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A B S T R A C T

The relationship between oil prices and the airline industry is economically important yet 
empirically complex, presenting significant challenges, with prior research yielding conflicting 
evidence on the nature, strength, and direction of their interaction. This study contributes to the 
literature moving beyond traditional linear assumptions, applying Shannon and Rényi transfer 
entropy to evaluate the nonlinear and state-dependent information flow between oil, oil vola-
tility, and six international airline indices. The empirical findings reveal a significant but het-
erogeneous information flow between West Texas Intermediate (WTI) and airline indices, 
suggesting a relationship of mutual influence, where the directional information flow from WTI to 
airline indices consistently surpasses the reverse flow. In the case of the Crude Oil Volatility Index 
(OVX), results show a dominant flow of information from each airline index to the OVX index, 
indicating that sector-specific shocks can shape market expectations of oil volatility. The Rényi 
entropy analysis further uncovers tail-driven dynamics: at low orders of Rényi entropy, the en-
tropy values remained predominantly negative between WTI and airline indices, while they 
remained predominantly positive, particularly from OVX to airline indices. However, at very high 
orders of entropy, there is a more traditional flow of information from WTI to airline indices. 
These findings enable policymakers to develop more effective, targeted, and economically sound 
energy policies for the transportation sector and the wider economy.

1. Introduction and literature review

The tourism sector is a vital economic driver, generating substantial revenue and employment globally. The tourism industry faces 
significant challenges stemming from volatile oil prices, a situation compounded by a confluence of geopolitical, economic, and 
environmental factors. Ongoing conflicts and political instability, particularly in oil-producing regions, introduce substantial uncer-
tainty into global energy markets. Simultaneously, conflicts and inflation impact travel costs and affordability. Furthermore, tran-
sitioning towards sustainable energy sources, while essential for long-term environmental viability, creates an interim period of
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continued reliance on fossil fuels, exacerbating the industry's susceptibility to oil price volatility. The airline industry, a critical 
component of the tourism sector, remains particularly vulnerable to these price shocks, necessitating strategic adjustments that can 
ultimately impact travel accessibility.

The tourism industry relies heavily on air transport for the movement of tourists. Any disruption in airline operations due to oil 
price volatility can directly affect tourism flows and revenues (Blau et al., 2023; Mohanty et al., 2014). Rising oil prices can lead to 
higher travel costs, which may reduce the demand for air travel and, consequently, tourism income and exports (Al-Mulali et al., 2020; 
Hesami et al., 2020). Moreover, increases in oil prices, resulting in higher travel costs, have a stronger impact on tourism arrivals than 
decreases in oil prices, both in the short run and the long run (Hesami et al., 2020), in connection with the global economic and 
financial crisis, particularly (Hadi, 2023). On the other hand, the relationship between oil prices and airline stocks is complex and 
multifaceted, influenced by numerous factors and exhibiting distinct dynamics in both short- and long-term periods (Arouri & Nguyen, 
2010; Asadi et al., 2023). Given the significant economic contribution of the tourism industry and the complex relationship between oil 
prices and airline stocks, analyzing the information flow between these variables is crucial. Such analyses facilitate accurate fore-
casting of financial risks and tourism impacts caused by fuel cost-induced airfare volatility, thereby enabling optimized strategic and 
operational decision-making.

Researchers in the energy finance literature have investigated this nexus from different perspectives, highlighting the significant 
influence of fuel prices on airline stock prices. The impact of oil prices on airline stocks varies based on the airline's business model, 
with low-cost carriers exhibiting different sensitivities compared to traditional airlines (Asadi et al., 2023; Gaudenzi & Bucciol, 2016). 
Research indicates that changes in crude oil prices directly affect airline operational costs, which, in turn, influence stock market 
performance. Kathiravan et al. (2019) note that fluctuations in crude oil prices lead to variations in airline costs, ultimately impacting 
cash flows and stock prices in the Indian aviation sector. Moreover, the effect of oil price changes appears to differ according to firm 

size. For example, Sadorsky (2008) found that medium-sized firms experience a stronger impact from oil price movements than large 
or small firms, and Yun and Yoon (2019) reported that smaller airline stocks are more sensitive to fluctuations in oil prices. This 
apparent contradiction—arising from factors such as cost sensitivity, operational adjustments, volatility spillover, firm size, data 
frequency, geopolitical events, and direction of oil price changes—adds further nuance to this relationship.

Additionally, the relationship between oil prices and airline stocks is a critical area of study, particularly due to the significant 
impact that fuel costs have on airline profitability. Fuel expenses accounted for nearly 30% of the operating airline costs in 2024, up 
from 25% compared to the pre-pandemic level in 2019 (Asadi et al., 2023; Cai, Zhang, & Xu, 2025; IATA, 2019, 2024). An increase in 
fuel prices not only increases the operating expenses of airline enterprises, causing a decrease in their net earnings, but also affects the 
stock prices and causes significant volatility in airline stocks. This volatility can lead to heightened uncertainty among investors as oil 
price dynamics complicate earnings predictability in the airline sector (Wang & Gao, 2020). Given that airline enterprises constitute a 
critical segment of the travel and leisure industry, such fluctuations in fuel costs directly impact airfares, potentially elevating the 
overall cost of air travel. Consequently, higher fuel prices may increase air travel costs, diminishing consumer propensity to travel, 
resulting in a reduction of earnings for travel and leisure firms across the supply chain, of which airline enterprises are integral 
components (Asadi et al., 2023; Becken, 2011; Becken & Lennox, 2012). Conversely, falling oil prices can boost airline profitability and 
stock prices. This relationship, in which oil returns have a negative influence on airline stock, is characterized as an economically based 
correlation and supported by several empirical studies (Aggarwal et al., 2012; Elyasiani et al., 2011; Mollick & Amin, 2021; Yun & 
Yoon, 2019). The most common and intuitive explanation is that fuel [a significant expense for airlines] accounting for about 30% of 
total costs on average (Cai, Zhang, & Xu, 2025), Cai, Zhang, & Zhang, 2025irectly impacts airline operating costs, particularly in the 
short-term (Asadi et al., 2023; Dar, 2022), which in turn affects stock prices (Horobet et al., 2022; Kathiravan et al., 2019; Yun & Yoon, 
2019).

In contrast, another strand of the research based on market inertia theory suggests a positive correlation between airline stock 
returns and oil price fluctuations (Kristjanpoller & Concha, 2016; Narayan & Sharma, 2011; Qin et al., 2021). According to this 
perspective, rising oil prices may be interpreted as an indicator of economic expansion (Kristjanpoller & Concha, 2016) or a catalyst for 
economic development (Qin et al., 2021), thereby stimulating demand for air transport. During periods of economic growth, demand 
for air transport, encompassing both cargo and passenger travel, typically increases, reflecting a positive association between air 
transport and economic prosperity (Balsalobre-Lorente et al., 2021; Zhang & Graham, 2020). Moreover, the asymmetric response of 
airline stocks—where increases in oil prices have a more pronounced effect on stock returns than decreases—further underscores the 
complexity of this relationship and highlights the sensitivity of airline stocks to rising fuel costs, leading to the expectation of a positive 
relationship under the market inertia-based channel (Mollick & Amin, 2021).

Oil price volatility plays a crucial role in shaping airline stock performance. Fluctuations in oil prices impact operating costs 
directly and lead to higher volatility in stock prices, particularly in smaller airlines, and vary between countries (Yun & Yoon, 2019). 
Strategic responses of airlines to oil price fluctuations, such as hedging strategies, are essential for mitigating risks associated with fuel 
price volatility. For instance, using the Long Short-Term Memory (LSTM) model, Choi and Choi (2023) suggested that airlines can 
employ financial instruments to hedge against oil price movements. The historical strain caused by significant oil price volatility 
highlights the importance of effective risk management strategies (Zou, 2024).

The relationship between oil prices and airline stocks becomes more complex as multiple factors influence it, including time ho-
rizons, volatility spillovers, and macroeconomic conditions. In addition, the decisions of the Organization of Petroleum Exporting 
Countries (OPEC) decisions, geopolitical events like the Russia–Ukraine war, fluctuations in the US dollar exchange rate, and weather 
events have added to the complexity. Specifically, the appreciation of the US dollar tends to increase fuel costs for airlines operating 
outside the US, thereby reducing profit margins. Conversely, depreciation can ease cost pressures and improve financial performance 
in non-dollar economies. Moreover, currency volatility affects investor sentiment and capital flows, influencing the dynamics of stock
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prices in the airline sector. Similarly, the depreciation of local currencies or increases in international oil prices negatively affect airline 
stock markets in the short-term, reinforcing that airlines are vulnerable to external economic pressures (Akusta, 2024). This vulner-
ability is further supported by findings from Horobet et al. (2022), who demonstrate that the share prices of airlines are significantly 
influenced by West Texas Intermediate (WTI) pricing behavior, with a more pronounced effect observed during price declines. 

