Measures of Complexity: Scale and Scaling	142			
	4.2.1 Scaling in Biology	143			
	4.2.2 Why Quarter-Power Scaling?	145			
4.3	Constructal Theory and Living Systems				
4.4	The Principles that Generate Shape in Living Systems:				
	Coral Colonies, Bacteria Colonies and Plant Roots	149			
4.5	Shape and Structure of Respiratory System				
4.6	Pulsating Internal Flows in Animals and Scaling Laws				
4.7	Constructal Explanation of Kleiber's Law				
4.8	Flying Animals and Allometric Laws				
	References	. 160			

5.	Constructal view of the global circulation of the atmosphere and flow architectures of river basins and lung tree A. Heitor Reis			
5.1	Atmospheric Global Circulation and Climate			
		Numerical Experiments to Constructal Theory Simple Constructal Model of the Earth	165	
	5.1.1	as a Heat Collector and Radiator	169	
	5.1.2	Latitudinal Heat Transport by Vertical Loops	175	
	5.1.3	Maximization of Heat Transfer Performance at Daily Scale	177	
5.2	From Constructal Theory to Actual River Basins			
	5.2.1	Scaling Laws of River Basins	185	
	5.2.2	River Networks as Constructal Fluid Trees	186	
	5.2.3	A Constructal Model of River Basin Development	191	
5.3	Constru	Constructal Theory of the Lung Tree		
•	5.3.1	Purpose of the Lungs and Trade-Off		
		between Competing Trends	193	
	5.3.2	Other Constructal Features of the Lung Tree	196	
	Referen	ces	198	
	Index		201	

The Constructal Theory, proposed by Adrian Bejan in 1996, is a deterministic principle for self-organization and self-optimization of natural systems. Its quantitative and holistic approach, which builds an ensemble from small, diverse building blocks, mirrors the logic of growing of natural systems.

The paradigm of constructals implies that geometric forms are produced by construction and optimization of the "smallest" optimized unit. Furthermore, a point-to-point optimization of the flow inside the network leads to the construction of a larger one. In this way the constructal theory seems more intuitive and "natural" than the fractal theory, because it appears as:

General – a specific organization at each scale, dependent on the laws at work at that scale;

Descriptive – one algorithm used in all steps

Predictive – one and only one principle of organization

Realistic – a finite size of the smallest element

This is the first volume of a new series devoted to the workshops of the Faculty of Geosciences and Environnement of the University of Lausanne (UNIL).