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1 Introducao

O sumaério pormenorizado que se segue é relativo ao seminario com o titulo Proble-
mas vetoriais no Cdlculo das Variagoes e Sistemas Dinamicos Discretos, que sera
apresentado em provas publicas de agregacao. O seminario incidira sobre parte da
investigacao em célculo das variacoes e sistemas dinamicos discretos desenvolvida
apos o doutoramento, embora sejam também referidos alguns dos trabalhos elabora-
dos no ambito da tese de doutoramento.

Nao serao apresentados todos os trabalhos e resultados obtidos, sendo que alguns
dos trabalhos apresentados serao agrupados por tema. Procurou-se introduzir cada
trabalho de forma resumida, indicando-se em cada caso os principais resultados ob-
tidos. Concluimos com o trabalho em curso bem como o trabalho a ser desenvolvido
futuramente.



2 Sumario pormenorizado

A investigacao desenvolvida tem seguido dois vetores fundamentais: problemas ve-
toriais no Caélculo das Variagoes e Sistemas Dinamicos Discretos. A seccao 2.1 é
dedicada ao Célculo das Variacoes, enquanto que a seccao 2.2 é dedicada aos Siste-
mas Dinamicos Discretos.

2.1 Problemas vetoriais no Calculo das Variagoes

Um dos principais ingredientes do método direto do Calculo das Variacoes para
mostrar a existéncia de minimizantes para um funcional integral do tipo

I(u) :/Ql/J(Vu(x) dx

é a sua semicontinuidade inferior fraca. Supomos Q C RY um dominio regular
(Lipschitz) limitado e fungdes admissiveis u : 2 — R™ (pelo menos) Lipschitz, de
modo que Vu é uma matriz de dimensao m x NN, para cada x € ). A propriedade
de semicontinuidade inferior fraca é, por sua vez, equivalente a uma propriedade
de convexidade adequada do integrando (continuo) ¢ : R™¥» — R. Morrey [83]
provou que esta propriedade de semicontinuidade inferior fraca (em W1 (Q, R™)) é
equivalente a quasiconvexidade do integrando v, ou seja,

1
WO < o /D B(E + Vo(a)) da

para cada ¢ € R™V e cada funcio teste v em D. Este conceito nao depende
do dominio D e pode, equivalentemente, ser formulado em termos de aplicagoes
periddicas (Sverdk [99]): ¢ é quasiconvexa se

¥(§) < V(€ + Vu(y)) dy

(0,117

para cada £ € R™" ¢ cada v : [0,1]Y — R™ periédica. Infelizmente, este conceito

de convexidade esta longe de ser compreendido simplesmente sabendo isto, ja que
até mesmo Morrey compreendeu que nao é facil decidir quando uma dada densidade
Y possui tal propriedade. Para o caso escalar (quando pelo menos uma das duas
dimensoes N ou m ¢é igual a um), a quasiconvexidade reduz-se a convexidade usual.



Mas para situagoes vetoriais genuinas (N, m > 1), ndo ¢é assim. De facto, condigdes
necessarias e suficientes para quasiconvexidade no caso vetorial (N,m > 1) foram
imediatamente procuradas e novas condigoes de convexidade importantes foram entao
introduzidas:

e Convexidade de caracteristica-1 (Morrey [83]). Um integrando continuo 1) :
R™N — R diz-se convexo de caracteristica-1 se

V(& + (1 =)&) < (&) + (1 —1)v(&), t€[0,1]
sempre que a diferenca & — & for uma matriz com caracteristica um.

e Policonvexidade (Ball [5]). Um tal integrando v diz-se policonvexo se puder
ser reescrito na forma

(&) = g(M(¢)),

onde M (&) é o vetor de todos os menores de &, e g é uma fungao convexa (no
sentido usual) de todos os seus argumentos.

Mesmo estes dois tipos de convexidade, embora mais manejaveis, nao sao fédceis
de verificar em exemplos explicitos (Dacorogna, Douchet, Gangbo & Rappaz [36],
Gutiérrez [56]). O trabalho B. & Pedregal [16] contribuiu para dar uma resposta
parcial a este problema, dando uma forma sistematica de determinar familias de
polinémios convexos de caracteristica-1.

Rapidamente se descobriu que a quasiconvexidade implica a convexidade de carac-
teristica-1 (usando uma classe especial de fungoes teste), e que a policonvexidade é
uma condicao suficiente para quasiconvexidade. A tarefa seguinte foi como tentar
provar ou refutar a equivaléncia entre estes trés diferentes tipos de convexidade. No
caso escalar, os trés conceitos coincidem com a convexidade usual, donde de facto
estamos perante um fenémeno puramente vetorial. Acontece que estas trés nocoes
de convexidade sao diferentes e contra-exemplos de varios tipos foram encontrados
ao longo do anos, como podemos observar na referéncia fundamental de Dacorogna
[35]. Se nos concentrarmos na equivaléncia entre a convexidade de caracteristica-1
e a quasiconvexidade, Morrey [83] conjeturou que nao sao equivalentes, por isso o
problema de nao equivaléncia ¢ usualmente chamado de conjetura de Morrey, em-
bora mais tarde o mesmo tenha afirmado, em [84], que era de facto um problema em
aberto. A questao permaneceu sem resposta até ao surpreendente contra-exemplo de
Sverdk [99]. O que é bastante notével é que este contra-exemplo sé é vélido quando
m > 3, e tentativas posteriores de estendé-lo a m = 2 falharam (B. & Ornelas
[15], Pedregal [90], Pedregal & Sverak [92]). Além deste contra-exemplo, apenas se



conhece o de Grabovsky [52], que novamente s6 é valido para m > 2. E também
interessante notar que para integrandos quadraticos, convexidade de caracteristica-1
e quasiconvexidade sao equivalentes, independentemente das dimensoes. Este facto
é conhecido hd muito tempo (Van Hove [100], Van Hove [101]) e nao é dificil prova-
lo usando a férmula de Plancherel. Em B. & Pedregal [14] foi providenciada uma
demonstragao alternativa (baseada em ideias da programacao matematica) que nao
utiliza a formula de Plancherel, explorando ainda algumas consequéncias para o caso
dos polinémios homogéneos de quarto grau.

