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Abstract

We consider a class of convex integral functionals with lagrangeans
depending only on the gradient and satisfying a generalized symmetry
assumption, which includes as a particular case the rotational symmetry.
Adapting the method by A. Cellina we obtain a kind of local estimates for
minimizers in the respective variational problems, which is applied then to
deduce some versions of the Strong Maximum Principle in the variational
setting.
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1 Introduction

It is well known that the minimizers of an integral functional on a set of Sobolev
functions satisfy often the same properties as the solutions of (ordinary or par-
tial) differential equations (such as regularity properties, comparison theorems
and so on), even if the classic necessary optimality conditions are not valid.
One of these properties is the so called Strong Maximum Principle formulated
in the classic form for harmonic functions (each nonconstant harmonic function
can not admit its maximal or minimal value in interior of the domain), and
generalized then for solutions of a large class of elliptic (as well as parabolic)
equations (see, e.g., [6, 9, 10] and the bibliography therein).

Taking into account that an elliptic equation can be seen as the Euler-
Lagrange equation in the variational problem for some energy functional (such
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as, e.g., the Laplace equation ∆u = 0 is the necessary and sufficient condition
of minimum of the integral

∫
Ω

‖∇u (x)‖2 dx), in 2000 Arrigo Cellina has formu-

lated (see [1]) the Strong Maximum Principle (the Strong Minimum Principle,
in fact) in the variational setting. Namely, a lower semicontinuous convex la-
grangean L : Rn → R+ ∪ {+∞} with L (0) = 0 is said to satisfy the Strong
Maximum Principle (SMP) if for any open bounded connected domain Ω ⊂ Rn
a nonnegative continuous admissible solution ū (·) of the problem

Min


∫
Ω

L (∇u (x)) dx : u (·) ∈ u0 (·) +W 1,1
0 (Ω)

 (1.1)

can be equal to zero at some point x∗ ∈ Ω only in the case ū (x) ≡ 0. Recall that
admissible solutions of (1.1) are those, which give finite values to the integral.
In the case of rotationally invariant lagrangeans, i.e., L (ξ) = f (‖ξ‖) with a
lower semicontinuous convex function f : R+ → R+ ∪ {+∞}, f (0) = 0, simple
geometric necessary and sufficient conditions guaranteeing the validity of SMP
were proposed in [1]. Roughly speaking, these conditions require smoothness
and strict convexity of the function f (·) at the origin.

Here we assume the lagrangean to be symmetric in a more general sense,
namely, L (ξ) = f (ρF (ξ)), where F ⊂ Rn is a compact convex set containing
the origin in its interior, and ρF (·) means the Minkowski functional (gauge
function) associated to F ,

ρF (ξ) := inf {λ > 0 : ξ ∈ λF} . (1.2)

Variational problems with such type integrands were recently considered in [3],
where the authors proved a comparison theorem in the case of the strictly convex
gauge F . They constructed a comparison function as a solution of the associated
Euler-Lagrange equation written in the classic divergence form, essentially using
for this the differentiability of the dual Minkowski functional ξ 7→ ρF 0 (ξ), or,
in other words, the strict convexity of F .

We do not suppose instead the set F to be strictly convex. Based on the
duality arguments of Convex Analysis we obtain first (Section 3) some kind of
estimates of minimizers in (1.1) near the points, which are distant from their
local extremums, emphasizing specially the one-dimensional case. Then, in Sec-
tion 4, we show that the Cellina’s conditions [1] are sufficient and necessary for
the validity of the Strong Maximum (Minimum) Principle with no any supple-
mentary assumptions on F .

On the other hand, SMP can be extended as follows. Let us fix a continuous
function û (·) (called further test function) giving minimum to the functional∫
Ω

L (∇u (x)) dx on û (·)+W 1,1
0 (Ω) for each appropriate domain Ω ⊂ Rn. We say

that the lagrangean L (·) satisfies the generalized Strong Minimum (Maximum)
Principle w.r.t. û (·) if for any Ω ⊂ Rn (belonging to a suitable class of regions)
each other minimizer u (·) with u (x) ≥ û (x) (respectively, with u (x) ≤ û (x)),
x ∈ Ω, admitting the same local minimal (respectively, maximal) values as
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û (·) at common points, necessarily coincides with û (·). (Observe that in the
traditional version of SMP mentioned above the test function is the identically
zero function, obviously a solution of the variational problem (1.1)). It turns out
that such generalized property holds for the lagrangean L (ξ) = f (ρF (ξ)), where
the gauge is supposed to be smooth and one of the Cellina’s hypotheses on f (·)
may fail. Namely, we prove in Section 5 a ”one-point” version of the generalized
SMP with û (·) associated to the dual gauge function ρF 0 (ξ), assuming the
domain Ω to be bounded and star-shaped w.r.t. the (unique) extremum point
of û (·) (in particular, Ω can be convex). Moreover, we give an example showing
that a kind of star-shapeness of Ω is essential for the validity of this property.
Finally, in Section 6 we extend SMP to the case of a test function û (·) having
a finite number of local minimum (maximum) points.

2 Preliminaries

Here we introduce the notations and definitions being used in the paper, and
formulate the main standing assumptions.

Let f : R+ → R+ ∪ {+∞} be a lower semicontinuous convex function not
equal to zero identically but with f (0) = 0, and F ⊂ Rn, n ∈ N, be a convex
closed bounded set with 0 ∈ intF (interior of F ). Given an open bounded
region Ω ⊂ Rn we are interested in the behaviour of continuous functions, which
minimize the integral ∫

Ω

f (ρF (∇u (x))) dx (2.1)

among all u (·) ∈ W 1,1 (Ω) with the same boundary data. The function f (·) is
clearly nondecreasing that implies convexity of the lagrangean f ◦ ρF in (2.1).
In what follows we assume also that domf := {t : f (t) < +∞} 6= {0}. This
does not diminish generality since otherwise each admissible minimizer of the
functional (2.1) is constant, and all the results below hold trivially.

Together with the Minkowski functional ρF (ξ) defined by (1.2) we introduce
the support function σF : Rn → R+, σF (v) := sup {〈v, ξ〉 : ξ ∈ F}, and recall
that

ρF (ξ) = σF 0 (ξ) , ξ ∈ Rn, (2.2)

where F 0 := {v ∈ Rn : σF (v) ≤ 1} is the polar set. Here 〈·, ·〉 means the inner
product in Rn (the norm is denoted by ‖·‖). By the standing hypotheses on F

we have obviously that
(
F 0
)0

= F , and it follows from (2.2) that

1

‖F‖
‖ξ‖ ≤ ρF (ξ) ≤

∥∥F 0
∥∥ ‖ξ‖ , ξ ∈ Rn, (2.3)

where ‖F‖ := sup {‖ξ‖ : ξ ∈ F}.
Furthermore, for a convex lower semicontinuous function L : Rn → R+ ∪

{+∞} (in particular, for L = f ◦ ρF ) we denote by L∗ the Legendre-Fenchel
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conjugate and by ∂L (ξ) the subdifferential of L at ξ in the sense of Convex
Analysis. These operations can be applied to the function f (·) itself as far
as it is somehow extended to the whole real line, e.g., by setting f (t) := +∞
for t < 0. It is well known that the relations v ∈ ∂L (ξ) and ξ ∈ ∂L∗ (v) are
equivalent, and for each ξ ∈ Rn the equality

∂ρF (ξ) = NF

(
ξ

ρF (ξ)

)
∩ ∂F 0 (2.4)

holds (see, e.g., [5, Corollary 2.3]). Here ∂F 0 stands for the boundary of the set
F 0, and NF (ξ) is the normal cone to the set F at ξ ∈ ∂F , i.e., the subdifferential
of the indicator function IF ( IF (x) is equal to 0 on F and to +∞ elsewhere).

