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2.1.2 Prinćıpios A-variacionais . . . . . . . . . . . . . . . . . . . . . 5
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1 Introdução

O sumário pormenorizado que se segue é relativo ao seminário com o t́ıtulo Proble-
mas vetoriais no Cálculo das Variações e Sistemas Dinâmicos Discretos, que será
apresentado em provas públicas de agregação. O seminário incidirá sobre parte da
investigação em cálculo das variações e sistemas dinâmicos discretos desenvolvida
após o doutoramento, embora sejam também referidos alguns dos trabalhos elabora-
dos no âmbito da tese de doutoramento.

Não serão apresentados todos os trabalhos e resultados obtidos, sendo que alguns
dos trabalhos apresentados serão agrupados por tema. Procurou-se introduzir cada
trabalho de forma resumida, indicando-se em cada caso os principais resultados ob-
tidos. Conclúımos com o trabalho em curso bem como o trabalho a ser desenvolvido
futuramente.
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2 Sumário pormenorizado

A investigação desenvolvida tem seguido dois vetores fundamentais: problemas ve-
toriais no Cálculo das Variações e Sistemas Dinâmicos Discretos. A secção 2.1 é
dedicada ao Cálculo das Variações, enquanto que a secção 2.2 é dedicada aos Siste-
mas Dinâmicos Discretos.

2.1 Problemas vetoriais no Cálculo das Variações

Um dos principais ingredientes do método direto do Cálculo das Variações para
mostrar a existência de minimizantes para um funcional integral do tipo

I(u) =

∫
Ω

ψ(∇u(x) dx

é a sua semicontinuidade inferior fraca. Supomos Ω ⊂ RN um domı́nio regular
(Lipschitz) limitado e funções admisśıveis u : Ω → Rm (pelo menos) Lipschitz, de
modo que ∇u é uma matriz de dimensão m × N , para cada x ∈ Ω. A propriedade
de semicontinuidade inferior fraca é, por sua vez, equivalente a uma propriedade
de convexidade adequada do integrando (cont́ınuo) ψ : Rm×N → R. Morrey [83]
provou que esta propriedade de semicontinuidade inferior fraca (em W 1,∞(Ω,Rm)) é
equivalente à quasiconvexidade do integrando ψ, ou seja,

ψ(ξ) ≤ 1

|D|

∫
D

ψ(ξ +∇v(x)) dx

para cada ξ ∈ Rm×N e cada função teste v em D. Este conceito não depende
do domı́nio D e pode, equivalentemente, ser formulado em termos de aplicações
periódicas (Šverák [99]): ψ é quasiconvexa se

ψ(ξ) ≤
∫
[0,1]N

ψ(ξ +∇v(y)) dy

para cada ξ ∈ Rm×N e cada v : [0, 1]N → Rm periódica. Infelizmente, este conceito
de convexidade está longe de ser compreendido simplesmente sabendo isto, já que
até mesmo Morrey compreendeu que não é fácil decidir quando uma dada densidade
ψ possui tal propriedade. Para o caso escalar (quando pelo menos uma das duas
dimensões N ou m é igual a um), a quasiconvexidade reduz-se à convexidade usual.
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Mas para situações vetoriais genúınas (N,m > 1), não é assim. De facto, condições
necessárias e suficientes para quasiconvexidade no caso vetorial (N,m > 1) foram
imediatamente procuradas e novas condições de convexidade importantes foram então
introduzidas:

� Convexidade de caracteŕıstica-1 (Morrey [83]). Um integrando cont́ınuo ψ :
Rm×N → R diz-se convexo de caracteŕıstica-1 se

ψ(tξ1 + (1− t)ξ2) ≤ tψ(ξ1) + (1− t)ψ(ξ2), t ∈ [0, 1]

sempre que a diferença ξ1 − ξ2 for uma matriz com caracteŕıstica um.

� Policonvexidade (Ball [5]). Um tal integrando ψ diz-se policonvexo se puder
ser reescrito na forma

ψ(ξ) = g(M(ξ)),

onde M(ξ) é o vetor de todos os menores de ξ, e g é uma função convexa (no
sentido usual) de todos os seus argumentos.