Outro campo onde a resolucao deste problema de equivaléncia para aplicacoes de
duas componentes teria um impacto importante é o da teoria das aplicagoes quasi-
conformes no plano. Em particular, se a equivaléncia entre a convexidade de carac-
teristica-1 e a quasiconvexidade para aplicagoes de duas componentes é verdadeira,
entao a norma da correspondente transformada de Beurling-Ahlfors é igual a p* — 1
(Iwaniec [65]). Outra forma de interpretarmos este problema de equivaléncia ¢ usando
a formulacao dual através da desigualdade de Jensen: medidas de Young gradiente
e laminados sao medidas de probabilidade que satisfazem a desigualdade de Jensen
relativamente a todas as fungoes quasiconvexas e convexas de caracteristica-1, res-
petivamente, conforme Kinderlherer & Pedregal [66] e Pedregal [91]. A conjetura de
Morrey pode agora ser escrita na forma: toda a medida de Young gradiente é um
laminado? Note-se que a questao em aberto é saber a resposta para m = 2. Em B.
& Ornelas [15] sao relatadas algumas tentativas de refutar esta questao, no caso das
matrizes simétricas 2 x 2. Apesar de tal nao ter sido possivel, foi no entanto possivel
obter a caracterizacao de uma classe especial de laminados, apelidada de classe de
“3-edge-laminates”.

2.1.1 Polinémios nao negativos e condicoes de convexidade vectorial

A situacao das aplicagoes de duas componentes permaneceu, portanto, sem solucao
embora tenham existido algumas contribuicoes no sentido de esclarecer a situagao,
entre as quais Chaudhuri & Miller [30], Ghiba, Martin & Neff [49], Grabovsky &
Truskinovsky [53], Kriizik [73], Martin, Ghiba & Neff [79], Miiller [85], Miiller [86],
Parry [89], Voss, Martin, Ghiba & Neff [103]. A este respeito, na contribuicao B. &
Pedregal [11], a ndo negatividade de polinémios foi relacionada com a quasiconvexi-
dade e com a convexidade de caracteristica-1. De facto, utilizando a periodicidade



das fungoes teste u : [0, 1]Y — R™, podemos escrever

1
u(z) = Py Z sin(2mn - x) an, a, € R™,
ﬂ-nGZN
Vu(z) = Z cos(2mn - x) a, @n,
nezZN

e, consequentemente, a condi¢ao da quasiconvexidade podera ser escrita como

@(f,{an}):/Q Y £+Zcos(27m-x)an®n — (&) | dx.

neZN

Se restringirmos ainda mais a natureza de 1, para ser um polinémio de certo grau,
entao ¢ sera também um polinémio do mesmo grau, num certo nimero de variaveis
(possivelmente infinito), que deve ser ndo-negativo. Portanto, vemos que a questao
da nao negatividade dos polindémios podera ter alguma relevancia para a quasicon-
vexidade. Relativamente a convexidade de caracteristica-1, se 1 é suave, entao essa
condicao pode ser formulada, equivalentemente, na forma da chamada condicao de
Legendre-Hadamard
V() (a@n)®@(a®@n) >0

para cada matriz & € R™*V e vetores a € R™, n € RV,

O resultado principal deste trabalho diz respeito a utilizacao do célebre teorema
de Hilbert [59], sobre a caracterizagdo de polindmios nao-negativos em termos de
somas de quadrados, num teste para a convexidade de caracteristica-1 para inte-
grandos suaves definidos em matrizes reais 2 x 2. Relativamente a quasiconvexidade,
conseguiu-se provar que mesmo no caso dos polinémios homogéneos de quarto grau,
a quasiconvexidade nao pode ser reduzida a nao-negatividade de polinémios com um
numero finito fixo de varidveis.

Por fim, o foco foi colocado sobre a quasiconvexidade, avaliando até que ponto estas
ideias poderiam levar a algum novo avanco.

2.1.2 Principios A-variacionais

A propriedade de semicontinuidade inferior fraca pode ser tratada num quadro muito
mais geral, no qual um operador diferencial parcial linear de caracteristica constante
da forma

ov
Av = 25:‘4i5;; (1)



esta envolvido. O conceito de A-quasiconvexidade foi entao adequadamente intro-
duzido por Dacorogna [37], e demonstrado como necessério e suficiente por Fonseca
& Dacorogna [45], para a semicontinuidade inferior fraca de um funcional da forma

I(v) = /Q W (z, v(z)) dz. @)

sob a restri¢ao diferencial Av = 0, além de (eventuais) condigoes de fronteira ade-
quadas. A importancia de tal extensao nao pode ser subestimada, pois expande de
forma inacreditavel o quadro analitico. Para o caso particular A = curl, voltamos
ao caso gradiente classico pois v = Vu. Esta nova teoria estd agora muito bem
compreendida, cobrindo os desenvolvimentos mais fundamentais: medidas de Young
e medidas A-nulas, relaxamento, homogeneizacao, regularidade, dinamica, etc (ver
Baifa, Matias & Santos [3], Braides, Fonseca & Leoni [25], Conti & Gmeineder [34],
Dacorogna & Fonseca [38], Davoli & Fonseca [41]; [42], Philippis & Rindler [43], Fon-
seca, Leoni & Miiller [46], Guerra & Raita [55], Koumatos & Vikelis [71], Kramer,
Kromer, Kruzik & Pathé [72], Matias, Morandotti & Santos [80], Raita [95], entre
outros); mas, no entanto, problemas variacionais explicitos sob restrigdes diferenciais
mais gerais do tipo Av = 0 nao tém sido tratados de forma sistematica, provavel-
mente devido a falta de exemplos de certa relevancia em Andlise ou nas aplicagoes.
Na mesma linha, o conceito natural e direto de A-policonvexidade, tanto quanto po-
demos dizer, ndo tinha sido ainda tratado de forma explicita (exceto recentemente em
Guerra & Raita [55] e, numa forma diferente, em Boussaid, Kreisbeck & Schlémer-
kemper [24]), novamente possivelmente devido & falta de exemplos onde tal conceito
poderia ir além da convexidade simples, e ser usado de forma fundamental para mos-
trar a existéncia de solugoes para tais problemas variacionais. No trabalho B. &
Pedregal [9], a no¢ao de A-policonvexidade é apresentada e relacionada com a semi-
continuidade inferior dos funcionais integrais (2). A importancia deste trabalho vem
essencialmente de dois aspetos fundamentais: por um lado, as fungoes integrandas
policonvexas sao aquelas que asseguram a semicontinuidade inferior fraca de proble-
mas variacionais vetoriais, provenientes das aplicagoes, como provado por Ball [5];
por outro lado, a literatura disponivel geralmente lida com o caso em que o operador
A é o rotacional (curl), donde os campos A-nulos nada mais sao do que gradientes
e a nocao de A-quasiconvexidade reduz-se a quasiconvexidade usual de Morrey. Foi
entao proposta uma tal familia de problemas no caso div — curl, explorando a cor-
respondente condicao de A-policonvexidade como principal hipétese estrutural para
assegurar a semicontinuidade inferior fraca e os teoremas de existéncia de solugao ob-
tidos. Destacam-se também, além dos resultados tedricos conseguidos, os exemplos
analiticos considerados, que envolvem operadores que tinham sido, até ao momento,



pouco explorados na literatura. Em particular, quatro casos explicitos sao discuti-
dos, que ilustram os resultados obtidos, e nos quais as suas solugoes explicitas sao
calculadas e se revelam esclarecedoras.