For the basic facts of Convex Analysis we refer to [11] or to [8]. Let us recall
only a pair of dual properties, which will be used in the sequel (see Sections 5
and 6). We say that the set F is smooth (has the smooth boundary) if for each
ξ ∈ ∂F there exists a unique v ∈ NF (ξ) with ‖v‖ = 1. By (2.4) this property is
equivalent to the differentiability of ρF (·) at each ξ 6= 0. On the other hand, F
is said to be rotund (strictly convex ) if for each x, y ∈ ∂F , x 6= y, and 0 < λ < 1
we have (1− λ)x + λy ∈ intF . Given r > 0 and 0 < α < β < 1 let us define
the following modulus of rotundity :

MF (r;α, β) := inf {1− ρF (ξ + λ (η − ξ)) :

ξ, η ∈ ∂F , ρF (ξ − η) ≥ r; α ≤ λ ≤ β} . (2.5)

By the compactness argument in a finite-dimensional space the set F is rotund
if and only if MF (r;α, β) > 0 for all r > 0 and 0 < α < β < 1. The rotundity
can be also interpreted in terms of nonlinearity of the gauge function ρF (·).
Namely, F is rotund iff the equality ρF (x+ y) = ρF (x) + ρF (y) holds only in
the case when x = λy with λ ≥ 0. It is well-known that the polar set F 0 is
rotund if and only if F is smooth.

Since f 6= 0 and domf 6= {0}, by the duality argument we also have f∗ 6= 0,
domf∗ 6= {0} and f∗ (0) = 0. Therefore, due to the elementary properties of
convex functions there exist k, a ∈ [0,+∞[ and 0 < b ≤ +∞ such that

∂f (0) = [0, k] ;

∂f∗ (0) = {t : f (t) = 0} = [0, a] ; (2.6)

domf∗ = [0, b] (or [0, b[ ).

Let us define the function ϕ : [0, b[→ R+ by

ϕ (t) := sup ∂f∗ (t) < +∞. (2.7)

It is nondecreasing by monotonicity of the subdifferential. For the sake of con-
venience we introduce the number γn,f that equals k whenever n = 1 and f is
not affine in a neighbourhood of zero (i.e., f (t) /t 6= const near 0), and γn,f = 0
in all other cases.
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For an open bounded connected domain Ω ⊂ Rn we introduce the functions

r± (x) = r±Ω (x) := sup
{
r > 0 : x± rF 0 ⊂ Ω

}
, x ∈ Ω. (2.8)

It is not difficult to see that

r+ (x) ≤ r+ (y) + ρF 0 (y − x)

and
r− (x) ≤ r− (y) + ρF 0 (x− y)

for all x, y ∈ Ω, which together with (2.3) imply, in particular, the Lipschitz
continuity of r± : Ω→ R+. Given x0 ∈ Ω the set

St (x0) = StΩ (x0) := {x : [x0, x] ⊂ Ω} (2.9)

is said to be the star in Ω associated to the point x0. Here

[x0, x] := {(1− λ)x0 + λx : 0 ≤ λ ≤ 1}

is the closed segment connecting x0 and x. It follows immediately from (2.9) that
StΩ (x0) is open. As usual the region Ω is said to be star-shaped w.r.t. x0 ∈ Ω if
Ω = St (x0). For instance, a convex domain Ω is star-shaped w.r.t. each point
x ∈ Ω. We say also that Ω is densely star-shaped w.r.t. x0 if Ω ⊂ St (x0), where
overbar means the closure in Rn.

3 Local estimates

Under the notations and the standing assumptions given in Section 2 we can
formulate now the basic result on a priori estimates of minimizers close to their
non extremum points. Roughly speaking, we affirm that if x̄ ∈ Ω is not a point
of local minimum (maximum) of a solution ū (·) to the variational problem (1.1)
with L = f ◦ ρF , then ū (·) is bounded from below (above) near x̄ by a linear
function associated to ρF 0 . This function thus controls the deviation of the
value ū (x) from the respective extremal level.

Theorem 1 Let Ω ⊂ Rn be an open bounded region. Then for each continuous
admissible minimizer ū (·) of the functional (2.1) on u0 (·) + W 1,1

0 (Ω) the fol-
lowing statements hold, where the number a > 0 and the nondecreasing function
ϕ (·) are taken from (2.6) and from (2.7), respectively.

(i) Assume that a point x̄ ∈ Ω and numbers β > 0 and µ ∈ R are such that

ū (x) ≥ µ ∀x ∈ x̄− βF 0 ⊂ Ω (3.1)

and
ū (x̄) > µ+ aβ. (3.2)
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Then there exists η > 0 such that

ū (x) ≥ µ+ ϕ (γn,f + η) (β − ρF 0 (x̄− x)) (3.3)

for all x ∈ x̄− βF 0.

(ii) Similarly, if in the place of (3.1) and (3.2) a point x̄ ∈ Ω and numbers
β > 0, µ ∈ R satisfy the inequalities

ū (x) ≤ µ ∀x ∈ x̄+ βF 0 ⊂ Ω (3.4)

and
ū (x̄) < µ− aβ, (3.5)

then there exists η > 0 such that

ū (x) ≤ µ− ϕ (γn,f + η) (β − ρF 0 (x− x̄)) (3.6)

for all x ∈ x̄+ βF 0.

Proof. (i) If k > 0 but γn,f = 0 (either n > 1 or f (·) is affine near 0) then
the statement is trivial because ϕ (η) = 0 for each 0 < η < k.

Let us suppose now k = 0. Then γn,f = 0 and ϕ (t) > 0 for all t > 0. Taking
into account the continuity of the function ū (·) and the upper semicontinuity of
ϕ (·) it follows from (3.2) that for some small δ > 0 and α ∈ ]0, β[ the inequality

ū (x) ≥ µ+ ϕ (t) (β − ρF 0 (x̄− x)) (3.7)

holds whenever ρF 0 (x̄− x) ≤ α and 0 < t ≤ δ. Let us consider the real-valued

function s 7→ ϕ
(
δ
(
α
s

)n−1
)

, which is (Riemann) integrable on the interval [α, β].

Denoting by

Rδ (r) := µ+

β∫
r

ϕ

(
δ
(α
s

)n−1
)
ds, (3.8)

we deduce from (3.7) that

ū (x) ≥ Rδ (ρF 0 (x̄− x)) (3.9)

for all x ∈ Ω with ρF 0 (x̄− x) = α. Observe that Rδ (β) = µ, and by (3.1)
the inequality (3.9) holds for x ∈ Ω with ρF 0 (x̄− x) = β. Our goal now is to
establish this inequality in the interior of the region

Aα,β := {x ∈ Rn : α ≤ ρF 0 (x̄− x) ≤ β}

using its validity on the boundary ∂Aα,β , i.e., to prove a kind of comparison
statement. Earlier estimates of this kind were considered, e.g., in [1, 3].

Denote by Sδ (x) := Rδ (ρF 0 (x̄− x)) and assume that the (open) set

U := {x ∈ Aα,β : ū (x) < Sδ (x)}
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is nonempty. Let us extend the Lipschitz continuous function Sδ : Aα,β → R+

to the whole Ω by setting Sδ (x) = Rδ (β) = µ for x ∈ Ω with ρF 0 (x̄− x) > β,
and Sδ (x) = Rδ (α) whenever ρF 0 (x̄− x) < α. Consider the function w (x) :=
max {ū (x) , Sδ (x)}, which is equal to Sδ (x) on U and to ū (x) elsewhere, and
let us show that w (·) minimizes the functional (2.1) on ū (·) + W 1,1

0 (Ω). The
crucial step here is proving the equality∫

U

〈p (x) ,∇ū (x)−∇w (x)〉 dx = 0 (3.10)

for some measurable function p (x) ∈ ∂ (f ◦ ρF ) (∇w (x)), x ∈ Ω.
We construct such p (·) as follows. Since ∇w (x) = ∇ū (x) for a.e. x ∈ Ω\U ,

and ∇w (x) = ∇Sδ (x) for a.e. x ∈ U (see [7, p. 50]), we may choose p (x) as
an arbitrary measurable selection of the mapping x 7→ ∂ (f ◦ ρF ) (∇ū (x)) 6= ∅
on Ω \ U . On the set U , instead, we define p (x) through the differentiability

of Sδ (x). Observe first of all that R′δ (r) = −ϕ
(
δ
(
α
r

)n−1
)

for all α < r < β

except for at most a countable number of points. Furthermore, by the Lipschitz
continuity of x 7→ρF 0 (x̄− x) we have that

∇Sδ (x) = −R′δ (ρF 0 (x̄− x))∇ρF 0 (x̄− x) (3.11)

for almost each x ∈ U . Due to (2.4) the gradient ∇ρF 0 (x̄− x) belongs to ∂F ,
and, consequently,

ρF (∇Sδ (x)) = |R′δ (ρF 0 (x̄− x))| = ϕ

(
δ

(
α

ρF 0 (x̄− x)

)n−1
)

.