Mesmo estes dois tipos de convexidade, embora mais manejáveis, não são fáceis
de verificar em exemplos expĺıcitos (Dacorogna, Douchet, Gangbo & Rappaz [36],
Gutiérrez [56]). O trabalho B. & Pedregal [16] contribuiu para dar uma resposta
parcial a este problema, dando uma forma sistemática de determinar famı́lias de
polinómios convexos de caracteŕıstica-1.
Rapidamente se descobriu que a quasiconvexidade implica a convexidade de carac-
teŕıstica-1 (usando uma classe especial de funções teste), e que a policonvexidade é
uma condição suficiente para quasiconvexidade. A tarefa seguinte foi como tentar
provar ou refutar a equivalência entre estes três diferentes tipos de convexidade. No
caso escalar, os três conceitos coincidem com a convexidade usual, donde de facto
estamos perante um fenómeno puramente vetorial. Acontece que estas três noções
de convexidade são diferentes e contra-exemplos de vários tipos foram encontrados
ao longo do anos, como podemos observar na referência fundamental de Dacorogna
[35]. Se nos concentrarmos na equivalência entre a convexidade de caracteŕıstica-1
e a quasiconvexidade, Morrey [83] conjeturou que não são equivalentes, por isso o
problema de não equivalência é usualmente chamado de conjetura de Morrey, em-
bora mais tarde o mesmo tenha afirmado, em [84], que era de facto um problema em
aberto. A questão permaneceu sem resposta até ao surpreendente contra-exemplo de
Šverák [99]. O que é bastante notável é que este contra-exemplo só é válido quando
m ≥ 3, e tentativas posteriores de estendê-lo a m = 2 falharam (B. & Ornelas
[15], Pedregal [90], Pedregal & Šverák [92]). Além deste contra-exemplo, apenas se
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conhece o de Grabovsky [52], que novamente só é válido para m > 2. É também
interessante notar que para integrandos quadráticos, convexidade de caracteŕıstica-1
e quasiconvexidade são equivalentes, independentemente das dimensões. Este facto
é conhecido há muito tempo (Van Hove [100], Van Hove [101]) e não é dif́ıcil prová-
lo usando a fórmula de Plancherel. Em B. & Pedregal [14] foi providenciada uma
demonstração alternativa (baseada em ideias da programação matemática) que não
utiliza a fórmula de Plancherel, explorando ainda algumas consequências para o caso
dos polinómios homogéneos de quarto grau.
Outro campo onde a resolução deste problema de equivalência para aplicações de
duas componentes teria um impacto importante é o da teoria das aplicações quasi-
conformes no plano. Em particular, se a equivalência entre a convexidade de carac-
teŕıstica-1 e a quasiconvexidade para aplicações de duas componentes é verdadeira,
então a norma da correspondente transformada de Beurling-Ahlfors é igual a p∗ − 1
(Iwaniec [65]). Outra forma de interpretarmos este problema de equivalência é usando
a formulação dual através da desigualdade de Jensen: medidas de Young gradiente
e laminados são medidas de probabilidade que satisfazem a desigualdade de Jensen
relativamente a todas as funções quasiconvexas e convexas de caracteŕıstica-1, res-
petivamente, conforme Kinderlherer & Pedregal [66] e Pedregal [91]. A conjetura de
Morrey pode agora ser escrita na forma: toda a medida de Young gradiente é um
laminado? Note-se que a questão em aberto é saber a resposta para m = 2. Em B.
& Ornelas [15] são relatadas algumas tentativas de refutar esta questão, no caso das
matrizes simétricas 2× 2. Apesar de tal não ter sido posśıvel, foi no entanto posśıvel
obter a caracterização de uma classe especial de laminados, apelidada de classe de
“3-edge-laminates”.

2.1.1 Polinómios não negativos e condições de convexidade vectorial

A situação das aplicações de duas componentes permaneceu, portanto, sem solução
embora tenham existido algumas contribuições no sentido de esclarecer a situação,
entre as quais Chaudhuri & Müller [30], Ghiba, Martin & Neff [49], Grabovsky &
Truskinovsky [53], Krǔźık [73], Martin, Ghiba & Neff [79], Müller [85], Müller [86],
Parry [89], Voss, Martin, Ghiba & Neff [103]. A este respeito, na contribuição B. &
Pedregal [11], a não negatividade de polinómios foi relacionada com a quasiconvexi-
dade e com a convexidade de caracteŕıstica-1. De facto, utilizando a periodicidade
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das funções teste u : [0, 1]N → Rm, podemos escrever

u(x) =
1

2π

∑
n∈ZN

sin(2πn · x) an, an ∈ Rm,

∇u(x) =
∑
n∈ZN

cos(2πn · x) an ⊗ n,

e, consequentemente, a condição da quasiconvexidade poderá ser escrita como

Φ(ξ, {an}) =
∫
Q

[
ψ

(
ξ +

∑
n∈ZN

cos(2πn · x) an ⊗ n

)
− ψ(ξ)

]
dx.

