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1. Introduction

Potentially toxic elements (PTE) constitute a significant liability in different environmental
sectors. Over the past decades, the cumulative environmental impact has been
enormous. The problem of PTEs in stream sediments has led during the time to an
exponential concentration increase and, therefore, excelled the human and
environmental risks (Antoniadis et al., 2017; Kumudunis et al., 2020). Mining and heavy
industrial activities may potentiate these high observed levels of PTEs and be the origin
of numerous sources of contamination (Boente et al., 2022, Carvalho et al. 2022, Boente
et al., 2018). Thus, in recent decades, researchers have invested in the development of
new techniques to offer accurate scenarios of the spatial distribution of PETs. The
definition of geochemical backgrounds and the identification of enrichment sources are
key to the accomplishment of this objective (Wang et al., 2021; McKinley et al., 2016).
Visualization of spatial-temporal distribution models using simulated maps is an
important tool for the visualization and depiction of pollutants. The definition of
vulnerability and risk hot clusters may act as the basis for supporting environmental
policy-making in complex scenarios (Boente et al., 2020, Albuquerque et al., 2017,
McKinley et al., 2016). In the area of soil sediment science, a common strategy for
describing the distribution of PTEs is to map a single-component synthesis new variable
called indices or indicators. Unfortunately, usually, the compositional nature of the
geochemical data is considered (Pawlowsky-Glahn et al., 2015, Filzmoser et al., 2009,).
In most cases, these indicators are related to the study of individual elements, without
considering the existing dependence between the concentrations of all elements in the
same set. usually use The non-compositional indices often used to study geochemical
data are the Geoaccumulation Index (Muller, 1969), the Enrichment Factor (Sucharova
et al., 2012), or the Single Pollution Index (SPI) (Hakanson, 1980), reviewed in Kowalska
et al. (2018). Nevertheless, it is well known that a traditional statistical approach using

direct raw data can be misleading (Chayes 1962, 1971). Aitchison and his fundamental
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work on the method of logarithmic ratio (1982, 1986) answered these questions.
Theories of composition data (CoDa) have enhanced the understanding of the sampling
space of composition data and their corresponding structure (Pawlowsky-Glahn and
Egozcue 2001). Representations of data considering pairwise log ratios (pwlr), isometric
Ig-ratio coordinates (ilr), centered log-ratio coordinates (clr), and additive log-ratio
coordinates (alr) are statistically robust approaches to deal with the compositional nature
of chemical concentration data (Pawlowsky-Glahn and Egozcue, 2001; Egozcue et al.,
2003; Buccianti and Grunsky, 2014). The compositional approach (CoDa) is well-
represented in various fields of research in environmental science, such as ecotoxicology
(Mullineaux et al.,, 2021), urban impacts (Cicchella et al., 2020), water quality
management (Wei et al., 2018), and human health (Tepanosyan et al., 2020, Pawlowsky-
Glahn and Buccianti, 2011; Filzmoser et al., 2021). Recently the adoption of
compositional indicators for PTEs soil pollution characterization is increasing (Boente et
al., 2022, Petrik et al., 2018). Compositional indicators involving geochemical baselines
definition offer a valuable contribution as they are scale-invariant and sub-
compositionally coherent, meaning that a change in the concentration’s unit will not
modify the study’s results (Pawlowsky-Glahn et al., 2015).

This research introduces a new Compositional Pollution Indicator (CPI) of riverine
sediments, built to characterize pollution in the Caveira mine in southern Portugal, using
the approach developed by Boente et al. (2022) corresponding to a balance of elements

chosen through expert criteria although respecting the same CoDa principles.

2. Material and Methods

2.1 Characteristics of the study area and the data set

The studied sector is part of the Portuguese Iberian Pyrite Belt and is an example of
post-mining European areas back to the 1990s. Mining activity ceased mainly because

