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Resumo

Modelos Matematicos de Crescimento Individual: Aplicacdo ao Crescimento de Bovinos

O presente trabalho tem como objetivo avaliar diferentes modelos de crescimento individual, tanto
deterministicos como estocasticos, aplicados ao crescimento de bovinos da raca Mertolenga. Para
tal, ¢ analisado o desempenho dos modelos deterministicos de Gompertz, Verhulst e
Bertalanffy-Richards, bem como os modelos estocasticos de Gompertz e de Bertalanfty-Richards.
A estimacao dos parametros foi realizada através dos métodos dos minimos quadrados e da méaxima
verossimilhanca, utilizando dados reais fornecidos pela Associagdo de Criadores de Bovinos da
Raca Mertolenga (ACBM). Foram avaliados indicadores como a Raiz do Erro Quadratico Médio
(REQM) e o Erro Médio Absoluto (EMA) para aferir a qualidade dos ajustes e previsoes. As
previsoes dos modelos foram comparadas para identificar qual descreve melhor o crescimento de

bovino, proporcionando maior precisao na modelagao das curvas de crescimento.

Os resultados contribuirdo para uma melhor compreensdo da importancia de usar os modelos
estocasticos na previsao do crescimento desta raca e melhorando produtividade da criacdao desta

raca.

Palavras-chave: Bovinos Mertolengos; EDE; Modelos de Crescimento Deterministico e
Estocastico; Previsao.
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Abstract

Mathematical Models for Individual Growth: An Application to Cattle Growth

The present study aims to evaluate different models of individual growth, both deterministic and
stochastic, applied to the growth of Mertolenga breed cattle. For this purpose, the performance of
deterministic models such as Gompertz, Verhulst, and Bertalanffy-Richards was analyzed, as well

as stochastic models of Gompertz and Bertalanffy-Richards.

Parameter estimation was carried out using the least squares and maximum likelihood methods,
employing real data provided by the Mertolenga Cattle Breeders Association (ACBM). Indicators
such as the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) were assessed
to evaluate the quality of the fits and predictions. The model predictions were compared to identify

which one best describes cattle growth, allowing for more accurate modeling of growth curves.

The results will contribute to a better understanding of the importance of using stochastic models in

the forecast the growth of this breed and improving the productivity of raising this breed.

Keywords: Mertolengo Cattle; EDE; Deterministic and Stochastic Growth Models; Forecasting.
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1. Introducao

O estudo dos modelos de crescimento individual ¢ um tema fundamental em diversas
areas do conhecimento, incluindo a estatistica, a biologia e a economia. Os modelos
matematicos desempenham um papel determinante na descri¢ao e previsdo da dindmica
individual, permitindo compreender os fatores que influenciam o crescimento e
auxiliando na tomada de decisdes em contextos como a gestdo da produ¢ao, alimentacao,
criacdo, recria, abate, preservacdo e comercializagdo da carne dos bovinos da raca
Mertolenga.

Neste trabalho, sdo explorados diferentes modelos de crescimento individual, tanto
deterministico como estocésticos. Os modelos deterministicos assumem que o
crescimento individual do bovino segue uma trajetdria fixa definida por equacdes
diferenciais, enquanto os modelos estocasticos incorporam variagdes aleatorias para
capturar incertezas nos dados que afetam o crescimento. Especificamente, abordamos os
modelos deterministicos de Gompertz, de Verhulst e de Bertalanffy-Richards, e os
modelos estocasticos de Gompertz e de Bertalanffy-Richards. No primeiro caso, os
parametros dos modelos serdo estimados pelo método dos minimos quadrados e, no caso
estocastico, pelo método da méxima verossimilhancga. Iremos usar um conjunto de dados
reais referentes ao peso ao longo do tempo do bovino da raga Mertolenga. O desempenho
dos modelos sera avaliado comparando a precisdo das previsdes, com o objetivo de
identificar qual modelo melhor representa os dados e pode ser mais adequado para

descrever e prever o crescimento deste animal.



1.1  Objetivos

Esta dissertacdo tem como principais objetivos estudar os diferentes modelos de
crescimento individual, tanto nas suas versdes deterministicas como estocasticas.
Especificamente, serdo abordados os modelos de Verhulst, de Gompertz e de
Bertalanffy-Richards, explorando as suas caracteristicas e aplicabilidades em diferentes
contextos de crescimento individual. Os pardmetros desses modelos serdo estimados com
recurso a diferentes metodologias, utilizando os dados dos pesos do animal da raca
Mertolenga, disponibilizados pela Associacdo de Criadores de Bovinos da Raga
Mertolenga (ACBM). Por fim, seré realizada uma analise de desempenho dos modelos,

avaliando a precisdo e a fiabilidade das previsdes dos diferentes modelos.



1.2 Associacido de Criadores de Bovinos da Ra¢a Mertolenga

(ACBM)

A Associacdo de Criadores de Bovinos da Ragca Mertolenga (ACBM) ¢ uma organizagao
que defende os interesses dos seus associados no que diz respeito a preservagao, ao
melhoramento genético, a criacdo e a comercializacao dos bovinos da raga Mertolenga,
além de representar os seus associados perante o Estado e outros organismos, tanto a nivel
nacional como internacional (Januario, 2021).

Por outro lado, possibilita aos criadores realizarem recria e acabamento dos seus vitelos,
alcancando um valor econdmico superior ao normalmente obtido com as vendas no

desmame, mesmo quando as condig¢des técnicas € econdmicas nao sao favoraveis.

A sua sede esté localizada na regido do Alentejo, concretamente na cidade de Evora, uma
vez que esta regido ¢ a maior produtora de carne de bovino em Portugal e concentra o

maior niumero desta espécie no pais (Januario, 2021).

A principal missao da associagdo € preservar as caracteristicas que os bovinos da raga
Mertolenga possuem atualmente, uma vez que esta raga ¢ constituida por vacas

bem-adaptadas ao meio ambiente em que vivem.
A ACBM tem produzido dois tipos de viteldes da raga Mertolenga:

% Viteldo Mertolengo DOP (Denominag@o de Origem Protegida), abatido entre os
10 e 15 meses de idade, com peso minimo da carcaga de 120 kg;

¢+ Viteldo convencional, abatido entre os 8 ¢ 12 meses de idade, com peso da carcaca

entre 120 kg e 250 kg.

Denominagdo de Origem Protegida (DOP) ¢ um selo que utiliza o nome de uma

localidade ou regido para indicar que um produto € originario dessa area.



A carne Mertolenga possui este selo e apresenta caracteristicas organolépticas proprias,
com algumas infiltracdes de gordura intramuscular, que resultam num marmoreado de

dispersdao médio.

Segundo a Dire¢do Geral de Agricultura e Desenvolvimento Rural (2020), esta carne
distingue-se ainda pela sua cor escura e pela gordura que pode variar entre amarela e

branca, dependendo do tipo de vitelo em questao.

Estes bovinos da raca Mertolenga sdo bem-adaptados a regido do Alentejo, sdo enérgicos
e pertencem a uma raca pequena. Estes animais sao desmamados por volta de 6 a 8 meses
de idade, ¢ a ACBM assume as fases de recria e acabamento dos jovens machos
provenientes dos seus associados. Estas atividades sdo realizadas no Centro de Testagem

dos Currais e Simalhas (CTR).

Figura 1: Bovino da Raca Mertolenga

Fonte: Fotografia disponivel no site da ACBM



Segundo Carolino (2016), neste centro também sdo realizados testes em machos
mertolengos para reproducao, sendo a sua selecdo baseada nos valores genéticos, com
especial atengao aos indicadores relacionados com o periodo entre partos e a capacidade

maternal.

A recria dos machos Mertolengos ¢ realizada de forma intensiva ou semi-intensiva € o
sistema de alimentagdo baseia-se em concentrado e palha ou feno. J4 no CTR, a
alimentacdo ¢ feita a base de silagem de milho, de consociagdo de gramineas ou

leguminosas, feno, feno-silagem e farinado para completar o perfil nutricional desejado.

A base de dados fornecida por essa associagao, para o estudo dos modelos matematicos
de crescimento individual, contém a idade, expressa em anos, € respetivos pesos, em
quilograma (kg). Além disso, sdo disponibilizados dados sobre diversas componentes

genéticas dos animais, embora os mesmos ndo sejam utilizados nesta dissertacao.

1.3 Modelos de Crescimento Individual

Um modelo de crescimento individual ¢ uma formulacdo matematica, utilizada em
diversas areas para analisar e prever a forma como um determinado individuo evolui ao
longo do tempo. Estes modelos permitem compreender os fatores que influenciam o
crescimento, facilitando a analise e a formulagdo de previsdes sobre o comportamento

futuro da variavel em estudo.

Iremos estudar dois tipos principais de modelos de crescimento individual: modelos

deterministicos € modelos estocasticos.

Os modelos deterministicos (ndo possuem uma componente estocastica) assumem que

todos os parametros que afetam o crescimento individual sdo constantes e previsiveis, ou
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seja, as mudancas no individuo ocorrem de forma previsivel e continua, uma vez que nao
incorporam o efeito de perturbagdes aleatdrias no crescimento.

Os modelos com componente estocastica sao modelos que incorporam algum elemento de
aleatoriedade ou incerteza que afeta o crescimento do individuo. Estes modelos conseguem
lidar com a incerteza inerente ao crescimento, podendo capturar eventos imprevisiveis e
flutuagdes aleatérias dos fatores ambientais e demograficos. Estes modelos utilizam
frequentemente equacdes diferenciais estocasticas ou simulagdes computacionais para

levar em conta a variacao aleatoria do ambiente.



2. Equacao Diferencial Estocastica e Integral Estocastica

Neste estudo, utilizaremos modelos com componente estocastica, nomeadamente os
modelos de Gompertz e de Bertalanffy-Richards, para avaliar as diferengas na estimagao
das curvas de crescimento e analisar como os diferentes modelos conseguem prever a
evolugdo do crescimento individual do animal em estudo. Para descrevermos estes
modelos, ¢ necessdrio explicar o que € um processo estocastico, definir o integral

estocastico e uma equacdo diferencial estocéstica.

2.1 Processo Estocastico

Um processo estocastico, conforme definido por Braumann (2005), ¢ uma colegdo
indexada de variaveis aleatorias {X; = X;(w):t € T,weQ}, definido no espago de
probabilidade {(,,F, P}, onde X, ¢ a variavel aleatoria, t ¢ o tempo, X;(w) ¢é o estado do
processo no instante t e do acaso w, T ¢ o conjunto de indices.

Como cada variavel aleatoria, X; = X;(w), ¢ uma fung¢do do acaso, w € (), isso implica
que um processo estocastico pode ser considerado como uma fun¢ao de duas variaveis, do
tempo, t, e do acaso, w, apesar de quando se usa a notagao X; a dependéncia do acaso ndo
aparecer explicitamente representado, ¢ essencial reconhecer que o processo estocastico
depende dele (Braumann, 2005).

Para cada t fixo, obtemos uma fun¢ao mensuravel de w, chamada de variavel aleatoria. Se
fixarmos o0 acaso, w, obtemos uma fung¢ao do tempo, t, chamado de trajetéria do processo
estocastico, as trajetorias representam realizagdes do processo estocastico.

O espaco de estado (S) € o contradominio da fun¢do X;(w), em outras palavras, o espaco

de estado ¢ o conjunto de todos os valores possiveis que a variavel aleatoria pode assumir



para todo os t. O processo estocastico pode ser classificado de acordo com o conjunto de
indices T (Braumann, 2005):
¢ Se T ¢ um conjunto dos inteiros ou conjuntos dos inteiros ndo-negativos, estamos
perante um processo estocastico em tempo discreto;
% Se T é um intervalo de tempo escrito na forma [0, +oo[,] — 0o, 40oo[ ou [a, b],
estamos perante um processo estocastico em tempo continuo;
% Se T é um intervalo de R, estamos perante um processo espacial.
Um processo estocastico estacionario pode ser intuitivamente definido como um processo
em que, mesmo havendo flutuacdes aleatorias ao longo do tempo, as propriedades
estatisticas fundamentais, como média, varidncia e covariancia, permanecem constantes €
ndo se alteram com o passar do tempo. Matematicamente, essa estacionariedade ¢
formalizada de duas maneiras (Braumann, 2005):
¢ Primeiro, um processo estocastico é considerado estritamente estacionario se
todas as distribuicdes de dimensao finito sdo iguais sob translagdes no tempo, ou
seja,
Ftl,tz,...,tn(xp X2y eer Xn) = Feovo, (X1, X3, 1, X)),
onde neN, x4, x5, ..., x, E R, t4,¢t5, ..., t, El et € Rtalquet; + 7,...,t, + TEI
¢ Segundo, um processo estocastico ¢ dito estacionario em sentido lato ou de
segunda ordem se e somente se:
» FE[X:] = u(t) = u, para todo teT, onde u é uma constante;
= F [X tz] < oo, para todo teT, isso garante que o segundo momento
(variancia) de X; seja finito em todos os pontos no tempo;

» cov[X,, X;] = C(t —t),onde C é uma fun¢ido de auto-covariancia.