Se restringirmos ainda mais a natureza de ψ, para ser um polinómio de certo grau,
então Φ será também um polinómio do mesmo grau, num certo número de variáveis
(possivelmente infinito), que deve ser não-negativo. Portanto, vemos que a questão
da não negatividade dos polinómios poderá ter alguma relevância para a quasicon-
vexidade. Relativamente à convexidade de caracteŕıstica-1, se ψ é suave, então essa
condição pode ser formulada, equivalentemente, na forma da chamada condição de
Legendre-Hadamard

∇2ψ(ξ) : (a⊗ n)⊗ (a⊗ n) ≥ 0

para cada matriz ξ ∈ Rm×N , e vetores a ∈ Rm, n ∈ RN .
O resultado principal deste trabalho diz respeito à utilização do célebre teorema
de Hilbert [59], sobre a caracterização de polinómios não-negativos em termos de
somas de quadrados, num teste para a convexidade de caracteŕıstica-1 para inte-
grandos suaves definidos em matrizes reais 2×2. Relativamente à quasiconvexidade,
conseguiu-se provar que mesmo no caso dos polinómios homogéneos de quarto grau,
a quasiconvexidade não pode ser reduzida à não-negatividade de polinómios com um
número finito fixo de variáveis.
Por fim, o foco foi colocado sobre a quasiconvexidade, avaliando até que ponto estas
ideias poderiam levar a algum novo avanço.

2.1.2 Prinćıpios A-variacionais

A propriedade de semicontinuidade inferior fraca pode ser tratada num quadro muito
mais geral, no qual um operador diferencial parcial linear de caracteŕıstica constante
da forma

Av =
∑
i

Ai
∂v

∂xi
(1)

5



está envolvido. O conceito de A-quasiconvexidade foi então adequadamente intro-
duzido por Dacorogna [37], e demonstrado como necessário e suficiente por Fonseca
& Dacorogna [45], para a semicontinuidade inferior fraca de um funcional da forma

I(v) =

∫
Ω

W (x, v(x)) dx, (2)

sob a restrição diferencial Av = 0, além de (eventuais) condições de fronteira ade-
quadas. A importância de tal extensão não pode ser subestimada, pois expande de
forma inacreditável o quadro anaĺıtico. Para o caso particular A = curl, voltamos
ao caso gradiente clássico pois v = ∇u. Esta nova teoria está agora muito bem
compreendida, cobrindo os desenvolvimentos mais fundamentais: medidas de Young
e medidas A-nulas, relaxamento, homogeneização, regularidade, dinâmica, etc (ver
Báıa, Matias & Santos [3], Braides, Fonseca & Leoni [25], Conti & Gmeineder [34],
Dacorogna & Fonseca [38], Davoli & Fonseca [41]; [42], Philippis & Rindler [43], Fon-
seca, Leoni & Müller [46], Guerra & Raiţă [55], Koumatos & Vikelis [71], Krämer,
Krömer, Kruž́ık & Pathó [72], Matias, Morandotti & Santos [80], Raiţă [95], entre
outros); mas, no entanto, problemas variacionais expĺıcitos sob restrições diferenciais
mais gerais do tipo Av = 0 não têm sido tratados de forma sistemática, provavel-
mente devido à falta de exemplos de certa relevância em Análise ou nas aplicações.
Na mesma linha, o conceito natural e direto de A-policonvexidade, tanto quanto po-
demos dizer, não tinha sido ainda tratado de forma explicita (exceto recentemente em
Guerra & Raiţă [55] e, numa forma diferente, em Boussaid, Kreisbeck & Schlömer-
kemper [24]), novamente possivelmente devido à falta de exemplos onde tal conceito
poderia ir além da convexidade simples, e ser usado de forma fundamental para mos-
trar a existência de soluções para tais problemas variacionais. No trabalho B. &
Pedregal [9], a noção de A-policonvexidade é apresentada e relacionada com a semi-
continuidade inferior dos funcionais integrais (2). A importância deste trabalho vem
essencialmente de dois aspetos fundamentais: por um lado, as funções integrandas
policonvexas são aquelas que asseguram a semicontinuidade inferior fraca de proble-
mas variacionais vetoriais, provenientes das aplicações, como provado por Ball [5];
por outro lado, a literatura dispońıvel geralmente lida com o caso em que o operador
A é o rotacional (curl), donde os campos A-nulos nada mais são do que gradientes
e a noção de A-quasiconvexidade reduz-se à quasiconvexidade usual de Morrey. Foi
então proposta uma tal famı́lia de problemas no caso div− curl, explorando a cor-
respondente condição de A-policonvexidade como principal hipótese estrutural para
assegurar a semicontinuidade inferior fraca e os teoremas de existência de solução ob-
tidos. Destacam-se também, além dos resultados teóricos conseguidos, os exemplos
anaĺıticos considerados, que envolvem operadores que tinham sido, até ao momento,
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pouco explorados na literatura. Em particular, quatro casos expĺıcitos são discuti-
dos, que ilustram os resultados obtidos, e nos quais as suas soluções expĺıcitas são
calculadas e se revelam esclarecedoras.