Additionally, the cyclical nature of oil prices often correlates with broader economic conditions, which can exacerbate the impact 
on airline stocks. Yin (2023) discusses how global economic downturns, typically associated with rising oil prices, attenuate air travel 
demand, negatively affecting airline revenues and stock performance. Recently, this relationship has been echoed by Gelirli and 
Kısacık (2024), who found that supply-driven oil price shocks have a more detrimental effect on airline earnings predictability than 
demand-driven shocks, indicating that the nature of oil price changes matters significantly. Some studies indicate a lack of sustainable 
long-term co-movement between oil prices and airline stocks, suggesting that other factors may play a more significant role over 
extended periods (Dar, 2022). Indeed, several studies have reported a significant volatility spillover effect between crude oil prices and 
airline stock prices, indicating that changes in oil prices can lead to increased volatility in airline stocks (Cai, Zhang, & Zhang, 2025; 
Yun & Yoon, 2019). Furthermore, the volatility spillover effect is more pronounced than the return spillover effect. Likewise, the 
impact of oil price movements on stock prices varies with the airline's size. Medium-sized firms tend to be more affected by oil price 
changes compared to large firms (Sadorsky, 2008).

Beyond the identified fundamental drivers, market sentiment and speculation, driven by financial markets and uncertainty, further 
amplify volatility in oil prices and airline stocks. The interaction between fundamental economic factors and investor behavior creates 
additional layers of complexity, making it challenging to predict price movements with certainty. Understanding these dynamics is 
crucial for investors and policymakers to develop more informed strategies that mitigate risk, optimize portfolio allocation, and 
enhance resilience within the airline industry.

Several econometric methods have been employed to estimate the linkage between oil prices and airline stock returns. Traditional 
approaches include the Generalized Forecast Error Variance Decomposition (GFEVD) method (Cai, Zhang, & Zhang, 2025), Autore-
gressive Distributed Lag (ARDL) model (Okoyeuzu et al., 2023), Panel ARDL model with the Pooled Mean Group (PMG) estimator 
(Horobet et al., 2022), Autoregressive Moving Average (ARMA) models with Mixed Frequency Exogenous Variables (Asadi et al., 
2023), and fixed-effects regression models (Cai, Zhang, & Zhang, 2025). Volatility models such as the Generalized Autoregressive 
Score (GAS) model (Ivanovski & Hailemariam, 2021), Vector Autoregressive (VAR), and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models, more precisely the VAR-GARCH-BEKK model (Yun & Yoon, 2019), and the Hedging-Stock 
Pricing model (Felix et al., 2023), have also been widely utilized. These standard econometric models are valuable in applications 
where linear relationships prevail, but they often rely on pre-specified parametric forms.

Thus, frameworks such as the VAR and multivariate GARCH models, with different specifications, have been instrumental in 
quantifying volatility spillover effects (Yun & Yoon, 2019). Similarly, the GFEVD method, as used by Cai, Zhang, and Zhang (2025), 
provides a robust, order-invariant measure of connectedness between these markets. These models are powerful tools for capturing 
well-defined features of financial time series, such as volatility clustering and linear dependencies in returns. However, a critical 
limitation of these established approaches is that they are fundamentally parametric, that is, they presuppose a specific, and often 
restrictive, functional form for the relationships between variables and rely on strong assumptions about the underlying 
data-generating process, such as the normality of error terms. Financial time series, however, are widely known to exhibit “stylized 
facts” that violate these assumptions, including significant leptokurtosis (fat tails), skewness, and complex nonlinear dependencies (Xie 
et al., 2025).

Our own preliminary analysis in this study confirms this characteristic. As reported in the Preliminary Results subsection, all return 
series exhibit substantial excess kurtosis (e.g., kurtosis >10), providing direct empirical evidence that the normality assumption is 
untenable for our dataset. Relying on models with misspecified assumptions can lead to biased estimators and, consequently, unre-
liable inferences about the true nature of risk transmission.

Both the VAR-GARCH and GFEVD frameworks, despite their sophistication, have inherent constraints when faced with deep 
nonlinearity. The GFEVD approach, while elegantly solving the variable ordering problem of traditional variance decompositions, is 
derived from an underlying VAR model that primarily captures linear interdependencies in the conditional mean (Wiesen et al., 2018). 
If the true relationship between oil and airline stocks contains significant nonlinearities beyond the conditional variance, such as 
state-dependent or asymmetric spillovers, the VAR framework may be misspecified. Consequently, the GFEVD may provide a precise 
measure of a flawed linear representation of the system, potentially overlooking more complex transmission channels (Isakin & Ngo, 
2020). Likewise, while multivariate GARCH models do account for nonlinearity in the conditional second moment (volatility), they 
impose a rigid parametric structure on this dynamic and may not effectively capture other forms of information flow unrelated to 
volatility persistence (Yun & Yoon, 2019).

To overcome these limitations, this study employs the Transfer Entropy (TE) approach (Shannon and Rényi). The TE measure, 
introduced by Schreiber (Schreiber, 2000), quantifies the direction and strength of information flow between entities (Kwon & Oh, 
2012; Kwon & Yang, 2008; Osei & Adam, 2020). TE is a nonparametric, information-theoretic measure that identifies both the source 
and recipient of information, an essential feature for understanding market dynamics (Kwon & Oh, 2012; Kwon & Yang, 2008). Its 
primary advantage lies in being model-free; TE quantifies the directed flow of information by measuring the reduction in uncertainty 
about the future of one variable, given the past of another, without imposing any assumptions about the functional form of the 
interaction or the marginal distributions of the variables (Papana et al., 2016). As a nonlinear generalization of Granger causality (GC), 
TE can detect complex causal relationships that linear models are inherently unable to capture (Diks & Fang, 2017). This “mod-
el-agnostic” property makes it particularly suitable for financial markets, where relationships are often complex, dynamic, and 
state-dependent (Xie et al., 2025).
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Furthermore, this study leverages Rényi Transfer Entropy (RTE). RTE has been applied in several studies, underscoring its 
robustness in capturing the intricate dynamics of information flow in financial markets. Notably, RTE can emphasize or suppress 
specific parts of probability distributions, making it a powerful tool for analyzing market volatility and sector performance (He & 
Shang, 2017; Tabachov´ a, 2024). Thus, RTE offers superior explanatory power by introducing a weighting parameter, q, that allows the 
analysis to be tailored to different moments of the probability distribution. By varying q, we can investigate information flow under 
different market conditions. For 0 < q < 1, RTE gives higher weight to the tails of the distribution, making it an ideal tool for 
examining information transfer during periods of extreme market stress, such as price crashes or sharp volatility spikes. This ability to 
provide a granular, state-contingent assessment of risk transmission, particularly tail-event-driven information flow, offers a more 
profound and nuanced understanding of the oil–airline nexus than is achievable with conventional parametric models that provide a 
single, averaged measure of spillover.

There is evidence that the energy sector, including oil and gas, exhibits substantial information flow dynamics (Duppati et al., 2023; 
Nasiri et al., 2021), which could be analogous to the airline sector, given its dependency on fuel prices. In this context, this study is 
unique and makes four main contributions to the existing literature. First, it evaluates the direction and intensity of information flow 

between oil prices and six international airline indices to identify the source and receiver of information. Second, it employs the 
Shannon and Rényi TE approaches to quantify the information flow between oil returns, oil volatility, and the returns of six inter-
national airline indices. Third, this study provides a more detailed analysis by incorporating the WTI crude oil prices and the Crude Oil 
Volatility Index (OVX) to better capture and reveal the market dynamics. Lastly, it explicitly addresses limitations identified in prior 
empirical studies, such as the reliance on linear or parametric econometric models in analyzing the oil-airline nexus, which, although 
powerful, are inherently constrained in detecting nonlinear, asymmetric, and tail-driven transmission mechanisms. The combined use 
of Shannon and Rényi TE allows for the full distributional complexity of information flow to be uncovered, including dynamics that 
intensify during extreme market events. This state-dependent and nonlinear perspective constitutes a meaningful conceptual 
advancement, particularly given the airline sector's highly exposure to rare, high-volatility shocks originating in energy markets. 
Furthermore, by incorporating both WTI and OVX, it distinguishes between price-level information flows and volatility-expectation 
spillovers, which were previously overlooked. Thus, the contribution extends beyond methodological innovation, offering new eco-
nomic insights into how oil markets and airline stocks interact under varying market conditions, especially in the presence of tail risks. 

The remainder of this paper is structured as follows. Section 2 presents the data and methodology, followed by the empirical results 
in Section 3. The last section, Section 4, presents the concluding.

2. Data and methodology

2.1. Data

The study uses daily prices of Crude Oil WTI, CBOE Crude Oil Volatility Index, and six prominent global airline indices, namely the 
FR Global Airlines Total Return Index, the ARCA Global Airline Index, the MSCI World Passenger Airlines Industry Price Index, the 
Dow Jones Airlines Index, the FR Global Emerging Markets Airlines Index, and the FR G7 Airlines Price Return Index.