2.1.3 Aproximagao numérica de problemas variacionais vetoriais

Outro topico fortemente relacionado tem a ver com a simulagao numeérica de solugoes
Otimas para problemas variacionais vetoriais. Na realidade, devido as dificuldades
intrinsecas em lidar com sistemas estacionarios nao-lineares de Equagoes Diferenciais
Parciais, existem poucas referéncias na literatura que tratem estes temas. O estudo
de problemas variacionais vetoriais é um dos capitulos mais complexos em Anélise
Aplicada. Este facto é bem conhecido tanto do lado da Matematica, bem como
do lado das aplicacoes (por exemplo, a Mecanica). Estes problemas variacionais
estao associados, através das suas condicoes de otimalidade de Euler-Lagrange, com
sistemas estacionarios nao-lineares de Equacgoes Diferenciais Parciais. De facto, das
duas formas conhecidas para lidar com tais sistemas diferenciais, o mais poderoso
provém diretamente dos problemas variacionais, conforme Ciarlet [32]. As condigdes
que garantem a semicontinuidade inferior fraca, para a aplicacao do método direto e
assim provar a existéncia de minimizantes, nos problemas vetoriais envolve condi¢oes
mais gerais do que apenas a simples convexidade (Ball [4]). Estes conceitos vetoriais
de convexidade estao ainda longe de serem bem entendidos.

Uma das principais aplicacoes de tais problemas variacionais vetoriais provém da
Mecanica nao-linear, mais precisamente, da hiper-elasticidade na qual os corpos po-
dem ser sujeitos a grandes tensoes e grandes deformagoes. E um facto que a densidade
da energia interna de tal comportamento material nao pode ser convexa e, consequen-
temente, outros conceitos de convexidade (em particular a policonvexidade) precisam
ser abordados.

As dificuldades apontadas tém um impacto tremendo nas aproximagoes numéricas.
Em particular, a falta de convexidade significa usualmente a falta de unicidade de
solu¢do (minimizante), e nao é garantido que os métodos computacionais standard
(maximo declive, gradiente conjugado, Newton-Raphson, etc) convirjam para os de-
sejados minimizantes globais. Mesmo assim, a aproximacao de tais solucoes é im-
portante nas aplicacoes. Recentemente, a simulacao de tais situacoes vetoriais na
hiper-elasticidade foi bem sucedida, pelo menos de um ponto de vista pratico, em-
bora falte ainda alguma andlise numérica: Bonet, Gil & Ortigosa [22], Hordk, Gil,
Ortigosa & Kruzik [62], Ortigosa, Gil, Bonet & Hesch [88], entre outros. Recente-
mente, B. & Pedregal foram bem sucedidos no tratamento de tais problemas vetoriais
em algumas situagoes selecionadas, nomeadamente em:



e Problemas de condutividade inversa em dimensao dois.

O problema de Calder6n [26] tem sido intensamente estudado nas ultimas
décadas. Tanto da perspetiva da Analise como das aplicagoes, oferece um
problema desafiante e atrativo. Muitos resultados analiticos fundamentais fo-
ram descobertos ao longo dos anos, culminando em Astala & Péivérinta [1].
Ver também Barceld, Faraco & Ruiz [19]. A perspetiva de utilizar técnicas
variacionais vetoriais em problemas inversos foi iniciada por Kohn & Vogelius
[70] e, posteriormente, as suas consequéncias para a aproximacao numérica
exploradas por Kohn & McKenney [69]. Apds este artigo seminal, diversas
variantes variacionais foram examinadas em diferentes contextos e estruturas:
Berenguer, Kunze, La Torre & Ruiz Galdn [20], Bonet, Gil & Ortigosa [22],
Borcea, Genetha & Yin [23], Kunze, La Torre, Levere & Ruiz Galén [74], Ma-
estre & Pedregal [77]. Em muitos casos, os principios variacionais envolvidos
necessitam relaxagao e, frequentemente, obtém-se diretamente através das (ou
relacionado com) ferramentas da teoria da homogeneizagdo. A proposta de
Maestre & Pedregal [77] é um pouco diferente no sentido em que um sistema
de equacoes diferenciais parciais nao linear foi o ponto de partida para estudar
um funcional nao convexo (de facto, nem sequer é quasiconvexo). Embora a
sua relaxacao tenha sido calculada de forma bastante explicita, tal informacao
revelou-se irrelevante para o funcional original nao convexo, cuja sucessao mi-
nimizante produziria solugoes aproximadas para o problema de condutividade
inversa. O contributo de B. & Pedregal [7] insere-se nesta linha de perspetivas
variacionais em problemas inversos e visa ultrapassar algumas das dificuldades
encontradas em Maestre & Pedregal [77] de um ponto de vista pratico. Em
particular, teve-se o objetivo de propor funcionais vetoriais que fossem policon-
vexos (a principal condigao suficiente para garantir a existéncia de solugoes para
problemas vetoriais variacionais) de modo a que nao necessitem de relaxacao;
ou funcionais simples que apesar de nao serem quasiconvexos ou policonvexos,
a sua simplicidade seja promissora para a aproximagao numeérica.