2.1.3 Aproximação numérica de problemas variacionais vetoriais

Outro tópico fortemente relacionado tem a ver com a simulação numérica de soluções
ótimas para problemas variacionais vetoriais. Na realidade, devido às dificuldades
intŕınsecas em lidar com sistemas estacionários não-lineares de Equações Diferenciais
Parciais, existem poucas referências na literatura que tratem estes temas. O estudo
de problemas variacionais vetoriais é um dos caṕıtulos mais complexos em Análise
Aplicada. Este facto é bem conhecido tanto do lado da Matemática, bem como
do lado das aplicações (por exemplo, à Mecânica). Estes problemas variacionais
estão associados, através das suas condições de otimalidade de Euler-Lagrange, com
sistemas estacionários não-lineares de Equações Diferenciais Parciais. De facto, das
duas formas conhecidas para lidar com tais sistemas diferenciais, o mais poderoso
provém diretamente dos problemas variacionais, conforme Ciarlet [32]. As condições
que garantem a semicontinuidade inferior fraca, para a aplicação do método direto e
assim provar a existência de minimizantes, nos problemas vetoriais envolve condições
mais gerais do que apenas a simples convexidade (Ball [4]). Estes conceitos vetoriais
de convexidade estão ainda longe de serem bem entendidos.
Uma das principais aplicações de tais problemas variacionais vetoriais provém da
Mecânica não-linear, mais precisamente, da hiper-elasticidade na qual os corpos po-
dem ser sujeitos a grandes tensões e grandes deformações. É um facto que a densidade
da energia interna de tal comportamento material não pode ser convexa e, consequen-
temente, outros conceitos de convexidade (em particular a policonvexidade) precisam
ser abordados.
As dificuldades apontadas têm um impacto tremendo nas aproximações numéricas.
Em particular, a falta de convexidade significa usualmente a falta de unicidade de
solução (minimizante), e não é garantido que os métodos computacionais standard
(máximo declive, gradiente conjugado, Newton-Raphson, etc) convirjam para os de-
sejados minimizantes globais. Mesmo assim, a aproximação de tais soluções é im-
portante nas aplicações. Recentemente, a simulação de tais situações vetoriais na
hiper-elasticidade foi bem sucedida, pelo menos de um ponto de vista prático, em-
bora falte ainda alguma análise numérica: Bonet, Gil & Ortigosa [22], Horák, Gil,
Ortigosa & Kruž́ık [62], Ortigosa, Gil, Bonet & Hesch [88], entre outros. Recente-
mente, B. & Pedregal foram bem sucedidos no tratamento de tais problemas vetoriais
em algumas situações selecionadas, nomeadamente em:
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� Problemas de condutividade inversa em dimensão dois.