2.2 Processo de Wiener

Um processo de Wiener, também conhecido como movimento browniano e representado
por W; é um tipo de processo estocastico continuo que descreve o movimento aleatdrio
de particulas ou varidveis ao longo do tempo. Ele traduz o efeito acumulado de
perturbagdes aleatorias que afetam a dinamica do fenomeno em estudo, sendo a integral
do ruido perturbador, geralmente assumido como ruido branco em tempo continuo
(Braumann, 2005).
Este processo foi estudado por Norbert Wiener e Lévy na década de 1920, mas ja havia
sido utilizado por Louis Bachelier em 1900 para modelar a variacdo do preco de a¢des na
bolsa e por Albert Einstein para descrever o movimento browniano de particulas
suspensas em fluido.
O processo de Wiener tem diversas aplicagdes em areas como probabilidade e estatistica,
matematica financeira, biologia, fisica, entre outras, desempenhando um papel
fundamental na formulacao das equagdes diferenciais estocasticas, permitindo a resolugao
de equagoes diferenciais que envolvem elementos aleatdrios. Matematicamente, pode ser
definido por (Braumann, 2005):
Defini¢do: Dado um espaco de probabilidade (£, F,P), um processo estocastico

{W¢}tefo,+ o[ definido neste espago € chamado de processo de Wiener padrio se satisfaz

as seguintes propriedades (Braumann, 2005):
% W(0) = 0 q. c. (quase certamente);
¢ Os incrementos W (t) — W(s), com t > s, tém distribuicdo normal com média
zero (0) e variancia t — s;
% Os incrementos W(t;) —W(s;) (i =1,...,n) em intervalos de tempo ndo

sobrepostos (s;,t;) sdo variaveis aleatdrias independentes (chamado de

incrementos independentes).



Além destas propriedades principais, o processo de Wiener apresenta outras propriedades
interessantes:
1. A covariancia entre W (s) e W (t) é:
COVIW (s),W(t)] = E[W(s), W(t)] = min (s, t), (2.2.1)
onde min (s,t) ¢ o minimo entre s e t.
2. O processo de Wiener W; ¢ um processo gaussiano para0 < t; < --- < t,,, af. d.
p conjunta f; , ..., tp(Xyq, ..., Xp) de W(ty), ... W(t,,) € dada por:

_ (xmxi-1)?

— T 1
feproer tn(Xq, o, Xy) = =1 e ©XP (( Z(tz—tz—l))’ (2.2.2)
onde se pos ty = 0e x, = 0.

3. O processo de Wiener W; é um processo de Markov homogéneo com densidade de

transicgao.

p(t,y| x) = (27‘[‘[)_% exp (— & ;Tx)z) ;7> 0. (2.2.3)

Isto ¢, uma distribuig¢do condicional de W (s + 1) dado que W (s) = x é normal de
média x e variancia t:

W(s+ 1) (W(s) = x)AN(x,1). (2.2.4)

4. O processo de Wiener W, ¢ uma martingala, pois em relagao a filtragdo natural

{M }¢s0, onde Mg = o(w(u):0 < u < s), significa que, para s < t, a esperanca

condicional do processo de Wiener W; dado M; ¢ igual a W(s). Isto é:

E[W(t) Ms] = W(s). (2.2.5)
2.3 Integral Estocastica de Ito

A integral de Itd, batizada em homenagem ao matematico japonés Kiyoshi Itd, representa

uma extensao do calculo para processos estocasticos. Tem aplicagdes significativas nas
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equagoes diferenciais estocasticas e em matematica financeira. Enquanto a integral de
Riemann-Stieltjes resulta num nimero real, a integral de It ¢ um processo estocastico.
Seja um processo de Wiener padrio W (t) = W(t,w) e (t = 0) definido no espago de
probabilidades (Q, F, P). Seja Mg = c(W (u),0 < u < 5) (s = 0) a sua filtragao natural
e {A;}sefo € uma filtragdo ndo-antecipativa se, para 0 < s < t, {A;} D Mg e A for
independente dos incrementos futuros W (u) — W(s) e (u = s) do processo de Wiener
(Braumann, 2005). Esta filtracdo diz-se ndo-antecipativa em relacdo ao processo de
Wiener, pois em um dado momento no tempo s, a informagao disponivel sobre o processo
de Wiener até esse ponto ndo fornece qualquer informagao sobre o comportamento futuro
do processo de Wiener apds o tempo s. Assim a g-algebra A, representa os eventos até
o instante s.

Com as condigdes descritas a integral de It6 pode ser definido por:

1(6) = [, G(s) dW (s) (2.3.1)
Aqui, I(G) representa integral de It6 da fungdo G(s). G(s) é uma fungdo do tempo s € é
um processo estocastico, enquanto dW (s) representa a mudanca infinitesimal do
processo estocastico W(s), geralmente um processo de Wiener (ou movimento
Browniano).

Essa expressdo (2.3.1) representa a soma do produto entre os valores da funcdo G(s) em
intervalos discretos, multiplicados pelas mudancas correspondentes do processo
estocastico entre esses intervalos. Quando o niumero de intervalos n aumenta, essa soma
converge para a integral de Ito.

A integral de It possui algumas propriedades interessantes:

1) Valor esperado da integral de It6:
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¢ O valor esperado da integral de It6 de uma fungdo estocastica G(s) num
intervalo [t, t] é zero:
E [ N G(s)dW(s)] =0 (2.3.2)
2) Linearidade:

¢ A integral de It6 ¢ uma operacao linear, ou seja, para uma constante @ e uma
funcdo estocastica G (s), temos:
I;, aG(s)aW (s) = a f, G(s)dW (s) (2.3.3)
3) Equivaléncia de linearidade
% A propriedade de linearidade da integral de Itd ¢ equivalente a propriedade de

linearidade para combinagdes lineares de fungdes estocasticas. Para constantes

a e u e para funcdes estocasticas G(s) e H(s), temos:
ftto[aG(s) + uH(s)]dW(s) = a ft’; G(s)dW (s) + p ft’; H(s)dW(s) (2.3.4)
4) Isometria de Ito
% A propriedade de isometria de It0 estabelece que o quadrado da integral de
Itd6 tem uma esperanca igual a integral do quadrado da fungdo estocastica

G (s), ou seja:

E|(f: 6aw )| = £[f} 6tsr2aws)] (23.5)

Quando consideramos o integral estocastico (2.3.1), verificamos que a integral de

Riemann-Stieljes nao existe, uma vez que diferentes escolhas dos pontos intermédios da

func¢do integranda origina limites diferentes. Isto acontece porque o processo de Wiener

tem uma variac¢ao ilimitada, quase certamente.

Se considerarmos um caso particular da integral (2.3.1), nomeadamente o caso em que

G(s) = W(s), resulta na integral fot W (s)dW (s). Usando as regras usuais do calculo

. £ 1 . _—
teriamos como solugdo EWZ(t). No entanto se considerarmos as decomposicdes
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[En k-1, tn k[ de [0,t], tal que 0 maximo de [t;, x—1, t, k[ convirja para O quando o n tende
para infinito, 0 =t g <ty Sty < . < ty, = t, entdo a integral de It6 ¢ obtida
quando a ecolha do ponto 7y, situado no intervalo [t,j_1,t,x[, ¢ uma escolha
ndo-atencipativa, ou seja, ¢ igual ao ponto inicial do intervalo 7, = t,, y_;. Neste caso

as somas de Riemann-Stieljes dardo origem a integral de Ito:

16) = W) dW(s) = lim  SEaW(tnes) * (W (Ene) = W(tnie-1))  (23.6)

A integral de It6 corresponde a uma escolha em que o comportamento atual do processo
em estudo ndo depende das flutuagdes aleatdrias que irdo ocorrer no futuro. Além disso,

note-se que esta integral nao segue as regras usuais do calculo, uma vez que seguindo as

regras usuais de calculo a integral | Ot W (s)dW (s) deveria ter como solucao

1(G) = [y W(s) dW(s) = W2(t) — ). (2.3.7)

O caso de por exemplo a escolha do ponto intermédio 7,;, das somas de
Rieamann-Sietljes for, por exemplo, o limite superior 7, , = t; , obtemos o limite em

média quadratica de

lim " W (tns) * W (tni) = Wt 1))
k=1

n-o,m.q.

resultando na solu¢do % (W2(t) + ).

Para mostrar este resultado, basta mostrar que:

2
E [( Rea W (ts) * (W () = Wt 1)) = S W20 + ) ] -0 (238)

Como W2(t) = Ypo1(W?(tnx) — W2(tnr—-1)), portanto

o 1
D Wt * W () = Wt 1)) =3 WO + 0
k=1

13



n
1
= =2 W(ti) = W(tnem)’ — t
k=1

1

- _%Zﬁﬂ(W(tn‘k) - W(tn,k—l)z — (tnk = tnk-1) = =5 ZR=1 hn (2.3.9)

Como E [hn,k] = 0, obtemos:
E [( Bea W (tne) % (W (6n) = Wt 1)) = 3 WD) + 1)) ] =

%E [(Z;clzl hn,k)z] = %Zﬁ:l Var[hn,k] = % ﬁ:l(tn,k - tn,k—l)z <2t mkax{tn,k -

tak-1} >0 (2.3.10)

2.4 Integral de Stratonovich

A integral Stratonovich, desenvolvida pelo russo Ruslan Stratonovich, ¢ uma integral
estocastico utilizada na teoria dos processos estocasticos, especialmente na fisica,
estatistica e na teoria do controle estocastico. Esta ¢ uma alternativa a integral de 1t6. No
entanto, a integral de Itd ¢ mais comum na matematica aplicada, enquanto a integral de
Stratonovich ¢ frequentemente empregada na fisica.

A principal caracteristica da integral de Stratonovich é que ela considera a simetria
temporal das flutuagdes, ao contrario da integral de It6. Embora seja uma integral
antecipativa e ndo possua as mesmas propriedades probabilisticas convenientes da
integral de Ito, ela tem a vantagem de obedecer as regras usuais do célculo diferencial.
Algebricamente essa integral ¢ defina da seguinte forma (Braumann, 2005):

Defini¢iio: Dada a parti¢do do intervalo de tempo [0,t]: 0 =t < tp; Sty <o+ <

tnn = t, aintegral de Stratonovich ¢ definido como o limite da soma:

(S) [, W(s)dW(s) = [, W(s) o dW (s) =

lim  yn_ (keI W) () — W (b)) (2.4.1)

n—-oo,m.q.
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Como segue as regras usuais do célculo, a solugdo deste integral estocastico ¢ > W2(t).

2.5 Calculo de Ito e de Stratonovich

Antes de abordarmos o calculo de It6 e de Stratonovich, comegcamos por enunciar o

teorema de Ito, essencial para a compreensdo deste método de célculo estocastico.

Teorema de It6 (Braumann, 2005)
Seja X(t) = X(t, w) um processo de 1t6 definido no intervalo t € [0, d], dado por:
X(t,w) =Xo(w) + fOtF(s, w)ds + fot G(s,w)dW (s, w) (2.5.1)
Onde:
¢ X, ¢ uma variavel aleatéoria mensuravel-A,, podendo também ser uma
constante determinista. Além disso, X ¢ independente do processo de Wiener;

X/

% F(s,w) é uma fungdo conjuntamente mensuravel adaptada a filtracao Ay, e tal
que/ Od |F(s)|ds < + quase certamente;
% G(s,w) € M?[0,d].

A equagdo integral estocastica pode ser escrita na forma compacta como:

dX(t) = F(t)dt + G(t)dW (t) (2.5.2)
Seja Y(t) = h(t, X (t)), onde h(t,x) é uma fun¢do continua com derivadas parciais
continuas em relacao a t e segunda derivada parcial continua em relagdo a x.

Neste caso, Y(t) =Y (t,w) também é um processo de Itd, com condigdo inicial
Yo = h(0, X)) e a sua evolucdo ¢ dada pela formula de It6, expressa na forma diferencial

como:
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O <6h(taX(t)) 6h(tX(t))F( 0+ 162h(tX(t))G (t)> dt +

ah(gi((t)) G(0)dW (2) (2.5.3)

A sua forma integral ¢:

0h(sx(s)) ah(sX(S))F( )+ 1%@( )d(s) +

Y(H) =Y, + [ (

f;@ G(s)dW (s) (2.5.4)

Esta integral resulta da expansdo de Taylor até a primeira ordem em t e até a segunda

ordem em x:
O 6h(tX(t))d ¢ 4 2n(Ex®) 6h(tX(t)) X (t )+ 10 h(tX(t)) (dX(t))Z (2.5.5)

Substituindo dX(t) pela sua expressdo diferencial dX(t) = F(t)dt + G(t)dW (t), e
utilizando as regras de multiplicacdo estocastica especificas para o calculo de It6, dados

na seguinte tabela

dW dt 0

dt 0 0

A aplicagio das regras desta tabela resulta que, por exemplo, (dX(t))? = G?*(t)dt.

Assim, a equacao (2.5.5) podera escrever-se como:

ay (t) = 2D gy 4 PEXO) (g 4 G()aw () + 22X g2 (par

an(t,x(®) 6h(t X(t)) 190%h(t,Xx(1)) an(tx(®)
< n F(t) +- —Gz(t)> dt + ———> Gdw(t) (2.5.6)
2.6 Equacao Diferencial Estocastica

A primeira equacao diferencial estocéstica conhecida foi o modelo de Leonard Salomon

Ornstein e George Eugene Uhlenbeck, denominado Ornstein-Uhlenbeck. Introduzido na
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década de 1930 para descrever o movimento browniano. Versdes desse modelo sdo

amplamente utilizadas em diversos campos, como no campo financeiro, para estudar

taxas de juros, taxas de cambios e outros fendmenos onde a variagao ao longo do tempo

¢ influenciada por um fator estocastico. Além disso, no campo biologico, o modelo ¢

empregado no estudo do crescimento animal, e tem aplicagdes significativas em muitos

outros dominios.

A sua equacao diferencial estocastica geral € escrita da seguinte maneira:

dy(t) = —B(y(t) — A)dt + adW (t) (2.6.1)

Onde y(t) representa o valor do processo no tempo, A ¢ o valor médio de longo prazo

para o qual o processo tende (valor assintético médio), B (B > 0) ¢ um coeficiente que

controla a velocidade com que o processo regressa a A, g ¢ a magnitude da volatilidade

ou for¢a do meio ambiente, dt representa uma variacao infinitesimal no tempo e dW (t)

¢ a variacdo do movimento browniano.