of ore exhaustion and more profitable methods worldwide which resulted in ore price
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reduction and made local mining activities infeasible (Martins and Oliveira, 2000).
Therefore, major pollution problems related to metal dispersion and mine waste
management are noteworthy. The geological sequence at Caveira mine which closed
back in the 1980s, corresponds from bottom to top to phyllites and quartzites (PQG),
followed by a volcanic sedimentary complex sequence (VSC) unit (Late Famennian)
represented by pyroclastics, rhyolitic lavas, tuffs, dark grey, and siliceous shales, and
rare jaspers. Intruding diabase rocks are spotted in the northern sector. (Fig. 1). The
massive sulfide deposits that were exploited in the region occurred in the vicinity of felsic
volcanic rocks. The Meértola formation with Visean age, overlays the CVS and
corresponds to a flysch sequence, consisting of sandstones alternating with shales and
thin-bedded siltstones. From a structural point of view, the whole sequence is part of the
South Portuguese Zone, a thin-skinned fold and thrust belt, with Variscan age. Tailings,
and associated waste rock, resulting from 129 years of pyrite and Cu mining, are
scattered along the Grandola Creek. The semi-arid climatic conditions encompass high
erosion of residues by surface water, primarily during rainfall, causing serious

contamination of the Grandola stream and its tributaries, conducted to the degradation

of sediments (Ferreira da Silva et al, 2015).

Portugal

GV
(2GR Y2

Z
I Vs Sequence-Black and Gray Siliceous Shales and Silltites

Geology [] vale do Guizo Unit
Geological Structures [ Aluvion [~ Turbidites - Mértola Unit [ VS Sequence-Acid Volcanites: Acid Rhyolites and Porphyries|
444 Reverse Faulting [0 Dune Sand ["] VS Sequence-Monte das Hortas Unit [ VS Sequence-Basic Volcanites: Dolerites and Spilites

— Fault [ Fluvial Terrace Deposits [ VS Sequence-Borra de Vinho Shist Unit [ Phyliite-Quartzite Group 0 500 1000m

L1— Normal Fautting [~] Esbarrondadoiro Unit Il VS Sequence-Chert and Jasper

® Sediments

Fig 1. Study area and collected sample’s location.
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A dataset of 33 bottom sediment samples distributed over small and narrow creeks two
of them flowing by the mine tailings pile and the larger Grandola stream, of which they
are tributaries. These streams belong to the Sado River Basin, the second-largest
hydrographical basin in Southern Portugal. Samples were collected from within 0 to 10
cm depth with an environmental hand soil sampling kit (#209.55, AMS), in a grid of 1Km x
1Km and twelve chemical elements, including PTEs of variable toxicity (As, Cd, Co, Cr,
Hg, Mn, Ni, Pb, Zn, V) and major elements from lithogenic sources (Fe, Al), were
analyzed in preserved samples at about 4°C. The most extractable forms of metals
(except for Hg) were obtained by partial digestion with aqua regia (HCI and HNO3) in a
high-pressure microwave digestion unit (Anton Paar Multiwave PRO) following the US
EPA (2007) Method 3051A. Metals and As were analyzed by optical emission
spectroscopy with an inductive plasma source (ICP-OES, Perkin-Elmer OPTIMA 8300),
using yttrium as an internal standard. The accuracy and analytical precision of all the
analyses have been checked by the analysis of reference materials and duplicate
samples in each analytical set.

Mercury (Hg) was analyzed by a mercury analyzer (NIC MA-3000) based on thermal
decomposition, gold amalgamation, and cold vapor atomic absorption spectroscopy
detection. Sampling was followed by immediate readings of pH and redox potential
values in wet samples, using a portable multi-parameter Consort, C5020 (SP10T model
for pH, SP50X model for redox potential). In samples with insufficient moisture for direct
pH readings, this parameter was measured in water—sediment suspension (2.5:1), in the
laboratory. Respecting to samples’ chemistry, the dataset includes PTEs of variable
toxicity (Fabian et al., 2014). The set of 12 elements was reported across the 33 sampling
points, resulting in a 12-part composition that is assumed to represent the stream

sediments.
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2.2 Compositional Pollution Indicator (CPI) construction

The first fundamental principles of composition data are to be found in the founding work
of Aitchison (1986). These initial contributions are explained and expanded into general-
purpose works such as Pawlowsky-Glahn et al. (2015); Boogaart van den and Tolosana-
Delgado (2013); Filzmoser and Hron (2011); Pawlowsky-Glahn and Buccianti (2011) and
Pawlowsky-Glahn and Serra (2019).

The analysis of a stream sediment sample, given by its chemical composition should be
conducted under the assumption that these data are compositional. As a result, when
performing data analysis, the functions used to describe the composition should be
invariant under multiplication by a positive constant (Boente et al., 2022). Also, any
composition can be expressed in proportions (components adding to 1) without adding
or losing any information, irrespective of the units in which the data were initially
represented.