O problema de Calderón [26] tem sido intensamente estudado nas últimas
décadas. Tanto da perspetiva da Análise como das aplicações, oferece um
problema desafiante e atrativo. Muitos resultados anaĺıticos fundamentais fo-
ram descobertos ao longo dos anos, culminando em Astala & Päivärinta [1].
Ver também Barceló, Faraco & Ruiz [19]. A perspetiva de utilizar técnicas
variacionais vetoriais em problemas inversos foi iniciada por Kohn & Vogelius
[70] e, posteriormente, as suas consequências para a aproximação numérica
exploradas por Kohn & McKenney [69]. Após este artigo seminal, diversas
variantes variacionais foram examinadas em diferentes contextos e estruturas:
Berenguer, Kunze, La Torre & Ruiz Galán [20], Bonet, Gil & Ortigosa [22],
Borcea, Genetha & Yin [23], Kunze, La Torre, Levere & Ruiz Galán [74], Ma-
estre & Pedregal [77]. Em muitos casos, os prinćıpios variacionais envolvidos
necessitam relaxação e, frequentemente, obtém-se diretamente através das (ou
relacionado com) ferramentas da teoria da homogeneização. A proposta de
Maestre & Pedregal [77] é um pouco diferente no sentido em que um sistema
de equações diferenciais parciais não linear foi o ponto de partida para estudar
um funcional não convexo (de facto, nem sequer é quasiconvexo). Embora a
sua relaxação tenha sido calculada de forma bastante expĺıcita, tal informação
revelou-se irrelevante para o funcional original não convexo, cuja sucessão mi-
nimizante produziria soluções aproximadas para o problema de condutividade
inversa. O contributo de B. & Pedregal [7] insere-se nesta linha de perspetivas
variacionais em problemas inversos e visa ultrapassar algumas das dificuldades
encontradas em Maestre & Pedregal [77] de um ponto de vista prático. Em
particular, teve-se o objetivo de propor funcionais vetoriais que fossem policon-
vexos (a principal condição suficiente para garantir a existência de soluções para
problemas vetoriais variacionais) de modo a que não necessitem de relaxação;
ou funcionais simples que apesar de não serem quasiconvexos ou policonvexos,
a sua simplicidade seja promissora para a aproximação numérica.

A ideia básica de recuperar um coeficiente de condutividade desconhecido γ(x)
através de um problema vetorial de dimensão dois provém da equação vetorial
(pontual)

|∇u2|∇u1 + |∇u1|Q∇u2 = 0, Q =

(
0 −1
1 0

)
. (3)

Sempre que é posśıvel determinar um par de gradientes (∇u1,∇u2) satisfa-
zendo a equação vetorial anterior, dizemos que representam um coeficiente de
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condutividade através do quociente

γ =
|∇u2|
|∇u1|

.

Note-se que, então

div(γ∇u1) = div

(
1

γ
∇u2

)
= 0 em Ω.

As condições de fronteira devem também ser compat́ıveis com (3). Tendo em
vista a determinação de soluções para (3), através de minimizantes de proble-
mas de variacionais vetoriais genúınos, em B. & Pedregal [7] foram estudados
diversos funcionais vetoriais:

I1(u) =

∫
Ω

1

2

|∇u|2

det∇u
dx,

I2(u) =

∫
Ω

1

2
(∇u1 · ∇u2)2 dx,

I3(u) =

∫
Ω

(|∇u1| |∇u2| − det∇u) dx.

Além dos resultados anaĺıticos mostrados, indicando prós e contras de cada fun-
cional, foram comparados os três funcionais acima em problemas semelhantes
com o objetivo de examinar o seu desempenho. Os funcionais que obtiveram
melhor desempenho foram então colocados em situações mais exigentes, para
testar sua capacidade de recuperar coeficientes de condutividade desconhecidos.

� Equações diferenciais de Pfaff em dimensão três.

O campo das equações diferenciais de Pfaff, embora seja uma área bastante
clássica, é, em boa medida, um pouco desconhecida nos dias de hoje, pelo menos
em Análise. No entanto, é algo bem estabelecido em Geometria Diferencial
ou em Álgebra. Embora formalmente formulado por Pfaff [94], o problema
já era conhecido por Euler [44]. Tem sido abordado em textos clássicos de
equações diferenciais (Goursat [51], Ince [64], Petrovskii [93], Sneddon [98]) a
ńıvel conceptual, sendo também conhecida a sua importância e relação com as
equações diferenciais parciais. A relevância das equações de Pfaff em Geometria
Diferencial e Álgebra parece, por outro lado, muito conhecida e solidamente
estudada em diversas fontes: Awane & Goze [2], Cañadas-Pinedo & Ruiz [27],
Cartan [28], Han [58]. Do ponto de vista da Análise, existem também alguns
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artigos interessantes e bastante clássicos, bem como alguns mais recentes: para
além dos já referidos, Darboux [39], Gérard & Ramis [48], Honda [61], Morando
& Sammarco [81]. Uma equação diferencial de Pfaff é uma expressão da forma