Hence, by the definition of ϕ (·) we obtain that

δ

(
α

ρF 0 (x̄− x)

)n−1

∈ ∂f (ρF (∇Sδ (x))) (3.12)

for a.e. x ∈ U . On the other hand (see (2.4) and (3.11)), ∇Sδ (x) is a normal
vector to F 0 at the point x̄−x

ρF0 (x̄−x) that means (see also (2.2))〈
∇Sδ (x) ,

x̄− x
ρF 0 (x̄− x)

〉
= σF 0 (∇Sδ (x)) = ρF (∇Sδ (x)) ,

or, in the dual form,

x̄− x
ρF 0 (x̄− x)

∈ NF

(
∇Sδ (x)

ρF (∇Sδ (x))

)
∩ ∂F 0 = ∂ρF (∇Sδ (x)) .

Recalling (3.12) let us define the (continuous) function

p (x) := δ

(
α

ρF 0 (x̄− x)

)n−1
x̄− x

ρF 0 (x̄− x)
, (3.13)
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which is a selection of x 7→ ∂ (f ◦ ρF ) (∇Sδ (x)) almost everywhere in U .
In order to prove (3.10) we apply the polar coordinates r = ‖x− x̄‖ and

ω = (x− x̄) / ‖x− x̄‖, observing that for each ω, ‖ω‖ = 1, on the boundary of
the (open) linear set lω := {r ∈ ]α, β[ : (r, ω) ∈ U} the equality ū (x) = Sδ (x)
holds. Therefore,∫

lω

〈ω,∇ū (x)−∇Sδ (x)〉 dr =

∫
lω

d

dr
(ū (x)− Sδ (x)) dr = 0,

and by using Fubini theorem, we obtain∫
U

〈p (x) ,∇ū (x)−∇Sδ (x)〉 dx =

= −δαn−1

∫
‖ω‖=1

dω

ρnF 0 (−ω)

∫
lω

1

rn
〈rω,∇ū (x)−∇Sδ (x)〉 rn−1 dr = 0,

and the equality (3.10) is proved.
In the next step let us consider the inequality

f (ρF (∇ū (x)))− f (ρF (∇w (x))) ≥ 〈p (x) ,∇ū (x)−∇w (x)〉 , (3.14)

which holds almost everywhere on Ω by the choice of p (·). Since ū (·) is a
minimizer of (2.1) on u0 (·) + W 1,1

0 (Ω), it follows from (3.10) and (3.14) that
w (·) is a minimizer as well, and∫

Ω

f (ρF (∇ū (x))) dx =

∫
Ω

f (ρF (∇w (x))) dx. (3.15)

Furthermore, (3.14) together with (3.15) and (3.10) imply that

f (ρF (∇ū (x)))− f (ρF (∇w (x))) = 〈p (x) ,∇ū (x)−∇w (x)〉 (3.16)

for a.e. x ∈ Ω.
Let E ⊂ U be a set of null Lebesgue measure such that for all x ∈ U \ E

the equality (3.16) takes place, and the gradient ∇σF (x̄− x) (coinciding, by
homogeneity, with ∇σF (p (x)), see (3.13)) exists. In accordance with (3.16)
both ∇ū (x) and ∇w (x) belong to ∂ (f ◦ ρF )

∗
(p (x)) = ∂ (f∗ ◦ σF ) (p (x)), and

for each x ∈ U \ E the latter subdifferential admits the form

∂f∗ (ρF 0 (p (x)))∇σF (x̄− x) ,

where (see (3.13))

ρF 0 (p (x)) = δ

(
α

ρF 0 (x̄− x)

)n−1

. (3.17)
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Notice that there is an at most a countable family of disjoint open intervals
J1, J2, ... ⊂ [α, β] such that the real function f (·) is affine on each Ji with a
slope τi > 0, i = 1, 2, ... . In other words, τi are discontinuity points of ϕ (·).

Denoting by Ei := x̄ − α
(
δ
τi

) 1
n−1

∂F 0 we see that for all x /∈
∞⋃
i=1

Ei (the set

of null measure) ∂f∗ (ρF 0 (p (x))) is a singleton. Hence, ∇w (x) = ∇ū (x) for
a.e. x ∈ Ω contradicting the assumption U 6= ∅. Thus, we have proved the
inequality (3.9) on {x ∈ Ω : α ≤ ρF 0 (x̄− x) ≤ β}. Combining (3.9) and (3.8)

by the mean value theorem we obtain (3.3) with η = δ
(
α
β

)n−1

.

Finally, assume that γn,f = k > 0. In this case n = 1, the function f (·)
admits the positive slope at zero but it is not affine near 0 (consequently, ϕ (k) =
0), and obviously a = 0. Then, for a given β > 0 with x̄ − βF 0 ⊂ Ω we have
ū (x̄) > µ+ϕ (k)β, and, by continuity properties of the functions ū (·) and ϕ (·),
there exist δ > 0 and 0 < α < β such that

ū (x) ≥ µ+ ϕ (k + t) (β − ρF 0 (x̄− x))

for all x ∈ Ω with ρF 0 (x̄− x) ≤ α and 0 < t ≤ δ. Due to the monotonicity of
the subdifferential ∂f∗ (·) and to the nonaffinity of f (·) in a neighbourhood of
zero we can choose δ > 0 such that ∂f∗ (k + δ) is a singleton (equivalently, k+δ
is a slope of f (·) different from slopes of its affine pieces near zero). Now we
can proceed as in the first part of the proof by using the comparison argument
with the linear function

Rδ (r) := µ+ ϕ (k + δ) (β − r) , α ≤ r ≤ β.

The selection p (x) ∈ ∂ (f ◦ ρF ) (∇ (Rδ ◦ ρF 0) (x̄− x)) appearing in the equality
(3.10) takes the form

p (x) = (k + δ)
x̄− x

ρF 0 (x̄− x)
.

Observe that the final part of the proof should be omitted here because the
subdifferential ∂f∗ (ρF 0 (p (x))) = ∂f∗ (k + δ) is already a singleton by the con-
struction. Thus we have

ū (x) ≥ µ+ ϕ (k + δ) (β − ρF 0 (x̄− x))

for all x ∈ Ω with ρF 0 (x̄− x) ≤ β, and the first part of theorem is proved.
(ii) This can be proved by the same reasoning as (i) with some evident

modifications. For instance, the inequality (3.9) here admits the form

ū (x) ≤ R̃δ (ρF 0 (x− x̄)) ,

where

R̃δ (r) := µ−
β∫
r

ϕ

(
δ
(α
s

)n−1
)
ds.
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In the case a = 0, i.e., when the function f (·) is strictly convex at the origin,
we immediately obtain a consequence of Theorem 1, which will be exploited in
Section 4. Here r± (·) are the functions defined by (2.8).

Corollary 1 Assume that a = 0, and one of the following hypotheses holds:

(i) k = 0;

(ii) n = 1 and f (·) is not affine near 0.

If ū (·) is a continuous admissible minimizer of the functional (2.1) on u0 (·) +
W 1,1

0 (Ω), which does not attain its minimal (maximal) value at a point x̄ ∈ Ω,
then the whole set x̄ − r− (x̄)F 0 (respectively, x̄ + r+ (x̄)F 0) does not contain
in its interior points of minimum (respectively, maximum) of ū (·).

Proof. It is enough to take β := r− (x̄) (respectively, r+ (x̄)) and observe that
under the hypothesis (i) or (ii) we have ϕ (γn,f + η) > 0 for all η > 0. The
statement follows now from the estimate (3.3) or (3.6), respectively.

