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I hereby submit to the journal Environment Research the manuscript entitled “Stream 

sediments pollution: a compositional baseline assessment – the Caveira mine, Portugal”. The 

manuscript tackles an important topic regarding natural hazards namely what concerns a 

better understanding of the trends of relative enrichment and Potentially Toxic Elements 

(PTE) fate related to old mining activities. The methodological approach developed can be 

easily applied to other areas under acid waters’ drainage and is a key support tool for 

decision-makers. 
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describes the original work and we all confirm that results have not been published elsewhere 
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Abstract 12 

A high concentration of Potentially Toxic Elements (PTEs) can affect ecosystem health 13 
in many ways. It is therefore essential that spatial trends of pollutants are assessed and 14 
controlled. Two questions must be addressed when quantifying pollution. How to define 15 
a non-polluted sample? and, how to reduce the problems’ dimensionality. Since the 16 
concentration of chemical elements is compositional, a compositional approach was 17 
used as the attributes vary together. A novel Compositional Pollution Indicator (CPI) 18 
based on Compositional Data (CoDa) principles such as sparsity and simplicity as 19 
properties, was computed. A dataset of 33 stream-sediment samples was collected from 20 
within 0 to 10 cm depth, in a grid of 1Km x 1Km, and twelve chemical elements were 21 
analyzed. Concentrations, reaching 3.8% Pb, 750µgg-1 As, and 340 µgg-1 Hg, were 22 
obtained near the mine tailings. The methodological approach implied the geological 23 
background selection in terms of a trimmed subsample that can be assumed as non-24 
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criteria and previous studies (As, Zn, Pb, and Hg). Finally, a sequential stochastic 26 
Sequential Gaussian Simulation was performed on the new CPI. The results of the 27 
performed hundred simulations are summarized through the mean image maps and the 28 
probability maps of exceeding a given statistical threshold, thus, allowing the 29 
characterization of the spatial distribution and associated variability of the CPI. A better 30 
understanding of the trends of relative enrichment and PTEs’ fate is discussed. 31 
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1. Introduction 44 

Potentially toxic elements (PTE) constitute a significant liability in different environmental 45 

sectors. Over the past decades, the cumulative environmental impact has been 46 

enormous. The problem of PTEs in stream sediments has led during the time to an 47 

exponential concentration increase and, therefore, excelled the human and 48 

environmental risks (Antoniadis et al., 2017; Kumudunis et al., 2020). Mining and heavy 49 

industrial activities may potentiate these high observed levels of PTEs and be the origin 50 

of numerous sources of contamination (Boente et al., 2022, Carvalho et al. 2022, Boente 51 

et al., 2018). Thus, in recent decades, researchers have invested in the development of 52 

new techniques to offer accurate scenarios of the spatial distribution of PETs. The 53 

definition of geochemical backgrounds and the identification of enrichment sources are 54 

key to the accomplishment of this objective (Wang et al., 2021; McKinley et al., 2016). 55 

Visualization of spatial-temporal distribution models using simulated maps is an 56 

important tool for the visualization and depiction of pollutants. The definition of 57 

vulnerability and risk hot clusters may act as the basis for supporting environmental 58 

policy-making in complex scenarios (Boente et al., 2020, Albuquerque et al., 2017, 59 

McKinley et al., 2016). In the area of soil sediment science, a common strategy for 60 

describing the distribution of PTEs is to map a single-component synthesis new variable 61 

called indices or indicators. Unfortunately, usually, the compositional nature of the 62 

geochemical data is considered (Pawlowsky-Glahn et al., 2015, Filzmoser et al., 2009,). 63 

In most cases, these indicators are related to the study of individual elements, without 64 

considering the existing dependence between the concentrations of all elements in the 65 

same set. usually use The non-compositional indices often used to study geochemical 66 

data are the Geoaccumulation Index (Muller, 1969), the Enrichment Factor (Sucharova 67 

et al., 2012), or the Single Pollution Index (SPI) (Hakanson, 1980), reviewed in Kowalska 68 

et al. (2018). Nevertheless, it is well known that a traditional statistical approach using 69 

direct raw data can be misleading (Chayes 1962, 1971). Aitchison and his fundamental 70 
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work on the method of logarithmic ratio (1982, 1986) answered these questions. 71 