ω ≡
N∑
i=1

ui(x) dxi = 0, x = (x1, x2, . . . , xN), (4)

para N funções ui(x). Uma variedade C1 de dimensão k ≥ 1 M diz-se uma
variedade integral de (4) se a 1-forma diferencial ω se anula identicamente
em M. A equação de Pfaff(4) é dita completamente integrável se existe uma
única variedade integral de maior dimensão posśıvel N − 1 passando por cada
ponto x0 ∈ RN . De um ponto de vista mais prático, tal variedade, pelo menos
localmente, é procurada através de uma parametrização desconhecida

x(t) : Q ⊂ RN−1 → RN , 0 ∈ Q,x(0) = x0, t = (t1, t2, . . . , tN−1),

de tal forma que

u(x) · ∂x
∂ti

= 0, i = 1, 2, . . . , N − 1, x(0) = x0. (5)

Nesta forma, (5) pode ser considerado como um sistema muito especial de
equações diferenciais parciais de primeira ordem. No entanto, nesta forma há
uma tremenda falta de unicidade de solução, pois uma dada variedade admite
infinitas parametrizações.
Embora analiticamente, alguns factos fundamentais sejam já conhecidos para
este tipo de problemas, tanto quanto sabemos não houve até hoje nenhuma
tentativa conhecida de aproximar numericamente as múltiplas soluções de (4).
Esta foi a nossa principal motivação em B. & Pedregal [6]. A nossa proposta
tem uma natureza variacional, pois focámo-nos em minimizar um funcional de
erro da forma

E(x) =

∫
Q

1

2

∑
i

(
u(x) · ∂x

∂ti

)2

dt (6)

sob a restrição x(0) = x0, para um dado x0 ∈ RN .
Entre outros, estudámos o caso de variedades bidimensionais em R3 que requer
uma condição de integrabilidade fundamental

u · (∇∧ u) = 0 (7)
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para garantir a existência de soluções locais em torno dos pontos x0 ∈ R3

onde o campo vetorial u(x0) ̸= 0 não se anula identicamente. Finalmente,
trabalhou-se a aproximação numérica para alguns exemplos selecionados, nos
quais se foi bem sucedido, tendo sido obtidos resultados interessantes.

Além da estrutura particular explorada nestas contribuições, o tratamento numérico
prático de verdadeiros problemas variacionais vetoriais é, de forma geral, sempre
interessante dada a falta de tais exemplos na literatura.

2.2 Sistemas Dinâmicos Discretos

Os métodos da Álgebra Linear têm sido utilizados desde há muito tempo em sistemas
dinâmicos discretos, quer envolvidos na definição dos próprios sistemas – os subshifts
de tipo finito são ótimos exemplos – quer como ferramentas para a resolução de
problemas. É essa a ferramenta de base que utilizamos nos trabalhos relativos a esta
parte.

2.2.1 Autómatos celulares

Desde os tempos de Ulam e von Neumann [87], que propuseram pela primeira vez o
conceito de autómato celular, passando pelo famoso livro de Wolfram [107], a estru-
tura simples dos autómatos celulares atraiu investigadores de diversas áreas. A razão
por detrás da popularidade dos autómatos celulares pode ser atribúıda, em parte, à
sua simplicidade. Por outro lado, estas estruturas simples, quando iteradas várias
vezes, têm a capacidade de produzir padrões complexos que demonstram o potencial
de simular diferentes fenómenos naturais complexos. Dois desenvolvimentos notáveis
acerca dos autómatos celulares são devidos a Conway e a Wolfram. Na década de
1970, o matemático Conway propôs o seu hoje famoso jogo da vida [47], que suscitou
um amplo interesse entre os investigadores. No ińıcio da década de oitenta, Wol-
fram estudou detalhadamente uma famı́lia de regras simples de autómatos celulares
unidimensionais (hoje famosas regras de Wolfram [106], numeradas de 0 a 255) e mos-
trou que mesmo estas regras locais simples são capazes de emular comportamentos
complexos globais (ver, por exemplo, Wolfram [105]).
As aplicações de intervalos e o comportamento das aplicações de intervalos sob
iteração são também um assunto bem desenvolvido em sistemas dinâmicos e na
teoria do caos, com diversas aplicações em muitos campos. Assuntos intimamente
relacionados são os sistemas de funções iteradas e fractais. Em B. & Ramos [12]
estudamos uma aplicação do intervalo totalmente descont́ınua definida no intervalo
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[0, 1] que está associada a uma deformação da aplicação shift em dois śımbolos {0, 1},
que pode ser visto como um autómato celular codificado pela regra 226 de Wolfram.
A correspondência entre o autómato celular e a aplicação de intervalo é obtida pela
representação de um estado global como um número do intervalo [0, 1], expresso em
binário, num procedimento conhecido que pode ser consultado, por exemplo, nos
trabalhos anteriores B., Martinho & Ramos [17], [18], para a regra 184 de Wolfram.
A aplicação do intervalo obtida tem um gráfico fractal e a sua estrutura recursiva
é determinada diretamente da regra do autómato. Sendo a aplicação do intervalo
totalmente descont́ınua, não poderá existir uma partição de Markov finita (logo não
existirá também uma matriz de transição finita correspondente). Para contornar
este problema, definimos uma sucessão de partições do intervalo (constitúıdas por
intervalos, de igual comprimento, determinados pela expansão binária dos números
reais do intervalo [0, 1]) e foram deduzidas as respetivas matrizes de transição que
correspondem à ação da aplicação do intervalo sobre a partição, obtidas através de
uma fórmula de recorrência. Ao utilizar esta abordagem, foi posśıvel determinar a
respetiva sucessão de valores próprios e respetivos vetores próprios (associados) di-
reitos e esquerdos. É também dado um procedimento que permite obter a função
totalmente descont́ınua do intervalo como limite uniforme de uma certa sucessão de
funções seccionalmente afins. Conseguiu-se também determinar a função zeta de
Artin-Mazur para a aplicação do intervalo. Os procedimentos deduzidos poderão ser
aplicados noutros casos, eventualmente a outras deformações do shift, induzidas por
regras elementares de autómatos celulares unidimensionais.