Formas desta equacao diferencial estocastica foram utilizadas por diversos fins:
¢+ Oldrich Vasicek (modelo Vasicek), para descrever a dindmica das taxas de juros e
de cambios ao longo do tempo, onde y(t) representa taxas de juros/cambios e A
a taxa de referéncia;

¢ Benjamin Gompertz (Modelo de Gompertz para o crescimento populacional),
para descrever a dindmica do crescimento de uma populagdo ao longo do tempo,
onde X(t) representa o tamanho da populacdo e Y(t) = In X(t) ¢ o tamanho
transformado da populagao.

O modelo de Bertalanffy-Richards surge quando a transformagdo utilizada ¢

Y(t) = X(t)¢, onde ¢ é um nimero real maior que zero (¢ > 0). Esta transformagao

permite ajustar a equacao para diferentes valores de ¢, proporcionando uma flexibilidade

na formulagdo do modelo que pode capturar diferentes padroes de crescimento
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observados em organismos. Dependendo do valor de ¢, a fungao poténcia pode alterar a
forma da curva de crescimento, tornando o modelo mais adaptavel a diferentes cendrios
bioldgicos.

Segundo Braumann (2005), uma equacdo diferencial estocéstica ¢ uma equacido em que
a taxa de variacdo em relacdo ao tempo ¢ igual a soma de uma fungdo deterministica e de

um componente estocdstico, expressa por:

ax(t) _
ac

f(t,X(©)dt + g(t, X(£))dW (¢) (2.6.2)

Onde d);—it) ¢ a taxa de variacdo de X(t) em relagdo ao tempo, f (t,X (t)) ¢ a funcdo

deterministica que descreve o comportamento dindmico médio e g(t, X(t))dW (t) é o
componente estocastico, em que g(t,X(t)) é uma fun¢do que multiplica pela varia¢do
das flutuagdes aleatdrias, descritas pelo processo de Wiener.

A integral estocastica correspondente a essa equagdo diferencial estocastica, pode ser

expressa usando a nota¢do de integral estocastica da seguinte forma:

X(®) =Xo + [, f(5,X(s))ds + [ g(s,X(s))dW (s) (2.6.3)
Onde X(t) € a solugdo da equagdo diferencial estocastica no tempo t, X, € o valor inicial
de X, f (s, X (s)) ¢ a fungdo deterministica, g(t,X(t)) é o componente estocastico e

dW (s) ¢ o diferencial do processo W (s).

2.7 Teorema de Existéncia, Unicidade e Propriedades da

Solucio de uma Equacao Diferencial Estocastica de Ito

Segundo Braumann (2005), seja X, uma variavel aleatoria com variancia finita, ou seja,
(X, € L?), sendo também mensuravel em relacdo a A, e, consequentemente, independente

do processo de Wiener. Seja € o conjunto das fungdes reais, h(t,x), mesurdveis em
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10, d[x R, satisfazendo uma condigdo de Lipschitiz (h(t,x) — h(t,y) < K|x — y|) euma
restrigdo ao crescimento (Jh(t, x)| < K(1 + |x|?)Y/?).

Consideremos, agora uma equagdo diferencial estocastica de It6 no intervalo de tempo
[0,d], com d > 0 dada por:

dX, = f(t, X(©))dt + g(t, X())dw (t), X (0) = X, (2.7.1)

A solugdo dessa equagao pode ser expressa na forma integral estocastica como:

X(@®) = Xo+ [, f(s,X())ds + [, g(s,X(s))dW (s) (2.7.2)
Onde o segundo integral ¢ interpretado como uma integral de Ito.
Suponha—se que f ¢ g pertencem a €. Entdo, a solugdo satisfaz as seguintes propriedades:
a) Existe um processo estocastico X(t) = X(t,w) com te[0,d] que é quase
certamente continuo e satisfaz a equacao diferencial estocéstica:
dX; = f(t,X(0))dt + g(t, X(£))dw (t), X(0) = X,, (2.7.3)
ou equivalentemente, com probabilidade 1, a equagdo integral:
X(®) = Xo+ [, f(s,X())ds + [, g(s,X())dW(s) , Vte[0, d] (2.7.4)
b) A solugdo ¢ quase certamente Unica, no sentido de que, dadas duas solugdes quase
certamente continuas X (t) ¢ X*(t), tem — se:
sup | X(t) = X*(t)|=0;0<t<d; (2.7.5)
Com probabilidade 1.

c) As seguintes desigualdades sdo validas para a solugao:
E[(X(D)*] < (1 + E[(Xo)?]) exp(K(K + 2)t) — 1 (2.7.6)
E[(X(t) — X0)?] < 2K?(d + 1)(1 + E[(Xy)*Dtexp(K(K + 2)t) (2.7.7)
d) A solugdo X(t) pertence ao espago H?[0, d] e é continua em média quadratica.
e) A solugdo X(t) ¢ um processo de Markov com distribui¢do inicial igual a

distribuicdo de X, e com probabilidades de transi¢ao dadas por:

19



P(t,Bls,x) = P[Xs,(t) EB],(s < t) (2.7.8)

Denotamos por X; ,(t) a solugdo unica e continua da EDE:

dx(®) = f(t, X(®©))dt + g(¢t, X(£))aw (¢), X(s) = x, (2.7.9)

ou, de forma integral:

X@©) =x+ [, fw,XW)du+ [ g(w Xw))dW (w) (2.7.10)
f) Se f e g forem continuas em t, entdo a solugdo X (t) ¢ um processo de difusdo com

coeficiente de tendéncia:

a(s,x) = f(s,x) (2.7.11)

e coeficiente de difusao:

b(s,x) = |g(s,x)2. (2.7.12)

Observacao:
Se forem assumidas condi¢des de regularidade para fe g, e consideramos uma EDE de

Stratonovich:
(S) dX, = f(t, X(@®)dt + g(t, X())dW (v), (2.7.13)
que ¢ equivalente a equagao de Ito:

X, = ( (LX) + 120 g(t,x(t))> dt + g(t, X(6))dW (¢, 2.7.14)

entdo a sua solugdo sera um processo de difusdo com coeficiente de tendéncia:

a(s,x) = f(s,x) + %%g(s, x)=f(s,x)+ i%, (2.7.15)
e coeficiente de difusdo:
b(s,x) = |g(s,x)|?. (2.7.16)
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3. Modelos Matematicos de Crescimento Individual

Os modelos matematicos de crescimento individual sdo representacdes matematicas que
descrevem como o peso de um individuo varia ao longo do tempo. Estes modelos utilizam
equagdes diferenciais para explicar a dindmica de crescimento do individuo e podem ser

aplicados em diversas areas, como biologia e demografia.

3.1 Modelos Matematicos Deterministicos

Nos modelos matematicos deterministicos, as equacgdes diferenciais sdo fundamentais,
pois permitem formular as relagcdes entre as varidveis que influenciam o crescimento,
como a taxa de crescimento, o tamanho méaximo e os fatores que afetam o
desenvolvimento do individuo. Os modelos de Verhulst, de Gompertz e de
Bertalanffy-Richards descrevem o crescimento individual sem considerar a aleatoriedade

dos eventos ambientais ¢ demograficos.

3.1.1 Modelo de Verhulst

Em 1838, o matematico e estatistico belga Pierre Frangois Verhulst (1804-1849) propos,
no seu artigo Notice sur la loi que la population poursuit dans son accroissement, um
modelo alternativo ao de Malthus (Pinheiro, 2021). Nesse modelo, Verhulst introduziu a
ideia de que o crescimento ¢ limitado pela capacidade de suporte do ambiente,
conduzindo a estabilizacdo ao longo do tempo. Embora originalmente formulado para
populagdes, o modelo logistico pode ser aplicado ao crescimento individual de animais,
como o bovino, permitindo descrever o aumento do peso ou tamanho do individuo,
considerando que o crescimento desacelera @ medida que o animal se aproxima do

tamanho maximo.
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Figura 2: Pierre Frangois Verhulst
Fonte: Wikipédia, a enciclopédia livre
O modelo de Verhulst ¢ uma equagao diferencial que descreve como a taxa de crescimento
de um individuo (bovino) varia ao longo do tempo, tendo em conta a capacidade de
suporte do ambiente. Neste modelo, a taxa de crescimento diminui a medida que o
tamanho do individuo se aproxima do limite maximo permitido pelo ambiente.
Denotando por P(t) o peso (ou tamanho) do individuo no instante ¢, a equacdo ¢ expressa

da seguinte forma (Pinheiro, 2021):

dP(t P(t
%er(t)(l— %) (3.1.1.1)
Onde:

dP(t - e .
X % representa a taxa de variagdo do peso (ou tamanho) do individuo em relagao

ao tempo;
% r(r > 0) ¢ ataxa intrinseca de crescimento do individuo;
% K ¢é o peso maximo que o individuo pode atingir (peso assimptotico ou

capacidade do suporte do ambiente).

De acordo com este modelo, observa-se:

N . dP(t e
% Se P > K, entdo % < 0, o peso diminui;

. . dP(b) ,

% Se P = K, entdo el 0, o peso permanece estavel;

. dP
% Se P < K, entdo % > 0, o peso aumenta.
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Para determinar a solugdo geral da equacao diferencial (3.1.1.1), consideramos o seguinte
problema de valor inicial:
dp P
{E—”P(l_ 7) (3.1.1.2)
P(0) =P,

Separando as variaveis e integrando ambos os membros:

[ dP = [rdt (3.1.1.3)

P(1%)

Resolvendo a integral do primeiro membro, utilizando o método de fragdes parciais:

K —
P(K-P)

A B
;+ p (3.1.1.4)

Multiplicando ambos os membros por P(K —P) e igualando os coeficientes

correspondentes, obtemos:

{B—A:O ‘:’{B=1 (3.1.1.5)
Substituindo o valor de A e B na equagao (3.1.1.4), obtemos:

1, 1
[ (G+55)dP = [rat (3.1.1.6)

Integrando ambos os membros e aplicando a condigdo inicial P(0) = P,, obtemos:

P
In | 2
K—P,

_c (3.1.1.7)

Substituindo (3.1.1.7) em (3.1.1.6), obtemos:

1n(i)=rt+1n( Po ) (3.1.1.8)

K-P K—Pq

Resultando na solugdo geral do modelo de Verhulst:

PoK
(K—Py)e~"t+Pp,

P(t) = (3.1.1.9)

Onde: P(t) é o peso (ou tamanho) do individuo no instante t e P, ¢ o peso inicial do
individuo no instante t = 0.

Este modelo apresenta as seguintes propriedades:
¢ Quando t — +oo, P(t) — K, independentemente de Py;

¢ Se Py > K, o peso decresce até atingir K;
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X/

% Se 0 < Py < K, o peso cresce at¢ atingir K.
Nesta ultima condigdo, o grafico da fungdo P(t) assume a forma de uma curva logistica,

que apresenta um ponto de inflexao onde a taxa de crescimento individual ¢ maxima. Este
ponto ocorre em P = K / 2, 0 valor no qual o crescimento atinge a sua velocidade maxima.
Graficamente temos:

P(t) 4

v

Fonte: Autoria propria, 2024.

3.1.2 Modelo de Gompertz

Benjamin Gompertz (1779-1865) foi um matemadtico, estatistico e atudrio britanico,
conhecido principalmente por propor a Lei de Gompertz, que descreve o crescimento
exponencial da taxa de mortalidade humana com a idade. Em 1825, apresentou um modelo
matematico alternativo aos existentes na época, no qual a taxa de crescimento ¢ elevada no
inicio e diminui rapidamente, conduzindo a um crescimento mais lento a medida que o
tempo avanca. Este modelo, conhecido como modelo de Gompertz, tem sido amplamente
utilizado na descrigdo do crescimento de populagdes biologicas, como células, plantas,
bactérias e tumores, bem como em areas como a demografia, a biologia e as ciéncias da
saude. A sua flexibilidade e capacidade de modelar comportamentos assimétricos de
crescimento tornam-no particularmente util em contextos onde hé limitacao ambiental ou

restrigoes de recursos.
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BENJAMIN GOMPERTZ

Figura 3: Benjamin Gompertz
Fonte: Wikipédia, a enciclopédia livre
O modelo de Gompertz descreve um crescimento individual de um animal, caracterizado
por uma taxa de crescimento elevada no inicio, que diminui gradualmente & medida que
o individuo se aproxima do peso méaximo. E representado matematicamente pela seguinte

equagao diferencial (Pinheiro, 2021):

dp(t) _ K
LO=rpPt)In (P(t)) (3.1.2.1)
Onde:

<> dl;—(tt) representa a taxa de variagdo de peso do individuo em relagdo ao tempo;

s P(t) € o peso do individuo no instante t;
%t é o tempo;
+* r ¢ ataxa intrinseca de crescimento do individuo;
% K é o peso maximo que o individuo pode atingir (peso assimptotico ou
capacidade do suporte do ambiente);
Para determinar a solugdo geral da equacao diferencial (3.1.2.1), consideramos o seguinte

problema de valor inicial:

dpP K
{E =rPin(3) (3.12.2)
P(0) = Py

Aplicando as mesmas técnicas utilizadas no modelo de Verhulst, obtemos:
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—In (ln (g)) + ¢ = rt, onde c ¢ a constante de integragao. (3.1.2.3)

Aplicando a condi¢do inicial P(0) = P, na equagdo (3.1.2.3), obtemos:

—In (ln (P%)) +c=r*x0 c=In (ln (Pﬁo)) (3.1.2.4)

Substituindo este valor de ¢ na equagdo (3.1.2.3) e realizando as manipulagdes algébricas

necessarias, obtemos a solucao do modelo de Gompertz:

P(t) = Kexp ( —1In (Pﬁ) et ) (3.1.2.5)

0
Onde: P(t) € o peso do individuo no instante t ¢ P, € o peso inicial para t = 0.
Graficamente temos:

P(t)1

Po

Fonte: Autoria propria, 2024.