Theories of composition data (CoDa) have enhanced the understanding of the sampling 72 

space of composition data and their corresponding structure (Pawlowsky-Glahn and 73 

Egozcue 2001). Representations of data considering pairwise log ratios (pwlr), isometric 74 

lg-ratio coordinates (ilr), centered log-ratio coordinates (clr), and additive log-ratio 75 

coordinates (alr) are statistically robust approaches to deal with the compositional nature 76 

of chemical concentration data (Pawlowsky-Glahn and Egozcue, 2001; Egozcue et al., 77 

2003; Buccianti and Grunsky, 2014). The compositional approach (CoDa) is well-78 

represented in various fields of research in environmental science, such as ecotoxicology 79 

(Mullineaux et al., 2021), urban impacts (Cicchella et al., 2020), water quality 80 

management (Wei et al., 2018), and human health (Tepanosyan et al., 2020, Pawlowsky-81 

Glahn and Buccianti, 2011; Filzmoser et al., 2021). Recently the adoption of 82 

compositional indicators for PTEs soil pollution characterization is increasing (Boente et 83 

al., 2022, Petrik et al., 2018). Compositional indicators involving geochemical baselines 84 

definition offer a valuable contribution as they are scale-invariant and sub-85 

compositionally coherent, meaning that a change in the concentration’s unit will not 86 

modify the study’s results (Pawlowsky-Glahn et al., 2015).  87 

This research introduces a new Compositional Pollution Indicator (CPI) of riverine 88 

sediments, built to characterize pollution in the Caveira mine in southern Portugal, using 89 

the approach developed by Boente et al. (2022) corresponding to a balance of elements 90 

chosen through expert criteria although respecting the same CoDa principles.  91 

2. Material and Methods 92 

2.1 Characteristics of the study area and the data set 93 

The studied sector is part of the Portuguese Iberian Pyrite Belt and is an example of 94 

post-mining European areas back to the 1990s. Mining activity ceased mainly because 95 

of ore exhaustion and more profitable methods worldwide which resulted in ore price 96 
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reduction and made local mining activities infeasible (Martins and Oliveira, 2000). 97 

Therefore, major pollution problems related to metal dispersion and mine waste 98 

management are noteworthy. The geological sequence at Caveira mine which closed 99 

back in the 1980s, corresponds from bottom to top to phyllites and quartzites (PQG), 100 

followed by a volcanic sedimentary complex sequence (VSC) unit (Late Famennian) 101 

represented by pyroclastics, rhyolitic lavas, tuffs, dark grey, and siliceous shales, and 102 

rare jaspers. Intruding diabase rocks are spotted in the northern sector. (Fig. 1). The 103 

massive sulfide deposits that were exploited in the region occurred in the vicinity of felsic 104 

volcanic rocks. The Mértola formation with Visean age, overlays the CVS and 105 

corresponds to a flysch sequence, consisting of sandstones alternating with shales and 106 

thin-bedded siltstones. From a structural point of view, the whole sequence is part of the 107 

South Portuguese Zone, a thin-skinned fold and thrust belt, with Variscan age. Tailings, 108 

and associated waste rock, resulting from 129 years of pyrite and Cu mining, are 109 

scattered along the Grândola Creek. The semi-arid climatic conditions encompass high 110 

erosion of residues by surface water, primarily during rainfall, causing serious 111 

contamination of the Grândola stream and its tributaries, conducted to the degradation 112 

of sediments (Ferreira da Silva et al, 2015). 113 

 114 

Fig 1. Study area and collected sample’s location. 115 
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A dataset of 33 bottom sediment samples distributed over small and narrow creeks two 116 

of them flowing by the mine tailings pile and the larger Grândola stream, of which they 117 

are tributaries. These streams belong to the Sado River Basin, the second-largest 118 

hydrographical basin in Southern Portugal. Samples were collected from within 0 to 10 119 

cm depth with an environmental hand soil sampling kit (#209.55, AMS), in a grid of 1Km x 120 

1Km and twelve chemical elements, including PTEs of variable toxicity (As, Cd, Co, Cr, 121 

Hg, Mn, Ni, Pb, Zn, V) and major elements from lithogenic sources (Fe, Al), were 122 

analyzed in preserved samples at about 4°C. The most extractable forms of metals 123 