The selection of both crude oil–related indices (WTI and OVX) is a deliberate methodological choice driven by the need for 
analytical coherence. The OVX is specifically designed to measure the market's expectation of 30-day volatility as priced through 
options on the United States Oil Fund (USO), an exchange-traded fund structured to track WTI futures. This intrinsic link ensures that 
the volatility measure (OVX) corresponds directly to the price series being analyzed (WTI). Using an alternative benchmark, such as 
Brent, against the OVX would introduce a fundamental inconsistency, compromising the validity of the TE results. Furthermore, WTI is 
widely recognized as a leading global benchmark for price discovery in the crude oil market, and its long-term price movements show a 
strong correlation with those of Brent, making it a robust proxy for the purposes of this study.

The daily data ranges from January 2, 2015, to October 25, 2024, and was fetched from LSEG Refinitiv. The list of airline indices is 
listed in Table 1. The starting point of January 2015 was selected due to the availability of the airline indices.

2.2. Methodology

To estimate the information flow between WTI, OVX, and airline indices, we used both the Shannon (STE) and Rényi (RTE) transfer

Table 1 
WTI-STE results.

S.No. Variable Symbol

1 FR Global Airlines Total Return Index FR Global 
2 FR Global Emerging Markets Airlines Index FR_Emerging 
3 FR G7 Airlines Price Return Index FR G7
4 MSCI World Passenger Airlines Industry Price Index MSCI World 
5 Dow Jones Airlines Index Dow_Jones 
6 ARCA Global Airline Index ARCA_Global 
7 Crude Oil WTI WTI
8 CBOE Crude Oil Volatility Index OVX

Note: “S.No.” represents the time series number.
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entropy. Information-theory-based measures, such as TE, have gained popularity. These measures allow for quantifying information 
flows and have been applied in several scientific areas, such as finance, economics, ecology, neuroscience, and thermodynamics. The 
STE, introduced by (Schreiber, 2000), is a non-parametric method that allows the measurement of directed and asymmetric infor-
mation transfer between systems bi-directionally. By capturing nonlinear dependencies, the STE has been widely applied in several 
fields, including finance and economics, to evaluate market dynamics, risk transmission, and interdependencies between asset prices 
(Dimpfl & Peter, 2013; Marschinski & Kantz, 2002). The theory behind transfer entropy is given below.

Let Y and X be two discrete random variables that have marginal probability distributions p(x) and p(y) with joint probability 
distributions p(x,y). Considering that these variables follow stationary Markov processes of order k and l respectively, the probability of 
observing X at state i at time t + 1, given (conditional) the k previous states of X, is calculated as defined in Eq. (1):

p(x t+1 |x t , …, x t− 1+k ) = p(x t+1 |x t , …, x t− k ), x i ϵX (1) 

The STE introduced by (Schreiber, 2000) can be estimated as defined in Eq. (2):

STE Y→X (k, l) = 
∑

xy
p 
( 
x t+1 , x t (k) , y t (l) 

) 
log

p 
( 
x t+1 |x t (k) , y t (l) 

)

p(x t+1 |x t (k) )
(2)

where STE Y+X consequently measures the information flow from Y to X, x t+1 of X is affected by k previous states of X (lagged values) and 
by l previous states of Y (lagged value). According to Schreiber (2000), the most natural choices for k and l are k = l or l = 1, with the 
latter being preferable for computational reasons. Thus, to ensure a methodologically robust and parsimonious estimation, the Markov 
orders were set to k = l = 1 for all TE estimations. Furthermore, this choice is grounded in three key considerations: (i) the 
nonparametric estimation of TE is susceptible to the “curse of dimensionality,” where the data requirements for reliable probability 
estimation grow exponentially with the number of lags included (Runge et al., 2012). Using higher-order lags with finite time series 
can lead to biased and inefficient estimates due to the sparse population of high-dimensional conditional probability distributions. A 
first-order specification mitigates this risk by adhering to the principle of parsimony, which is critical for the robust application of 
information-theoretic measures (Aste & Di Matteo, 2017); (ii) This choice is theoretically sound within the context of daily financial 
data. According to the weak-form Efficient Market Hypothesis, all past price information is already reflected in the current price, 
making the most recent observation the most relevant predictor of the next period's return (Fama, 1970); (iii) the selected k and l values 
are consistent with established best practices in the literature applying TE to financial markets. For example, Turner et al. (1989) argue 
that return series may be modeled as Markov processes of order one. This setting also aligns with the default, validated parameters of 
the RTransferEntropy package by Behrendt et al. (2019), which was used for our computations, thereby enhancing the study's 
reproducibility and comparability.

As proposed by Dimpfl and Peter (2013), the bootstrap method (particularly well-suited to deal with non-stationarity and 
nonlinearity of time series) was used to evaluate the existence of information flow. For reliable estimation of model significance 
(standard errors and p-values), the bootstrapping process was performed with 300 replications. Several studies in literature used 300 
replications (Almeida et al., 2024; Assaf et al., 2022; Banerjee et al., 2022; Behrendt et al., 2019). This bootstrapping setting provides a 
more reliable inference of the information flow between two variables. To identify the pairwise influence on each other, the Shannon 
Net TE (NET STE) can be calculated using Eq. (3):

NET STE YX = STE Y→X − STE X→Y (3)

Thus, if STE Y→X (k, l) > STE X→Y (k, l) the dominant direction of the information flow will be from Y to X, meaning a positive value of 
NET STE YX . Conversely, if STE Y→X (k, l) < STE X→Y (k, l), it means that the dominant direction of the information flow is from X to Y, 
corresponding to a negative value of NET STE YX . Finally, if STE Y→X (k, l) = STE X→Y (k, l) it corresponds to equal dominance of infor-
mation flow in both directions.

Just like STE Y→X (k, l), the RTE q; Y→X (k, l) [introduced by Rényi in 1961 (Rényi, 1961)] measures the information flow from Y to X, 
but allows to consider the tail events. The RTE is a directional measure of information transfer used for causality detection in complex 
systems. Its ability to emphasize or suppress specific distribution regions, particularly tails, makes it valuable in financial market 
analysis, where extreme event risks are crucial (Tabachov´ a, 2024). Thus, the RTE was estimated as defined in Eq. (4). However, unlike 
in Shannon's case, RTE q; Y→X (k, l) could also be negative (on account of nonlinear pricing). Moreover, if RTE q; Y→X (k,l) = 0, it does not 
imply the independence of both processes (Jizba et al., 2012). The variant of TE based on Rényi entropy, proposed by Jizba et al. 
(2012), is defined according to Behrendt et al. (2019) as shown in Eq. (4):

RTE Y→X (k, l) =
1

1 − q 
log 

( ∑ 
x ϕ q 
( 
x t (k) 

) 
p q 
( 
x t+1 |x t (k) 

)

∑ 
x,y ϕ q 

( 
x (k)t , y

(l)
t
) 
p q 
( 
x t+1

⃒ 
⃒ x (k)t , y(l)t

) 

) 

(4)

Where, ϕ q represents the escort distribution given by ϕ q (x) = p 
q (x)∑ 
x 
pqx

and q is a positive weighting parameter that controls the measure's

sensibility to different regions of the probability distribution (Jizba et al., 2012). The parameter q acts as a focusing mechanism, 
allowing for the evaluation of tail events. For values of 0 < q < 1, it gives higher weight to extreme, low-probability events. Thus, an 
information flow detected at q=0.01 signifies the transfer of information specifically during the most extreme (rare) observations or 
shocks in the return time series (tail events). On the other hand, high values of q (e.g., q > 0.5) bias the measure towards more 
frequent events (the center or mode of the distribution) where the probability density is highest.
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The selection of q ∈ [0.01, 0.99] is common in the financial literature utilizing RTE, as it ensures the entire spectrum of event 
frequencies is captured while avoiding numerical instability at the mathematical limits of q = 0 and q = 1. As q→ 0, the transfer of 
information focuses on the rarest events (the deepest tails). We choose q = 0.01 as a stable proxy for the q→0 limit, effectively 
capturing the most extreme tail dependence. Likewise, as q→1 the measure approaches the standard STE, which equally weights all 
events (i.e., the average information flow). So, we choose q = 0.99 as a stable proxy for the q→1 limit, capturing near-average 
behavior.