On the other hand, if a > 0 then the estimates of Theorem 1 can be applied to
obtain generalizations of SMP in Sections 5 and 6. Those results are essentially
based on the following assertion.

Corollary 2 Assume that a > 0, and let ū (·) be a continuous admissible min-
imizer of (2.1) on u0 (·) +W 1,1

0 (Ω) such that for some x0 ∈ Ω and δ > 0

ū (x) ≥ ū (x0) + aρF 0 (x− x0) ∀x ∈ x0 + δF 0 ⊂ Ω. (3.18)

Then for all x ∈ x0 + δ
‖F‖‖F 0‖+1F

0 the equality

ū (x) = ū (x0) + aρF 0 (x− x0) (3.19)

holds.
Symmetrically, if

ū (x) ≤ ū (x0)− aρF 0 (x0 − x) ∀x ∈ x0 − δF 0 ⊂ Ω, (3.20)

then
ū (x) = ū (x0)− aρF 0 (x0 − x) (3.21)

for all x ∈ x0 − δ
‖F‖‖F 0‖+1F

0.

Proof. We prove the first part of Corollary by using the statement (i) of
Theorem 1, while the symmetric assertion can be proved similarly (it is enough
only to apply (ii) in the place of (i)).

Assume that for some x̄ ∈ Ω with ρF 0 (x̄− x0) < δ
‖F‖‖F 0‖+1

ū (x̄) > µ+ aρF 0 (x̄− x0) ,

10



where µ := ū (x0). Let us choose ε > 0 so small that

ρF 0 (x̄− x0)
(
‖F‖

∥∥F 0
∥∥+ 1

)
+ ε ‖F‖

∥∥F 0
∥∥ < δ (3.22)

and
ū (x̄) > µ+ a (ρF 0 (x̄− x0) + ε) . (3.23)

Set β := ρF 0 (x̄− x0) + ε and show that x̄ − βF 0 ⊂ x0 + δF 0. Indeed, given
y ∈ x̄− βF 0, using the inequalities (2.3) we have

ρF 0 (y − x̄) ≤ ‖F‖
∥∥F 0

∥∥ ρF 0 (x̄− y) ≤ ‖F‖
∥∥F 0

∥∥ (ρF 0 (x̄− x0) + ε) ,

and it follows from (3.22) that

ρF 0 (y − x0) ≤ ρF 0 (y − x̄) + ρF 0 (x̄− x0) < δ.

Hence, in particular, ū (x) ≥ µ for all x ∈ x̄ − βF 0. Combining this inequality
with (3.23) by Theorem 1(i) we find η > 0 such that

ū (x) ≥ µ+ ϕ (η) (β − ρF 0 (x̄− x)) ∀x ∈ x̄− βF 0. (3.24)

Applying (3.24) to the point x0 ∈ x̄− βF 0, we obtain that

ū (x0) ≥ µ+ ϕ (η) ε ≥ µ+ aε > µ,

which is a contradiction. The equality (3.19) can be extended then to the
boundary of x0 + δ

‖F‖‖F 0‖+1F
0 by continuity of the involved functions.

From the latter part of the proof of Theorem 1(i) it is easy to see that in
the case n = 1, due to the disconnectedness of the annulus Aα,β , the estimates
like (3.3) and (3.6) hold without symmetry. To be more precise let us consider
a convex (not necessarily even) function L : R→ R+ ∪ {+∞} with L (0) = 0
and 0 ∈ intdomL, lower semicontinuous on its domain and such that L (·) is not
equal identically to zero on both negative and positive half-lines. In what follows
the set of functions with these properties will be denoted by L. Given L (·) ∈ L
it is obvious that the function L decreases on ]−∞, 0[ and increases on ]0,+∞[,
that there exist 0 < b± ≤ +∞ with domL∗ = {t : −b− < t < b+}, where one of
the signs ”<” (or both of them) can be replaced to ”≤”, and that 0 ∈ ∂L (0),
0 ∈ ∂L∗ (0). Consequently, for some nonnegative (finite) k± and a± we have
∂L (0) = [−k−, k+] and ∂L∗ (0) = [−a−, a+]. Similarly to the symmetric case let
us introduce the upper semicontinuous nondecreasing function ϕ : ]−b−, b+[→
R by setting ϕ (t) := sup ∂L∗ (t). Observe, moreover, that by monotonicity
of the subdifferential one of the numbers k+ or a+ (analogously, k− or a−) is
always equal to zero. The statement below contains the one-sided estimates
for solutions of the one-dimensional variational problem (1.1). For the sake of
simplicity we consider here only the case of local minimum. One easily makes
the respective changements when the opposite conditions (of local maximum)
take place.
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Theorem 2 Let L ∈ L, and let ū (·) be a continuous admissible minimizer in
the problem (1.1). Assume that a point x̄ ∈ Ω and numbers µ ∈ R, β > 0 are
such that

ū (x) ≥ µ ∀x ∈ [x̄− β, x̄] ⊂ Ω (3.25)

and
ū (x̄) > µ+ a+β. (3.26)

If L is not affine in a right-hand neighbourhood of zero then there exists η > 0
such that the inequality

ū (x) ≥ µ+ ϕ
(
k+ + η

)
(β + x− x̄) (3.27)

holds for all x with x̄− β ≤ x ≤ x̄.
Analogously, if L is not affine in a left-hand neighbourhood of zero and the

relations (3.25), (3.26) are substituted to the following:

ū (x) ≥ µ ∀x ∈ [x̄, x̄+ β] ⊂ Ω;

ū (x̄) > µ+ a−β,

then for some η > 0 we have

ū (x) ≥ µ− ϕ
(
−k− − η

)
(β + x̄− x) (3.28)

whenever x̄ ≤ x ≤ x̄+ β.

Proof. We use here the same arguments as in the proof of Theorem 1. Let
us emphasize only some simplifications occured in the main steps that has a
methodical interest.

Let us consider the first case (L is not affine to the right of the origin and
(3.25), (3.26) are fulfiled). We write (3.26) as ū (x̄) > µ + ϕ (k+)β and by the
upper semicontinuity of ϕ (·) choose η > 0 so small that the latter inequality
holds true with ϕ (k+ + η) in the place of ϕ (k+). Assume also (see the last
part of the proof of Theorem 1(i)) that the subdifferential ∂L∗ (k+ + η) is a
singleton, namely, ∂L∗ (k+ + η) = {ϕ (k+ + η)}. Here we use nonaffinity of
L (·) to the right of zero. Defining on Ω the continuous function

Rδ (x) :=

 µ if x < x̄− β,
µ+ ϕ (k+ + η) (β + x− x̄) if x̄− β ≤ x ≤ x̄,
µ+ ϕ (k+ + η)β if x > x̄,

we wish to prove that ū (x) ≥ Rδ (x) for all x ∈ [x̄− β, x̄]. If this inequality is
violated in some (open) set U ⊂ ]x̄− β, x̄[ then by the Newton-Leibnitz formula∫

Ω

(ū′ (x)− w′ (x)) dx =

∫
U

(ū′ (x)−R′δ (x)) dx = 0, (3.29)

where w (x) := max {ū (x) , Rδ (x)}. Since k+ + η ∈ ∂L (R′δ (x)), we have

L (ū′ (x))− L (w′ (x)) ≥
(
k+ + η

)
(ū′ (x)− w′ (x)) (3.30)
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for a.e. x ∈ Ω and conclude by (3.29) and by the choice of ū (·) that w (·) is a
minimizer in the problem (1.1) as well. So that the inequality (3.30) becomes
equality almost everywhere on Ω. Consequently, both ū′ (x) and w′ (x) belong
to ∂L∗ (k+ + η), i.e., ū′ (x) = w′ (x) = ϕ (k+ + η) for a.e. x ∈ U contradicting
the assumption that ū (x) < Rδ (x) on U . Thus, the estimate (3.27) takes place.

The right-sided inequality (3.28), where −ϕ (−k− − η−) > 0, can be ob-
tained similarly by using the behaviour of L (·) to the left of zero.

We are ready now to establish various versions of SMP, starting from the
traditional one.