(except for Hg) were obtained by partial digestion with aqua regia (HCl and HNO3) in a 124 

high-pressure microwave digestion unit (Anton Paar Multiwave PRO) following the US 125 

EPA (2007) Method 3051A. Metals and As were analyzed by optical emission 126 

spectroscopy with an inductive plasma source (ICP-OES, Perkin-Elmer OPTIMA 8300), 127 

using yttrium as an internal standard. The accuracy and analytical precision of all the 128 

analyses have been checked by the analysis of reference materials and duplicate 129 

samples in each analytical set. 130 

Mercury (Hg) was analyzed by a mercury analyzer (NIC MA-3000) based on thermal 131 

decomposition, gold amalgamation, and cold vapor atomic absorption spectroscopy 132 

detection. Sampling was followed by immediate readings of pH and redox potential 133 

values in wet samples, using a portable multi-parameter Consort, C5020 (SP10T model 134 

for pH, SP50X model for redox potential). In samples with insufficient moisture for direct 135 

pH readings, this parameter was measured in water–sediment suspension (2.5:1), in the 136 

laboratory.  Respecting to samples’ chemistry, the dataset includes PTEs of variable 137 

toxicity (Fabian et al., 2014). The set of 12 elements was reported across the 33 sampling 138 

points, resulting in a 12-part composition that is assumed to represent the stream 139 

sediments.  140 
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2.2 Compositional Pollution Indicator (CPI) construction 141 

The first fundamental principles of composition data are to be found in the founding work 142 

of Aitchison (1986). These initial contributions are explained and expanded into general-143 

purpose works such as Pawlowsky-Glahn et al. (2015); Boogaart van den and Tolosana-144 

Delgado (2013); Filzmoser and Hron (2011); Pawlowsky-Glahn and Buccianti (2011) and 145 

Pawlowsky-Glahn and Serra (2019). 146 

The analysis of a stream sediment sample, given by its chemical composition should be 147 

conducted under the assumption that these data are compositional. As a result, when 148 

performing data analysis, the functions used to describe the composition should be 149 

invariant under multiplication by a positive constant (Boente et al., 2022). Also, any 150 

composition can be expressed in proportions (components adding to 1) without adding 151 

or losing any information, irrespective of the units in which the data were initially 152 

represented.  153 

The chemical composition of a sample of riverine sediments in units such as mg/kg 154 

should be performed assuming that these data are compositional. Moreover, the 155 

conversion of units from mg/kg to g/kg, as an example, must not change the information 156 

in the sample. This is summed up in one of the principles of CoDa analysis, named the 157 

Principle of Scale Invariance. Thus, when analyzing the data, the functions used to 158 

describe the composition should be invariantly multiplied by a positive constant. 159 

Consequently, any composition can be expressed in proportions (components adding 1) 160 

without adding or losing information regardless of the units in which the data were 161 

originally reported. A second assumption is known as Sub compositional Coherence 162 

Principle. The whole periodic table is never presented, only a subset of elements is 163 

measured, and this subset may change in time and the field. The elements observed 164 

form a composition and any subassembly of the same is a sub-composition, again 165 

subject to the Principle of Scale Invariance. Analyses of initial composition or sub-166 
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composition should lead to coherent conclusions describing the role of common 167 

elements (Aitchison, 1986)  168 

The CPI balance was obtained based on expert criteria attending a selection of elements 169 

(Boente et al., 2022), of which some are considered pollutants while others are not. In 170 

the case of the Caveira mine, the main contaminants were selected from typical 171 

pollutants namely, As, Zn, Pb, and Hg, while Al and Fe were selected as the main natural-172 

source elements (or non-pollutants). Based on this previous study, the selected balance, 173 

CPI, was constructed as follows: 174 

CPI = √
4

3
ln (

(𝐴𝑠 Zn Pb Hg)1/4

(𝐴l 𝐹𝑒)
1
2

)       (1) 175 

2.3 Spatial modeling – geostatistical approach 176 

The computed Compositional Pollution Indicator (CPI) is unbounded, a real random 177 

variable. Therefore, it fulfills the assumptions underlying a conventional geostatistical 178 

approach. Their spatial probability patterns were computed following a two-step 179 

geostatistical modeling method: 1. Structural analysis and experimental variograms 180 

computation (Journel and Huijbregts,1978) followed by 2. Sequential Gaussian 181 

Simulation (SGS) is used as a stochastic simulation algorithm over a 100×100 Km grid 182 

mesh.  183 

The new CPI can be considered a Regionalized variable (Matheron, 1971) as it depends 184 

on the spatial location determined by the coordinates and is additive by construction. 185 