A ideia bésica de recuperar um coeficiente de condutividade desconhecido ~y(x)
através de um problema vetorial de dimensao dois provém da equacao vetorial
(pontual)

0 —1
Sempre que é possivel determinar um par de gradientes (Vuyi, Vuy) satisfa-
zendo a equacao vetorial anterior, dizemos que representam um coeficiente de



condutividade através do quociente

Note-se que, entao
. . (1
div(yVuy) = div <—Vu2) =0 em Q.
Y

As condigoes de fronteira devem também ser compativeis com (3). Tendo em
vista a determinagao de solugdes para (3), através de minimizantes de proble-
mas de variacionais vetoriais genuinos, em B. & Pedregal [7] foram estudados
diversos funcionais vetoriais:

1 |[Vul?
1 = ——d
1(w) /QQdetVu *
1
Ig(ll) = / 5 (Vul : VUQ>2 dX,
Q

I3(u) = /(qul\ |Vug| — det Vu) dx.
o

Além dos resultados analiticos mostrados, indicando pros e contras de cada fun-
cional, foram comparados os trés funcionais acima em problemas semelhantes
com o objetivo de examinar o seu desempenho. Os funcionais que obtiveram
melhor desempenho foram entao colocados em situagoes mais exigentes, para
testar sua capacidade de recuperar coeficientes de condutividade desconhecidos.

Equacgoes diferenciais de Pfaff em dimensao trés.

O campo das equacgoes diferenciais de Pfaff, embora seja uma area bastante
classica, é, em boa medida, um pouco desconhecida nos dias de hoje, pelo menos
em Analise. No entanto, é algo bem estabelecido em Geometria Diferencial
ou em Algebra. Embora formalmente formulado por Pfaff [94], o problema
ja era conhecido por Euler [44]. Tem sido abordado em textos cldssicos de
equagoes diferenciais (Goursat [51], Ince [64], Petrovskii [93], Sneddon [98]) a
nivel conceptual, sendo também conhecida a sua importancia e relagao com as
equacoes diferenciais parciais. A relevancia das equacoes de Pfaff em Geometria
Diferencial e Algebra parece, por outro lado, muito conhecida e solidamente
estudada em diversas fontes: Awane & Goze [2], Canadas-Pinedo & Ruiz [27],
Cartan [28], Han [58]. Do ponto de vista da Andlise, existem também alguns
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artigos interessantes e bastante classicos, bem como alguns mais recentes: para
além dos ja referidos, Darboux [39], Gérard & Ramis [48], Honda [61], Morando
& Sammarco [81]. Uma equagao diferencial de Pfaff é uma expressao da forma

N
szui(x)dxi:O, X = (v1,72,...,7n), (4)
i=1

para N fungoes u;(x). Uma variedade C' de dimensao k > 1 M diz-se uma
variedade integral de (4) se a 1-forma diferencial w se anula identicamente
em M. A equacao de Pfaff(4) é dita completamente integravel se existe uma
unica variedade integral de maior dimensao possivel N — 1 passando por cada
ponto xo € RY. De um ponto de vista mais pratico, tal variedade, pelo menos
localmente, é procurada através de uma parametrizacao desconhecida

X(t) : Q C RN_l — RN, 0e Q,X(O) = Xg,t = (tl,tg, C.. ,tN_l),

de tal forma que

u(x)-%:O, i=1,2,...,N—1, x(0)=xo. (5)
(2

Nesta forma, (5) pode ser considerado como um sistema muito especial de
equagoes diferenciais parciais de primeira ordem. No entanto, nesta forma h&
uma tremenda falta de unicidade de solugao, pois uma dada variedade admite
infinitas parametrizagoes.

Embora analiticamente, alguns factos fundamentais sejam ja conhecidos para
este tipo de problemas, tanto quanto sabemos nao houve até hoje nenhuma
tentativa conhecida de aproximar numericamente as miltiplas solucoes de (4).
Esta foi a nossa principal motivagao em B. & Pedregal [6]. A nossa proposta
tem uma natureza variacional, pois focamo-nos em minimizar um funcional de
erro da forma

B - [ > (- g—:) it (6)

sob a restrigao x(0) = xg, para um dado xo € RY.
Entre outros, estuddmos o caso de variedades bidimensionais em R3 que requer
uma condicao de integrabilidade fundamental

u-(VAu) =0 (7)
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para garantir a existéncia de solucoes locais em torno dos pontos xo € R3
onde o campo vetorial u(xg) # 0 ndo se anula identicamente. Finalmente,
trabalhou-se a aproximacao numeérica para alguns exemplos selecionados, nos
quais se foi bem sucedido, tendo sido obtidos resultados interessantes.

Além da estrutura particular explorada nestas contribuigoes, o tratamento numérico
pratico de verdadeiros problemas variacionais vetoriais é, de forma geral, sempre
interessante dada a falta de tais exemplos na literatura.

2.2 Sistemas Dinamicos Discretos

Os métodos da Algebra Linear tém sido utilizados desde ha muito tempo em sistemas
dinamicos discretos, quer envolvidos na definicao dos proprios sistemas — os subshifts
de tipo finito sao 6timos exemplos — quer como ferramentas para a resolugao de
problemas. E essa a ferramenta de base que utilizamos nos trabalhos relativos a esta
parte.

2.2.1 Autédmatos celulares

Desde os tempos de Ulam e von Neumann [87], que propuseram pela primeira vez o
conceito de autémato celular, passando pelo famoso livro de Wolfram [107], a estru-
tura simples dos autématos celulares atraiu investigadores de diversas areas. A razao
por detras da popularidade dos autématos celulares pode ser atribuida, em parte, a
sua simplicidade. Por outro lado, estas estruturas simples, quando iteradas varias
vezes, tém a capacidade de produzir padroes complexos que demonstram o potencial
de simular diferentes fenémenos naturais complexos. Dois desenvolvimentos notaveis
acerca dos automatos celulares sao devidos a Conway e a Wolfram. Na década de
1970, o matemético Conway propos o seu hoje famoso jogo da vida [47], que suscitou
um amplo interesse entre os investigadores. No inicio da década de oitenta, Wol-
fram estudou detalhadamente uma familia de regras simples de autématos celulares
unidimensionais (hoje famosas regras de Wolfram [106], numeradas de 0 a 255) e mos-
trou que mesmo estas regras locais simples sao capazes de emular comportamentos
complexos globais (ver, por exemplo, Wolfram [105]).