All the TEs' estimates were made using the R package RTransferEntropy. 1

3. Empirical findings

3.1. Preliminary results

The summary statistics of daily returns for all airline indices, WTI, and OVX are reported in Table 2. Fig. 1 shows the trajectories of
raw (left y-axis) and daily returns (right y-axis). The daily returns were calculated according to R t = P t − P t− 1

P t− 1
, where P t and P t− 1 shows 

daily closing values of a given series on days t and t-1, respectively. Discrete daily returns were used instead of logarithmic returns 
primarily to accommodate the negative prices observed in the WTI series during the sample period, for which logarithms are unde-
fined. Moreover, given the daily frequency of the data, and since μ ≈ 0 and σ has small values, the difference between discrete and 
continuous returns is negligible and does not materially affect the results (Dorgleitner, 2003). The summary statistics reveal that all 
airline indices offer almost zero average returns. While this finding can be interpreted as an indication that, on a day-to-day basis, there 
are no persistent abnormal gains or losses—an outcome that is sometimes associated with short-term market efficiency—it should be 
noted that such a result is based solely on daily data. Market efficiency encompasses several key factors, including the speed and 
completeness with which information is incorporated into prices and risk adjustments across different time horizons. The highest 
average return is displayed for OVX (0.0021), whereas WTI reveals a slightly negative average return of − 0.0009. The WTI reveals the 
highest standard deviation (0.0723), reflecting substantial price fluctuations the oil market—a factor that, according to the literature, 
impacts airline operating costs and, consequently, their financial performance. Among the airline indices, the MSCI World exhibits the 
minimum standard deviation (0.0151), while Dow Jones Airlines revealed the highest standard deviation (0.0236), suggesting greater 
volatility and risk for investors. These differences highlight the varying sensitivities of the airline indices to external shocks, such as oil 
price fluctuations, which impact return and risk profiles in several ways. All the time series in exhibit fat-tail distributions with positive 
kurtosis ( > 10.66), meaning that extreme positive and negative returns are more likely than predicted by the normal distribution. 
These fat tails emphasize the potential for rare but significant market events, which have important implications for investors, risk 
managers, and portfolio strategists. The significant p-values of the Augmented Dickey–Fuller and Shapiro–Wilk tests allowed us to 
reject the null hypothesis of a unit root (i.e., non-stationarity) and normality for all the time series. This combination of stationarity 
alongside fat-tail behavior suggests that although the series does not contain persistent trends, the extreme values and non-normality 
may challenge traditional linear models. Consequently, more advanced methods are required when modeling and forecasting returns 
in the airline and energy sectors.

3.2. Entropy results

Considering the analysis of bidirectional information flow between WTI and the airline indices, the WTI→ARCA_Global Index 
exhibited the most substantial information transfer, with a Net TE of 0.0023, which was 0.0070 (statistically significant at a 5% 

significance level) from WTI to ARCA-Global index, and 0.0047 in the reverse direction. This was followed by WTI→FR_Emerging (Net 
TE = 0.0022) and WTI→MSCI_World (Net TE = 0.0020), indicating a pronounced influence of WTI price fluctuations on these indices. 
Conversely, the FR_G7 Index revealed a divergent pattern, i.e., the information flow from WTI to FR_G7 (0.0070) was significantly 
lower than the flow from FR_G7 to WTI (0.0087), resulting in a Net TE of − 0.0017. This suggests a potentially distinct relationship or 
reduced sensitivity of the FR_G7 Index to WTI price variations. The results are presented in Table 3.

The information flows between WTI and FR Global and between WTI and Dow Jones are statistically significant, at least at a 5% 

significance level, in both directions, suggesting a significant relationship of mutual influence, where fluctuations in the price of oil 
have an impact on the airline stocks and vice versa. Although the information flow in both directions is statistically significant, the 
information flow from WTI→FR Global Index (0.0082) is higher than in the reverse case (0.0075), resulting in a Net TE of 0.0007. 
Similarly, for the WTI and Dow Jones indices, the information flow from WTI→Dow Jones is 0.0081, compared to 0.0069 in the 
opposite direction, corresponding to a Net TE of 0.0012. This result indicates a directional relationship and, in a certain way, the 
predictive power of the WTI on these airline indices, with WTI returns impacting their behavior. Thus, changes in the WTI returns (and 
prices consequently) have a greater impact on these airline returns, which may indicate fluctuations in the price of oil directly affect 
the operating costs of airlines, impacting their profit margins and, consequently, the financial performance of the indices associated 
with the sector, corroborating, with (Cai, Zhang, & Zhang, 2025; Yun & Yoon, 2019). For the pairs WTI–FR Emerging and WTI–FR_G7, 
the information flow in both directions is statistically significant, at least at a 10% significance level. However, the information flow 

from WTI→FR_G7 Index is lower than in the reverse direction (FR_G7→WTI), suggesting a certain predictive power of FR G7 over WTI.

1 The details are available at https://cran.r-project.org/web/packages/RTransferEntropy/RTransferEntropy.pdf.
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In this case, FR G7 returns can impact WTI behavior, meaning the changes in FR G7 returns (and prices consequently) have a greater 
impact on WTI.

The WTI and ARCA Global pair is the only situation where the information flow is only statistically significant (in this case, at a 5% 

significance level) in one direction, precisely from WTI→ARCA Global. This indicates a strong directional relationship and, in a certain 
way, the predictive power of the WTI on ARCA Global. 2 Although the ARCA_Global index is considered a “global” benchmark, it is 
heavily weighted toward U.S. and North American airlines, whose operating costs are more directly exposed to the WTI benchmark

Table 2
Summary statistics of WTI, OVX and Airline Index Returns.

FR_Global FR_Emerging FR_G7 MSCI_World Dow_Jones ARCA_Global WTI OVX

Mean 0.0001 0.0002 0.0000 0.0000 0.0002 0.0001 − 0.0009 0.0021
Median 0.0004 0.0002 0.0003 0.0002 0.0000 − 0.0002 0.0015 − 0.0047 
Maximum 0.1272 0.4538 0.2202 0.1403 0.2068 0.1594 0.3766 1.3577
Minimum − 0.1473 − 0.1211 − 0.1902 − 0.1472 − 0.2031 − 0.1782 − 3.0597 − 0.4633 
Std.Deviation 0.0158 0.0178 0.0196 0.0151 0.0236 0.0197 0.0723 0.0700 
Skewness − 0.3487 9.3232 0.0623 − 0.4822 0.1469 − 0.0823 − 31.7241 5.1064 
Kurtosis 11.5773 230.9424 18.6374 13.0840 10.6671 11.5166 1292.4590 80.2584
ADF − 12.4*** − 13.598*** − 12.353*** − 12.107*** − 12.621*** − 12.188*** − 14.971*** − 14.461*** 
Shapiro Wilk 0.8984*** 0.6298*** 0.8620*** 0.8943*** 0.9056*** 0.8963*** 0.2220*** 0.7479***

Note: p-values: <0.001 '***', <0.01 '**', <0.05 '*', <0.1 '.'

Fig. 1. Daily fluctuations in trajectories of raw and daily returns of Oil (WTI), oil volatility (OVX) and airline indices.

2 The Arca Global Airline Index consists of 15 publicly traded global airlines, with a modified weighting system based on liquidity and size. 
Domestic and international airlines are split 70% and 30%, respectively. Within each group, the top three components are weighted at 15% for U.S. 
airlines and 4.5% for international carriers, with the remaining weight distributed equally among the other airlines in each group. Major airlines, 
such as JetBlue, Copa, Delta Air Lines, United Airlines, and Southwest Airlines, have been components of the index. For more details, please visit the 
official ARCA website https://www.nyse.com/publicdocs/nyse/indices/nyse_arca_global_airline_index.pdf or refer to the financial data provider's 
website https://www.investing.com/indices/arca-airline-components.
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(NYSE Euronext Inc., 2014; Zheng et al., 2021). Airlines in these markets rely heavily on jet fuel pricing mechanisms linked to WTI and 
typically exhibit lower, less stable fuel-hedging ratios compared to their European and Asian counterparts (Bergh¨ ofer & Lucey, 2014; 
Treanor et al., 2014). As a result, shocks in WTI prices translate more immediately into equity valuations for the companies represented 
in ARCA_Global. Moreover, U.S.-based airlines operate a larger share of long-haul flights, which are fuel-intensive, and maintain fleet 
structures that amplify short-run sensitivity to fuel price fluctuations (Brueckner & Abreu, 2017; Dobruszkes et al., 2024). These factors 
help explain the influence of WTI on the ARCA_Global while limiting the extent to which the index transmits information back to the oil 
market. For MSCI World, although the information flow from WTI to MSCI World is stronger than that from MSCI World to WTI, it fails 
to reach a level of statistical significance. However, like in the previously analyzed pairs, the information flow from WTI to MSCI World 
is higher than in the reverse case, indicating a strong directional relationship and, in a certain way, the predictive power of the WTI on 
MSCI World.

The STE analysis reveals heterogeneous information transfer dynamics between WTI crude oil prices and airline industry indices, 
suggesting a relationship of mutual and bidirectional influence (Storhas et al., 2020; Xiao & Wang, 2022), where fluctuations in oil 
prices affect global airline stocks and vice versa. Specifically, except for the FR_G7 Index, the directional information flow from WTI to 
the airline indices consistently surpasses the reverse flow. This finding aligns with previous studies: Kathiravan et al. (2019) showed 
that changes in crude oil prices trigger fluctuations in the stock returns of various airlines, including Air India, IndiGo, Jet Airways, and 
Spice Jet; Killins (2020) reported that equity returns of U.S. airlines are negatively impacted by positive movements in WTI prices, 
suggesting a strong influence of WTI on airline indices; and Kristjanpoller and Concha (2016), found a strong positive influence of WTI 
price fluctuations on the daily equity returns of airlines associated with the International Air Transport Association (IATA).