2.2.2 Osciladores harmónicos lineares

Motivados pela participação no projeto BRO-CQ - Controlo de Qualidade de Blo-
cos em Rochas Ornamentais e diretamente relacionado com a questão subjacente
que levou ao nascimento do mesmo, estudámos um problema de base na extração
das rochas ornamentais, que tem a ver com o facto de 89 a 91% de toda a matéria
prima extráıda não ser aproveitada. Este problema induz diversos outros proble-
mas secundários, entre os quais o facto de os cerca de 10% de produto final ter
de compensar monetariamente 100% da extração (encarecendo o produto) e, por
outro lado, levando à acumulação de detritos em excesso nas pedreiras (devido a
não haver até ao momento utilização rentável para os mesmos). O grande dese-
quiĺıbrio no aproveitamento da matéria prima deve-se ao facto de não existir um
método para mapear a qualidade e caracteŕısticas dos blocos a extrair, sendo uma
atividade altamente experimental, pois, por assim dizer, não é posśıvel prever a es-
trutura interior do bloco, nomeadamente saber qual a melhor direção de corte para
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evitar posśıveis fraturas e inomogeneidades da mesma. A nossa contribuição nesta
área visa estudar posśıveis modelos que possam simular essas mesmas faltas de ho-
mogeneidade/fraturas. Estudámos sistemas discretos de massa-mola compostos por
cadeias de osciladores harmónicos unidimensionais. Este tipo de sistema pode ser
utilizado para aproximar o comportamento dinâmico dos sistemas cont́ınuos. Diver-
sas aplicações podem ser observadas em Clough & Penzien [33] e Davini [40], em
relação às vibrações nas estruturas e bandas elásticas, respetivamente, Kittel [68],
Maradudin, Montroll & Weiss [78] ou Lepri [75] em relação à f́ısica do estado sólido
ou à f́ısica estat́ıstica, e Huang, Sun & Huang [63], Yao, Zhou & Hu [104] ou Vo
et al. [102], em relação aos metamateriais, entre outros; problemas inversos foram
considerados em Chu & Golub [31], Gladwell [50], Gray & Wilson [54], Hald [57],
Hochstadt [60] ou Rio & Kudryavtsev [97]. Assumimos que as partes elementares
do sistema são cadeias de osciladores idênticos, que serão os blocos de construção
para a criação de sistemas mais complexos. Cada cadeia é caracterizada pelas suas
caracteŕısticas f́ısicas: massa total, massa das part́ıculas, constante da mola, número
de osciladores e comprimento. Em B. & Ramos [10], considerámos o problema de
determinar os vetores e valores próprios para uma cadeia de osciladores harmónicos
obtidos a partir do acoplamento de duas cadeias homogéneas, através de um processo
de composição. Este processo de composição consiste na acoplamento das cadeias
através de uma part́ıcula com massa de ligação com uma determinada massa m, ou
de uma mola de colagem com uma determinada constante elástica. Mostrámos como
determinar, analiticamente, a solução do novo sistema não homogéneo em termos
dos vetores e valores próprios das cadeias (homogéneas) que as compõem, que se
supõe serem conhecidos ou facilmente determinados. Mais tarde, em B. & Ramos
[8], estendemos os nossos resultados anteriores ao caso dos osciladores harmónicos
lineares amortecidos, obtendo-se assim soluções expĺıcitas para o sistema amortecido
acoplado em termos das soluções das cadeias homogéneas originais que constituem o
sistema. Assim sendo, podemos analisar como o sistema altera o seu comportamento
dinâmico em termos do comportamento dinâmico das partes constituintes.