The chemical composition of a sample of riverine sediments in units such as mg/kg
should be performed assuming that these data are compositional. Moreover, the
conversion of units from mg/kg to g/kg, as an example, must not change the information
in the sample. This is summed up in one of the principles of CoDa analysis, named the
Principle of Scale Invariance. Thus, when analyzing the data, the functions used to
describe the composition should be invariantly multiplied by a positive constant.
Consequently, any composition can be expressed in proportions (components adding 1)
without adding or losing information regardless of the units in which the data were
originally reported. A second assumption is known as Sub compositional Coherence
Principle. The whole periodic table is never presented, only a subset of elements is
measured, and this subset may change in time and the field. The elements observed
form a composition and any subassembly of the same is a sub-composition, again

subject to the Principle of Scale Invariance. Analyses of initial composition or sub-
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composition should lead to coherent conclusions describing the role of common
elements (Aitchison, 1986)

The CPI balance was obtained based on expert criteria attending a selection of elements
(Boente et al., 2022), of which some are considered pollutants while others are not. In
the case of the Caveira mine, the main contaminants were selected from typical
pollutants namely, As, Zn, Pb, and Hg, while Al and Fe were selected as the main natural-
source elements (or non-pollutants). Based on this previous study, the selected balance,

CPI, was constructed as follows:

/
CPl = iln (AsZn Pb ng)l 4 )
3 =
(Al Fe)2

2.3 Spatial modeling — geostatistical approach

The computed Compositional Pollution Indicator (CPI) is unbounded, a real random
variable. Therefore, it fulfills the assumptions underlying a conventional geostatistical
approach. Their spatial probability patterns were computed following a two-step
geostatistical modeling method: 1. Structural analysis and experimental variograms
computation (Journel and Huijbregts,1978) followed by 2. Sequential Gaussian
Simulation (SGS) is used as a stochastic simulation algorithm over a 100x100 Km grid
mesh.

The new CPI can be considered a Regionalized variable (Matheron, 1971) as it depends
on the spatial location determined by the coordinates and is additive by construction.
Indeed, the mean value within a given observed support is equal to the arithmetic
average of the sample values, independently of the associated statistical distribution
(Albuquerque et al., 2017; Rivoirard, 2005). Thus, the vector function used to calculate

the spatial variation structure was the semi-variogram (Journel & Huijbregts, 1978).

y(h) = s By 12(e) = Z(x + W) @
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The arguments taken into consideration are h (distance) where Z (x)) and Z (xi+h) are the
numerical values of the variables assigned to xi and xi h. The total number of couples at
a specified distance of h is N(h). Therefore, it is the average value of the square of the
differences between all couples of points existing in the geometric field spaced at an h
distance (Journel and Huijbregts, 1978). Plotting the behavior of the variogram gives an
overall view of the spatial structure of the variable. One of the parameters that provide
this information is the nugget (C,) effect, which supplies the behavior at the origin. The
two other parameters are the sill (C1) and the amplitude (a) which define correspondingly
the inertia used in the subsequent interpolation process and the influence radius of the
variable.

The SGS starts by computing the univariate experimental distribution of values and
performing a normal score transformation of the original values to a standard normal
distribution (Goovaerts, 1997). Normal scores at grid node locations are then simulated
sequentially with simple kriging (SK) using the normal score data and a zero mean. Once
all normal scores have been simulated, they are back-transformed to their original units.
The outcome of a simulation is always a random version of the estimation process,
reproducing the statistics of the known data and building a realistic picture of reality. The
associated spatial uncertainty is visualized through the construction of probability maps
If multiple sequences of simulation are computed, it is possible to obtain reliable
probabilistic maps. The mean image and the Probability maps of exceeding the third

quartile (Qs) and not exceeding the first quartile (Q1) were computed.