Indeed, the mean value within a given observed support is equal to the arithmetic 186 

average of the sample values, independently of the associated statistical distribution 187 

(Albuquerque et al., 2017; Rivoirard, 2005). Thus, the vector function used to calculate 188 

the spatial variation structure was the semi-variogram (Journel & Huijbregts, 1978).  189 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2𝑁(ℎ)

𝑖=1       (2) 190 
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The arguments taken into consideration are h (distance) where Z (xi) and Z (xi+h) are the 191 

numerical values of the variables assigned to xi and xi h. The total number of couples at 192 

a specified distance of h is N(h). Therefore, it is the average value of the square of the 193 

differences between all couples of points existing in the geometric field spaced at an h 194 

distance (Journel and Huijbregts, 1978). Plotting the behavior of the variogram gives an 195 

overall view of the spatial structure of the variable. One of the parameters that provide 196 

this information is the nugget (Co) effect, which supplies the behavior at the origin. The 197 

two other parameters are the sill (C1) and the amplitude (a) which define correspondingly 198 

the inertia used in the subsequent interpolation process and the influence radius of the 199 

variable. 200 

The SGS starts by computing the univariate experimental distribution of values and 201 

performing a normal score transformation of the original values to a standard normal 202 

distribution (Goovaerts, 1997). Normal scores at grid node locations are then simulated 203 

sequentially with simple kriging (SK) using the normal score data and a zero mean. Once 204 

all normal scores have been simulated, they are back-transformed to their original units. 205 

The outcome of a simulation is always a random version of the estimation process, 206 

reproducing the statistics of the known data and building a realistic picture of reality. The 207 

associated spatial uncertainty is visualized through the construction of probability maps 208 

If multiple sequences of simulation are computed, it is possible to obtain reliable 209 

probabilistic maps. The mean image and the Probability maps of exceeding the third 210 

quartile (Q3) and not exceeding the first quartile (Q1) were computed. 211 

3. Results and Discussion 212 

3.1 Geochemical data 213 

The analyses of physicochemical parameters, and the determination of the levels of 214 

PTEs of variable toxicity (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn, V) as well as the selected 215 

elements from lithogenic sources (Fe, Al), were evaluated considering their capacity of 216 
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solubilization and mobilization aiming contamination mapping. The evaluation of the 217 

metal’s mobility was based on partial digestion analysis (using Aqua Regia) considering 218 

the pH values. The element concentrations and pH values in the stream sediment 219 

samples are reported in Table 1. Considering the physical-chemical parameter that most 220 

affects the solubility, mobility, and precipitation of potentially toxic metals in the 221 

sediments from shallow streams, pH, values range from 2.06 and 7.39, corresponding 222 

to the lower values (2.06-4.57) to the sediments from the 2 creeks flowing through the 223 

mining tailings pile. As would be expected, these sediments (Cv1, Cv2, Cv3, Cv26, Cv 224 

33, Cv34) are those with the highest values of Pb, As, and Hg, the main contaminants in 225 

the mine tailings that reach levels above those considered critical and which require 226 

immediate intervention, according to the European Regulations (based on the 227 

Netherlands legislation – Soil Quality Regulation, 2006). Zn, another element with levels 228 

of concern, and which represents one of the elements with high contents in the massive 229 

sulphides that have been exploited in this mine, presents slightly contaminating levels in 230 

all the diffused streams flowing from the tailings pile, mostly in locations that do not 231 

coincide with the locations where the other elements have exceeded critical levels. The 232 

highest values of this element also do not coincide with the most acidic conditions of the 233 

environment.  Although any of these elements originate from the ores that were exploited 234 

in this mining area, Zn is an element with higher chemical mobility, and because this 235 

mobility is mostly influenced by the oxidation conditions that occurred in all sediments 236 

(240 – 650 mV), its distribution is more diffuse. 237 

 238 

 239 

 240 

 241 

 242 
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Table 1. Element concentrations in the stream sediment samples (spring season) from Grândola, 243 
and its tributary streams. These waterways belong to the Sado watershed. 244 

Samples * 
(mg/Kg) 