4 Strong Maximum Principle in the case a = 0

Our standing hypothesis here is

(H1) ∂L∗ (0) = {0} ,

which is, obviously, equivalent to a = 0 when L = f ◦ρF (i.e., the same hypoth-
esis for the function f (·)). In the case n > 1 also the dual hypothesis

(H2) ∂L (0) = {0} ,

which reduces to k = 0 if L = f ◦ ρF , will be used in the sequel. In the
asymmetric case (n = 1), clearly, (H1) ⇔ a+ = a− = 0 while (H2) ⇔ k+ =
k− = 0.

The following statement generalizes the sufficient condition of SMP given in
[1] to the case when the set F is not necessarily smooth or strictly convex. As
an example of such situation we may point out, e.g., the integral

∫
Ω

(
n∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
)2

dx.

Here f (t) = t2 and ρF (·) is the l1-norm in Rn.

Theorem 3 (Strong Maximum Principle) Assume that one of the follow-
ing conditions holds:

(i) n = 1 and L (·) ∈ L is not affine in both left- and right-hand neighbourhoods
of zero;

(ii) n > 1 and the lagrangean L (·) satisfies both hypotheses (H1) and (H2),
being represented as L = f ◦ ρF , where f : R+ → R+ ∪ {+∞} is a convex
lower semicontinuous function with f (0) = 0, and F ⊂ Rn is a convex
closed bounded set with 0 ∈ intF .
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Then for each open bounded connected region Ω ⊂ Rn there is no a continuous
admissible nonconstant minimizer of

u (·) 7→
∫
Ω

L (∇u (x)) dx (4.1)

on u0 (·) + W 1,1
0 (Ω) (with arbitrary boundary data), which admits its minimal

(or maximal) value in Ω.

Proof. Observe first that in the framework of the condition (i) the hypothesis
(H1) holds automatically, while (H2) can be violated. An open bounded con-
nected region in this case is an interval Ω = ]A,B[ with A < B. Assuming that
ū (·) is a minimizer of (4.1), and x̄ ∈ Ω is such that ū (x̄) > µ := min

Ω
ū (x), we

put β := x̄− A, and by Theorem 2 obtain that ū (x) > µ for all x ∈ ]A, x̄] (be-
cause in the estimate (3.27) we have ϕ (k+ + η) > 0 ∀η > 0). Analogously, by
using the estimate (3.28) of Theorem 2 we conclude that ū (x) > µ ∀x ∈ [x̄, B[.
Consequently, there are only two possibilities: either the minimum of ū (·) is
attained in one of the end-points of the segment [A,B] or ū ≡ µ on Ω. In the
case of maximum the reasoning is similar.

Let us suppose now the condition (ii). Take an arbitrary continuous ad-
missible function ū : Ω → R that minimizes the integral (4.1), and let µ
be its minimum on Ω. If ū (·) is not a constant then the (open) set W :=
{x ∈ Ω : ū (x) 6= µ} is nonempty. Since a = 0, it follows from Corollary 1 that
x̄− βF 0 ⊂W whenever x̄ ∈W , 0 < β < r− (x̄) (see(2.8)).

Fix now x∗ ∈ W (closure of W in Ω). By the continuity let us choose an
arbitrary 0 < ε < 1

2‖F‖ r
− (x∗) so small that r− (x∗) ≤ 2r− (x) for all x ∈ Ω with

‖x− x∗‖ ≤ ε. Let x̄ ∈W ∩
(
x∗ + εB

)
. Then x̄ ∈W and

ρF 0 (x̄− x∗) ≤ ε ‖F‖ < 1

2
r− (x∗) ≤ r− (x̄) .

Hence, by the above, x∗ also belongs to W . Therefore, W is closed in Ω,
implying that W = Ω because Ω is connected. Thus, the open region Ω is free
from the points of mimimum of ū (·). Analogously, ū (·) being non constant can
not attain in Ω its maximum, and SMP is proved. Notice that here we used the
arguments in some sense dual to the classical proof for harmonic functions (see,
e.g., [6, p. 15]).

The Strong Maximum Principle is not valid in lack of the hypothesis (H1) for
each n ≥ 1 because, as shown in [2], there is a lot of (Lipschitz) continuous non-
negative (nonpositive) minimizers of (4.1) with the trivial boundary condition
u0 (x) = 0, which touch the zero level at interior points of Ω as well. If instead
(H2) is violated then in the case n > 1 one can construct a counterexample to
SMP based on the same arguments as those in [1].

Indeed, fix arbitrary x̄ ∈ Rn, µ ∈ R and define

Ω := {x ∈ Rn : α < ρF 0 (x̄− x) < β}
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for some β > α > 0. Then for each δ > 0 the function Sδ (x) := Rδ (ρF 0 (x̄− x))
in (3.8) minimizes the integral (2.1) (here ∂f (0) = [0, k] with k > 0) on Sδ (·) +
W 1,1

0 (Ω) in virtue of the relations (3.10) and (3.14), where w (·) = Sδ (·), U = Ω,
ū (·) is another minimizer, and the mapping p (·) is given by (3.13). Clearly,
µ = min

x∈Ω
Sδ (x), and it is enough only to choose δ > 0, α and β such that

Rδ (α) > µ and Rδ (r) = µ for β − ε ≤ r ≤ β, where ε > 0 is sufficiently small.
Let, for instance, β = 2α and k < δ < 2n−1k. Then for some 0 < ε < β − α

δ

(
α

α+ ε

)n−1

> k, δ

(
α

2α− ε

)n−1

< k

and, consequently,

Rδ (α) ≥ µ+

α+ε∫
α

ϕ

(
δ
(α
s

)n−1
)
ds ≥ µ+ ϕ

(
δ

(
α

α+ ε

)n−1
)
ε > µ,

while for β − ε ≤ r ≤ β we have

µ ≤ Rδ (r) ≤ µ+

β∫
β−ε

ϕ

(
δ
(α
s

)n−1
)
ds ≤ µ+ ϕ

(
δ

(
α

2α− ε

)n−1
)
ε = µ.

We use here the fact that ϕ (t) ≡ 0 on [0, k] and ϕ (t) > 0 for t > k. Thus Sδ (·)
is a nonconstant continuous minimizer of (2.1) admitting its minimum at each
point x ∈ Ω with β − ε ≤ ρF 0 (x̄− x) ≤ β that contradicts SMP.

As about the one-dimensional case, the function L (·) may have a nontrivial
slope at zero, which, however, should be different from the slopes at all points
x 6= 0. Let us give a simple example of such function, which, moreover, is neither
strictly convex nor smooth near the origin.

Example 1 Fix an arbitrary strictly decreasing sequence {τm} ⊂ ]0, π/2[ con-
verging to zero, and define the continuous function f : [0, π/2[ → R+, which is
equal to tgt for t = τm, m = 1, 2, ..., and for τ1 < t < π/2, and affine on each
interval ]τm+1, τm[. We set also f (t) = +∞ for t ≥ π/2.Then ∂f (0) = [−1, 1]
but, nevertheless, the Strong Maximum Principle is valid for the functional∫
Ω

f (|u′ (x)|) dx due to Theorem 3 (see the condition (i)).

However, even in the case n = 1 the function f (·) can not be affine near
the origin. To see this it is enough to observe that if f (t) = kt for 0 ≤ t ≤ ε
then for each admissible function u (·) ∈ W 1,1 (0, 1) with the boundary values
u (0) = 0 and u (1) = ε/2 we have by Jensen’s inequality

1∫
0

f (|u′ (x)|) dx ≥ f

∣∣∣∣∣∣
1∫
0

u′ (x) dx

∣∣∣∣∣∣
 =

kε

2
=

1∫
0

f (|ū′ (x)|) dx,
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where ū (x) := ε
2x, x ∈ [0, 1]. On the other hand, the function ũ (x) equal to 0

on
[
0, 1

2

]
and to εx− ε

2 on
[

1
2 , 1
]

gives the same minimal value to the integral.

5 The case a > 0: a one-point generalized
Strong Maximum Principle

As we have seen the traditional Strong Maximum Principle is no longer valid if
L = f ◦ρF with ∂f∗ (0) 6= {0}. However, also in this case one can give a similar
property (as explained in the end of Section 1), which clarifies the structure
of minimizers of the functional (2.1) and has the same field of applications as
the classical SMP. Let us start with the so-called one-point SMP when a test
function admits a unique point of local minimum (maximum).