3. Results and Discussion

3.1 Geochemical data

The analyses of physicochemical parameters, and the determination of the levels of
PTEs of variable toxicity (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Zn, V) as well as the selected

elements from lithogenic sources (Fe, Al), were evaluated considering their capacity of
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solubilization and mobilization aiming contamination mapping. The evaluation of the
metal’s mobility was based on partial digestion analysis (using Aqua Regia) considering
the pH values. The element concentrations and pH values in the stream sediment
samples are reported in Table 1. Considering the physical-chemical parameter that most
affects the solubility, mobility, and precipitation of potentially toxic metals in the
sediments from shallow streams, pH, values range from 2.06 and 7.39, corresponding
to the lower values (2.06-4.57) to the sediments from the 2 creeks flowing through the
mining tailings pile. As would be expected, these sediments (Cvl, Cv2, Cv3, Cv26, Cv
33, Cv34) are those with the highest values of Pb, As, and Hg, the main contaminants in
the mine tailings that reach levels above those considered critical and which require
immediate intervention, according to the European Regulations (based on the
Netherlands legislation — Soil Quality Regulation, 2006). Zn, another element with levels
of concern, and which represents one of the elements with high contents in the massive
sulphides that have been exploited in this mine, presents slightly contaminating levels in
all the diffused streams flowing from the tailings pile, mostly in locations that do not
coincide with the locations where the other elements have exceeded critical levels. The
highest values of this element also do not coincide with the most acidic conditions of the
environment. Although any of these elements originate from the ores that were exploited
in this mining area, Zn is an element with higher chemical mobility, and because this
mobility is mostly influenced by the oxidation conditions that occurred in all sediments

(240 — 650 mV), its distribution is more diffuse.

10
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Table 1. Element concentrations in the stream sediment samples (spring season) from Grandola,
and its tributary streams. These waterways belong to the Sado watershed.

pH
As Cd Co Cr Mn Ni Vv Zn Al Fe Pb Hg (H,0
)

Cv1l 234,9 15 0,4 2,3 16,9 1,6 3,3 94,2 1441,6  10217,0 38458,7 127,9 2,30
Cv2 238,6 <05 0,4 1,6 24,5 1,0 2,0 96,4 2168,4 178158 29837,2 78,2 2,06
Cv3 517,6 <0,5 0,8 1,5 99,6 0,9 2,9 122,3 161284 658258 137753 125,8 4,57
Cv4 <15 <05 39 13,3 172,7 10,3 143 36,4 183213 31828,4 51,2 1,7 6,61
CV5 14,7 <05 35 156 2619 12,7 155 47,2 130994 27183,4 2881,5 13,7 6,00
CVé6 <15 <05 34 17,6 2084 93 243 30,0 262726 21172,3 221,4 0,2 6,54
Cv7 <15 <05 42 186 399,1 11,2 29,2 364 29376,6 28193,2 97,2 0,6 6,64
Cv8 <15 <05 46 19,5 4556 12,3 25,7 37,5 248114 283619 15,0 0,3 7,17
CV9 <15 <05 58 13,4 4141 12,4 13,8 34,7 13007,8 27207,6 16,4 0,2 4,99
CV10 <15 <05 5,6 15 315 21,6 22,9 46,3 23727,5 23919,7 18,2 0,6 5,12

Samples *
(mg/Kg)

Cvll 34 <0,5 1,0 1,4 148 1,2 2,6 15,8  8807,1  12058,1 21,5 0,3 5,05
CvV12 31,2 <05 4,2 9,6 138,6 10,6 159 140,4 11176,5 29630,2 92,7 2,6 5,30
Cv13 1,6 <05 344 238 903 21,8 36,4 1658 44359,5 423715 36,3 1,6 7,29
CvV14 1,6 <0,5 4,1 16,1 4349 159 243 47,5 18683,1 21463,1 36,6 0,6 6,03
CV15 1,7 <0,5 0,5 19 82,2 0,6 3,6 5,3 8882,1 3720,9 2,5 0,2 5,48

CV16 <15 <05 0,6 2,1 198,2 1,3 4,6 17,5 48219 5337,6 25,9 0,2 5,98
Cv17 4,0 <0,5 1,6 4,3 412,9 4,0 5,2 15,8 10396,1 16746,8 27,1 0,1 6,35
Cv18 <15 <05 0,6 2,5 117,3 1,5 2,7 8,9 3475,2 3540,5 8,1 0,3 5,51
CvV19 1,8 <0,5 0,5 1,4 66,3 0,7 2,3 8,1 3044,8 3855,6 7,6 0,1 5,55

Cv20 2,1 <0,5 1,0 4,5 169,6 1,5 6,8 10,6 3677 5856,6 9,8 0,2 5,82
Ccv21l <15 <05 0,8 2,0 194,6 0,5 3,6 9,9 3574,9 3936,7 7,9 0,1 6,04
Cv23 19 <0,5 1,3 119 98,5 6,2 14,1 136,3 95034 9550,3 38,1 3,0 7,39