3.1.3 Modelo de Bertalanffy-Richards

O modelo de crescimento de Bertalanffy-Richards proposto por Bertalanffy (1938, 1957,
1968) e posteriormente estudado por Richards (1959) ¢ um modelo bioenergético que
descreve o crescimento de um organismo com base nos processos de anabolismo e
catabolismo. Embora originalmente desenvolvido para organismos em geral, este modelo
pode ser usado para descrever o crescimento individual de um bovino. O anabolismo esté
relacionado com a sintese e ¢ considerado proporcional a respiragdo, que, por sua vez, €

proporcional a superficie do organismo. O catabolismo, associado a degradagdo, ¢
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proporcional ao volume ou peso do organismo. Este modelo procura equilibrar esses dois
processos para descrever o crescimento do individuo ao longo do tempo.

A equacao diferencial que representa este modelo ¢ dada por (Filipe, 2011):

L8 = 4P()¢ - kP(B)" (3.1.3.1)
Onde:
<> dl;—(tt) representa a taxa de variagao de peso do individuo em relagdo ao tempo;

>

¢ P(t) ¢ o peso do individuo no instante t;

L)

¢ 1 ¢ a constante de anabolismo;

¢ k ¢ a constante de catabolismo;

% ¢ e n sdo constantes que representam a relagdo alométrica com o tamanho do
organismo.

A solugdo geral desta equagdo, no caso particular em que n = 1, ¢ dada por:

P@®) =K [1-(1-(2%)") emrmee-to ]_% (3.13.2)
Onde:

e m=1-c;

% K¢ = 2’
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3.2 Modelos Estocasticos de Crescimento Individual

Os modelos de equacdes diferenciais estocdsticas incorporam um componente de
aleatoriedade para descrever como as flutuagdes ambientais afetam a taxa de crescimento
de um animal.

Neste contexto, se um animal cresce num ambiente sujeito a variagdes imprevisiveis, o
seu crescimento pode ser descrito por uma equagao diferencial estocastica. Para descrever
o crescimento (mais concretamente o peso, em Kg) X; de um animal, ¢ possivel escrever
os varios modelos de uma forma geral, através do seu peso transformado Y; = h(X,),
sendo h uma fun¢do continua, estritamente crescente e diferenciavel. Usando o peso
transformado, podemos escrever a equacao diferencial da seguinte forma:

dY; = B(a — Yy)dt + adW; ;Y (ty) = yg,0 >0ef >0 (3.2.1)

Onde:

X/
L X4

Y; € o peso transformado do animal no instante t;

X/
L X4

t ¢ o tempo (Idade), e t, € o tempo inicial (Idade inicial);

>

*,

» [ € o coeficiente de crescimento;

*,

» W, ¢ o processo de Wiener;

L)

X/
L X4

a ¢ o peso médio esperado que o animal atinge na maturidade;

X/
L X4

o representa a intensidade das flutuagdes ambientais.

A solucao desta equacgao diferencial ¢ dada por:
Y, =a+e Fl-t(y, —a) + ge P f:o ePsdw; (3.2.2)

Note-se que condicionado a Ys = y, a distribui¢do condicional do processo estocastico,
Y:| Y =y, comt > s, segue uma distribuicdo normal com valor esperado dada por

a+ (y—a)e FE=9) (3.2.3)
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e variancia
%(1 — e 269, (3.2.4)
A escolha da funcdo h, permite obter diversos modelos. Com base em estudos anteriores
(Filipe, 2011), iremos apenas estudar os modelos que melhor se aplicam a estes dados:
% Modelo estocastico de Gompertz, obtido quando Y; = h(X,) = In (X,);
% Modelo estocastico de Bertalanffy-Richards, obtido quando Y; = (X,)¢, e que

apos diferente estudo se concluiu que o valor de ¢ que melhor se ajusta a estes

, 1
dados é o valor de ¢ = 3

29



4. Métodos de Estimacao

Para estimarmos os parametros dos modelos deterministicos e estocdsticos, iremos
recorrer a dois métodos de estimacao pontual: o método dos minimos quadrados no caso
dos modelos deterministicos e o método da méaxima verossimilhanga nos modelos
estocasticos.

O método da méxima verosimilhanga, permite obter a matriz Hessiana através da funcao
de log-verosimilhanga. Com base nela podemos obter a matriz de informagao de Fisher
(através do valor esperado do seu simétrico), e obtendo a matriz inversa conseguimos
derivar a matriz de covariancias empiricas, cujos elementos das diagonais nos permite
obter uma estimativa das variancias das estimativas dos parametros. Desta forma, também
nos sera possivel obter estimativas intervalares para os parametros dos modelos
estocasticos.

Para os modelos deterministicos, obteremos os residuos do modelo e, com base neles,
estimaremos a sua variancia. Esta estimativa permitird também construir intervalos de

confianga para os parametros dos modelos deterministicos.

4.1 Método dos Minimos Quadrados (MMQ)

O método dos minimos quadrados ¢ um procedimento estatistico utilizado para ajustar um
modelo a um conjunto de dados observados, minimizando a soma dos quadrados das
diferencas entre os valores observados e os valores previstos pelo modelo.

Consideremos um conjunto de dados (x;, y;), parai = 1, 2, ..., n. No nosso problema serao
os dados da idade (x;) e do peso do animal y;.

Para cada ponto de dados, o residuo ou erro ¢ a diferenga entre o valor observado y; € o

valor previstoy, pelo modelo deterministico, denotado por:
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e =Yi—n (4.1.1)
A soma dos quadrados dos residuos ¢ expressa por:

S=3L,e? = ¥ (v — 5 (4.12)
A funcdo S ¢ uma fun¢do dos pardmetros do modelo, e através de derivadas parciais em
ralacdo a cada um dos parametros, consegue-se obter os valores das estimativas dos
parametros que minimizam o erro e;.

Este método ¢ amplamente utilizado devido a sua simplicidade e eficacia em fornecer uma
boa aproximagdo para um determinado conjunto de dados, constituindo a base para muitos
métodos de regressdo em estatistica (Fonseca, 1994).

No entanto, nesta dissertacdo optou-se por usar modelos deterministico, mais complexos,
ndo sendo possivel transformar a solu¢do da equacao diferencial numa equagao linear (tal
como seria possivel no modelo de Malthus, por exemplo). Desta forma, para a estimacao
dos parametros do modelo ndo linear, foi utilizada a fun¢do nlsLM do pacote minpack.lm
em R. Este método consiste numa versao modificada do método dos minimos quadrados
ndo lineares, recorrendo ao algoritmo de Levenberg-Marquardt (este algoritmo combina
os métodos de Gauss-Newton e de gradiente). A estimativa da varidncia dos pardmetros
ajustados € obtida a partir da inversa da matriz de informagao de Fisher empirica, dada por
(™)1, onde J é a matriz Jacobiana dos residuos em relagdo aos pardmetros. Usando esta

2
. NEET ‘A . . . A e; ,
matriz e dividindo pela varidncia residual estimada & = Z—‘, com p o numero de

parametros € n o numero de observagdes, ¢ possivel estimar a varidncia empirica dos

parametros.
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4.2 Meétodo da Maxima Verossimilhanca (MMYV)

O método da maxima verossimilhanca ¢ uma técnica estatistica amplamente utilizada
para estimar os parametros desconhecidos de um modelo, podendo ser utilizada se as
densidades de transi¢ao do processo X; forem conhecidas.

De acordo com Filipe (2011), para os diferentes modelos de crescimento estocésticos,
Gompertz e Bertalanffy-Richards, o vetor dos parametros que pretendermos estimar ¢é
P = (a, B, 0). Ja foi referido que a distribui¢do condicional do processo estocastico do
animal j no instante k, t; ;, condicional ao valor conhecido de Y para o mesmo animal |
no instante anterior t;,_q, segue uma distribuigdo normal. A sua fun¢do densidade de

probabilidade ¢ entdo dada por:

— 1 (yj,k—“—(yj.k—l—“)Efk)z
Fr ¥ sy, (Yie) = D exp (— T (4.2.1)
2 I )

2p
Onde: Ej ¢ a fungdo exponencial da diferenga de tempos ( Ej; = e~ ik~ tik-)),

Como a distribui¢do condicional do estado atual (V; ;) depende apenas do estado anterior
(Y; k1), 1sso significa que estamos perante um processo de Markov. A fun¢do densidade
probabilidade (f. d. p) conjunta de V;4, ..., Y]-‘n]., dado Y;o = Y;, € o produto destas
fungdes densidade probabilidade (f. d. p).

A funcao de log-verossimilhanga para o animal nimero j ¢ dada da seguinte maneira:

LYf (PlY]) =In (H?:l fyj,k|Yj,k—1=yj,k_1 (‘y]';k)) = Zr[:jzl In fyf'klyf'k—1=yj,k—1 (y],k)(422)
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Substituindo a expressao (4.2.1) em (4.2.2), teremos:

nj
Ly, (PI%) = D 00 fo oy )
k=1

(Y= (Y1 “)Efk)2> (4.2.3)

n; 1
=Y. In| ———exp (—
k=1 2 2B
/Zn;'—ﬁu—Ejz_f) 233 3(1 ElL)

Aplicando as propriedades logaritmica em (4.2.3), obtemos:

1

Ly,(P|Y;) = Z In1—1In <27r—’8(1 E23)>
k=1

2
(y,-,k —a = (Yjk-1- “)Efk)
+In| exp| — S

Zﬂ (1 B Efl[:)

b (P19) = 22 (=3 n (an ) (1 - ) - =) ) g2

2B J.k

Aplicando as propriedades do somatorio em (4.2.4), obtemos:

Ly (P[Y)) = —%Z In(27) — —Z In <2ﬁ> - —Z In(1 - E26)
k=1

&g (Yma= (Y- 9Ef)
k=1o-2 (1 - EJZ,If)

2 e
Ly, (P|y) = = Zn@m) - 2 <ﬁ>—%21n 1
k=1

(yj,k_a_(yj,k—l_a)Efk)z

ﬁ n;
Ly, = (4.2.5)
I
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A funcdo log-verossimilhangca global para os m animais ¢ a soma das
log-verossimilhancas individuais para todos os animais, assumindo independéncia entre
eles. Algebricamente escreve-se:

Ly = LYl,...,Ym(P|Y1; v ¥m) = Z;'n=1 LYj (P|Yj) (4.2.6)
De referir que ¥; € o tamanho transformado de X;.

Segundo Filipe (2011), o intervalo de confiang¢a de (1 — @)100% para um determinado

parametro 0 é:

[ b, — Z(—as2)|Var(8) ; 6, + Z(1—a/2)‘fV/57”( 6,) l (4.2.7)

Sendo que a variancia do estimador 8, pode ser obtida a partir da matriz de informagao de
Fisher empirica, cuja inversa fornece uma estimativa da matriz de variancias-covariancias

dos estimadores. Assim:

var(8,) = [F(8) ] (4.2.8)

i,i

A matriz de informacao de Fisher ¢ definida por:

(4.2.9)

F(0) = —E [6zlnL(9) ]

002
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5. Resultados

Neste estudo, ajustdmos diferentes modelos de crescimento individual, tanto
deterministicos como estocasticos, aos dados do animal da raca Mertolenga. Em
particular, utilizdmos os modelos deterministicos de Gompertz, de Verhulst e de
Bertalanffy-Richards, bem como os modelos estocasticos de Gompertz e de
Bertalanffy-Richards, com o objetivo de estimar os parametros que melhor descrevem a

dindmica do crescimento deste animal.

5.1 Estimac¢ao dos Parametros

Os resultados incluem a estimativa dos parametros dos modelos deterministico e
estocastico pelos métodos dos minimos quadrados e da maxima verossimilhanga,
respetivamente.

Consideramos, em primeiro lugar, a estimativa dos parametros dos varios modelos para
um determinado animal existente na base de dados fornecida pela ACBM. Selecionou-se
um animal que tivesse muitas medigdes do seu peso, e que estas medigcdes se
prolongassem com a idade do animal. Este animal tem medi¢des desde a nascenga até aos
13 anos de idade, com um total de 62 medigdes de peso.

Considerando o modelo estocastico de Gompertz (MEG), ou seja, Y; = h(X;) = In(X,), e

o modelo estocastico de Bertalanffy-Richards (MEBR) com Y; = h(X;) = X%, na Tabela
1 sdo apresentadas as estimativas dos parametros dos modelos estocasticos de Gompertz
e de Bertalanffy-Richards, respetivamente. O valor da log-verosimilhanca de cada
modelo, relativamente as 62 medi¢des de peso (para efeitos de comparagdo) sao
apresentadas. Note-se que as estimativas dos parametros dos dois modelos ndo sao

comparaveis, com exce¢ao da estimativa do peso médio assimptotico, que ¢ dado por
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A = h71(®@). Para além das estimativas dos pardmetros dos modelos, sio também
apresentados na Tabela 1 as margens de erro dos intervalos de confianca a 95%. Para
construir estes intervalos de confianca assimptoticos, usamos (4.2.7), sendo que a
estimativa da variancia sera obtida pela inversa da matriz de informagao de Fisher (4.2.8).
Este método serd usado para estimar a margem de erro dos parametros , 5 e @.

No entanto como para o parametro A, e de forma a poder comparar na mesma escala,
teremos que usar o método delta para obter o intervalo de confianca. Ou seja, a estimativa
pontual sera dada por e® no caso do modelo MEG, e sera dada por @3 no caso do modelo

MEBR. Ja a estimativa da margem de erro, usando o método delta, sera dada por

e®\/Var(a) no caso do modelo MEG e dada por 3@2y/Var(a) no caso do modelo
MEBR.

Tabela 1: Estimativas dos parametros obtidas pelo método da maxima
verossimilhanca para o0s modelos estocasticos de Gompertz e de
Bertalanffy-Richards, e os respetivos valores das log-verossimilhancas.