As Cd  Co Cr Mn Ni V Zn Al Fe Pb Hg 
pH 

(H2O
) 

CV1 234,9 1,5 0,4 2,3 16,9 1,6 3,3 94,2 1441,6 10217,0 38458,7 127,9 2,30 

CV2 238,6 < 0,5 0,4 1,6 24,5 1,0 2,0 96,4 2168,4 17815,8 29837,2 78,2 2,06 

CV3 517,6 < 0,5 0,8 1,5 99,6 0,9 2,9 122,3 16128,4 65825,8 13775,3 125,8 4,57 

CV4 < 1,5 < 0,5 3,9 13,3 172,7 10,3 14,3 36,4 18321,3 31828,4 51,2 1,7 6,61 

CV5 14,7 < 0,5 3,5 15,6 261,9 12,7 15,5 47,2 13099,4 27183,4 2881,5 13,7 6,00 

CV6 < 1,5 < 0,5 3,4 17,6 208,4 9,3 24,3 30,0 26272,6 21172,3 221,4 0,2 6,54 

CV7 < 1,5 < 0,5 4,2 18,6 399,1 11,2 29,2 36,4 29376,6 28193,2 97,2 0,6 6,64 

CV8 < 1,5 < 0,5 4,6 19,5 455,6 12,3 25,7 37,5 24811,4 28361,9 15,0 0,3 7,17 

CV9 < 1,5 < 0,5 5,8 13,4 414,1 12,4 13,8 34,7 13007,8 27207,6 16,4 0,2 4,99 

CV10 < 1,5 < 0,5 5,6 15 315 21,6 22,9 46,3 23727,5 23919,7 18,2 0,6 5,12 

CV11 3,4 < 0,5 1,0 1,4 148 1,2 2,6 15,8 8807,1 12058,1 21,5 0,3 5,05 

CV12 31,2 < 0,5 4,2 9,6 138,6 10,6 15,9 140,4 11176,5 29630,2 92,7 2,6 5,30 

CV13 1,6 < 0,5 34,4 23,8 903 21,8 36,4 165,8 44359,5 42371,5 36,3 1,6 7,29 

CV14 1,6 < 0,5 4,1 16,1 434,9 15,9 24,3 47,5 18683,1 21463,1 36,6 0,6 6,03 

CV15 1,7 < 0,5 0,5 1,9 82,2 0,6 3,6 5,3 8882,1 3720,9 2,5 0,2 5,48 

CV16 < 1,5 < 0,5 0,6 2,1 198,2 1,3 4,6 17,5 4821,9 5337,6 25,9 0,2 5,98 

CV17 4,0 < 0,5 1,6 4,3 412,9 4,0 5,2 15,8 10396,1 16746,8 27,1 0,1 6,35 

CV18 < 1,5 < 0,5 0,6 2,5 117,3 1,5 2,7 8,9 3475,2 3540,5 8,1 0,3 5,51 

CV19 1,8 < 0,5 0,5 1,4 66,3 0,7 2,3 8,1 3044,8 3855,6 7,6 0,1 5,55 

CV20 2,1 < 0,5 1,0 4,5 169,6 1,5 6,8 10,6 3677 5856,6 9,8 0,2 5,82 

CV21 < 1,5 < 0,5 0,8 2,0 194,6 0,5 3,6 9,9 3574,9 3936,7 7,9 0,1 6,04 

CV23 1,9 < 0,5 1,3 11,9 98,5 6,2 14,1 136,3 9503,4 9550,3 38,1 3,0 7,39 

CV24 44,2 < 0,5 1,5 7,0 79,2 5,8 12,1 122,4 9728,8 13370,1 585,3 5,7 6,74 

CV25 < 1,5 < 0,5 0,4 1,5 84,8 0 3,7 6,3 14787,2 7836,1 4,4 0,1 6,63 

CV26 140,3 < 0,5 0,4 1,6 34,4 2,0 2,6 123,4 1193,7 10730,9 44540,5 46,8 2,34 

CV27 32,3 < 0,5 3,6 11,6 177,5 12,5 17,9 129,0 13208,0 25540,5 82,8 7,3 6,39 

CV28 < 1,5 < 0,5 3,7 16 385,5 10,1 24,6 36,0 22281,1 17596,5 29,1 1,3 5,34 

CV29 < 1,5 < 0,5 3,9 18,4 394,6 10,7 25,6 36,2 22665,1 18556,6 14,5 0,2 6,82 

CV30 < 1,5 < 0,5 4,1 13,8 258,4 11,8 15,9 39,8 11984,7 19370,5 21,5 0,1 6,16 

CV31 9,0 < 0,5 2,1 14,2 106,4 10,5 15,7 30,2 6909,5 23545,1 31,0 0,2 6,21 

CV32 30,8 < 0,5 3,4 15,7 291,3 8,9 24,6 88,6 24220,0 19152,6 107,7 2,3 6,57 

CV33 265,2 < 0,5 3,9 9,3 422,5 8,6 11,6 108,2 11998,7 30136,3 88,8 1,6 4,26 

CV34 748,2 < 0,5 0,4 8,3 77,6 3,9 10,8 161,8 6854,4 44363,4 23162,4 381,4 2,13 

______________________________________ 245 
*Sample Cv22 was eliminated 246 

Furthermore, a heat map was used for data exploratory analysis of the geochemical 247 

composition and sample clustering simultaneously in a synthetic way (Fig.2) ((Wilkinson 248 

and Friendly, 2009; Langella et al, 2013). The heat map observation shows the elements 249 

divided into two groups (upper dendrogram). The first one corresponds to Al and Fe 250 

(non-pollutants) and the second one corresponds to As, Cd, Co, Cr, Mn, Ni, V, Zn, Hg, 251 