Table 3
Shannon transfer entropy (STE) between WTI and airline indices.

Information flow TE ETE Std.Err. p-value Net TE

WTI→FR_Global 0.0082*** 0.0043 0.0012 0.0000 0.0007
FR_Global→WTI 0.0075** 0.0043 0.0012 0.0067 ​
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100%
WTI→FR_Global 0.0013 0.0027 0.0035 0.0043 0.0071
FR_Global→WTI 0.0014 0.0030 0.0036 0.0045 0.0083

WTI→ARCA_Global 0.0070** 0.0032 0.0012 0.0067 0.0023
ARCA_Global→WTI 0.0047 0.0007 0.0012 0.2033 ​
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100%
WTI→ARCA_Global 0.0013 0.0028 0.0035 0.0045 0.0077
ARCA_Global→WTI 0.0014 0.0027 0.0037 0.0044 0.0086

WTI→MSCI_World 0.0106 0.0069 0.0012 0.0000 0.0020
MSCI_World→WTI 0.0086 0.0049 0.0013 0.0033 ​
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100%
WTI→MSCI_World 0.0013 0.0028 0.0035 0.0045 0.0074
MSCI_World→WTI 0.0012 0.0029 0.0036 0.0043 0.0098

WTI→Dow_Jones 0.0081*** 0.0041 0.0012 0.0000 0.0012
Dow_Jones →WTI 0.0069** 0.0029 0.0012 0.0067 ​
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100%
WTI→Dow_Jones 0.0014 0.0027 0.0035 0.0045 0.0078
Dow_Jones→WTI 0.0011 0.0028 0.0035 0.0044 0.0071

WTI→FR_Emerging 0.0086** 0.0051 0.0013 0.0033 0.0022
FR_Emerging→WTI 0.0064* 0.0027 0.0012 0.0200 ​
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100%
WTI→FR_Emerging 0.0009 0.0026 0.0034 0.0043 0.0104
FR_Emerging→WTI 0.0010 0.0029 0.0036 0.0044 0.0074

WTI→FR_G7 0.0070* 0.0030 0.0013 0.0100 − 0.0017
FR_G7→WTI 0.0087** 0.0048 0.0012 0.0033 ​
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100%
WTI→FR_G7 0.0012 0.0028 0.0035 0.0046 0.0082
FR_G7→WTI 0.0012 0.0029 0.0037 0.0045 0.0093

Notes: (i) p-values: <0.01 '***', <0.05 '**', <0.1 '*'; (ii) Net TE corresponds to the Net STE, defined as the difference between the STE (represented as TE 
on the table) from WTI → Airline index and Airline index → WTI; (iii) ETE is the effective transfer entropy, as defined by Marschinski and Kantz 
(2002). It is computed by comparing the original transfer entropy with that obtained from a shuffled version of the source time series. By randomizing 
the source series, spurious correlations are removed, allowing ETE to isolate the true nonlinear transfer of information between variables; (iv) The 
bootstrapped part of the table accounts for both the non-stationarity and nonlinearity in data; (v) The quartiles represent the distribution of data 
points.
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Some studies point to the existence of a direct relationship between the price of oil and the stock market, especially in oil-dependent 
economies (Alzate-Ortega et al., 2024; Bein, 2019), suggesting that WTI plays a significant role as a transmitter of information to the 
global market (Escribano et al., 2023; Kathiravan et al., 2019; Yun & Yoon, 2019). This flow reflects the sensitivity of airlines from 

emerging economies to oil price fluctuations, which impacts both the cost of transportation and the operational viability of airlines in 
these markets (Kathiravan et al., 2019; Yun & Yoon, 2019).

Analyzing the transfer of information between OVX and airline indices, for all the cases, the STE from OVX to the airline indices is 
not statistically significant, and the dominant direction of information flow from each airline index is to the OVX index. This result 
means that all the airline indices can impact OVX behavior, meaning the changes in all the airline indices' returns (and prices 
consequently) have a greater impact on OVX returns. This evidence suggests that OVX is sensitive to uncertainty shocks from other 
markets, aligning with (Liu et al., 2013), who found a significant influence of other volatility indices on OVX. Although the information 
flow from airline indices to OVX is statistically significant, at least at a 5% significance level, a varying degree of intensity can be 
noticed. The FR Global exhibits the highest information flow to OVX, followed by FR G7 and ARCA Global. Dow Jones, FR Emerging, 
and MSCI World are on the opposite side.

The STE results for OVX and airline indices are presented in Table 4.
These results suggest that the volatility observed in the global airline sector significantly impacts market volatility. These results 

underscore the airline sector's role as a leading indicator for the stock prices of the airline industry. Furthermore, volatility indices 
(OVX) demonstrate that the aviation sector can serve as a signal for financial market volatility, highlighting the interdependence 
between energy and economically sensitive sectors [as identified by Cai, Zhang, and Zhang (2025)]. Laborda and Olmo (2021)

Table 4
Shannon transfer entropy (STE) between OVX and airline indices.

Information flow TE ETE Std.Err. p-value Net TE

OVX→FR_Global 0.0027 0.0000 0.0012 0.7967 − 0.0096 
FR_Global→OVX 0.0123*** 0.0086 0.0011 0.0000 ​ 
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100% 

OVX →FR_Global 0.0009 0.0028 0.0035 0.0043 0.0081 
FR_Global→ OVX 0.0015 0.0028 0.0035 0.0043 0.0080

OVX→ARCA_Global 0.0045 0.0009 0.0013 0.1833 − 0.0055 
ARCA_Global→OVX 0.0100*** 0.0062 0.0011 0.0000 ​ 
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100% 

OVX→ARCA_Global 0.0012 0.0027 0.0035 0.0042 0.0089 
ARCA_Global→OVX 0.0010 0.0028 0.0034 0.0041 0.0070

OVX→MSCI_World 0.0051 0.0013 0.0013 0.1433 − 0.0037 
MSCI_World→OVX 0.0088*** 0.0051 0.0012 0.0033 ​ 
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100% 

OVX→MSCI_World 0.0013 0.0028 0.0035 0.0044 0.0084 
MSCI_World→OVX 0.0013 0.0027 0.0033 0.0041 0.0089

OVX→Dow_Jones 0.0046 0.0009 0.0012 0.2000 − 0.0031 
Dow_Jones →OVX 0.0077** 0.0040 0.0011 0.0067 ​ 
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100% 

OVX→Dow_Jones 0.0013 0.0027 0.0034 0.0042 0.0080 
Dow_Jones→OVX 0.0010 0.0028 0.0035 0.0042 0.0091

OVX→FR_Emerging 0.0043 0.0006 0.0013 0.2100 − 0.0039 
FR_Emerging→OVX 0.0082** 0.0043 0.0012 0.0033 ​ 
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100% 

OVX→FR_Emerging 0.0011 0.0025 0.0034 0.0041 0.0105 
FR_Emerging→OVX 0.0010 0.0027 0.0034 0.0043 0.0086

OVX→FR_G7 0.0038 0.0001 0.0012 0.3900 − 0.0066 
FR_G7→OVX 0.0104*** 0.0067 0.0011 0.0000 ​ 
Bootstrapped TE (300 replications): 
Quartiles 0% 25% 50% 75% 100% 

OVX→FR_G7 0.0013 0.0027 0.0035 0.0042 0.0077 
FR_G7→OVX 0.0009 0.0029 0.0035 0.0042 0.0074

Notes: (i) p-values: <0.01 '***', <0.05 '**', <0.1 '*'; (ii) Net TE corresponds to the Net STE, defined as the difference between the STE (represented as TE 
on the table) from OVX→ Airline index and Airline index → OVX; (iii) ETE is the effective transfer entropy, as defined by Marschinski and Kantz 
(2002). It is computed by comparing the original transfer entropy with that obtained from a shuffled version of the source time series. By randomizing 
the source series, spurious correlations are removed, allowing ETE to isolate the true nonlinear transfer of information between variables; (iv) The 
bootstrapped part of the table accounts for both the non-stationarity and nonlinearity in data; (v) The quartiles represent the distribution of data 
points.
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highlighted that sectors such as energy and technology are significant channels for risk transmission, particularly during crises like the 
COVID-19 pandemic. Thus, since the aviation sector is closely linked with energy, it can signal financial market volatility.

For robustness and to validate the information flow, we applied a more rigorous approach by comparing the empirical results across 
alternative lag-length specifications (i.e., k = l = 2 and k = l = 3), following Chen et al. (2025). The STE results between WTI and the 
airline indices, as well as between OVX and the airline indices at lags 2 and 3, are presented in Appendix 1 and Appendix 2, 
respectively.

Overall, the finding that the sign of information flow (i.e., the dominant causal direction) between oil prices and airline stock 
indices changes with different lags (1, 2, and 3 days) using TE suggests that the relationship is dynamic, multi-speed, and complex. The 
key takeaway is that the relationship between oil and airline stocks is not monolithic but operates through multiple, distinct causal 
channels that manifest at different time scales. These include physical cost shocks from oil to airlines, driven by feedback mechanisms, 
sentiment, or macro-signaling from airline performance back to the oil market, and potential realignment with fundamental cost or 
common macroeconomic drivers.