MEG MEBR

Estimativa ~ Margem de  Estimativa  Margem de

€I1ro €ITro
A (kg) 42322 36,31 428,14 43,34
& (kg) 6,048 0,086 7,537 0,254
B (/ano) 1,351 0,329 1,092 0,373
& (/ano) 0,037 0,013 0,206 0,074
Lx -279,5 -280,8

Para estes dois modelos, na Figura 4, sdo representadas as curvas de crescimento real e
as curvas estimadas pelos modelos MEG e MEBR. Note-se que a curva ajustada nestas
situacdes de modelos estocésticos ndo ¢ mais que a curva dos valores esperados do peso
do animal (peso transformado Y;), isto €, a curva deterministica resultante do tamanho

inicial Y; , com os pardmetros estimados por maxima verossimilhanga, € no caso de ndo
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existirem flutuacdes aleatorias do ambiente, isto ¢, fixando o parametro da variabilidade

ambiental em o = 0. A estimativa desta curva esperada seria entao dada por:

Vo= a+ (Y, —@)exp(—f(t - to)) (5.1.1)
500 . -.".
A
o ° Yo :. ..
400 5 ° ° °
2 .
E [ ]
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& 300
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Legenda == MEBR (sigma=0) === MEG (sigma=0) ® Peso observado

Figura 4: Ajustamento dos modelos estocasticos de Gompertz (MEG) e de
Bertalanffy-Richards (MEBR) aos dados observados.

No caso dos modelos deterministicos, iremos considerar os dados do mesmo animal e
iremos estimar os parametros do modelo respetivo. Como a estimagdo ira recorrer ao
método dos minimos quadrados nao lineares, recorrendo ao algoritmo de
Levenberg-Marquardt (pacote minpack.Im do R), as estimativas das variancias dos
parametros serdo fornecidas diretamente pelo método numérico. Na Tabela 2
apresentamos as estimativas dos parametros e respetivas margens de erro para os

diferentes modelos.
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Tabela 2: Estimativas dos pardmetros obtidas pelo método dos minimos quadrados
para o modelo deterministico de Gompertz (MDG), o modelo deterministico de
Bertalanffy-Richards (MDBR) e o modelo deterministico de Verhulst (MDV).

MDV MDG MDBR
Estimativa Margem de Estimativa Margemde  Estimativa Margem
erro erro de erro
Po 103,49 32,74 86,06 34,55 44,78 62,88
r 1,161 0,295 0,875 0,198 0,292 0,305
K 443,88 13,27 446,56 13,18 455,83 16,15
m 1,560 0,918

De notar que no modelo deterministico de Bertalanffy-Richards a estimativa do peso a
nascenga (Po) e a estimativa da taxa de crescimento r, ndo foram significativamente
diferentes de 0.

Para estes trés modelos, na Figura 5, sdo representadas as curvas de crescimento real e as
curvas estimadas pelos modelos MDV, MDG e MDBR. As curvas dos modelos de
Verhulst e de Gompertz sdo muito semelhantes. A curva do modelo de
Bertalanffy-Richards apresenta um crescimento inicial mais acentuado, todavia culmina

com um peso assimptotico superior ao das outras curvas.
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Figura 5: Ajustamento dos modelos deterministicos de Gompertz (MDG), de
Bertalanffy-Richards (MDBR) e de Verhulst (MDV) aos dados observados.

Se representamos graficamente as curvas estocdsticas e deterministicas (ndo
apresentado), verificamos que as curvas estocasticas apresentam um peso estimado
assimptotico mais pequeno que as curvas deterministicas, embora a taxa de crescimento
inicial seja superior, inclusivamente superior a observada no modelo de
Bertalanffy-Richards.

Na Tabela 3 apresentamos a comparacao entre os diferentes modelos com base na raiz do
erro quadratico médio (REQM) e do erro médio absoluto (EMA). Podemos observar que
os modelos deterministicos superaram os modelos estocéasticos em termos de ajustamento
aos dados na métrica REQM. De facto, tal j4 seria de esperar uma vez que o método dos
minimos quadrados minimiza a soma dos quadrados dos erros. No entanto esta diferenca
¢ muito reduzida. Analisando os resultados da Tabela 3, observa-se que o modelo
deterministico de Bertalanffy—Richards (MDBR) apresenta o menor valor de EQM, pois

possui o menor valor de REQM (37,2). Na métrica do EMA o modelo estocastico de
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Gompertz apresenta o pior valor. E o modelo MDBR volta a presentar o melhor

desempenho.

Tabela 3: Comparacdo da qualidade de ajustamento dos diferentes modelos
deterministicos e estocasticos.

Modelos MEG MEBR MDV MDG MDBR
REQM 44,3 42,5 40,6 39,0 37,2
EMA 34,4 32,8 33,4 31,3 28,8

5.2 Previsao

Iremos comparar a qualidade do ajuste e previsao entre os modelos deterministicos, € os
modelos estocasticos.

Para avaliar a qualidade da previsao de cada modelo, iremos usar a REQM e o EMA.
Iremos realizar em primeiro lugar uma previsao a longo prazo e depois uma previsdo a
curto prazo (passo a passo). Na previsdao a longo prazo iremos deixar algumas
observagoes de fora da estimagao (as Gltimas 15) e posteriormente avaliamos a qualidade
das previsdes. Ou seja, neste caso, para estimagdo da curva serdo utlizadas as 62
observagoes exceto as ultimas 15 observagdes. [remos usar os parametros estimados pelos
modelos para de seguida prever o peso do animal nas tltimas 15 observagdes e comparar
as estimativas com os valores reais.

Ja na estimagdo a curto prazo (passo a passo), em cada instante a estimar, todas as
observagdes até esse instante sdo utlizadas para estimar os parametros da curva de

crescimento, € com base nesses parametros o proximo peso do animal ¢ estimado.
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Faremos esse processo de forma recursiva, ou passo a passo, para estimarmos as ultimas
15 observagoes.

O que esperamos observar ¢ que os modelos estocasticos oferecam uma abordagem mais
realista e adequada, uma vez que no crescimento dos bovinos da raca Mertolenga, existem
fatores aleatorios que afetam o processo, tais como variagdes individuais, condigdes
ambientais e genéticas.

No caso dos modelos estocasticos, para prever o valor futuro de Y;, dado o historico até

ao instante t;, usaremos a solu¢do da equagdo diferencial estocastica do tipo:

Y, = a+ (Y, —a)e Pt + ge=ht f:k ePs dW (s) (5.2.1)
Sabendo que os tamanhos observados até t, sdo dados exatos, a previsdo dos valores
futuros depende apenas do ultimo valor Y; , uma vez que Y; constitui um processo de
Markov. Assim, a média condicional é:

E[V|Y,, ] = a + (Y, — a) exp(—B(t — &) (5.2.2)

E a variancia condicional ¢ dada por:

2
Var[Y,|V;, | = ;’—B (1—exp(-28(t—t))) (5.2.3)
Desta forma, a previsao estocastica do tamanho futuro dos animais ¢ obtida através da

média condicional estimada:

7o =@+ (Y, — @) exp(—At - t,)) (5.2.4)
Na Tabela 4 sdo apresentados os valores da REQM e do EMA para as estimativas a longo
prazo das ultimas 15 observagdes para os diferentes modelos deterministicos e
estocasticos. Os valores das métricas de desempenho dos modelos estocasticos nem todos

sao inferiores aos dos modelos deterministicos, devido a existéncia de uma observacao

que praticamente coincide com as curvas planas, fazendo diminuir as medidas de erro.
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Mesmo assim, o modelo estocastico de Bertalanffy-Richards (MEBR) apresentou o
melhor desempenho entre os 5 modelos.

No grafico da Figura 6 apresentamos as 15 observagdes reais e as estimativas por cada
um dos 5 modelos. Observamos que os modelos deterministicos apresentam estimativas
de peso praticamente inalteradas ao longo das 15 observagoes, o que significa que com o
avango da idade o peso permanece constante em cada um dos modelos deterministicos.
Ja as estimativas dos modelos estocasticos tentam acompanhar o comportamento da
evolugdo dos pesos de uma forma decrescente com o avango da idade em cada um dos
modelos estocasticos.

Tabela 4: Valores da REQM e do EMA para as estimativas a longo prazo das ultimas
15 observagées para os diferentes modelos deterministicos e estocasticos.

Modelos REQM EMA
MEG 78,2 71,0
MEBR 73,2 66,2
MDV 79,5 72,3
MDG 77,2 69,7
MDBR 75,4 67,9
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Figura 6: Representacdo grafica das estimativas dos 5 modelos para as ultimas 15
observacgées, para estimativas a longo prazo.

Na Tabela 5 sdo apresentados os valores da REQM e do EMA para as estimativas a curto
prazo (passo a passo) das ultimas 15 observagdes para os diferentes modelos
deterministicos e estocasticos. Os valores das métricas de desempenho dos modelos
estocasticos neste caso sdo bastante inferiores aos dos modelos deterministicos,
evidenciando a superioridade dos modelos estocasticos para prever a evolucao futura do
peso do animal e o modelo estocastico Bertalanffy-Richards apresenta melhor
desempenho entre os 5 modelos.

No grafico da Figura 7 apresentamos as 15 observagdes reais e as estimativas por cada
um dos 5 modelos para as estimativas a curto prazo (passo a passo). Observamos que os
modelos deterministicos apresentam uma tendéncia crescente e regular, prevendo um

aumento continuo do peso ao longo das 15 observagdes. Ja as estimativas dos modelos
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estocasticos acompanham de uma forma bastante regular o comportamento do peso futuro
do animal.
Tabela 5: Valores da REQM e do EMA para as estimativas a curto prazo (passo a

Zpasso) das ultimas 15 observagées para os diferentes modelos deterministicos e
estocasticos.

Modelos REQM EMA
MEG 35,5 26,6
MEBR 33,2 24,7
MDV 66,7 59,8
MDG 64,4 57,2
MDBR 60,5 53,2
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Figura 7: Representacéao gréafica das estimativas dos 5 modelos para as ultimas 15
observacgées, para estimativas a curto prazo (passo a passo).
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6. Conclusoes

Nesta dissertacao, estudamos diferentes modelos de crescimento individual, tanto na sua
versao deterministica como estocastica, conforme referido anteriormente. Procedemos a
estimagdo dos parametros dos modelos deterministicos e estocasticos, bem como ao
ajustamento dos mesmos, recorrendo a0 método dos minimos quadrados para os modelos
deterministicos € a0 método da maxima verossimilhanga para os modelos estocasticos.
Além disso, os modelos deterministicos e estocasticos foram representados graficamente.
Realizamos previsdes a longo prazo e a curto prazo (passo a passo), bem como a respetiva
representacdo grafica. Para tal, utilizdmos dados reais de um animal existente na base de
dados fornecida pela ACBM. Este animal tem medi¢des desde o nascimento até aos 13
anos de idade, com um total de 62 medic¢des de peso, com o objetivo de identificar qual
dos modelos apresenta melhor desempenho, com base na raiz do erro quadratico médio
(REQM) e no erro médio absoluto (EMA).

Ao analisarmos os resultados obtidos na modelagdo, concluimos que a estimativa do
parametro do peso médio assimptotico (A, em kg) do modelo estocastico
Bertalanffy-Richards ¢ superior a do modelo estocastico de Gompertz. Esta diferencga ¢
confirmada pela representagdo grafica, onde se observa que a curva do modelo estocastico
Bertalanffy-Richards se ajusta ligeiramente melhor aos dados observados, especialmente
na fase de estabilizacdo do crescimento.

Na estimativa do parametro K nos modelos deterministicos, observa-se que o valor obtido
pelo modelo Bertalanffy-Richards ¢ superior aos dos modelos de Gompertz e de Verhulst.
Esta diferenca ¢ confirmada pela representagao grafica, onde se verifica que a curva do
modelo de Bertalanffy-Richards apresenta um ajustamento ligeiramente melhor aos

dados observados.
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No que diz respeito a comparagdo da qualidade de ajustamento dos diferentes modelos
deterministicos e estocasticos, observa-se que os modelos deterministicos apresentam
melhor desempenho do que os modelos estocasticos na métrica REQM. Relativamente a
métrica EMA, o modelo estocastico de Gompertz apresenta o pior desempenho, enquanto
o modelo deterministico de Bertalanffy-Richards apresenta o melhor desempenho.
Importa ainda salientar que o modelo deterministico de Bertalanffy-Richards apresenta
os melhores resultados nas duas métricas, registando os menores valores quer na REQM
quer no EMA.

Relativamente as estimativas a longo prazo para as ultimas 15 observagdes dos diferentes
modelos deterministicos e estocasticos, observa-se que o modelo estocéstico de
Bertalanffy-Richards (MEBR) apresenta o melhor desempenho em ambas as métricas
(REQM e EMA), em comparagao com os restantes modelos. Esta superioridade ¢ também
confirmada pela representacao grafica.

Por outro lado, verifica-se que, com o avan¢o da idade, o peso previsto permanece
praticamente constante nos modelos deterministicos, enquanto os modelos estocasticos
procuram acompanhar a evolucao dos pesos observados de forma decrescente.

Em relagdo as estimativas de curto prazo (passo a passo) para as ultimas 15 observagoes,
obtidas a partir de diferentes modelos deterministicos e estocasticos, verifica-se que os
modelos estocasticos apresentam um desempenho superior aos modelos deterministicos
em ambas as métricas de avaliacdo consideradas (REQM e EMA). Entre os modelos
estocasticos analisados, o modelo estocastico de Bertalanffy-Richards destaca-se como
aquele que melhor antecipa a evolucao futura do peso do animal. Esta superioridade ¢
igualmente corroborada pela analise grafica, que evidencia uma maior proximidade entre

os valores observados e os valores estimados por este modelo.
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Por outro lado, observa-se que os modelos deterministicos tendem a apresentar uma
trajetoria de crescimento monotonica, prevendo um aumento continuo do peso ao longo
das 15 observagdes. Em contraste, as estimativas dos modelos estocasticos reproduzem
de forma mais fiel a dindmica real do peso do animal, captando flutuagdes e variagdes de
curto prazo.