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and Pb. This last element shows a distance within the major group. Based on an expert-252 

driven approach As Zn Pb Hg were selected as pollutants. The samples dendrogram 253 

(left one). is divided into three groups The central group corresponds to samples Cv6; 254 

Cv8; Cv10; Cv13; C14; Cv16; Cv17; Cv18; Cv21; Cv23; Cv25; Cv28; Cv29 and Cv32; 255 

the left group to samples Cv1; Cv2; Cv15 and Cv26 and the right group to samples CV3; 256 

Cv4; Cv5; Cv9; Cv11; Cv12; Cv19; Cv20; Cv24 and Cv27; Cv30; Cv31; Cv33 and Cv34. 257 

The map represents values in the dataset re-arranged according to the dendrograms. 258 

Focusing on rectangle/square patterns (from red to blue through a white increasing level 259 

of significance) inside the map it is possible to see, concerning the bottom group of 260 

samples Cv1; Cv2; Cv15, and Cv26, together with samples Cv34 and Cv3 of the upper 261 

group a lower significance cluster for Al and a higher significance cluster for Pb, relatively 262 

to the other samples. In future work, the relationship between the samples’ geochemical 263 

print and the associated geology will be explored.  264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

Fig.2. Heat map and simultaneously sample/geochemical print dendrograms. 274 



13 
 

3.2 The Compositional Pollution Indicator 275 

The compositional balance of the CPI was obtained according to expert criteria. These 276 

criteria account for a selection of factors, some of which are considered pollutants while 277 

others are not. In the case of the Caveira mine, the identification of the main pollutants 278 

was addressed in previous studies (e.g. Ferreira da Silva et al, 2015), where typical 279 

pollutants such as As, Zn, Pb, and Hg are identified as related to the Iberian Pyrite Belt 280 

old mines activities. While the main natural-source elements (or non-pollutants) were 281 

several major elements (i.e., Al and Fe). The CPI spatial modeling aimed at the definition 282 

of hazardous clusters. Thus, a two-step geostatistical approach was used. The 283 

experimental isotropic variogram was computed as no clear evidence of anisotropy was 284 

found and the corresponding fitted model is shown in Fig. 2. Cross-validation correlation 285 

index of the observed and estimated CPI values is 0.70 and, therefore, considered 286 

satisfactory for the selected models. Furthermore, A hundred simulations were 287 

performed using SGS as a conditional stochastic simulation of the CPI value distribution, 288 

and a hundred equiprobable scenarios were computed. 289 

 290 

Fig.2. Experimental and fitted spherical omnidirectional variogram. 291 

Probability maps, corresponding to different thresholds allowed the visualization of 292 

spatial variability setting aside the discussion of local accuracy and allowing the 293 

identification of hot clusters of pollution in the subject area. The realization numbers 1, 294 

15, 32, 52, 67 and 99 are shown in Fig.3.  295 

 296 
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 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