As aplicacoes de intervalos e o comportamento das aplicacoes de intervalos sob
iteracao sao também um assunto bem desenvolvido em sistemas dinamicos e na
teoria do caos, com diversas aplicagoes em muitos campos. Assuntos intimamente
relacionados s@o os sistemas de fungoes iteradas e fractais. Em B. & Ramos [12]
estudamos uma aplicacao do intervalo totalmente descontinua definida no intervalo
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[0, 1] que estd associada a uma deformagao da aplicacao shift em dois simbolos {0, 1},
que pode ser visto como um autémato celular codificado pela regra 226 de Wolfram.
A correspondéncia entre o autémato celular e a aplicacao de intervalo é obtida pela
representagao de um estado global como um nimero do intervalo [0, 1], expresso em
binario, num procedimento conhecido que pode ser consultado, por exemplo, nos
trabalhos anteriores B., Martinho & Ramos [17], [18], para a regra 184 de Wolfram.
A aplicacao do intervalo obtida tem um gréfico fractal e a sua estrutura recursiva
¢ determinada diretamente da regra do autémato. Sendo a aplicacao do intervalo
totalmente descontinua, ndo poderd existir uma particao de Markov finita (logo nao
existird também uma matriz de transicao finita correspondente). Para contornar
este problema, definimos uma sucessao de partigdes do intervalo (constituidas por
intervalos, de igual comprimento, determinados pela expansao binaria dos niimeros
reais do intervalo [0, 1]) e foram deduzidas as respetivas matrizes de transi¢do que
correspondem a acao da aplicacao do intervalo sobre a particao, obtidas através de
uma férmula de recorréncia. Ao utilizar esta abordagem, foi possivel determinar a
respetiva sucessao de valores préprios e respetivos vetores préprios (associados) di-
reitos e esquerdos. E também dado um procedimento que permite obter a funcgao
totalmente descontinua do intervalo como limite uniforme de uma certa sucessao de
fungoes seccionalmente afins. Conseguiu-se também determinar a funcao zeta de
Artin-Mazur para a aplicacao do intervalo. Os procedimentos deduzidos poderao ser
aplicados noutros casos, eventualmente a outras deformacoes do shift, induzidas por
regras elementares de automatos celulares unidimensionais.

2.2.2 Osciladores harmonicos lineares

Motivados pela participagao no projeto BRO-CQ - Controlo de Qualidade de Blo-
cos em Rochas Ornamentais e diretamente relacionado com a questao subjacente
que levou ao nascimento do mesmo, estudamos um problema de base na extracao
das rochas ornamentais, que tem a ver com o facto de 89 a 91% de toda a matéria
prima extraida nao ser aproveitada. Este problema induz diversos outros proble-
mas secunddrios, entre os quais o facto de os cerca de 10% de produto final ter
de compensar monetariamente 100% da extracao (encarecendo o produto) e, por
outro lado, levando a acumulagao de detritos em excesso nas pedreiras (devido a
nao haver até ao momento utilizagdo rentdvel para os mesmos). O grande dese-
quilibrio no aproveitamento da matéria prima deve-se ao facto de nao existir um
método para mapear a qualidade e caracteristicas dos blocos a extrair, sendo uma
atividade altamente experimental, pois, por assim dizer, nao é possivel prever a es-
trutura interior do bloco, nomeadamente saber qual a melhor direcao de corte para
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evitar possiveis fraturas e inomogeneidades da mesma. A nossa contribuicdao nesta
area visa estudar possiveis modelos que possam simular essas mesmas faltas de ho-
mogeneidade/fraturas. Estuddmos sistemas discretos de massa-mola compostos por
cadeias de osciladores harmonicos unidimensionais. Este tipo de sistema pode ser
utilizado para aproximar o comportamento dinamico dos sistemas continuos. Diver-
sas aplicagoes podem ser observadas em Clough & Penzien [33] e Davini [40], em
relacdo as vibragoes nas estruturas e bandas eldsticas, respetivamente, Kittel [68],
Maradudin, Montroll & Weiss [78] ou Lepri [75] em relagao a fisica do estado sélido
ou a fisica estatistica, e Huang, Sun & Huang [63], Yao, Zhou & Hu [104] ou Vo
et al. [102], em relagdo aos metamateriais, entre outros; problemas inversos foram
considerados em Chu & Golub [31], Gladwell [50], Gray & Wilson [54], Hald [57],
Hochstadt [60] ou Rio & Kudryavtsev [97]. Assumimos que as partes elementares
do sistema sao cadeias de osciladores idénticos, que serao os blocos de construcao
para a criacao de sistemas mais complexos. Cada cadeia é caracterizada pelas suas
caracteristicas fisicas: massa total, massa das particulas, constante da mola, niimero
de osciladores e comprimento. Em B. & Ramos [10], considerdmos o problema de
determinar os vetores e valores proprios para uma cadeia de osciladores harménicos
obtidos a partir do acoplamento de duas cadeias homogéneas, através de um processo
de composicao. Este processo de composicao consiste na acoplamento das cadeias
através de uma particula com massa de ligacao com uma determinada massa m, ou
de uma mola de colagem com uma determinada constante elastica. Mostramos como
determinar, analiticamente, a solucao do novo sistema nao homogéneo em termos
dos vetores e valores proprios das cadeias (homogéneas) que as compodem, que se
supoe serem conhecidos ou facilmente determinados. Mais tarde, em B. & Ramos
[8], estendemos os nossos resultados anteriores ao caso dos osciladores harménicos
lineares amortecidos, obtendo-se assim solugoes explicitas para o sistema amortecido
acoplado em termos das solugoes das cadeias homogéneas originais que constituem o
sistema. Assim sendo, podemos analisar como o sistema altera o seu comportamento
dinamico em termos do comportamento dinamico das partes constituintes.

2.3 Trabalho futuro

De momento estao em curso os seguintes trabalhos:

-Com Lufs Romao (que entregou recentemente a sua dissertacao de mestrado) e C.
Correia Ramos, estd em fase final de preparacao um artigo sobre autématos celulares
para a simulac¢do do trafego urbano (2025).

e [L.B., C. C. Ramos, L. Romao, Cellular automata traffic models with applicati-
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ons to the city of Evora. (em preparagao, 2025)

-Com C. Pimentel (que recentemente iniciou o seu projeto de tese de doutoramento)
e P. Pedregal, esta em fase final de preparacao um artigo sobre problemas de condu-
tividade inversa em dimensao dois.

e LL.B., P. Pedregal, C. Pimentel, Further computational tests for inverse con-
ductivity problems based on vector, variational principles in the 2D case. (em
preparagao, 2025)

-Com P. Pedregal, estao em preparagao dois artigos, um com o objetivo de ser subme-
tido até ao final de 2026, sobre superficies minimas, e outro a ser submetido nao antes
de 2026, sobre semicontinuidade inferior fraca e relaxacao de funcionais integrais.

e L.B., P. Pedregal, Minimal surfaces. (em preparacao, 2026)

e L.B., P. Pedregal, Weak lower semicontinuity and relaxation of integral functi-
onals. (em preparacgao, 2026+)

14



Referéncias

1]

2]

K. Astala, L. Paivarinta, Calderdn’s inverse conductivity problem in the plane.
Ann. of Math. (2) 163 (1) (2006) 265-299.