Este melhor desempenho dos modelos estocasticos pode ser explicado pelo facto de
incorporarem explicitamente a dependéncia temporal entre observagdes sucessivas de
peso, enquanto os modelos deterministicos assumem implicitamente que as observagdes
sao independentes. Assim ao considerar a estrutura de dependéncia inerente aos dados, os
modelos estocésticos conseguem fornecer previsdes mais realistas e precisas do

comportamento futuro do peso do animal.
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Anexo

A modelagdo dos dados foi realizada com recurso ao software R studio, utilizando-se os
registos de um animal da raga Mertolenga, disponibilizados pela ACBM. Este animal tem
62 medicdes de peso desde a nascenca até aos 13 anos de idade.

Leitura e Organizaciao dos Dados

setwd("C:/Users/huilb/OneDrive/Ambiente de Trabalho/Animal") # Definir a diretéria de
trabalho.

#Livraarias utilizadas

library(minpack.lm)

library(ggplot2)

EstcGompeAnimal <- read.csv2("Animal3.csv") # Ler base de dados do 3° animal.
str(EstcGompeAnimal) # Mostrar a estrutura da base de dados.

View(EstcGompeAnimal) # Visualizar os dados.

# Verificar se a base de dados tem NA (valores ausentes)

any(is.na (EstcGompeAnimal))

#Matriz de peso por coluna por animal (transposta)

P<-((EstcGompeAnimal$Peso)) # Extrair a coluna de Peso da base de dados e armazenar na
variavel " P".

#Matriz de idade por coluna por animal (transposta)

I<-((EstcGompeAnimal$ldade)) # Extrair a coluna de Idade da base de dados e armazenar na
variavel " 1",

#Representacao grafica das variaveis I e P.

plot(I, P)

m<-length(P) # Calcular o nimero de elementos da variavel P ¢ armazenar em "m".

n<-length(I) # Calcular o nimero de elementos da variavel P e armazenar em "n".

Modelaciao dos Modelos Deterministicos

o Modelo Deterministico de Bertalanffy-Richards
# Atribuicdo do primeiro valor a variavel t0
tO<-1[1]

# Definicao da fun¢ao do modelo deterministico de Bertalanffy-Richards
BR_solution <- function(t, K, r, m, PO, t0) {t0<-I[1]
K*(1-(-(PO/K) " m) * exp(-r * m * (t-t0))) (1 / m)}

# Estimagao dos parametros do modelo

start_vals <- list(K = 500, r = 0.1, m = 0.5, PO = 40)

dat<-EstcGompeAnimal

fit BR <- nlsLM(Peso ~ BR solution(l, K, r, m, PO, t0), data = dat, start = start _vals)
summary(fit BR)

# Calculo das margens do erro dos parametros do modelo
coef(summary(fit BR)) [, "Std. Error"] *1.96

# Calculo dos valores ajustados pelo modelo

predicted BR_est<-BR solution
(EstcGompeAnimal$Idade[1:length(EstcGompeAnimal$Idade)],coef(fit BR)["K"],
coef(fit BR) ["r"], coef(fit BR) ["m"],coef(fit BR) ["P0"], t0)

predicted BR<-c(predicted BR est)
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# Calculo da REQM e do EMA(MAE) do modelo

MSE BR <- mean((P - predicted BR)"2)

MAE <- mean(abs(P - predicted BR))

sqrt(MSE_BR)

MAE

AR Previsoes de Longo Prazo do e e 8
HitiHiHIHIHIH# - Modelo Deterministico de Bertalanffy-Richards R

# Funcdo do modelo deterministico de Bertalanffy-Richards

bertalanffy richards <- function(t, K, r, m, PO, t0) {K * (1 - (1 - (P0/K) “m) * exp(- r * m * (t-t0)
Y1/ m)}

# Definir o nimero de observagdes a serem excluidas da previsdo
np <- 15

Nc <- nrow(EstcGompeAnimal)

Dados_Ajuste <- EstcGompeAnimal[1:(Nc - np),]

Dados_Prev <- EstcGompeAnimal[(Nc - np + 1):Nc, |

t0<-Dados Ajuste$Idade[1]

# Ajuste do modelo com os dados de treino

start_vals <- list(K = 400, r = 0.8, m = 0.3, P0=40)

fit BR LP <-nlsLM(Peso ~ bertalanffy richards(Idade, K, r, m, PO, t0), data = Dados_Ajuste,
start = start vals)

# Previsoes dos valores futuros

Idade Futura <- Dados Prev$ldade

Pred BR<-bertalanffy richards(Idade Futura,coef(fit BR LP)["K"], coef(fit BR_LP)["r"],
coef(fit BR_LP)["m"],coef(fit BR_LP)["P0"], t0)

# Calculo da REQM e do EMA do modelo para a previsdo de longo prazo
MSE GD <- mean((Dados_Prev$Peso - Pred BR)"2)

MAE <- mean(abs(Dados_Prev$Peso - Pred BR))

sqrt(MSE_GD)

MAE

R Previsiao de Curto Prazo (Passo a Passo) HER R
e e do Modelo Deterministico de Bertalanffy-Richards LR
# Definir o nimero de observagdes a serem excluidas da previsdo

np <- 15

Nc <- nrow(EstcGompeAnimal)

# Definir corretamente Yobs ¢ leY
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]
leY <- length(Yobs)

# Indice de inicio de previsio
k <-Nc - leY

# Inicializar vetor de previsoes
Pred BR PP <- numeric(np)

# Realizacdo de previsdo de curto prazo

for (iin l:p) {

IobsPP <- EstcGompeAnimal$Idade[1:(Nc - np +i-1)]
PobsPP <- EstcGompeAnimal$Peso[1:(Nc - np +i-1)]
dataPP <- data.frame(Idade = lobsPP, Peso = PobsPP)
t0<-IobsPP[1]

start_vals <- list(K = 400, r = 0.8, m = 0.3,P0=40)
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fit BR PP <- nlsLM(Peso ~ bertalanffy richards(Idade, K, r, m, PO, t0), data = dataPP, start =
start vals)
Pred BR PP[i] <- bertalanfty richards(EstcGompeAnimal$Idade[Nc - np + ],

coef(fit BR_PP)["K"],

coef(fit BR PP)["r"],

coef(fit BR_PP)["m"],

coef(fit BR_PP)["P0"],

t0)}

# Célculo da REQM e do EMA para a previsdo de curto prazo
Iobs <- EstcGompeAnimal$Idade[(Nc - np + 1):Nc]

Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]
MSE_GD <- mean((Yobs - Pred BR_PP)"2)

MAE <- mean(abs(Yobs - Pred BR_PP))

sqrt(MSE_GD)

MAE

o Modelo Deterministico de Gompertz
# Definicdo da fun¢do do modelo deterministico de Gompertz
gompertz_solution <- function(t, K, r, PO, t0) {K * exp(-log (K / P0) * exp(-r * (t-t0)))}
# Atribuicdo do primeiro valor a varidvel t0
tO<-1[1]

# Estimag@o dos parametros do modelo

start_vals <- list(K = 549, r = 0.8, PO = 40)

fit G <- nlsLM(Peso ~ gompertz_solution(Idade, K, r, PO, t0), data = EstcGompeAnimal, start =
start_vals)

summary(fit G)

# Calculo das margens do erro dos parametros do modelo
coef(summary(fit G) [, "Std. Error”] *1.96

# Calculo dos valores ajustados pelo modelo
predicted GD est <-  gompertz_solution(EstcGompeAnimal$ldade,  coef(fit G)["K"],
coef(fit_ G)["r"],coef(fit_G) ["P0O"], t0)

# Calculo da REQM e do EMA (MAE) do modelo
MSE_GD <- mean((P - predicted GD_est)"2)
MAE <- mean(abs(P - predicted GD _est))
sqrt(MSE_GD)

MAE

R Previsao de Longo Prazo do HER R
B et Modelo Deterministico de Gompertz SR R
# Definir o nimero de observagoes a serem excluidas da previsao

np <- 15

# Separacdo dos dados para ajuste e previsao

Nc <- nrow(EstcGompeAnimal)

Dados_Ajuste <- EstcGompeAnimal[1:(Nc - np), | # Dados para ajustar o modelo
Dados_Prev <- EstcGompeAnimal[(Nc - np + 1):Nc, | # Dados para previsao

# Estimacdo dos parametros com os dados de ajuste

start_vals <- list(K = 549, r = 0.8, P0=40)
t0<-Dados_Ajuste$Idade[1]
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fit G_LP <- nlsLM(Peso ~ gompertz solution(Idade, K, r, PO, t0), data = Dados Ajuste, start =

start vals)
summary(fit G_LP)

# Previsoes dos valores futuros

Idade Futura <- Dados Prev§Idade

predict(fit G_LP, Dados_Prev)

Pred GD <- gompertz_solution(Idade Futura,
coef(fit G_LP)["r"],coef(fit G_LP)["P0"],t0)

# Calculo da REQM e do EMA para a previsao de longo prazo
MSE GD <- mean((Dados_Prev$Peso - Pred GD)"2)

MAE <- mean(abs(Dados_Prev$Peso - Pred_GD))
sqrt(MSE_GD)

MAE

SR Previsao de Curto Prazo (Passo a Passo)
ML do Modelo Deterministico de Gompertz
# Definir o nimero de observagdes a serem excluidas da previsdo

np <- 15

Nc <- nrow(EstcGompeAnimal)

# Definir corretamente Yobs e leY
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]
leY <- length(Yobs)

# Indice de inicio da previsio
k <-Nc- leY

# Inicializar vetor de previsoes
PredGompPP <- numeric(leY)

# Realizacdo de previsdo de curto prazo

start_vals <- list (K =518, r = 1.05, P0=40)

for (iin 1: leY) {

IobsPP <- EstcGompeAnimal$Idade[1:(k + i-1)]

PobsPP <- EstcGompeAnimal$Peso[ 1:(k + i-1)]

dataPP <- data.frame(Idade = lobsPP, Peso = PobsPP)

t0<-IobsPP[1]

fit GPP <- nlsLM(Peso ~ gompertz_solution(Idade, K, r, PO, t0),
data = dataPP, start = start_vals)

PredGompPP[i] <- gompertz_solution(EstcGompeAnimal$Idade[k + 1],

coef(fit. GPP)["K"],

coef(fit. GPP)["r"],

coef(fit GPP)["P0"],

t0)}
# Definir os vetores de observacgoes
Iobs <- EstcGompeAnimal$Idade[(Nc - np + 1):Nc¢]
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1): Nc]

# Célculo da REQM e do EMA para a previsdes de curto prazo
EQM_PP <- mean((Yobs - PredGompPP) 2)

coef(fit G_LP)["K"],

HAHHBH R
HHHHHHHHEHE

MAE PP <- mean (abs(Yobs - PredGompPP)) # Média das diferencas absolutas

REQM_PP<-sqrt (EQM_PP)
REQM_PP
MAE PP
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o Modelo Deterministico de Verhulst
# Definicdo da funcdo do modelo deterministico de Verhulst
verhulst_solution <- function(t, r, K, PO, t0) {
K *P0/((K-P0)* exp(-r * (t-t0)) + P0)}

# Atribuicdo do primeiro valor a varidvel t0
t0<-1[1]

# Estimagao dos parametros do modelo

start_vals <- list(K = 550, r = 0.5, PO = 40)

fit V <- nlsLM(Peso ~ verhulst solution(Idade, r, K, PO, t0), data = EstcGompeAnimal, start =
start vals)

summary(fit V)

# Calculo das margens do erro dos parametros do modelo
coef(summary(fit V)) [, "Std. Error"] *1.96

# Calculo dos valores ajustados pelo modelo

predicted VD est <-  verhulst solution(EstcGompeAnimal$Idade, coef(fit V) ["r"],
coef(fit_ V)["K"], coef(fit V) ["P0O"], t0)

predicted VD<-c(predicted VD _est)

# Calculo da REQM e do EMA (MAE) do modelo

MSE VD <- mean((EstcGompeAnimal$Peso - predicted VD)"2)
MAE VD <- mean(abs(EstcGompeAnimal$Peso - predicted VD))
RMSE VD <- sqrt(MSE VD) #Raiz do erro quadratico médio

RMSE VD

MAE_VD

AHBHE R Previsoes de Longo Prazo do SRR R
HitHHEBHH T Modelo Deterministico de Verhulst R
# Definir o nimero de observagoes a serem excluidas da previsao

np <- 15

# Separacao dos dados para ajuste e previsao

Nc <- nrow(EstcGompeAnimal)

Dados_Ajuste <- EstcGompeAnimal[1:(Nc¢ - np),] # Dados para ajustar o modelo
Dados_Prev <- EstcGompeAnimal[(Nc - np + 1): Nc,] # Dados para previsao

# Estimagao dos parametros com os dados de ajuste

start_vals <- list(K = 550, r = 0.5, PO = 40)

t0<-Dados_Ajuste$Idade[1]

fit V_LP <- nlsLM(Peso ~ verhulst_solution(Idade, r, K, PO, t0), data = Dados Ajuste, start =
start vals)

summary(fit V_LP)

# Previsao dos valores futuros

Idade Futura <- Dados Prev§Idade

Pred VD <- wverhulst solution(Ildade Futura, coef(fit V_LP)["r"], coef(fit V_LP)["K"],
coef(fit V_LP)["P0"], t0)

# Célculo da REQM e do EMA do modelo para a previsdo de longo prazo
Yobs LP <- Dados_Prev$Peso

EQM_LP <- mean((Yobs_LP - Pred VD) "2)

MAE <- mean(abs(Yobs LP - Pred VD))

sqrt(EQM_LP)
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MAE

SRR Previsiao de Curto Prazo (Passo a Passo) HEEEE R R
SRR do Modelo Deterministico de Verhulst R
# Definir o nimero de observagoes a serem excluidas da previsao

np <- 15

Nc <- nrow(EstcGompeAnimal)