Fig.3. Six different scenarios were obtained by Sequential Gaussian Simulation (SGS). 310 

The problem is that all representations (scenarios) have the same reliability, which 311 

means that a single achievement cannot be seen as a better representation of reality. 312 

Therefore, the mean spatial images (MI) - average map – was computed and used as 313 

the CPI spatial distribution (Fig.4 a)) The representation of the probability of exceeding 314 

the third quartile (Q3) and not exceeding the first quartile (Q1), allows broad discussion 315 

of the CPI spatial distribution and the identification of hazard clustering (Fig.4 b) and 4 316 

c)). To create distinct classes, reducing the within classes’ variance and maximizing the 317 

in-between classes variance, the Jenks natural break classification (Jenks, 1967) was 318 

used, allowing the determination of the best arrangement of values. For the computation, 319 

the Space-Stat Software V. 4.0.18, Biomedwere, was used (Boente et al., 2022, 320 

Albuquerque et al., 2017). 321 

 322 

 323 

 324 
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 325 

 326 

 327 

 328 

 329 

 330 
 331 
Fig.4. a) SGS average image (MI) b) Probability map of exceeding Q3 and c) Probability map of 332 
not exceeding Q1. 333 

The compositional Pollution Indicator (CPI) shows a fair representation of hot spots, 334 

especially along the Grândola stream and its tributaries, thereby confirming the larger 335 

pollution detected around the old mine tailings and associated waste rock. 336 

4. Conclusions 337 

Geochemical data are compositional data, as the concentrations of elements in any 338 

environmental matrix are commonly expressed as parts of a whole and vary together. 339 

Once this feature is established, compositional data procedures can be applied to obtain 340 

indicators that address pollution, for example, in stream sediment. The method was 341 

tested with 33 sediment samples and up to 11 chemical elements from the old Caveira 342 

mine in Portugal. Specifically, in the vicinity of the Grândola River and the mine's tailings, 343 

the survey revealed a significant risk of contamination. In addition, agriculture is the main 344 

focus of economic activities in the region. Two primary courses of action are proposed 345 

in light of this: 346 

1. Installation of a surveillance network: The first step is to establish a continuous 347 

surveillance and control network in all regions. Setting up a system is necessary 348 

to consistently track and assess the levels of contamination in the region. This 349 

monitoring would likely involve the installation of sensors for continuous 350 

measurement of the PTEs content and a regular collection of in situ samples for 351 

validation and to identify any significant changes or deviations. 352 

a) b) c) 
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2. Mitigation strategies for contaminated areas: The second strategy is to focus on 353 

the northern region where elevated levels of contamination have been detected. 354 

The adverse effects of pollution require the development and implementation of 355 

mitigation measures in this region. Efforts to reduce the introduction of 356 

contaminants may involve remediation efforts, ecosystem restoration, or changes 357 

in local practices. 358 

The survey highlights the interconnectedness of geochemical data and how 359 

compositional data procedures can be used to shed light on environmental issues like 360 

pollution. It highlights the practical application of these principles through the case study 361 

of the Caveira mine area in Portugal, and it emphasizes the importance of addressing 362 

contamination risks in a region where agriculture and organic activities are key 363 

components of the local economy. 364 
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Table 1. Element concentrations in the stream sediment samples (spring season) from Grândola, 
and its tributary streams. These waterways belong to Sado watershed. 

Samples * 
(mg/Kg) 

As Cd  Co Cr Mn Ni V Zn Al Fe Pb Hg 
pH 

(H2O) 