The RTE was also estimated to account for tail events. For small values of the Rényi entropy parameter (q < 0.5), the entropy values 
between WTI and airline indices are predominantly negative. These negative values could reflect the increased complexity and 
unpredictability of market behavior (Bouhlal & Sedra, 2022; Junior et al., 2024). The observed negative RTE indicates that knowing 
the past states of oil prices actually reduces the uncertainty (increases the predictability) of airline stock prices, but in a counterin-
tuitive manner. This inverse predictive power can be attributed not merely to “increased market complexity,” but to specific market 
mechanisms and behaviors during extreme oil price shocks, including hedging mechanisms, operational buffers, and extreme investor 
sentiment (panic/over-discounting). For instance, when oil prices experience an extreme positive shock (a tail event), major airlines 
often have pre-existing fuel hedges that temporarily insulate their stock prices from the immediate impact, or they may have sub-
stantial cash reserves (acting as an adverse impact buffer). Likewise, during periods of extreme stress driven by oil price movements, 
the extreme negative RTE may reflect the market over-discounting the expected negative impact. An extreme oil shock may signal a 
severe and imminent global recession. In such rare events, investors may sell off airline stocks, but simultaneously, the fear of a 
recession may trigger a demand destruction signal in the oil market, causing oil prices to rapidly fall (Felix et al., 2023; Jizba et al., 
2012). Furthermore, the volatility and information flow in financial markets, such as those involving the WTI and airline indices, can 
be significantly impacted by external events, including the COVID-19 pandemic. During such periods, the entropy measures can reflect 
heightened uncertainty and risk, leading to negative entropy values. For q < 0.5, the negative RTE values suggest that the infor-
mation transfer is dominated by the tails of the distribution. This finding implies that extreme events in WTI prices (e.g., sudden spikes 
or drops) are inversely related to the airline indices, possibly due to the adverse impact of such events on the airline industry (Jizba 
et al., 2012; Li et al., 2016). These negative values suggest an opposite informative relationship between oil prices and airline indices. 
Such behavior can be interpreted as a compensation relationship, where the uncertainty of the airline sector's performance decreases 
due to structural volatility in oil prices.

The RTE results between WTI and the airline indices, as well as between OVX and the airline indices, are presented in Tables 5 and 
6, respectively.

For q close to 1 (e.g., q = 0.99), positive RTE values suggest that, under conditions where frequent and rare events contribute 
similarly to information transfer, there is a stronger directional information flow from WTI to airline indices, potentially reflecting 
periods of lower market uncertainty. This flow suggests that when oil prices are more stable, there is a positive informative influence of 
WTI on the financial performance of airlines, indicating that the stability of oil prices can contribute to reducing operating costs and 
increasing the predictability of returns in the airline sector. Furthermore, when q is close to 1, the positive RTE values indicate a 
significant information transfer from WTI to airline indices in the central part of the distribution. This result suggests that the typical 
WTI price fluctuations influence the airline indices (Jizba et al., 2012; Tabachov´ a, 2024).

The analysis of RTE data between the OVX and airline indices across different values of the Rényi parameter q provides valuable 
insights into the informative relationship and interdependence between market volatility and airline industry performance. This 
relationship varies in intensity and direction depending on q, reflecting different economic and financial dynamics.

For lower values of the Rényi entropy parameter (q = 0.01 to q = 0.40), the RTE values between the OVX and the airline indices are 
predominantly positive, especially from the OVX to the airline indices, suggesting that changes in oil volatility are influencing airline 
stock prices. The positive RTE values for lower q indicate that the nonlinear effects of oil volatility on airline stocks are significant and 
predominantly positive. Furthermore, the identified pattern could suggest that in periods of heightened market uncertainty and 
volatility, the dominant direction of information flow is from OVX to airline indices, reflecting airline indices' sensitivity to fluctuations 
in financial market volatility. This result can be interpreted as a transmission effect of market volatility to the airline sector, where 
increased uncertainty in the global market directly impacts the financial stability of airlines, expanding the sector's vulnerability. Such 
a result aligns with the economic reality that airline industry performance is highly exposed to macroeconomic uncertainty, as 
increased volatility in the broader financial markets can influence airline stock valuations, risk premiums, and investor sentiment. This 
transmission effect highlights how greater uncertainty in the global market environment can amplify financial instability in the airline 
sector, increasing its exposure to external shocks. Considering the transmission of risk and volatility, the relationship between oil 
volatility and airline indices can be attributed to the direct impact of fuel costs on airline operations. Higher oil volatility can lead to 
increased uncertainty and risk in fuel prices, which directly affects airline profitability and stock performance (Dimpfl & Peter, 2018; 
Xiao & Wang, 2022). The positive RTE values indicate that this transmission of risk and volatility is relevant.

Furthermore, the ARCA Global, FR Global, and FR Emerging indices exhibit higher values of RTE from these indices to OVX than in 
the reverse direction for the lowest values of q (e.g., q = 0.01 and q = 0.10). This difference is even higher in the case of the FR 
Emerging index, suggesting that emerging market airlines may not be the most sensitive to market volatility. While emerging econ-
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0.10 0.0223 − 0.0150 − 0.0202 − 0.0154 − 0.0204 − 0.0180 − 0.0199 − 0.0174 − 0.0222 − 0.0100 0.0255 − 0.0171
0.20 − 0.0059 − 0.0290 − 0.0385 − 0.0297 − 0.0383 − 0.0341 − 0.0380 − 0.0343 − 0.0398 − 0.0185 − 0.0014 − 0.0330
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0.70 − 0.0285 − 0.0252 − 0.0347 − 0.0269 − 0.0294 − 0.0277 − 0.0334 − 0.0337 − 0.0297 − 0.0115 − 0.0293 − 0.0288
0.80 − 0.0154 − 0.0128 − 0.0193 − 0.0150 − 0.0140 − 0.0139 − 0.0179 − 0.0188 − 0.0153 − 0.0042 − 0.0165 − 0.0148
0.90 − 0.0026 − 0.0012 − 0.0048 − 0.0041 − 0.0002 − 0.0013 − 0.0036 − 0.0047 − 0.0021 0.0019 − 0.0038 − 0.0018
0.99 0.0072* 0.0073* 0.0060* 0.0039 0.0097*** 0.0078** 0.0071* 0.0059 0.0077* 0.0060 0.0060 0.0078*
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0.01 0.1080 0.0520 0.1067 0.1075 0.1088 0.1077 0.1067 0.1070 0.1644 0.2249 0.1073 0.0519
0.10 0.0819 0.0318 0.0707 0.0782 0.0886 0.0789 0.0704 0.0728 0.1194 0.1708 0.0754 0.0312
0.20 0.0559 0.0138 0.0371 0.0503 0.0673 0.0508 0.0364 0.0405 0.0785 0.1185 0.0449 0.0126
0.30 0.0341 0.0008 0.0114 0.0283 0.0480 0.0278 0.0103 0.0154 0.0472 0.0757 0.0205 − 0.0008
0.40 0.0173 − 0.0067 − 0.0058 0.0127 0.0319 0.0112 − 0.0071 − 0.0016 0.0249 0.0435 0.0032 − 0.0087
0.50 0.0062 − 0.0090 − 0.0145 0.0035 0.0198 0.0011 − 0.0158 − 0.0104 0.0108 0.0216 − 0.0068 − 0.0114
0.60 0.0002 − 0.0071 − 0.0162 0.0000 0.0119 − 0.0028 − 0.0172 − 0.0122 0.0034 0.0091 − 0.0103 − 0.0097
0.70 − 0.0017 − 0.0027 − 0.0129 0.0005 0.0076 − 0.0022 − 0.0136 − 0.0092 0.0008 0.0038 − 0.0091 − 0.0052
0.80 − 0.0011 0.0028 − 0.0071 0.0033 0.0057 0.0009 − 0.0075 − 0.0036 0.0010 0.0033 − 0.0052 0.0004
0.90 0.0007 0.0080 − 0.0009 0.0067 0.0051 0.0050 − 0.0010 0.0024 0.0025 0.0053 − 0.0005 0.0059
0.99 0.0025 0.0119*** 0.0040 0.0097*** 0.0051 0.0084* 0.0041 0.0072* 0.0041 0.0079* 0.0034 0.0100***

Notes: (i) p-values: <0.01
 

'***', <0.05
 

'**', <0.1
 

'*'; (ii) q denotes the weighting
 

parameter.
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Fig. 2. Estimates of Shannon's transfer entropy between WTI, OVX, and airline indices.
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omies are traditionally considered less resilient to financial shocks—where volatility directly impacts the cost of capital and access to 
financing—this result indicates that a distinct set of factors beyond general financial market fluctuations may influence airline stocks in 
these markets. Explanations may include the influence of government subsidies, regulatory policies, or domestic market conditions 
that shield the industry from outside volatility. However, a more in-depth analysis is necessary to fully understand the mechanisms 
underlying this diversified reaction.