Cv24 44,2 <0,5 15 7,0 79,2 58 12,1 122,4 97288 13370,1 5853 5,7 6,74
Cv25 <15 <05 0,4 1,5 84,8 0 3,7 6,3 14787,2  7836,1 4,4 0,1 6,63
Cv2e 140,3 <0,5 0,4 1,6 34,4 2,0 2,6 1234 1193,7 10730,9 44540,5 46,8 2,34
Cv27 32,3 <05 36 116 1775 125 17,9 129,0 132080 25540,5 82,8 7,3 6,39
Cvag <15 <05 3,7 16 3855 10,1 24,6 36,0 22281,1 17596,5 29,1 1,3 5,34
Cv29 <15 <05 39 184 3946 10,7 256 36,2 226651 18556,6 14,5 0,2 6,82
CV30 <15 <05 4,1 13,8 2584 11,8 159 39,8 11984,7 19370,5 21,5 0,1 6,16
Cv3l 9,0 <0,5 2,1 14,2 1064 10,5 157 30,2 6909,5 23545,1 31,0 0,2 6,21
CV32 30,8 <0,5 34 157 2913 89 246 886 242200 191526 107,7 2,3 6,57
Cv33 265,2 <0,5 3,9 9,3 422,5 8,6 11,6 108,2 11998,7 30136,3 88,8 1,6 4,26
CvV34 7482 <0,5 0,4 8,3 77,6 3,9 10,8 161,8 68544 44363,4 23162,4 3814 2,13

*Sample Cv22 was eliminated
Furthermore, a heat map was used for data exploratory analysis of the geochemical
composition and sample clustering simultaneously in a synthetic way (Fig.2) ((Wilkinson
and Friendly, 2009; Langella et al, 2013). The heat map observation shows the elements
divided into two groups (upper dendrogram). The first one corresponds to Al and Fe

(non-pollutants) and the second one corresponds to As, Cd, Co, Cr, Mn, Ni, V, Zn, Hg,
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274

and Pb. This last element shows a distance within the major group. Based on an expert-
driven approach As Zn Pb Hg were selected as pollutants. The samples dendrogram
(left one). is divided into three groups The central group corresponds to samples Cv6;
Cv8; Cv10; Cv13; C14; Cv16; Cvl7; Cvl8; Cv21; Cv23; Cv25; Cv28; Cv29 and Cv32;
the left group to samples Cv1; Cv2; Cv15 and Cv26 and the right group to samples CV3;
Cv4; Cv5; Cv9; Cvll; Cvl2; Cvl9; Cv20; Cv24 and Cv27; Cv30; Cv31; Cv33 and Cv34.
The map represents values in the dataset re-arranged according to the dendrograms.
Focusing on rectangle/square patterns (from red to blue through a white increasing level
of significance) inside the map it is possible to see, concerning the bottom group of
samples Cv1l; Cv2; Cvl5, and Cv26, together with samples Cv34 and Cv3 of the upper
group a lower significance cluster for Al and a higher significance cluster for Pb, relatively
to the other samples. In future work, the relationship between the samples’ geochemical

print and the associated geology will be explored.

4

S

Al Fe Pb Mn Hg Cd Co V Cr Ni As Zn

Fig.2. Heat map and simultaneously sample/geochemical print dendrograms.
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3.2 The Compositional Pollution Indicator

The compositional balance of the CPI was obtained according to expert criteria. These
criteria account for a selection of factors, some of which are considered pollutants while
others are not. In the case of the Caveira mine, the identification of the main pollutants
was addressed in previous studies (e.g. Ferreira da Silva et al, 2015), where typical
pollutants such as As, Zn, Pb, and Hg are identified as related to the Iberian Pyrite Belt
old mines activities. While the main natural-source elements (or non-pollutants) were
several major elements (i.e., Al and Fe). The CPI spatial modeling aimed at the definition
of hazardous clusters. Thus, a two-step geostatistical approach was used. The
experimental isotropic variogram was computed as no clear evidence of anisotropy was
found and the corresponding fitted model is shown in Fig. 2. Cross-validation correlation
index of the observed and estimated CPI values is 0.70 and, therefore, considered
satisfactory for the selected models. Furthermore, A hundred simulations were
performed using SGS as a conditional stochastic simulation of the CPI value distribution,

and a hundred equiprobable scenarios were computed.