CV1 234,9 1,5 0,4 2,3 16,9 1,6 3,3 94,2 1441,6 10217,0 38458,7 127,9 2,30 

CV2 238,6 < 0,5 0,4 1,6 24,5 1,0 2,0 96,4 2168,4 17815,8 29837,2 78,2 2,06 

CV3 517,6 < 0,5 0,8 1,5 99,6 0,9 2,9 122,3 16128,4 65825,8 13775,3 125,8 4,57 

CV4 < 1,5 < 0,5 3,9 13,3 172,7 10,3 14,3 36,4 18321,3 31828,4 51,2 1,7 6,61 

CV5 14,7 < 0,5 3,5 15,6 261,9 12,7 15,5 47,2 13099,4 27183,4 2881,5 13,7 6,00 

CV6 < 1,5 < 0,5 3,4 17,6 208,4 9,3 24,3 30,0 26272,6 21172,3 221,4 0,2 6,54 

CV7 < 1,5 < 0,5 4,2 18,6 399,1 11,2 29,2 36,4 29376,6 28193,2 97,2 0,6 6,64 

CV8 < 1,5 < 0,5 4,6 19,5 455,6 12,3 25,7 37,5 24811,4 28361,9 15,0 0,3 7,17 

CV9 < 1,5 < 0,5 5,8 13,4 414,1 12,4 13,8 34,7 13007,8 27207,6 16,4 0,2 4,99 

CV10 < 1,5 < 0,5 5,6 15 315 21,6 22,9 46,3 23727,5 23919,7 18,2 0,6 5,12 

CV11 3,4 < 0,5 1,0 1,4 148 1,2 2,6 15,8 8807,1 12058,1 21,5 0,3 5,05 

CV12 31,2 < 0,5 4,2 9,6 138,6 10,6 15,9 140,4 11176,5 29630,2 92,7 2,6 5,30 

CV13 1,6 < 0,5 34,4 23,8 903 21,8 36,4 165,8 44359,5 42371,5 36,3 1,6 7,29 

CV14 1,6 < 0,5 4,1 16,1 434,9 15,9 24,3 47,5 18683,1 21463,1 36,6 0,6 6,03 

CV15 1,7 < 0,5 0,5 1,9 82,2 0,6 3,6 5,3 8882,1 3720,9 2,5 0,2 5,48 

CV16 < 1,5 < 0,5 0,6 2,1 198,2 1,3 4,6 17,5 4821,9 5337,6 25,9 0,2 5,98 

CV17 4,0 < 0,5 1,6 4,3 412,9 4,0 5,2 15,8 10396,1 16746,8 27,1 0,1 6,35 

CV18 < 1,5 < 0,5 0,6 2,5 117,3 1,5 2,7 8,9 3475,2 3540,5 8,1 0,3 5,51 

CV19 1,8 < 0,5 0,5 1,4 66,3 0,7 2,3 8,1 3044,8 3855,6 7,6 0,1 5,55 

CV20 2,1 < 0,5 1,0 4,5 169,6 1,5 6,8 10,6 3677 5856,6 9,8 0,2 5,82 

CV21 < 1,5 < 0,5 0,8 2,0 194,6 0,5 3,6 9,9 3574,9 3936,7 7,9 0,1 6,04 

CV23 1,9 < 0,5 1,3 11,9 98,5 6,2 14,1 136,3 9503,4 9550,3 38,1 3,0 7,39 

CV24 44,2 < 0,5 1,5 7,0 79,2 5,8 12,1 122,4 9728,8 13370,1 585,3 5,7 6,74 

CV25 < 1,5 < 0,5 0,4 1,5 84,8 0 3,7 6,3 14787,2 7836,1 4,4 0,1 6,63 

CV26 140,3 < 0,5 0,4 1,6 34,4 2,0 2,6 123,4 1193,7 10730,9 44540,5 46,8 2,34 

CV27 32,3 < 0,5 3,6 11,6 177,5 12,5 17,9 129,0 13208,0 25540,5 82,8 7,3 6,39 

CV28 < 1,5 < 0,5 3,7 16 385,5 10,1 24,6 36,0 22281,1 17596,5 29,1 1,3 5,34 

CV29 < 1,5 < 0,5 3,9 18,4 394,6 10,7 25,6 36,2 22665,1 18556,6 14,5 0,2 6,82 

CV30 < 1,5 < 0,5 4,1 13,8 258,4 11,8 15,9 39,8 11984,7 19370,5 21,5 0,1 6,16 

CV31 9,0 < 0,5 2,1 14,2 106,4 10,5 15,7 30,2 6909,5 23545,1 31,0 0,2 6,21 

CV32 30,8 < 0,5 3,4 15,7 291,3 8,9 24,6 88,6 24220,0 19152,6 107,7 2,3 6,57 

CV33 265,2 < 0,5 3,9 9,3 422,5 8,6 11,6 108,2 11998,7 30136,3 88,8 1,6 4,26 

CV34 748,2 < 0,5 0,4 8,3 77,6 3,9 10,8 161,8 6854,4 44363,4 23162,4 381,4 2,13 
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