Setting û (x) = µ + aρF 0 (x− x0) with µ ∈ R and x0 ∈ Ω, we have already
shown (see Corollary 2) that for an arbitrary minimizer ū (·) of (2.1) the inequal-
ity ū (x) ≥ û (x) valid on a neighbourhood of x0 becomes, in fact, an equality
on another (possibly smaller) neighbourhood. First we show that this property
can be extended to the maximal homothetic set x0 + rF 0 contained in Ω.

Theorem 4 Assume that L = f ◦ ρF , where f : R+ → R+ ∪ {+∞} is a
convex lower semicontinuous function, f (0) = 0 iff t ∈ [0, a], a > 0, and
F ⊂ Rn is a convex closed bounded set with 0 ∈ intF . Let Ω ⊂ Rn be an open
bounded region, x0 ∈ Ω and ū (·) be a continuous admissible minimizer of (2.1)
on u0 (·) +W 1,1

0 (Ω). If the inequality

ū (x) ≥ ū (x0) + aρF 0 (x− x0) (5.1)

holds for each x ∈ x0 + r+ (x0)F 0 then on this set the equality

ū (x) = ū (x0) + aρF 0 (x− x0) (5.2)

takes place. Analogously, if

ū (x) ≤ ū (x0)− aρF 0 (x0 − x) (5.3)

for each x ∈ x0 − r− (x0)F 0 then on the latter set the equality

ū (x) = ū (x0)− aρF 0 (x0 − x) (5.4)

holds.

Proof. We prove only the first assertion, while the second one is symmetric
and can be proved similarly.

Let us define

R := sup {r > 0 : ū (x) = ū (x0) + aρF 0 (x− x0)

for all x ∈ x0 + rF 0 ⊂ Ω
}

. (5.5)
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By Corollary 2 we have R > 0. Our goal now is to prove that R = r+ (x0).
Assuming the contrary, i.e., R < r+ (x0) let us choose δ > 0 so small that

R+ δ
(
‖F‖

∥∥F 0
∥∥+ 1

)
< r+ (x0) (5.6)

and x̄ ∈ Ω with R < ρF 0 (x̄− x0) < R+ δ such that

ū (x̄) > ū (x0) + aρF 0 (x̄− x0) (5.7)

(see the condition (5.1)). By strictness of the inequalities (5.6) and (5.7) we find
also ε > 0 such that

R+ δ
(
‖F‖

∥∥F 0
∥∥+ 1

)
+ ε ‖F‖

∥∥F 0
∥∥ < r+ (x0) (5.8)

and
ū (x̄) > ū (x0) + a (ρF 0 (x̄− x0) + ε) . (5.9)

Setting µ := ū (x0) + aR let us define the function v̄ (·) to be equal to

max {ū (x) , µ}

on x0 + r+ (x0)F 0 and to ū (x) on the rest of Ω. It is continuous because
R < r+ (x0) and for each x ∈ Ω with ρF (x− x0) ≥ R we have

ū (x) ≥ ū (x0) + aρF 0 (x− x0) ≥ µ, (5.10)

i.e., v̄ (x) = ū (x). We claim that v̄ (·) is a minimizer of (2.1) on ū (·)+W 1,1
0 (Ω).

Indeed, it follows from (5.10) that v̄ (·) ∈ ū (·)+W 1,1
0 (Ω), and clearly ∇v̄ (x) = 0

for each x ∈ Ω with v̄ (x) 6= ū (x). Denoting by Ω′ := {x ∈ Ω : ū (x) = v̄ (x)} we
have ∫

Ω

f (ρF (∇v̄ (x))) dx =

∫
Ω′

f (ρF (∇ū (x))) dx ≤

∫
Ω

f (ρF (∇ū (x))) dx ≤
∫
Ω

f (ρF (∇v̄ (x))) dx. (5.11)

Let x′0 be a unique point from [x0, x̄] such that ρF 0 (x′0 − x0) = R. Namely,
x′0 = x0 + λ (x̄− x0) where 0 < λ := R

ρF0 (x̄−x0) < 1. Setting now β :=

ρF 0 (x̄− x′0) + ε, by (5.9) we obtain

v̄ (x̄) ≥ ū (x̄) > ū (x0) + aρF 0 (x′0 − x0) +

a (ρF 0 (x̄− x′0) + ε) = µ+ aβ. (5.12)

On the other hand, the inequality ρF 0 (x̄− x) ≤ β implies that

ρF 0 (x− x0) ≤ ρF 0 (x− x̄) + ρF 0 (x̄− x′0) + ρF 0 (x′0 − x0) ≤
≤ ‖F‖

∥∥F 0
∥∥ ρF 0 (x̄− x) + ρF 0 (x̄− x′0) +R ≤

≤
(
‖F‖

∥∥F 0
∥∥+ 1

)
ρF 0 (x̄− x′0) + ε ‖F‖

∥∥F 0
∥∥+R. (5.13)
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Since obviously ρF 0 (x̄− x′0) < δ, we can continue (5.13) and by (5.8) obtain
that ρF 0 (x− x0) < r+ (x0). Hence, by the definition of v̄ (·),

v̄ (x) ≥ µ ∀x ∈ x̄− βF 0. (5.14)

The inequalities (5.14) and (5.12) allow us to apply Theorem 1 with the
minimizer v̄ (·) in the place of ū (·) and to find η > 0 such that

v̄ (x) ≥ µ+ ϕ (η) (β − ρF 0 (x̄− x)) ∀x ∈ x̄− βF 0.

In particular, for x = x′0 ∈ x̄− βF 0 we have

v̄ (x′0) ≥ µ+ ϕ (η) ε > µ. (5.15)

However, by the definition of R (see (5.5))

ū (x′0) = ū (x0) + aρF 0 (x′0 − x0) = µ.

So that v̄ (x′0) = µ as well, contradicting thus the strict inequality (5.15).

Whenever the gauge function ρF (·) is differentiable, the latter extremality
result can be extended to arbitrary (densely) star-shaped domains in the place
of ρF 0-balls x0 ± rF 0.

Theorem 5 Assume that the lagrangean L is such as in Theorem 4 with a
convex compact and smooth set F ⊂ Rn, 0 ∈ intF ; that Ω ⊂ Rn is an open
bounded region and x0 ∈ Ω. Then for each continuous admissible minimizer
ū (·) of (2.1) on u0 (·) +W 1,1

0 (Ω) and each open Ω̂ ⊂ Ω, which is densely star-

shaped w.r.t. x0, the inequality (5.1) (respectively, (5.3)) holds for all x ∈ Ω̂
only if the respective equality (5.2) (or (5.4)) is valid on Ω̂.

Proof. As earlier we prove here only the implication (5.1)=⇒(5.2), while the
other one ((5.3)=⇒(5.4)) can be treated similarly. Moreover, it is enough to
prove the equality (5.2) on the star StΩ̂ (x0), because to each x ∈ Ω̂�StΩ̂ (x0) ⊂
StΩ̂ (x0) it can be extended by continuity of the involved functions.

So, let us assume validity of (5.1) on Ω̂ and fix x̄ ∈ StΩ̂ (x0). By the com-
pactness argument we choose ε > 0 such that

[x0, x̄]± εF 0 ⊂ Ω̂. (5.16)

Set

δ := 2εMF 0

(
2ε

∆
;

ε

ε+ ∆
,

∆

ε+ ∆

)
, (5.17)

where MF 0 is the rotundity modulus defined by (2.5) and ∆ is the ρF 0-diameter
of the domain Ω̂, i.e.,

∆ := sup
ξ,η∈Ω̂

ρF 0 (ξ − η) > 0. (5.18)

It follows from the remarks of Section 2 that F 0 is rotund, and therefore δ > 0.
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Let us consider an uniform partition of the segment [x0, x̄] by the points
xi := x0 + ih x̄−x0

ρF0 (x̄−x0) , i = 0, 1, ...,m, with

h :=
ρF 0 (x̄− x0)

m
≤ min

{
ε√
M
,
δ

M

}
, (5.19)

where M :=
(
‖F‖

∥∥F 0
∥∥+ 1

)2
. Since the inequality (5.1) holds for all x ∈

x0 + εF 0 (see (5.16)) and ρF 0 (x1 − x0) = h ≤ ε
‖F‖‖F 0‖+1 , it follows from

Corollary 2 that

ū (x1) = ū (x0) + aρF 0 (x1 − x0) = ū (x0) + ah.