1,5

0 Distance 3 Km
Fig.2. Experimental and fitted spherical omnidirectional variogram.
Probability maps, corresponding to different thresholds allowed the visualization of
spatial variability setting aside the discussion of local accuracy and allowing the

identification of hot clusters of pollution in the subject area. The realization numbers 1,

15, 32, 52, 67 and 99 are shown in Fig.3.
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Fig.3. Six different scenarios were obtained by Sequential Gaussian Simulation (SGS).

The problem is that all representations (scenarios) have the same reliability, which
means that a single achievement cannot be seen as a better representation of reality.
Therefore, the mean spatial images (MI) - average map — was computed and used as
the CPI spatial distribution (Fig.4 a)) The representation of the probability of exceeding
the third quartile (Q3) and not exceeding the first quartile (Q1), allows broad discussion
of the CPI spatial distribution and the identification of hazard clustering (Fig.4 b) and 4
c)). To create distinct classes, reducing the within classes’ variance and maximizing the
in-between classes variance, the Jenks natural break classification (Jenks, 1967) was
used, allowing the determination of the best arrangement of values. For the computation,
the Space-Stat Software V. 4.0.18, Biomedwere, was used (Boente et al., 2022,

Albuquerque et al., 2017).
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Fig.4. a) SGS average image (MI) b) Probability map of exceeding Q3 and c) Probability map of
not exceeding Q1.

The compositional Pollution Indicator (CPI) shows a fair representation of hot spots,
especially along the Grandola stream and its tributaries, thereby confirming the larger

pollution detected around the old mine tailings and associated waste rock.

4. Conclusions

Geochemical data are compositional data, as the concentrations of elements in any
environmental matrix are commonly expressed as parts of a whole and vary together.
Once this feature is established, compositional data procedures can be applied to obtain
indicators that address pollution, for example, in stream sediment. The method was
tested with 33 sediment samples and up to 11 chemical elements from the old Caveira
mine in Portugal. Specifically, in the vicinity of the Grandola River and the mine's tailings,
the survey revealed a significant risk of contamination. In addition, agriculture is the main
focus of economic activities in the region. Two primary courses of action are proposed
in light of this:

1. Installation of a surveillance network: The first step is to establish a continuous
surveillance and control network in all regions. Setting up a system is necessary
to consistently track and assess the levels of contamination in the region. This
monitoring would likely involve the installation of sensors for continuous
measurement of the PTEs content and a regular collection of in situ samples for

validation and to identify any significant changes or deviations.
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2. Mitigation strategies for contaminated areas: The second strategy is to focus on
the northern region where elevated levels of contamination have been detected.
The adverse effects of pollution require the development and implementation of
mitigation measures in this region. Efforts to reduce the introduction of
contaminants may involve remediation efforts, ecosystem restoration, or changes

in local practices.
The survey highlights the interconnectedness of geochemical data and how
compositional data procedures can be used to shed light on environmental issues like
pollution. It highlights the practical application of these principles through the case study
of the Caveira mine area in Portugal, and it emphasizes the importance of addressing
contamination risks in a region where agriculture and organic activities are key

components of the local economy.
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Table (Editable version)

Table 1. Element concentrations in the stream sediment samples (spring season) from Grandola,

Click here to access/download;Table (Editable version);Table

1.docx

and its tributary streams. These waterways belong to Sado watershed.