As the Rényi entropy parameter increases to intermediate values (q = 0.5 to q = 0.7), entropy values tend to become negative, 
particularly in the flow of information from airline indices to OVX, except in the cases of ARCA Global and FR Emerging. This shift 
suggests a change in the informational relationship, where airline indices exert a more significant influence on market volatility rather 
than simply reacting to it. This behavior can be interpreted as a feedback effect, in which airline stocks—initially impacted by volatility 
shocks—help to reflect and even smooth the uncertainty of the general market in a second moment, subsequently transmitting in-
formation that contributes to shaping expectations about market risk. This dampening pattern is consistent with the idea that sectors 
that have already undergone adjustments in response to volatility shocks begin to stabilize and provide more predictable signals to the 
financial market, reducing aggregate uncertainty.

At the highest Rényi entropy parameter values (q = 0.99), the RTE values are once again positive and statistically significant from 

each airline index to the OVX, indicating a consistent and directional flow of information from airline indices and market volatility. 
These values suggest that the volatility and airline indices influence each other positively and predictably in the context of lower 
uncertainty and greater market stability. However, the dominant (and statistically significant) direction is that of the airline indices for 
the OVX, implying that the financial performance of airlines plays a key role in shaping market volatility expectations under stable 
conditions. Considering the patterns revealed by the RTE between OVX and the airline indices, there is evidence of a complex dynamic 
of information transmission and interdependence between market volatility and airline sector performance. At low Rényi entropy 
parameter values (q), market volatility has a strong influence on the airline sector, especially in emerging markets. On the other hand, 
while at intermediate values of the Rényi entropy parameter, the airline sector helps to buffer OVX volatility. Finally, at higher values 
of the Rényi entropy parameter, the positive synchrony between the indices reflects a context of stability and economic recovery, 
where both the financial market and the airline sector benefit from an environment of low uncertainty. These patterns provide valuable 
insights for portfolio diversification strategies and risk analysis, highlighting how the relationship between volatility and economically 
sensitive sectors can vary according to the level of uncertainty and the global economic context.

Fig. 3 presents the RTE for a spectrum of q values, providing a multifaceted, state-dependent view of the oil–airline information 
dynamic. This allows for a more in-depth analysis than the single average value provided by STE. As the parameter q→ 1, the RTE curve

Fig. 3. Rényi transfer entropy (RTE) for different q values.
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in Fig. 3 smoothly converges to the constant STE value presented in Fig. 2. This convergence confirms the theoretical consistency 
between the two measures, with the average Shannon case representing a specific point on the broader Rényi spectrum. The most 
significant finding of the analysis is revealed in the regime where 0 < q < 1. As q decreases (e.g., to 0.5), the RTE from oil to airlines 
decreases sharply, reaching a magnitude several times (in absolute value) than that of the STE. This result demonstrates unequivocally 
that the information flow between the sectors is not uniform across states but is overwhelmingly concentrated in the tails of the return 
distributions. In particular, the history of a large oil price shock proves to be far more informative for predicting a significant move in 
airline stocks than the history of normal oil price fluctuations. This finding directly validates the assertion by Jizba et al. (2012) that 
RTE is indispensable for financial analysis, as it isolates the information flow contained in the “spikes or sudden jumps” that constitute 
the primary source of market risk. Furthermore, the information flow in this tail-driven regime is highly asymmetric. By adopting the 
RTE framework, this study moves beyond a simple average effect toward a state-dependent understanding of causality. It reveals that 
the economic linkage between oil prices and airline stocks is fundamentally nonlinear, with the majority of impactful information 
transfer occurring precisely within the tail events that matter most to investors and risk managers. This tail-driven causality is a critical 
feature of the system, one that remains invisible to traditional linear models and is only fully captured by transitioning from the 
Shannon to the Rényi information-theoretic perspective.

4. Concluding remarks and policy suggestions

The relationship between crude oil prices and airline stock performance is dynamic and complex, driven by the crucial role of fuel 
costs in airline profitability. In 2024, fuel costs represented approximately 30% of total operating costs, up from 25% in 2019 (Cai, 
Zhang, & Xu, 2025; IATA, 2019, 2024). While conventional economic models suggest a positive correlation between oil prices and 
airline stock returns, the market inertia hypothesis posits an inverse relationship. Empirical evidence remains inconclusive, under-
scoring the need for a deeper understanding of information flow dynamics between these variables.

This study addresses this gap by examining the information transfer among WTI crude oil prices, the OVX index, and six inter-
national airline stock indices. Employing STE and RTE approaches, the findings reveal a heterogeneous information flow between oil 
price movements (represented by WTI) and airline stock indices, with the dominant direction and intensity of the information flow 

varying across different market conditions. The WTI exerts a stronger influence on airline stocks [aligning, for example, with (Dutta 
et al., 2024)], who concluded that oil market volatility significantly affects transport sector stock indexes], whereas airline indices 
primarily affect oil volatility expectations (represented by OVX). Furthermore, at lower Rényi entropy parameter values (q < 0.5), 
negative entropy values predominate between WTI and airline indices, while positive values are primarily evident from OVX to airline 
indices. However, at higher Rényi entropy parameter values (q = 0.99), there is a stronger directional information flow from WTI to 
airline indices.

Our findings provide new insights into the information flow between oil markets and airline stock performance, emphasizing the 
role of volatility and market dynamics in shaping this relationship. Oil price volatility dominates airline sector performance in high-
uncertainty environments, particularly in emerging markets. Conversely, airline stocks play a greater role in shaping volatility ex-
pectations under more stable conditions. These results indicate that the airline sector both reacts and transmits information to financial 
markets, contributing to a dynamic interdependence between the two. Given this interdependence, the results have several targeted 
policy and practical implications. First, the persistent and statistically significant information flow from WTI to the airline indices 
indicates that airlines and investors cannot rely solely on equity diversification to hedge oil exposure. For indices where the WTI-
→airline transmission is the dominant direction of information flow, effective risk mitigation requires the use of oil-linked derivatives 
(e.g., WTI futures or options) rather than sector diversification alone. Second, the dominant and consistent information flow from 

airline indices to OVX suggests that sector-specific shocks in the airline industry shape market expectations of future oil volatility. This 
has a clear regulatory implication: policymakers should require airlines to disclose volatility-sensitive exposures, such as hedging 
coverage ratios, hedging gaps, and sensitivity to spot-futures basis risk, to reduce informational opacity and help stabilize OVX ex-
pectations. Enhanced transparency could also improve the quality of volatility forecasting models used by regulators and market 
participants. Finally, the RTE results reveal that information flow intensifies during tail events, highlighting the need for stress-testing 
frameworks (both at the regulatory level and within airlines) that explicitly incorporate extreme oil price scenarios, rather than relying 
solely on models based on average-conditions. Such stress testing is especially relevant in regions or environments where geopolitical 
shocks and abrupt supply disruptions are frequent. These implications can guide investors, regulators, and airline executives seeking to 
strengthen resilience to oil-market volatility and tail-risk dynamics.

Understanding this relationship's shifting nature can enhance portfolio allocation strategies and risk hedging against oil price 
shocks for investors and portfolio managers, particularly in the tourism and airline industries. For airline and tourism executives, 
implementing effective fuel hedging and cost management strategies can mitigate the financial impact of oil price volatility. Finally, 
for policymakers, the regulatory frameworks should account for the feedback loop between oil markets and airline stocks, particularly 
in stabilizing industry-wide financial risks during periods of economic distress. Furthermore, the findings may help tourism and airline 
managers to design more stable pricing and budgeting, reducing the risk of sudden cost increases.

The entropy measures provide concrete, actionable insights that go beyond traditional correlation analysis in the context of 
portfolio management. The dominant information flow from WTI to the airline indices (as shown in the STE results) quantitatively 
reveals that airline stocks are poor diversifiers of oil price risk, as their performance is informationally subordinate to the oil market. 
This supports a strategy of direct hedging (e.g., using oil derivatives) rather than relying on simple equity-based diversification to 
mitigate this specific exposure. Conversely, the significant information flow from airline indices to the OVX suggests that the airline
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sector can act as a leading indicator of future oil market volatility. Portfolio managers can use this signal as an early warning signal to 
adjust volatility hedges proactively. Furthermore, the RTE results offer a valuable tool for tail-risk management. By focusing on 
extreme events (via the q-parameter), our findings provide a quantitative input for advanced risk models designed to build portfolios 
that are more resilient to systemic shocks, a concept increasingly explored in recent literature on entropy-based portfolio optimization. 

This study provides a foundation for future research on volatility transmission, risk management, and strategic decision-making in 
energy-dependent industries by uncovering the complex interplay between energy markets and airline stocks.