A. Awane, M. Goze, Pfaffian Systems, k-symplectic Systems. Kluwer Academic
Publishers, Dordrecht, 2000.

M. Baia, J. Matias, P.M. Santos, Characterization of generalized Young measures
in the A-quasiconvezity contest. Indiana Univ. Math. J. 62 (2013), no. 2, 487-521.

J. M. Ball, Some open problems in FElasticity, Geometry, mechanics, and dyna-
mics, 359, Springer, New York, 2002.

J. M. Ball, Convezity conditions and existence theorems in nonlinear elasticity.
Archive for Rational Mechanics and Analysis 63 (1977) 337-403.

L. Bandeira, P. Pedregal, Pfaffian equations: a variational perspective. Differen-
tial and Integral Equations, Volume 38 (2025), Pages 643-668

L. Bandeira, P. Pedregal, Some computational tests for inverse conductivity pro-
blems based on wector, variational principles: The 2D case. Mathematics and
Computers in Simulation, Volume 218 (2024), Pages 704-721.

L. Bandeira, C. Correia Ramos, Coupling homogeneous chains of damped harmo-
nic oscillators. Meccanica 59, 19-32 (2024).

L. Bandeira, P. Pedregal, A-Variational Principles. Milan Journal of Mathema-
tics 91, 293-314 (2023).

[10] L. Bandeira, C. C. Ramos, Non-homogeneous chain of harmonic oscillators.

Mathematics in Computer Science 16 (2022), no. 1, Paper No. 3, 17 pp.

[11] L. Bandeira, P. Pedregal, The role of non-negative polynomials for rank-one con-

vezity and quasi convezity. Journal of Elliptic and Parabolic Equations 2 (2016),
no. 1-2, 27-36.

[12] L. Bandeira, C. C. Ramos, Transition matrices characterizing a certain totally

discontinuous map of the interval. Journal of Mathematical Analysis and Appli-
cations 444 (2016), no. 2, 1274-1303.

[13] L. Bandeira, C. C. Ramos, On the spectra of certain matrices and the iteration

of quadratic maps. SeMA Journal 67 (2015), 51-69.

15



[14] L. Bandeira, P. Pedregal, Quasiconvezity: the quadratic case revisited, and some
consequences for fourth-degree polynomials. Advances in Calculus of Variations 4
(2011), no. 2, 127-151.

[15] L. Bandeira, A. Ornelas, On the characterization of a class of laminates for 2x2
symmetric gradients. Journal of Convex Analysis 18 (2011), no. 1, 37-58.

[16] L. Bandeira, P. Pedregal, Finding new families of rank-one convex polynomials.
Annales de I'Institut Henri Poincaré (C) Analyse Non Linéaire 26 (2009), no. 5,
1621-1634.

[17] L. Bandeira, M. J. Martinho, C. C. Ramos, Interval maps associated to the cellu-
lar automaton rule 184. Chaos, Solitons and Fractals 41 (2009), no. 3, 1501-15009.

[18] L. Bandeira, M. J. Martinho, C. C. Ramos, Interval maps and cellular auto-
mata. Discrete dynamics and difference equations, 173-180, World Sci. Publ.,
Hackensack, NJ, 2010.

[19] T. Barceld, D. Faraco, A. Ruiz, Stability of Calderdn inverse conductivity pro-
blem in the plane. J. Math. Pures Appl. (9) 88 (6) (2007) 522-556.

[20] M. Berenguer, H. Kunze, D. La Torre, M. Ruiz Galédn, Galerkin method for
constrained variational equations and a collage-based approach to related inverse
problems. J. Comput. Appl. Math. 292 (2016) 67-75.

[21] J. Bonet, A. J. Gil, R. Ortigosa, A computational framework for polyconvez large
strain elasticity. Comput. Methods Appl. Mech. Engrg. 283 (2015), 1061-1094.

[22] J. Bonet, A. Gil, R. Ortigosa, A computational framework for polyconvex large
strain elasticity. Comput. Methods Appl. Mech. Engrg. 283 (2015) 1061-1094.

[23] L. Borcea, A.G. Genetha, Z. Yin, Inverse Problems 19 (5) (2003) 1159-1184.

[24] O. Boussaid, C. Kreisbeck, A. Schlomerkemper, Characterizations of Symmetric
Polyconvezity. Arch. Ration. Mech. Anal. 234(1), 1-26, 2019.

[25] A. Braides, 1. Fonseca, G. Leoni, A-quasiconvezity: relazation and homogeniza-
tion. ESAIM Control Optim. Calc. Var. 5 (2000), 539-577.

[26] A. P. Calderén, On an inverse boundary value problem. Seminar on Numeri-
cal Analysis and its Applications to Continuum Physics, Soc. Brasileira de Ma-
tematica, Rio de Janeiro, (1980), 65-73.

16



[27] M.A. Canadas-Pinedo, C. Ruiz, Fquivalence of Pfaffian flag systems in dimen-
sion five. (Spanish) Florentino Garcia Santos: in memoriam, 43-50, Ed. Univ.
Granada, Granada, 2011.

[28] E. Cartan,
[29] . Bull. Soc. Math. France, 59 (1931), 88-118.

[30] N. Chaudhuri, S. Miiller, Rank-one convexity implies quasi-convezity on certain
hypersurfaces. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 1263-1272.

[31] M. T. Chu, G. H. Golub (2005) Inverse eigenvalue problems: theory, algorithms,
and applications. Numerical Mathematics and Scientific Computation. Oxford
University Press, New York

[32] Ph. G. Ciarlet, Mathematical Elasticity. Vol. 1. Three-dimensional elasticity.
Studies in Mathematics and its Applications, 20. North-Holland Publishing Co.,
Amsterdam, 1988

[33] R. W. Clough, J. Penzien (1975) Dynamics of Structures. McGraw-Hill Inter-
national Editions, Singapore

[34] S. Conti, F. Gmeineder, A-quasiconvezity and partial reqularity. Calc. Var. Par-
tial Differential Equations 61 (2022), no. 6, Paper No. 215, 25 pp.