# Definir corretamente Yobs ¢ leY
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]
leY <- length(Yobs)

# Indice de inicio da previsio
k <-Nc- leY

# Inicializar vetor de previsoes
PredVerhulstPP <- numeric(leY)

# Parametros iniciais para estimar
start_vals <- list(K = 550, r = 0.5, P0=40)

# Previsao de curto prazo
for (iin 1:1leY) {
IobsPP <- EstcGompeAnimal$Idade[1:(k +i-1)]
PobsPP <- EstcGompeAnimal$Peso[ 1:(k + i-1)]
dataPP <- data.frame(Idade = lobsPP, Peso = PobsPP)
t0<-IobsPP[1]
fit VPP <- nIsLM(Peso ~ verhulst_solution(Idade, r, K, P0,t0),
data = dataPP, start = start vals)
PredVerhulstPP[i] <- verhulst solution(EstcGompeAnimal$ldade[k + 1],
coef(fit VPP)["r'"],
coef(fit VPP)["K"],
coef(fit VPP)["P0"],

t0)}

# Definicdo dos vetores de observacdes
Iobs <- EstcGompeAnimal$Idade[(Nc - np + 1):Nc]
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1): Nc]

# Calculo da REQM e do EMA do modelo para a previsdo de curto prazo
EQM_PP <- mean((Yobs - PredVerhulstPP) "2)

MAE_PP <- mean(abs(Yobs - PredVerhulstPP)) # Média das diferencas absolutas
REQM_PP<-sqrt(EQM_PP)

REQM_PP

MAE PP

Modelacao dos Modelos Estocasticos

o Modelo Estocastico de Bertalanffy-Richards
# Modelo EBR Com parametro ¢c=1/3
# Y=X"(1/3) =h(X) > X=Y"3

#-Funcdo de log-verosimilhanga para uma trajetoria do modelo

L<-function(I1, 12, P1, P2N, x) {(N*log(2*pi) /2) + (N/2)*log((x[3])/(2*x[2])))+
(sum(log(1-exp(-2*x[2]*(12-11))))/2)+(x[2]/(x[3])) *(sum(((P2-x[ 1 ]-(P1-x[ 1])*exp(-x[2]*(I2-
11)))"2)/(1-exp(-2*x[2]*(12-11))))) }
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# Definicdo da fun¢do de log-verosimilhanga global do modelo

LTG BR<-function(x){LTG BR<-L(I[1:(m-1)],I[2:m],(P[1:(m-1)])*(1/3),(P[2:m]) A(1/3),

m,c(x[1],x[2],x[3])) return(LTG_BR)}

#Minimizar a fungdo de log-verosimilhanga global do modelo
minLTBR<-nIm(LTG_BR,c(6.5,0.000005,0.1), hessian=TRUE)
minLTBR

#Estimativas de MV dos parametros do modelo
aBR<-minLTBRSestimate[1]

ABR<-aBR"3 ## A=h(aBR) -> ABR=aBR"3
bBR<-minLTBRS$estimate[2]
sBR<-minLTBRS$estimate[3]

aBR;ABR; bBR;sBR # Apresentar os resultados dos parametros aBR; ABR; bBR; sBR.

# Calculo do valor de log-verosimilhanga do modelo
LYBR<-minLTBR$minimum

LYBR

LXBR<-LYBR+-sum (log ((1/3) *((P [-1])"(-2/3))), na.rm = TRUE)
-LXBR

# Calculo das variancias dos estimadores do modelo
VarBR<-solve(minLTBR$hessian)
VarBR

# Calculo das Margens de erro dos ICs assintoticos dos parametros do modelo

MEa<-1.96*sqrt(VarBR[1,1])
MEA<-1.96*sqrt(VarBR[1,1]) *3*aBR"2
MEb<-1.96*sqrt(VarBR[2,2])
MEs<-1.96*sqrt(VarBR[3,3])

MEa

MEA

MEDb

MEs

# Curva estimada e previsdo do modelo

SDE BR <-aBR + ((P[1]) ~(1/3) - aBR) * exp(-bBR * (I[2:m] - I[1]))
SDE BR

Previsao BR <- ¢(P[1], (SDE BR) "3)

Previsao BR

# Calculo da REQM (MSE) e do EMA (MAE) do modelo

Dif EQM_BR <- Previsao BR[2:m] - P[2:m]

EQM_BR <- sqrt(sum (Dif EQM_BR”2) / length(Dif EQM_BR))
Erro_Absoluto BR <- abs(P[2:m] - Previsao BR[2:m])

MAE BR <- mean(Erro_Absoluto BR)

EQM _BR

MAE BR

MR Previsao de Longo Prazo

A do Modelo Estocastico de Bertalanffy- Richards

# Definir o nimero de observagoes a serem excluidas da previsao
Testim<-15
Tempo<-(m-Testim)

HHHHERHHH
HHHHHHHH
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# Definicdo da fun¢do de log-verosimilhanga global do modelo
LTG BR<-function(x){LTG BR<-L(I[1:(Tempo-1)],I[2:Tempo],(P[1:(Tempo-
HD™(1/3),(P[2: Tempo])*(1/3), Tempo,c(x[1],x[2],x[3]))

return(LTG_BR)}

#Minimizar a fungdo de log-verosimilhanca global do modelo
minLTBR<-nIm(LTG_BR,¢(6.5,0.0000000005,0.1),hessian=TRUE)
minLTBR

#Estimativas de MV dos parametros do modelo
aBR<-minLTBRSestimate[ 1]

ABR<-aBR"3 ## A=h(aBR) -> ABR=aBR"3
bBR<-minLTBRS$estimate[2]
sBR<-minLTBRS$estimate[3]

aBR;ABR; bBR;sBR

# Calculo do valor de log-verosimilhan¢a do modelo
LYBR<-minLTBR$minimum

LYBR

LXBR<-LYBR+-sum(log((1/3)*((P[-1])\(-2/3))), na.rm = TRUE)
-LXBR

# Curva estimada e previsao do modelo

SDE BR PrevLP <- aBR + ((P[Tempo])*(1/3) - aBR) * exp(-bBR * (I[(Tempo+l):m] -
I[Tempo]))

SDE BR PrevLP

Previsao BR_LP <- ¢(SDE_BR_PrevLP"3)

Previsao BR LP

# Célculo da REQM e do EMA (MAE) do modelo para a previsdo de longo prazo
Yobs LP<-P[(Tempo + 1):m]

EQM LP <- mean((Yobs LP - Previsao BR LP) *2)

REQM _LP <- sqrt(EQM_LP)

REQM_LP

MAE <- mean(abs(Yobs LP - Previsao BR LP))

MAE

SR Previsiao de Curto Prazo (Passo a Passo) TR
AR do Modelo Estocastico de Bertalanffy - Richards HE R R
# Definir o nimero de observagoes a serem excluidas da previsdo

nr<-15

PrevPP_BR<-vector(length= nr)

for (k in 1:(nr)) {
Tempo<-(length(P)-(nr-k+1))
P_prev<-P[1: Tempo]

I Prev<-I[1: Tempo]

# Definicao da funcao de log-verosimilhanga global do modelo

LTG BR<-function(x) {

LTG_BR<-L(I[1:(m-1)],I[2:m],(P[ 1:(m-1)])(1/3),(P[2:m])(1/3),m,c(x[ 1],x[2],x[3]))
return(LTG_BR)}

#Minimizar a fungdo de log-verosimilhanga global do modelo
minLTBR<-nIm(LTG_BR,¢(6.5,0.000005,0.1),hessian=TRUE)
minLTBR
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#Estimativas de MV dos pardmetros do modelo
aBR<-minLTBRSestimate[ 1]

ABR<-aBR"3 ## A=h(aBR) -> ABR=aBR"3
bBR<-minLTBRS$estimate[2]
sBR<-minLTBRS$estimate[3]

aBR;ABR; bBR;sBR

#Calculo do valor de log-verosimilhanga do modelo
LYBR<-minLTBR$minimum

LYBR

LXBR<-LYBR+-sum(log((1/3)*((P[-1])(-2/3))), na.rm = TRUE)
-LXBR

# Curva estimada e previsao do modelo

SDE BRX PrevCP<-aBR+((P[Tempo])"(1/3)-aBR)*exp(-bBR*(I[(Tempo+1)]-I[Tempo])) #
porque I[1]=0

PrevPP_BR[k]<-SDE BRX PrevCP}

Previsao BR PP<-c((PrevPP_BR)"3)

# Célculo da REQM e do EMA (MAE) do modelo para a previsdo de curto prazo
Yobs_PP <- P[(length(P) - nr + 1):length(P)]

EQM_PP <- mean((Yobs PP - Previsao BR PP)"2)

REQM_PP <- sqrt(EQM_PP)

REQM_PP

MAE BR <- mean(abs(Yobs PP - Previsao BR PP))

MAE_BR

o Modelo Estocastico de Gompertz
# Modelo Estocastico de Gompertz
# Y = In(X)=h(X) -> X=exp(Y)

#-Funcdo de log-verosimilhanga para uma trajectoria do modelo

L<-function(I1, 12, P1, P2, N, x){(N*log(2*pi) /2)+((N/2)*log((x[3])/(2*x][2])))+
(sum(log(1-exp(-2*x[2]*(12-11))))/2)+(x[2]/(x[3])) *(sum(((P2-x[ 1 ]-(P1-x[ 1])*exp(-x[2]*(I2-
1))"2)/(1-exp(-2*x[2]*(12-11)))))} # Calcular a fun¢ao log-verossimilhanca de uma trajectoria e
armazenar na variavel "L"

# Definicao da funcao de log-verosimilhanga global do modelo
LTG<-function(x) {LTG<-L(I[1:(m-1)],I[2:m],log(P[1:(m-1)]),log(P[2:m]), m,c(x[1],x[2], X[3]))
return(LTG)}

#Minimizar a fungdo de log-verosimilhanca global do modelo
minLTG<-nlm(LTG,c(7.0,0.000005,0.05),hessian=TRUE) # Minimizar a fungdo LTG usando a
fungdo nlm com valores iniciais e calcular a matriz Hessiana.

minLTG

# Calculo do valor de log-verosimilhanga do modelo

mLTG<-minLTG$minimum

mLTG

mLTG X<-mLTG+sum(log(P[-1]), na.rm = TRUE)

-mLTG X

#Estimativas de MV dos parametros do modelo

aG<-minLTGS$estimate[ 1] # Extrair a estimativa do 1° parametro ¢ armazenar em aG.
bG<-minLTGSestimate[2] # Extrair a estimativa do 2° parametro ¢ armazenar em bG.
sG<-minLTGSestimate[3] # Extrair a estimativa do 3° pardmetro e armazenar em sG.
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aG;bG;sG # Apresentar os resultados dos parametros aG;bG;sG.

# Estimativa de peso na idade da maturidade

# Se aG=h(A) -> AG=exp(aG) - peso na maturidade estimado deste animal.
AG<-exp(aG) # Calcular exponencial de aG.

AG

# Calculo das variancias dos estimadores do modelo
VarG<-solve(minLTGS$hessian)
VarG

# Calculo das margens de erro dos ICs assimptoticos dos parametros do modelo
MEa<-1.96*sqrt(VarG[1,1])

MEA<-1.96*sqrt(VarG[1,1])*AG

MEb<-1.96*sqrt(VarG[2,2])

MEs<-1.96*sqrt(VarG[3,3])

MEa

MEA

MEDb

MEs

# Curva estimada e previsdo do modelo

SDE GompX<-aG+(log(P[1])-aG)*exp(-bG*(I[2:m]-I[1])) # I[1] corresponde ao primeiro
instante (pode ser I[[1]=0) e P[1] o 1° peso medido (em)

SDE GompX

Previsao GEDE<-c(P[1], exp(SDE_GompX))

# Calculo da REQM (MSE) ¢ do EMA (MAE) do modelo

REQM _ajustamento <- sqrt(mean((P - Previsao GEDE)"2, na.rm = TRUE))
Erro Absoluto <- abs(P[2:m] - Previsao GEDE[2:m])

MAE_Gomp <- mean(Erro_Absoluto)

REQM _ajustamento

MAE Gomp
R Previsao de Longo Prazo do R R
B et Modelo Estocastico de Gompertz B L e

# Definir o nimero de observagdes a serem excluidas da previsdo
Testim <- 15
Tempo <- (Iength(P) - Testim)

# Definicao da funcao de log-verosimilhanga do modelo

LTG <- function(x) {

LTG <- L[ 1:(Tempo - 1)], I[2: Tempo], log(P[1:(Tempo - 1)]), log(P[2:Tempo]), Tempo, c(x[1],
x[2], x[3]))

return(LTG)}

# Minimizar a fungdo de log-verosimilhanga global do modelo.

minL TG <- nlm(LTG, ¢(7.0,0.0000005,0.05), hessian = TRUE)

minL TG

# Estimativas de MV dos parametros do modelo

aG <- minLTGS$estimate[ 1] # Extrair a estimativa do 1° pardmetro ¢ armazenar em aG.
bG <- minLTGSestimate[2] # Extrair a estimativa do 2° pardmetro ¢ armazenar em bG.
sG <- minLTGSestimate[3] # Extrair a estimativa do 3° pardmetro e armazenar em sG.
aG; bG; sG # Apresentar os resultados dos parametros aG; bG; sG.
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# Estimativa de peso na idade da maturidade

# Se aG=h(A) -> AG=exp(aG) - peso na maturidade estimado deste animal.

AG <- exp(aG) # Calcular exponencial de aG.
AG
# Curva estimada e previsdo do modelo

SDE_GompX_ PrevLP <-aG + (log(P[Tempo]) - aG) * exp(-bG * (I[(Tempo + 1):m] - [ Tempo]))

#porqueI[1]=0
Previsao GEDE LP <- c(exp(SDE_GompX PrevLP))