Although this research offers valuable information regarding the relationships between oil prices and airline stocks, its findings 
open several possibilities for future research. Firstly, the analytical framework could be enriched by introducing a broader set of 
macroeconomic and geopolitical variables (e.g., interest rates, inflation, and specific geopolitical risks), which may help clarity the 
contextual drivers behind the observed information flow dynamics. Additionally, a comparative analysis of information flows origi-
nating from different global oil benchmarks, such as Brent crude, could offer more nuanced perspectives on the regional sensitivities of 
the airline industry. Second, a deeper analysis could be achieved by disaggregating oil price shocks into their underlying components, 
such as supply-side shocks, aggregate demand shocks, and oil-specific demand shocks, as the literature suggests these categories have 
heterogeneous effects on financial markets (Alzate-Ortega et al., 2024). Third, a particularly important and methodologically distinct 
direction for future research would be to investigate the transmission of volatility between these markets directly. While our 
entropy-based analysis reveals the direction of information flow, a dedicated study on volatility spillovers would quantify the prop-
agation of risk and uncertainty, widely recognized as a critical channel of financial interdependence (Ben Rejeb & Arfaoui, 2016). This 
would require a different methodological approach, likely employing multivariate GARCH models or the well-established spillover 
index methodology based on vector autoregressions. By measuring the magnitude and direction of volatility spillovers, future research 
could determine whether the oil market and the airline sector act as net transmitters or receivers of risk, and how these dynamics 
evolve during periods of market stress, such as the COVID-19 pandemic. This would provide a complementary perspective to the 
present study, moving the focus from information flow to risk transmission, and contribute to a more comprehensive understanding of 
the financial interconnectedness of energy-dependent sectors (Bastianin & Manera, 2018). Fourth, employing high-frequency data in 
conjunction with machine learning-based prediction techniques could also enhance the understanding of short-term market responses 
and strengthen risk management practices for investors and airline managers. Fifth, research on the effects of alternative energy 
sources and sustainability measures on airlines' cost structures can provide new insights into changing relationships between fuel 
markets and the airline sector. Although, transportation sector has growth potential, the aviation industry will have a hard time 
replacing this with fuel from other sources, even if air traffic remains at current levels (Nygren et al., 2009).

Lastly, an analysis of structural breaks within the sample, such as the period covering the COVID-19 pandemic, could be conducted. 
This would enable a comparison of information flow dynamics between stable and crisis periods, providing valuable insights into the 
robustness and temporal stability of the relationships identified in this study.

By addressing these dimensions, future research can build upon the current findings to develop a more comprehensive framework 
for understanding the transmission of volatility and financial interconnectedness among energy-dependent sectors.
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Appendix 1. Shannon transfer entropy (STE) between WTI and airline indices with lag-length specifications (k = l = 2 and 
k = l = 3)

Information flow Lag_X Lag_Y TE ETE Std.Err. p-value Net TE

WTI→FR_Global 2 2 0.0413*** 0.0224 0.0036 0.0000 − 0.0030 
FR_Global→WTI 2 2 0.0443*** 0.0248 0.0033 0.0000 ​
WTI→FR_Global 3 3 0.0844*** 0.0418 0.0064 0.0000 − 0.0044 
FR_Global→WTI 3 3 0.0888*** 0.0438 0.0066 0.0000 ​

WTI→ARCA_Global 2 2 0.0430*** 0.0240 0.0036 0.0000 − 0.0018 
ARCA_Global→WTI 2 2 0.0449*** 0.0253 0.0033 0.0000 ​
WTI→ARCA_Global 3 3 0.0848*** 0.0410 0.0060 0.0000 0.0020 
ARCA_Global→WTI 3 3 0.0828*** 0.0368 0.0063 0.0000 ​

WTI→MSCI_World 2 2 0.0448*** 0.0257 0.0039 0.0000 − 0.0037 
MSCI_World→WTI 2 2 0.0486*** 0.0295 0.0032 0.0000 ​
WTI→MSCI_World 3 3 0.0898*** 0.0462 0.0061 0.0000 − 0.0037

(continued on next page)
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(continued )

Information flow Lag_X Lag_Y TE ETE Std.Err. p-value Net TE

MSCI_World→WTI 3 3 0.0934*** 0.0487 0.0065 0.0000 ​

WTI→Dow_Jones 2 2 0.0393*** 0.0202 0.0037 0.0000 0.0025
Dow_Jones→WTI 2 2 0.0367*** 0.0175 0.0034 0.0000 ​
WTI→Dow_Jones 3 3 0.0956*** 0.0502 0.0067 0.0000 0.0010
Dow_Jones→WTI 3 3 0.0946*** 0.0495 0.0063 0.0000 ​

WTI→FR_Emerging 2 2 0.0387*** 0.0208 0.0035 0.0000 0.0005 
FR_Emerging→WTI 2 2 0.0382*** 0.0192 0.0037 0.0000 ​
WTI→FR_Emerging 3 3 0.0806*** 0.0391 0.0070 0.0000 − 0.0011 
FR_Emerging→WTI 3 3 0.0817*** 0.0371 0.0064 0.0000 ​

WTI→FR_G7 2 2 0.0408*** 0.0215 0.0037 0.0000 − 0.0051 
FR_G7→WTI 2 2 0.0459*** 0.0267 0.0033 0.0000 ​
WTI→FR_G7 3 3 0.0872*** 0.0431 0.0071 0.0000 − 0.0075 
FR_G7→WTI 3 3 0.0947*** 0.0497 0.0065 0.0000 ​

Notes: (i) p-values: <0.01 '***', <0.05 '**', <0.1 '*'; (ii) Net TE corresponds to the Net STE, defined as the difference between the STE (represented as TE 
in the table) from WTI→ Airline index and Airline index → WTI; (iii) ETE is the effective transfer entropy, as defined by Marschinski and Kantz (2002). 
It is computed by comparing the original transfer entropy with that obtained from a shuffled version of the source time series. By randomizing the 
source series, spurious correlations are removed, allowing ETE to isolate the true nonlinear transfer of information between variables.

Appendix 2. Shannon transfer entropy (STE) between OVX and airline indices with lag-length specifications (k = l = 2 and 
k = l = 3)

Information flow Lag_X Lag_Y TE ETE Std.Err. p-value Net TE

OVX→FR_Global 2 2 0.0232 0.0047 0.0034 0.0667 − 0.0206 
FR_Global→OVX 2 2 0.0438*** 0.0265 0.0032 0.0000 ​
OVX→FR_Global 3 3 0.0585*** 0.0163 0.0059 0.0000 − 0.0105 
FR_Global→OVX 3 3 0.0690*** 0.0307 0.0060 0.0000 ​

OVX→ARCA_Global 2 2 0.0260** 0.0077 0.0035 0.0200 − 0.0158 
ARCA_Global→OVX 2 2 0.0418*** 0.0243 0.0030 0.0000 ​
OVX→ARCA_Global 3 3 0.0687*** 0.0254 0.0062 0.0000 − 0.0001 
ARCA_Global→OVX 3 3 0.0687*** 0.0297 0.0057 0.0000 ​

OVX→MSCI_World 2 2 0.0309*** 0.0121 0.0037 0.0000 − 0.0111 
MSCI_World→OVX 2 2 0.0420*** 0.0249 0.0033 0.0000 ​
OVX→MSCI_World 3 3 0.0622*** 0.0191 0.0066 0.0000 − 0.0045 
MSCI_World→OVX 3 3 0.0667*** 0.0287 0.0055 0.0000 ​

OVX→Dow_Jones 2 2 0.0262** 0.0076 0.0034 0.0133 − 0.0118 
Dow_Jones→OVX 2 2 0.0381*** 0.0204 0.0030 0.0000 ​
OVX→Dow_Jones 3 3 0.0737*** 0.0290 0.0065 0.0000 − 0.0022 
Dow_Jones→OVX 3 3 0.0759*** 0.0373 0.0058 0.0000 ​

OVX→FR_Emerging 2 2 0.0221 0.0044 0.0034 0.1200 − 0.0104 
FR_Emerging→OVX 2 2 0.0325*** 0.0148 0.0030 0.0000 ​
OVX→FR_Emerging 3 3 0.0523** 0.0120 0.0065 0.0267 − 0.0038 
FR_Emerging→OVX 3 3 0.0561*** 0.0175 0.0057 0.0000 ​

OVX→FR_G7 2 2 0.0276** 0.0086 0.0035 0.0133 − 0.0157 
FR_G7→OVX 2 2 0.0433*** 0.0257 0.0031 0.0000 ​
OVX→FR_G7 3 3 0.0655*** 0.0220 0.0059 0.0000 − 0.0045 
FR_G7→OVX 3 3 0.0699*** 0.0313 0.0059 0.0000 ​

Notes: (i) p-values: <0.01 '***', <0.05 '**', <0.1 '*'; (ii) Net TE corresponds to the Net STE, defined as the difference between the STE (represented as TE 
in the table) from OVX→ Airline index and Airline index → OVX; (iii) ETE is the effective transfer entropy, as defined by Marschinski and Kantz 
(2002). It is computed by comparing the original transfer entropy with that obtained from a shuffled version of the source time series. By randomizing 
the source series, spurious correlations are removed, allowing ETE to isolate the true nonlinear transfer of information between variables.
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