S?r;“gp/'z )* As cd Co C Mn Ni v Zn Al Fe Pb Hg (::))
Ccvi 234,9 1,5 0,4 2,3 16,9 1,6 3,3 94,2 1441,6 10217,0 38458,7 127,9 2,30
CV2 238,6 <0,5 0,4 1,6 24,5 1,0 2,0 96,4 2168,4 17815,8 29837,2 78,2 2,06
Cv3 517,6 <0,5 0,8 1,5 99,6 0,9 2,9 122,3 16128,4 65825,8 13775,3 125,8 4,57
cva <15 <0,5 3,9 13,3 172,7 10,3 14,3 36,4 18321,3 31828,4 51,2 1,7 6,61
CV5 14,7 <0,5 3,5 15,6 261,9 12,7 15,5 47,2 13099,4 27183,4 2881,5 13,7 6,00
CVe <15 <0,5 3,4 17,6 208,4 9,3 24,3 30,0 26272,6 21172,3 221,4 0,2 6,54
Ccv7 <1,5 <0,5 4,2 18,6 399,1 11,2 29,2 36,4 29376,6 28193,2 97,2 0,6 6,64
CcvV8 <15 <0,5 4,6 19,5 455,6 12,3 25,7 37,5 248114 28361,9 15,0 0,3 7,17
CV9 <1,5 <0,5 5,8 13,4 414,1 12,4 13,8 34,7 13007,8 27207,6 16,4 0,2 4,99
CVi10 <1,5 <0,5 5,6 15 315 21,6 22,9 46,3 23727,5 23919,7 18,2 0,6 5,12
cvi1 3,4 <0,5 1,0 1,4 148 1,2 26 158 88071 120581 21,5 03 5,05
CV12 31,2 <0,5 4,2 9,6 138,6 10,6 15,9 140,4 11176,5 29630,2 92,7 2,6 5,30
Cvi3 1,6 <0,5 34,4 23,8 903 21,8 36,4 165,8 44359,5 42371,5 36,3 1,6 7,29
CcVvVi4 1,6 <0,5 4,1 16,1 434,9 15,9 24,3 47,5 18683,1 21463,1 36,6 0,6 6,03
CV15 1,7 <0,5 0,5 1,9 82,2 0,6 3,6 53 8882,1 3720,9 2,5 0,2 5,48
CVie6 <1,5 <0,5 0,6 2,1 198,2 1,3 4,6 17,5 4821,9 5337,6 25,9 0,2 5,98
CVv17 4,0 <0,5 1,6 4,3 412,9 4,0 5,2 15,8 10396,1 16746,8 27,1 0,1 6,35
Ccvi8 <1,5 <0,5 0,6 2,5 117,3 1,5 2,7 8,9 3475,2 3540,5 8,1 0,3 5,51
CcVvV19 1,8 <0,5 0,5 1,4 66,3 0,7 2,3 8,1 3044,8 3855,6 7,6 0,1 5,55
CV20 2,1 <0,5 1,0 4,5 169,6 1,5 6,8 10,6 3677 5856,6 9,8 0,2 5,82
Cv21 <15 <0,5 0,8 2,0 194,6 0,5 3,6 9,9 3574,9 3936,7 7,9 0,1 6,04
Cv23 1,9 <0,5 1,3 11,9 98,5 6,2 14,1 136,3 9503,4 9550,3 38,1 3,0 7,39
CV24 44,2 <0,5 1,5 7,0 79,2 5,8 12,1 122,4 9728,8 13370,1 585,3 5,7 6,74
CV25 <15 <0,5 0,4 1,5 84,8 0 3,7 6,3 14787,2 7836,1 4,4 0,1 6,63
CV26 140,3 <0,5 0,4 1,6 34,4 2,0 2,6 123,4 1193,7 10730,9 44540,5 46,8 2,34
Cv27 32,3 <0,5 3,6 11,6 177,5 12,5 17,9 129,0 13208,0 25540,5 82,8 7,3 6,39
CVv28 <1,5 <0,5 3,7 16 385,5 10,1 24,6 36,0 22281,1 17596,5 29,1 1,3 5,34
CV29 <1,5 <0,5 3,9 18,4 394,6 10,7 25,6 36,2 22665,1 18556,6 14,5 0,2 6,82
CV30 <1,5 <0,5 4,1 13,8 258,4 11,8 15,9 39,8 11984,7 19370,5 21,5 0,1 6,16
Cv31l 9,0 <0,5 2,1 14,2 106,4 10,5 15,7 30,2 6909,5 23545,1 31,0 0,2 6,21
CV32 30,8 <0,5 3,4 15,7 291,3 8,9 24,6 88,6 24220,0 19152,6 107,7 2,3 6,57
CV33 265,2 <0,5 3,9 9,3 422,5 8,6 11,6 108,2 11998,7 30136,3 88,8 1,6 4,26
CVvV34 748,2 <0,5 0,4 8,3 77,6 3,9 10,8 161,8 6854,4 44363,4 23162,4 381,4 2,13

*
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First Step

Defining the Compositional Pollution Indicator (CP1): Expert based criteria

Pollutants - As, Zn, Pb and Hg gm (As Zn Pb Hg)

CPlI =Klog
+ gm (Al Fe)
Non-Pollutants — Al and Fe gm stands for geametricol mean and K for normalization constant
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