We want to prove by induction in i that

ū (xi) = ū (x0) + iah, (5.20)

i = 1, 2, ...,m. Then for i = m we have

ū (x̄) = ū (xm) = ū (x0) + aρF 0 (x̄− x0) ,

and Theorem will be proved due to arbitrarity of x̄ ∈ StΩ̂ (x0).
So, we assume that (5.20) is true for some i with 1 ≤ i ≤ m− 1 and define

the function ūi : Ω→ R as

max {ū (x) ,min {ū (xi) + aρF 0 (x− xi) , µi − aρF 0 (xi − x)}} (5.21)

on Ω̂ and as ū (x) elsewhere. Here

µi := ū (x0) + a (i+M)h. (5.22)

Let us devide the remainder of the proof in three steps.
Step 1. We claim first that for each x /∈ [x0, x̄]± εF 0 the inequality

ρF 0 (x− x0) + ρF 0 (xi − x)− ρF 0 (xi − x0) ≥ δ (5.23)

holds. Indeed, given such a point x we have

ρ0 := ρF 0 (x− x0) ≥ ε and ρi := ρF 0 (xi − x) ≥ ε.

On the other hand, clearly ρ0 ≤ ∆ and ρi ≤ ∆ (see (5.18)). Hence, by the
monotonicity

λ :=
ρ0

ρ0 + ρi
∈
[

ε

∆ + ε
,

∆

∆ + ε

]
. (5.24)

Furthermore,

ρF 0 (x− x0) + ρF 0 (xi − x)− ρF 0 (xi − x0) =

= (ρ0 + ρi)

[
1− ρF 0

(
ρi

ρ0 + ρi

xi − x
ρi

+
ρ0

ρ0 + ρi

x− x0

ρ0

)]
≥

≥ 2ε [1− ρF 0 (ξ + λ (η − ξ))] , (5.25)
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where ξ := xi−x
ρi

and η := x−x0

ρ0
. Since

ξ − η =

(
1

ρ0
+

1

ρi

)(
ρ0

ρ0 + ρi
xi +

ρi
ρ0 + ρi

x0 − x
)

,

by the choice of x we obtain

ρF 0 (ξ − η) ≥
(

1

ρ0
+

1

ρi

)
ε ≥ 2ε

∆
. (5.26)

Joining together (5.24)-(5.26), (5.17) and the definition of the rotundity modulus
(2.5) we immediately arrive at (5.23).

Step 2. Let us show that ūi (·) is the continuous minimizer of the functional
(2.1) on ū (·) + W 1,1

0 (Ω). Given x ∈ Ω̂ with x /∈ [x0, x̄] ± εF 0 it folows from
(5.23) and (5.19) that

ρF 0 (x− x0) + ρF 0 (xi − x) ≥ δ + ih ≥ (i+M)h. (5.27)

Since ū (x) ≥ ū (x0)+aρF 0 (x− x0) by the condition, we deduce from (5.27) and
(5.22) that ū (x) ≥ µi−aρF 0 (xi − x). Consequently, ūi (x) = ū (x) (see (5.21)).
Due to (5.16) this means continuity of the function ūi (·). Besides that obviously
ūi (·) ∈ ū (·) + W 1,1

0 (Ω). We see from (5.21) that for each x ∈ Ω with ūi (x) 6=
ū (x) the gradient ∇ūi (x) belongs to aF , and therefore f (ρF (∇ūi (x))) = 0.
The same argument as in the proof of Theorem 4 (see (5.11)) convinces us
that ūi (·) gives the minimum to (2.1) among all the functions with the same
boundary data.

Step 3. Here we prove that for each x with

ρF 0 (x− xi) ≤
(
‖F‖

∥∥F 0
∥∥+ 1

)
h (5.28)

(such x belong to Ω̂ by (5.16) and (5.19)) the inequality

ūi (x) ≥ ūi (xi) + aρF 0 (x− xi) (5.29)

holds. Indeed, it follows from (5.28) and (2.3) that

ρF 0 (x− xi) + ρF 0 (xi − x) ≤Mh, (5.30)

and taking into account the definition of µi (see (5.22)) and the induction hy-
pothesis (5.20) we obtain from (5.30):

ū (xi) + aρF 0 (x− xi) ≤ µi − aρF 0 (xi − x) ,

i.e., the minimum in (5.21) is equal to ū (xi)+aρF 0 (x− xi). This implies (5.29)
because

ūi (xi) = max {ū (xi) ,min {ū (xi) , µi}} = ū (xi) . (5.31)
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Applying now Corollary 2 to the minimizer ūi (·) (see Step 2) and to the
point xi ∈ Ω we conclude that the inequality (5.29) becomes the equality for
each x ∈ xi + hF 0, in particular, for x = xi+1. Thus, by (5.31) and (5.20) we
have

ūi (xi+1) = ū (x0) + (i+ 1) ah.

On the other hand, by the definition of ūi (·) (see (5.21))

ū (xi+1) ≤ ūi (xi+1) = ū (x0) + aρF 0 (xi+1 − x0) .

Since the opposite inequality holds by the condition, we finally obtain

ū (xi+1) = ū (x0) + aρF 0 (xi+1 − x0) =

= ū (x0) + (i+ 1) ah,

and the induction is complete.

The following one-point version of SMP is the immediate consequence of the
latter result.

Corollary 3 (one-point generalized Strong Maximum Principle) Let
the lagrangean L = f ◦ ρF be such as in Theorem 5 (the set F is supposed to be
smooth), and Ω ⊂ Rn be an open bounded and densely star-shaped w.r.t. x0 ∈ Ω.
Then given a continuous admissible minimizer ū (·) of (2.1) on u0 (·)+W 1,1

0 (Ω)
the inequality (5.1) (respectively, (5.3)) holds for all x ∈ Ω if and only if the
respective equality (5.2) (or (5.4)) takes place.

Notice that the (dense) star-shapeness of the region Ω in the above statement
can not be dropped as the following simple counter-example shows.

Example 2 Let Σ ⊂ Rn be an arbitrary open bounded set, which is star-
shaped w.r.t. x0 ∈ Σ. Fix x̄ ∈ Σ, x̄ 6= x0, and a real number 0 < r <
min {‖x0 − x̄‖ ,d∂Σ (x̄)}, where d∂Σ (·) means the distance from a point to the
boundary of Σ. Let us consider the other domain Ω := Σ�

(
x̄+ rB

)
, where B is

the closed unit ball centred in zero. Assuming the function f : R+ → R+∪{+∞}
and the gauge set F ⊂ Rn to be as in Theorem 5 we construct a continuous ad-
missible minimizer ū (·) of (2.1) with the property

ū (x) ≥ ū (x0) + aρF 0 (x− x0) ∀x ∈ Ω, (5.32)

where the inequality is strict on some nonempty (open) set Ω′ ⊂ Ω.

In what follows by St (x0) we intend the star associated with the point x0

in the domain Ω. It is obvious that x ∈ Ω�St (x0) if and only if the segment
[x0, x] meets the ball x̄+ rB, or, in other words, the quadratic equation

‖x0 + λ (x− x0)− x̄‖2 =

λ2 ‖x− x0‖2 − 2λ 〈x− x0, x̄− x0〉+ ‖x̄− x0‖2 = r2 (5.33)
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has (one or two) roots both belonging to the interval ]0, 1[. We write the con-
dition of resolvability of (5.33) as

D (x) := 〈x− x0, x̄− x0〉2 − ‖x− x0‖2
(
‖x̄− x0‖2 − r2

)
≥ 0, (5.34)

and denote by

λ± (x) :=
〈x− x0, x̄− x0〉 ±

√
D (x)

‖x− x0‖2
(5.35)

its roots. Taking into account the continuity of all the involved functions we
can represent:

Ω′ := int (Ω�St (x0)) = {x ∈ Σ : D (x) > 0 and

0 < λ− (x) < λ+ (x) < 1} (5.36)

and

E := ∂ (Ω�St (x0)) ∩ ∂ (St (x0)) ={
x ∈ Σ : D (x) = 0 and 0 < λ± (x) =

〈x− x0, x̄− x0〉
‖x− x0‖2

< 1

}
. (5.37)

The open set Ω′ is clearly nonempty because it contains, e.g., all the points
x̄+ (r + δ) x̄−x0

‖x̄−x0‖ with δ > 0 small enough.