[35] B. Dacorogna, Direct methods in the Calculus of Variations, Springer, 2008.

[36] B. Dacorogna, J. Douchet, W. Gangbo, J. Rappaz, Some examples of rank one
convex functions in dimension two, Proc. Roy. Soc. Edinburgh Sect. A 114 (1-2)
(1990) 135-150.

[37] B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity for Nonlinear
Functionals, Springer Lecture Notes in Mathematics 922, 1982

[38] B. Dacorogna, 1. Fonseca, A-B quasiconvexity and implicit partial differential
equations. Calc. Var. Partial Differential Equations 14 (2002), no. 2, 115-149.

[39] G. Darboux, Sur le probléme de Pfaff. I and II, Bull. Sci. Math. Astron., 6
(1882), 14-36, 49-62 (translated by D. H. Delphenich).

[40] C. Davini (1996) Note on a parameter lumping in the vibrations of elastic beams.
Rendiconti Istituto Matematico Universita‘® di Trieste 28 83-99

17



[41] E. Davoli, I. Fonseca, Periodic homogenization of integral energies under space-
dependent differential constraints. Port. Math. 73 (2016), no. 4, 279-317

[42] E. Davoli, 1. Fonseca, Homogenization of integral energies under periodically
oscillating differential constraints. Calc. Var. Partial Differential Equations 55
(2016), no. 3, Art. 69, 60 pp

[43] G. De Philippis, F. Rindler, On the structure of A-free measures and applicati-
ons. Ann. of Math. (2) 184 (2016), no. 3, 1017-1039.

[44] L. Euler, Institutiones Calculi Differentialis. G. Kowalewski (ed.), Opera Omnia
Ser. 1; opera mat., 10, Teubner (1980) pp. Chapt. IX ((in Latin)).

[45] 1. Fonseca, S. Miiller, A-quasiconvezity, lower semicontinuity, and Young mea-
sures. STAM J. Math. Anal. 30 (1999), no. 6, 1355-1390

[46] 1. Fonseca, G. Leoni, S. Miiller, A-quasiconvezity: weak-star convergence and
the gap. Ann. Inst. H. Poincaré C Anal. Non Linéaire 21 (2004), no. 2, 209-236.

[47] M. Gardner. The Fantastic Combinations of John Conway’s New Solitaire Game
‘Life’. Scientific American 223 (1970): 120-123.

[48] R. Gérard and J.-P. Ramis, Equations différentielles et systemes de Pfaff dans
le champ compleze. 11,” (French) [Differential equations and Pfaffian systems in
the complex field. IT] Papers presented at the seminar held in Strasbourg, Lecture
Notes in Mathematics, 1015, Springer-Verlag, Berlin, 1983.

[49] L.-D. Ghiba, R. J. Martin, P. Neff, Rank-one convezity implies polyconvexity in
isotropic planar incompressible elasticity. J. Math. Pures Appl. (9) 116 (2018),
88-104.

[50] G. M. L. Gladwell (2004) Inverse problems in vibration. (Solid Mechanics and
Its Applications vol 119) 2nd edn (Dordrecht: Kluwer)

[51] E. Goursat, Legons sur le Probléme de Pfaff. Librairie Scientifique J. Hermann,
Paris, 1922.

[52] Y. Grabovsky, From microstructure-independent formulas for composite materi-
als to rank-one convex, nonquasiconvex functions. Archive for Rational Mechanics
and Analysis 227 (2018), no. 2, 607-636.

18



[53] Y. Grabovsky, L. Truskinovsky, When rank-one convexity meets polyconve-
zity: an algebraic approach to elastic binodal. J. Nonlinear Sci. 29 (2019), no.
1, 229-253.

[54] L. J. Gray, D. G. Wilson (1976) Construction of a Jacobi matriz from spectral
data. H Linear Algeb Appl 14:131

[55] A. Guerra, B. Raita, Quasiconvezity, null Lagrangians, and Hardy space inte-
grability under constant rank constraints. Arch. Ration. Mech. Anal. 245 (2022),
no. 1, 279-320

[56] S. Gutiérrez, A necessary condition for the quasiconvezity of polynomials of
degree four. J. Convex Anal. 13 (1) (2006) 51-60.

[57] O. Hald (1976) Inverse eigenvalue problems for Jacobi matrices. Linear Algeb
Appl 14:63-85

[58] C.-K. Han, Foliations associated with Pfaffian systems. Bull. Korean Math. Soc.,
46 (2009), 931-940.

[59] D. Hilbert, Uber die Darstellung Definiter Formen als Summe von Formenqua-
draten. Mathematische Annalen, 32 (1888), 342-250

[60] H. Hochstadt (1967) On some inverse problems in matriz theory. Point mass
identification in rods and beams from minimal frequency measurements. Arch.
Math 18:201-7

[61] T. Honda, On the normal forms for Pfaffian systems. Hokkaido Math. J., 35
(2006), 815-845.

[62] M. Horédk, A. J. Gil, R. Ortigosa, M. Kruzik, A polyconver transverselyisotro-
pic invariant-based formulation for electro-mechanics: stability, minimisers and

computational implementation. Comput. Methods Appl. Mech. Engrg. 403 (2023),
part A, Paper No. 115695, 36 pp.

[63] H. H. Huang, C. T. Sun, G. L. Huang (2009) On the negative effective mass
density in acoustic metamaterials. Int J Eng Sci 47:610-617

[64] E. L. Ince, Ordinary Differential Equations. Dover Publications, New York,
1944.

[65] T. Iwaniec, Non-linear Cauchy-Riemann operators in R™. Trans. AMS 354
(2002), 1961-1995

19



[66] D. Kinderlehrer, P. Pedregal, Characterizations of Young measures generated by
gradients. Arch. Rational Mech. Anal. 115 (1991), no. 4, 329-365

[67] B. P. Kitchens Symbolic dynamics. One-sided, two-sided and countable state
markov shifts. Universitext. Berlin: Springer-Verlag; 1998.

[68] C. Kittel (1996) Introduction to solid state physics. Tth Edition, Wiley

[69] R.V. Kohn, A. McKenney, Numerical implementation of a variational method
for electrical impedance tomography. Inverse Problems 6 (1990) 389-414.

[70] R.V. Kohn, M. Vogelius, Relazation of a variational method for impedance com-
puted tomography. Comm. Pure Appl. Math. 40 (1987) 745-777.