2.3 Trabalho futuro

De momento estão em curso os seguintes trabalhos:
-Com Lúıs Romão (que entregou recentemente a sua dissertação de mestrado) e C.
Correia Ramos, está em fase final de preparação um artigo sobre autómatos celulares
para a simulação do tráfego urbano (2025).

� L.B., C. C. Ramos, L. Romão, Cellular automata traffic models with applicati-
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ons to the city of Évora. (em preparação, 2025)

-Com C. Pimentel (que recentemente iniciou o seu projeto de tese de doutoramento)
e P. Pedregal, está em fase final de preparação um artigo sobre problemas de condu-
tividade inversa em dimensão dois.

� L.B., P. Pedregal, C. Pimentel, Further computational tests for inverse con-
ductivity problems based on vector, variational principles in the 2D case. (em
preparação, 2025)

-Com P. Pedregal, estão em preparação dois artigos, um com o objetivo de ser subme-
tido até ao final de 2026, sobre superf́ıcies mı́nimas, e outro a ser submetido não antes
de 2026, sobre semicontinuidade inferior fraca e relaxação de funcionais integrais.

� L.B., P. Pedregal, Minimal surfaces. (em preparação, 2026)

� L.B., P. Pedregal, Weak lower semicontinuity and relaxation of integral functi-
onals. (em preparação, 2026+)
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[3] M. Báıa, J. Matias, P.M. Santos, Characterization of generalized Young measures
in the A-quasiconvexity context. Indiana Univ. Math. J. 62 (2013), no. 2, 487–521.

[4] J. M. Ball, Some open problems in Elasticity, Geometry, mechanics, and dyna-
mics, 359, Springer, New York, 2002.

[5] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity.
Archive for Rational Mechanics and Analysis 63 (1977) 337–403.

[6] L. Bandeira, P. Pedregal, Pfaffian equations: a variational perspective. Differen-
tial and Integral Equations, Volume 38 (2025), Pages 643-668

[7] L. Bandeira, P. Pedregal, Some computational tests for inverse conductivity pro-
blems based on vector, variational principles: The 2D case. Mathematics and
Computers in Simulation, Volume 218 (2024), Pages 704-721.

[8] L. Bandeira, C. Correia Ramos, Coupling homogeneous chains of damped harmo-
nic oscillators. Meccanica 59, 19-32 (2024).

[9] L. Bandeira, P. Pedregal, A-Variational Principles. Milan Journal of Mathema-
tics 91, 293–314 (2023).

[10] L. Bandeira, C. C. Ramos, Non-homogeneous chain of harmonic oscillators.
Mathematics in Computer Science 16 (2022), no. 1, Paper No. 3, 17 pp.

[11] L. Bandeira, P. Pedregal, The role of non-negative polynomials for rank-one con-
vexity and quasi convexity. Journal of Elliptic and Parabolic Equations 2 (2016),
no. 1-2, 27–36.

[12] L. Bandeira, C. C. Ramos, Transition matrices characterizing a certain totally
discontinuous map of the interval. Journal of Mathematical Analysis and Appli-
cations 444 (2016), no. 2, 1274–1303.

[13] L. Bandeira, C. C. Ramos, On the spectra of certain matrices and the iteration
of quadratic maps. SeMA Journal 67 (2015), 51–69.

15



[14] L. Bandeira, P. Pedregal, Quasiconvexity: the quadratic case revisited, and some
consequences for fourth-degree polynomials. Advances in Calculus of Variations 4
(2011), no. 2, 127–151.

[15] L. Bandeira, A. Ornelas, On the characterization of a class of laminates for 2Ö2
symmetric gradients. Journal of Convex Analysis 18 (2011), no. 1, 37–58.

[16] L. Bandeira, P. Pedregal, Finding new families of rank-one convex polynomials.
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