For each x ∈ E let us define the ”trace” operator

Φ (x) := x0 + λ± (x) (x− x0) , (5.38)

which is continuous and satisfies the following ”cone” property: if x ∈ E and
x′ = x0 + λ (x− x0) ∈ Ω with λ > λ± (x) then also x′ ∈ E and Φ (x′) =
Φ (x). Indeed, we find from (5.34) and (5.35) that D (x′) = λ2D (x) = 0 and
λ± (x′) = 1

λλ± (x) ∈ ]0, 1[. Hence x′ ∈ E and the equality Φ (x′) = Φ (x) follows
directly from (5.38). This property and continuity of Φ (·) imply that the image
C := Φ (E) is a compact subset of {x ∈ Ω : ‖x− x̄‖ = r}. Define the function
ū : Ω→ R by the formula

ū (x) :=

{
a inf
y∈C
{ρF 0 (x− y) + ρF 0 (y − x0)} if x ∈ Ω�St (x0) ;

aρF 0 (x− x0) if x ∈ St (x0) ,
(5.39)

and show, first, its continuity. To this end it is enough to verify the equality

inf
y∈C
{ρF 0 (x− y) + ρF 0 (y − x0)} = ρF 0 (x− x0) (5.40)

for each point x ∈ E. Notice that the inequality ”≥” in (5.40) is obvious.
In order to prove ”≤” let us take an arbitrary x ∈ E and put y := Φ (x) =
x0+λ± (x) (x− x0). Then ρF 0 (y − x0) = λ± (x) ρF 0 (x− x0) and ρF 0 (x− y) =
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(1− λ± (x)) ρF 0 (x− x0). So that the inequality ”≤” in (5.40) immediately fol-
lows. The function ū (·) is, moreover, lipschitzean on Ω, and its Clarke’s subdif-
ferential ∂cū (x) is always contained in aF (see [4, p.92]). Since by Rademaher’s
Theorem the gradient∇ū (x) almost everywhere exists and ∇ū (x) ∈ ∂cū (x), we
have f (ρF (∇ū (x))) = 0 for a.e. x ∈ Ω, and, consequently, ū (·) is a minimizer
in the problem (1.1).

The inequality (5.32) is obvious (here ū (x0) = 0). Fix now x ∈ Ω′ and
y ∈ C = Φ (E). Then y = x0 +λ± (z) (z − x0) with z ∈ E. Assuming that there
exists λ > 0 with x− y = λ (y − x0) and taking into account the representation
of y, we have x = x0 +µ (z − x0) with µ := (λ+ 1)λ± (z) > λ± (z). Due to the
”cone” property of the ”trace” operator (see above) x ∈ E as well, which is a
contradiction. Thus, by the rotundity of the set F 0 the strict inequality

ρF 0 (x− y) + ρF 0 (y − x0) > ρF 0 (x− x0)

holds. Finally, by the compactness of the set C and by arbitrarity of y ∈
C we conclude that the inequality (5.32) is strict whenever x ∈ Ω′, and the
construction is complete.

The method used in Example 2 can be essentially sharpened in order to
cover the case of an arbitrary domain Ω, in which an open subset is not linearily
attainable from x0 ∈ Ω. So, let us formulate the following conjecture.

Conjecture The condition Ω ⊂ St (x0) is necessary for validity of the
one-point Strong Maximum Principle w.r.t. x0 ∈ Ω as given by Corollary 3.

6 A multi-point version of the Strong Maximum
Principle

It follows from Theorem 5 that the one-point version of SMP given in the pre-
vious section (see Corollary 3) can be easily extended to the case when the
test function û (·) has a finite number of local minimum (maximum) points.
Namely, let xi ∈ Rn, i = 1, ...,m, be different, m ∈ N, and arbitrary real
numbers θ1, θ2, ..., θm be such that the compatibility condition

θi − θj < aρF 0 (xi − xj) , i 6= j, (6.1)

is fulfiled. Considering the functions

û+ (x) := min
1≤i≤m

{θi + aρF 0 (x− xi)} (6.2)

and
û− (x) := max

1≤i≤m
{θi − aρF 0 (xi − x)} , (6.3)
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we deduce immediately from (6.1) that û+ (xi) = û− (xi) = θi, i = 1, ...,m, and
that {x1, x2, ..., xm} is the set of all local minimum (maximum) points of the
function (6.2) or (6.3), respectively.

Before proving of the main statement of this section let us formulate some
property of the minimizers in (6.2) (respectively, of the maximizers in (6.3)).
It is given in a more general setting and generalizes a well-known property of
metric projections.

Lemma 1 Let Γ ⊂ Rn be a nonempty closed set and θ (·) be a real-valued
function defined on Γ. Given x ∈ Rn�Γ assume that the minimum of the
function y 7→ θ (y) + aρF 0 (x− y) (respectively, the maximum of y 7→ θ (y) −
aρF 0 (y − x)) on Γ is attained at some point ȳ ∈ Γ. Then ȳ continues to be
a minimizer of y 7→ θ (y) + aρF 0 (xλ − y) (respectively, a maximizer of y 7→
θ (y)− aρF 0 (y − xλ)) for all λ ∈ [0, 1], where xλ := (1− λ)x+ λȳ.

Proof. Given λ ∈ [0, 1] and y ∈ Γ we obviously have x−y = xλ−y+λ (x− ȳ),
and by the semilinearity

ρF 0 (x− y) ≤ ρF 0 (xλ − y) + λρF 0 (x− ȳ) . (6.4)

Since θ (ȳ) + aρF 0 (x− ȳ) ≤ θ (y) + aρF 0 (x− y), it follows from (6.4) that

θ (ȳ) + a (1− λ) ρF 0 (x− ȳ) ≤ θ (y) + aρF 0 (xλ − y) .

This proves the first assertion because (1− λ) (x− ȳ) = xλ − ȳ. The second
case can be easily reduced to the first one by changing the signs.

Theorem 6 (multi-point version of SMP) Assume that the lagrangean L
= f ◦ ρF satisfies our standing hypotheses with the smooth gauge set F , and
Ω ⊂ Rn is an open bounded convex region containing the points x1, ..., xm. Then
each continuous admissible minimizer ū (·) in the variational problem (1.1) such
that ū (xi) = θi, i = 1, ...,m, and

ū (x) ≥ û+ (x) ∀x ∈ Ω (6.5)

(respectively, ū (x) ≤ û− (x) ∀x ∈ Ω) coincides with û+ (x) (respectively, with
û− (x)). Here the functions û± (·) are defined by (6.2) and (6.3).

Proof. As usual we prove only the first part of the statement. Denoting by

Ci :=
{
x ∈ Ω : û+ (x) = θi + aρF 0 (x− xi)

}
,

and by Ωi := intCi, i = 1, ...,m, we obviously have xi ∈ Ωi and deduce from
Lemma 1 that the open set Ωi is star-shaped w.r.t. xi. Since on Ωi the inequality
(6.5) admits the form

ū (x) ≥ ū (xi) + aρF 0 (x− xi) ,
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applying Theorem 5 we conclude that

ū (x) = ū (xi) + aρF 0 (x− xi) = û+ (x) ∀x ∈ Ωi.

It is enough now to observe that the union of (disjoint) sets Ωi, i = 1, ...,m, is
dense in Ω. Therefore, the equality ū (x) = û+ (x) holds for all x ∈ Ω due to
the continuity of both functions.
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