[71] K. Koumatos, A. P. Vikelis, A-quasiconvezity, Goarding inequalities, and ap-
plications in PDE constrained problems in dynamics and statics. SIAM J. Math.
Anal. 53 (2021), no. 4, 4178-4211.

[72] J. Krémer, S. Kromer, M. Kruzik, G. Pathé, A-quasiconvezity at the boundary
and weak lower semicontinuity of integral functionals. Adv. Cale. Var. 10 (2017),
no. 1, 49-67.

[73] M. Kruzik, On the composition of quasiconvex functions and the transposition.
J. Convex Anal. 6 (1999), no. 1, 207-213.

[74] H. Kunze, D. La Torre, K. Levere, M. Ruiz Galan, Inverse problems via the gene-
ralized collage theorem for vector-valued Lax—Milgram-based variational problems.
Math. Probl. Eng. (2015) 764643, 8 pp.

[75] S. Lepri (editor), Thermal transport in low dimensions. (2016) From statistical
physics to nanoscale heat transfer, (Springer-Verlag, Berlin, Heidelberg, New
York). Lecture Notes in Physics 921:239

[76] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding. Cam-
bridge: Cambridge University Press; 1995.

[77] F. Maestre, P. Pedregal, Some non-linear systems of PDEs related to inverse
problems in conductivity, Calc. Var. Partial Differential Equations 60 (3) (2021)
26, Paper No. 110.

[78] A. A. Maradudin, E. W. Montroll, G. H. Weiss (1963) Solid state physics, Sup-
plement 3, Theory of Lattice Dynamics in the Harmonic Approximation. New
York: Academic Press

20



[79] R. J. Martin, I.-D. Ghiba, P. Neff, Rank-one convezity implies polyconvezity
for isotropic, objective and isochoric elastic energies in the two-dimensional case.
Proc. Roy. Soc. Edinburgh Sect. A 147 (2017), no. 3, 571-597.

[80] J. Matias, M. Morandotti, P. M. Santos, Homogenization of functionals with
linear growth in the context of A-quasiconvezity. Appl. Math. Optim. 72 (2015),
no. 3, 523-547.

[81] P. Morando, S. Sammarco,
[82] . Acta Appl. Math., 120 (2012), 255-274.

[83] C. B. Morrey, Quasiconvexity and the lower semicontinuity of multiple integrals.
Pacific J. Math. 2 (1952), 25-53.

[84] C. B. Morrey, Multiple Integrals in the Calculus of Variations. Springer 1966.

[85] S. Miiller, Rank-one convexity implies quasiconvexity on diagonal matrices. In-
ternat. Math. Res. Notices 20 (1999), 1087-1095.

[86] S. Miiller, Quasiconvezity is not invariant under transposition. Proc. Roy. Soc.
Edinburgh Sect. A 130 (2000), no. 2, 389-395.

[87] J. V. Neumann. The Theory of Self-Reproducing Automata. A. W. Burks (ed),
Univ. of Illinois Press, Urbana and London, 1966.

[88] R. Ortigosa, A. J. Gil, J. Bonet, C. Hesch, A computational framework for
polyconvex large strain elasticity for geometrically exact beam theory. Comput.
Mech. 57 (2016), no. 2, 277-303

[89] G. P. Parry, On the planar rank-one convezity condition. Proc. Roy. Soc. Edinb.
A 125 (1995), 247-264.

[90] P. Pedregal, 1996 Some remarks on quasiconvezity and rank-one convexity. Proc.
Roy. Soc. Edinb., 126A, n5, 1055-65.

[91] P. Pedregal, Laminates and microstructure. European J. Appl. Math. 4 (1993),
no. 2, 121149

[92] P. Pedregal, and V. Sverdk, A note on quasiconvezity and rank-one convexity in
the case of 2 x 2 matrices. J. Convex Anal. 5 (1998), 107-117.

21



(93] I.G. Petrovskii, Ordinary Differential Equations. Prentice-Hall (1966) (Transla-
ted from Russian).

[94] J.F. Pfaff, Berl. Abh. (1814-1815) pp. 76-135

[95] B. Raita, Potentials for A-quasiconvexity. Calc. Var. Partial Differential Equa-
tions 58 (2019), no. 3, Paper No. 105, 16 pp

[96] C. C. Ramos, L. Bandeira, Harmonic oscillations on non-homogeneous media.
International Journal of Applied Mathematics and Statistics (2018), Vol. 57, Issue
5, 1-13.

[97] R. Rio, M. Kudryavtsev (2012) Inverse problems for Jacobi operators: I. Interior
mass-spring perturbations infinite systems. Inver Prob 28

[98] L.N. Sneddon, Elements of Partial Differential Equations. McGraw-Hill Book
Co., Inc., New York-Toronto-London, 1957.

[99] V. Sverdk, Rank-one convezity does not imply quasiconvezity. Proc. Roy. Soc.
Edinburgh Sect. 120 A (1992), 293-300

[100] L. Van Hove, Sur lextension de la condition de Legendre du calcul des va-
riations aux intégrales multiples a plusieurs fonctions inconnues. Nederl. Akad.
Wetensch. Proc. 50 (1947), 18-23.

[101] L. Van Hove, Sur le signe de la variation seconde des intégrales multiples a
plusieurs fonctions inconnues. Acad. Roy. Belgique. Cl. Sci. Mém. Coll. 24 (1949),
68.

[102] N. H. Vo, T. M. Pham, H. Hao, K. Bi, W. Chen (2022) A reinvestigation of
the spring-mass model for metamaterial bandgap prediction. Int J Mech Sci, 221

[103] J. Voss, R- J. Martin, I.-D. Ghiba, P. Neff, Morrey’s conjecture for the planar
volumetric-isochoric split: least rank-one convexr energy functions. J. Nonlinear
Sci. 32 (2022), no. 5, Paper No. 76, 49 pp.

[104] S. Yao, X. Zhou, G. Hu (2008) Ezperimental study on negative effective mass
in a 1D mass-spring system. New J Phys 10(4):11

[105] S. Wolfram, Cellular automata as models of complezity. Nature 311, 419-424
(1984)

22



[106] S. Wolfram. Theory and Applications of Cellular Automata. World Scienti
fic, Singapore, 1986.

[107] S. Wolfram. A New Kind of Science. Wolfram Media, Inc, 2002.

23



		2025-09-02T20:00:58+0100