# Calculo da REQM e do EMA (MAE) do modelo
Yobs LP <- P[(Tempo+1):m]

EQM LP <- mean((Yobs LP - Previsao GEDE LP)"2)
REQM_LP <- sqrt(EQM_LP)

REQM_LP

MAE Gomp <- mean(abs(Yobs LP - Previsao GEDE LP))
MAE Gomp

EHEE R Previsiao de Curto Prazo (Passo a Passo)
e e do Modelo Estocastico de Gompertz

# Definir o nimero de observagoes a serem excluidas da previsdo
nr <-15
PrevPP <- vector(length = nr)

for (k in 1:(nr)) {
Tempo <- (length(P) - (nr - k + 1))

#-Funcdo de log-verosimilhanga para uma trajetoria do modelo
L <- function(I1, 12, P1, P2, N, x) {
(N *log(2 * pi) / 2) + (N/2) * log((x[3]) / (2 * X[2]))) +

HHEHHHERHHH
HHHHHHHHHH R

(sum(log(1 - exp(-2 * x[2] * (12 - 11)))) / 2) + (x[2] / (x[3])) * (sum(((P2 - x[1] - (P1 - x[1]) *

exp(-x[2] * (12 - 11)))*2) / (1 - exp(-2 * x[2] * (12 - I1)))))}
# Definicao da funcao de log-verosimilhanga do modelo
LTG <- function(x) {

LTG <- L(I[1:(Tempo - 1)], [[2: Tempo], log(P[1:(Tempo - 1)]), log(P[2:Tempo]), Tempo, c(x[1],

x[2], x[3]))
return(LTG)}

# Minimizar a fungdo de log-verosimilhanca global do modelo

minL TG <- nIm(LTG, ¢(6.98, 0.0000052, 0.0455), hessian = TRUE)

minL TG

# Estimativas de MV dos pardmetros do modelo

aG <- minLTGSestimate[ 1] # Extrair a estimativa do 1° parametro e armazenar em aG.
bG <- minLTGSestimate[2] # Extrair a estimativa do 2° parametro e armazenar em bG.
sG <- minLTGS$estimate[3] # Extrair a estimativa do 3° pardmetro e armazenar em sG.

aG; bG; sG # Apresentar os resultados dos parametros aG; bG; sG.

# Estimativa de peso na idade da maturidade

# Se aG=h(A) -> AG=exp(aG) - peso na maturidade estimado deste animal

AG <- exp(aG)
AG
# Curva estimada e previsao do modelo

SDE GompX PrevCP <- aG + (log(P[Tempo]) - aG) * exp(-bG * (I[(Tempo + 1)] - [[Tempo]))

# porque I[1]=0
PrevPP[k] <- SDE_GompX PrevCP}
Previsao GEDE PP <- c(exp(PrevPP))
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# Calculo da REQM e do EMA (MAE) do modelo
Yobs PP <- P[(length(P) - nr + 1):length(P)]
EQM_PP <- mean((Yobs_PP - exp(PrevPP))"2)
REQM_PP <- sqrt(EQM_PP)

REQM_PP

MAE_ Gomp <- mean(abs(Yobs PP -exp(PrevPP)))
MAE Gomp

o Grifico das Curvas Estimadas pelos Modelos Estocasticos e dos Pesos Observados

# Grafico do Modelo Estocastico de Gompertz + BR
dados_plot <- data.frame(
Idade =1,
Peso Observado =P,
Peso_AjustadoG = Previsao_ GEDE, # Gompertz
Peso AjustadoBR = Previsao BR # Gompertz)
grafico <- ggplot(data = dados_plot, aes(x = Idade)) +
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observados
geom_line(aes(y = Peso_AjustadoG, color = "MEG (sigma=0)"), size = 1, alpha=0.7) + # Curva
ajustada MEG
geom_line(aes(y = Peso_AjustadoBR, color = "MEBR (sigma=0)"), size = 1, alpha = 0.7) + #
Curva ajustada MEBR
scale color manual(
values = ¢("Peso observado" = "black", "MEG (sigma=0)" ="red", "MEBR (sigma=0)" = "blue"),
# Define as cores
name = "Legenda" # Titulo da legenda

)+
labs(
# title = "Modelo Estocastico de Gompertz",
x = "Idade do animal (Anos)",
y = "Peso do animal (kg)",
# subtitle = "Ajuste do Modelo Estocastico de Gompertz + BR aos Dados Observados"
)+
theme minimal() +
theme(
plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),
axis.title = element_text(size = 14),
axis.text = element_text(size = 12),
legend.position = "bottom" # Define a posi¢do da legenda)

# Apresentar o grafico
print(grafico)
ggsave("CurvaEstimada_Estocatico.png", grafico, width =9, height = 6, dpi = 500)

o Grafico das Curvas Estimadas pelos Modelos Deterministicos e dos Pesos
Observados
# Grafico do Modelo Deterministico
dados_plot <- data.frame(Idade = I,Peso_Observado = P,
Peso AjustadoV = predicted VD, # Verhulst Det
Peso AjustadoG = predicted GD, # Gompertz Det
Peso AjustadoBR = predicted BR # BR Det)
grafico <- ggplot(data = dados_plot, aes(x = Idade)) +
geom_point(aes(y = Peso Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observados
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geom_line(aes(y = Peso AjustadoV, color = "MDV"), size = 1, alpha = 0.7) + # Curva ajustada
M det verhulst

geom_line(aes(y = Peso_AjustadoG, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada
M det Gompertz

geom_line(aes(y =Peso AjustadoBR, color="MDBR"), size =1, alpha =0.7) + # Curva ajustada
M det BR

scale color manual(

values = ¢("Peso observado" = "black", "MDV" = "red", "MDG" = "blue", "MDBR" = "green"),
# Define as cores

name = "Legenda" # Titulo da legenda

) + labs( # title = "Modelos Deterministico",

x = "Idade do animal (Anos)",

y = "Peso do animal (kg)",

# subtitle = "Ajuste dos Modelos Deterministico aos Dados Observados™) +

theme minimal() + theme(plot.title = element _text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14),

axis.text = element_text(size = 12),legend.position = "bottom" # Define a posicdo da legenda)
grafico

ggsave("CurvaEstimada Deterministico.png”, grafico, width = 9, height = 6, dpi = 500)

o Grafico de Previsiao de Longo Prazo do Modelo Deterministico e Estocastico
# Preparar dados de previsao para grafico de longo prazo
Testim <- 15
Tempo <- (Iength(P) - Testim)
Dados_LP <- data.frame( Idade = I[(Tempo+1 ):m], Peso Observado = P[(Tempo+1 ):m],
Peso MGE LP = c(Previsao GEDE LP), Peso MBRE LP = c¢(Previsao BR LP))
#Grafico de modelo estocastico
grafico <- ggplot(data = Dados LP, acs(x =Idade)) + geom point(aes(y = Peso Observado, color
= "Peso observado"), size = 2, size = 0.7) + # Pontos observados
geom_line(aes(y = Peso MGE_LP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada
MEG
geom_line(aes(y = Peso. MBRE LP, color ="MEBR"), size = 1, alpha = 0.7) + # Curva ajustada
MEBR
scale color manual(
values = ¢("Peso observado" = "black", "MEG" = "red", "MEBR" = "blue"), # Define as cores
name = "Legenda" # Titulo da legenda) +labs(
# title = "Modelo Estocastico",
x = "Idade do animal (Anos)",
y = "Peso do animal (kg)",
) + theme minimal() +theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element text(hjust = 0.5, size = 12), axis.title = element_text(size = 14),axis.text =
element text(size = 12), legend.position = "bottom" # Define a posi¢do da legenda)

# Apresentar o grafico
print(grafico)
ggsave("CurvalongoPrazo Estocatico.png", grafico, width =9, height = 6, dpi = 500)

# Preparar dados para o grafico deterministico
Dados LP <- data.frame(Idade = I[(Tempo+1): m], Peso_Observado = P[(Tempo+1 ):m],
Peso MVD_LP = c¢(Pred VD), Peso MGD LP = c(Pred GD), Peso MBRD_LP = c(Pred_BR))

#Grafico de modelo deterministico
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) +
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geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observadosgeom line(aes(y = Peso MVD LP, color ="MDV"), size = 1, alpha = 0.7) + # Curva
ajustada M det verhulst

geom_line(aes(y = Peso MGD_LP, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada M
det Gompertz

geom_line(aes(y = Peso. MBRD_LP, color ="MDBR"), size = 1, alpha = 0.7) + # Curva ajustada
M det BR

scale color manual(values = ¢("Peso observado" = "black", "MDV" = "red", "MDG" = "blue",
"MDBR" = "green"), # Define as cores

name = "Legenda" # Titulo da legenda) + labs(# title = "Modelo Deterministicos",

x = "Idade do animal (Anos)",

y = "Peso do animal (kg)",

) + theme minimal() +theme(plot.title = element text(hjust = 0.5, size = 16, face =
"bold"),plot.subtitle = element text(hjust = 0.5, size = 12),axis.title = element text(size
14),axis.text = element_text(size = 12),legend.position = "bottom" # Define a posi¢ao da legenda)

# Apresentar o grafico
print(grafico)
ggsave("CurvalongoPrazo Deterministico.png", grafico, width = 9, height = 6, dpi = 500)

# Preparar dados para o grafico das curvas deterministica e estocastica

Dados_LP <- data.frame(Idade = I[(Tempo+1 ):m],Peso_Observado = P[(Tempo+1 ):m],

Peso MVD LP = c¢(Pred VD), Peso MGD LP = c(Pred GD),Peso MBRD LP =
c(Pred BR),Peso. MGE LP=c(Previsao GEDE LP),Peso MBRE LP=c(Previsao BR_LP))

# Grafico com curvas dos modelos deterministicos e estocasticos

grafico <- ggplot(data = Dados_LP, aes(x = Idade)) +

geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observados

geom_line(aes(y = Peso MGE_LP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada
MEG

geom_line(aes(y = Peso. MBRE LP, color ="MEBR"), size = 1, alpha = 0.7) + # Curva ajustada
MEBR

geom_line(aes(y = Peso MVD_LP, color ="MDV"), size = 1, alpha = 0.7) + # Curva ajustada M
det verhulst

geom_line(aes(y = Peso MGD LP, color ="MDG"), size = 1, alpha =0.7) + # Curva ajustada M
det Gompertz

geom_line(aes(y = Peso. MBRD_LP, color ="MDBR"), size = 1, alpha = 0.7) + # Curva ajustada
M det BR

scale color manual(values = ¢("Peso observado" = "black", "MEG" = "purple", "MEBR" =
"orange","MDV" = "red", "MDG" = "blue", "MDBR" = "green"), # Define as cores name =
"Legenda" # Titulo da legenda) +labs(

# title = "Todos os modelos",

x = "Idade do animal (Anos)",

y = "Peso do animal (kg)",) +

theme minimal() + theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14),

axis.text = element_text(size = 12),legend.position = "bottom" # Define a posicdo da legenda)

# Apresentar o grafico

print(grafico)
ggsave("CurvalongoPrazo All.png", grafico, width =9, height = 6, dpi = 500)
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o Grifico de Previsao de Curto Prazo (Passo a Passo) do Modelo Deterministico e
Estocastico
# Preparar dados de previsdo para grafico de longo prazo
Testim <- 15
Tempo <- (length(P) - Testim)
Dados PP <- data.frame( Idade = I[(Tempo+l ):m],Peso Observado = P[(Tempo+1 ):m],
Peso MGE PP = c(Previsao. GEDE PP),Peso MBRE PP = c(Previsao BR_PP))

# Grafico de modelo estocastico

grafico <- ggplot(data = Dados_PP, aes(x = Idade)) +

geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observados

geom_line(aes(y = Peso MGE_ PP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada
MEG

geom_line(aes(y = Peso. MBRE PP, color = "MEBR"), size = 1, alpha = 0.7) + # Curva ajustada
MEBR

scale color manual(

values = ¢("Peso observado" = "black", "MEG" = "red", "MEBR" = "blue"), # Define as cores
name = "Legenda" # Titulo da legenda

) +labs(

# title = "Modelo Estocastico",

x = "Idade do animal (Anos)",

y = "Peso do animal (kg)",

) +theme minimal() +theme(plot.title = element text(hjust = 0.5, size = 16, face
"bold"),plot.subtitle = element text(hjust = 0.5, size = 12),axis.title = element text(size =
14),axis.text = element_text(size = 12),legend.position = "bottom" # Define a posi¢ao da legenda)

# Apresentar o grafico
print(grafico)
ggsave("CurvaPasso_Estocatico.png", grafico, width = 9, height = 6, dpi = 500)

# Preparar dados para o grafico deterministico

Dados LP <- data.frame(Idade = I[(Tempo+1 ):m],Peso Observado = P[(Tempo+1 ):m],
Peso MVD_PP=c(PredVerhulstPP),Peso MGD_ PP=c(PredGompPP), Peso MBRD PP =
c¢(Pred BR PP))

# Grafico de modelo deterministico
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) +
geom_point(aes(y = Peso Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observados
geom_line(aes(y = Peso MVD_PP, color ="MDV"), size = 1, alpha = 0.7) + # Curva ajustada M
det verhulst
geom_line(aes(y = Peso MGD PP, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada M
det Gompertz
geom_line(aes(y = Peso MBRD PP, color = "MDBR"), size = 1, alpha = 0.7) + # Curva
ajustada M det BR
scale color manual(values = ¢("Peso observado" = "black", "MDV" = "red", "MDG" "blue",
"MDBR" = "green"), # Define as cores
name = "Legenda" # Titulo da legenda) +labs(

# title = "Modelo deterministico",

x = "Idade do animal (Anos)",

y = "Peso do animal (kg)",

) ttheme minimal() +

62



theme(plot.title = element text(hjust = 0.5, size = 16, face = "bold"), plot.subtitle =
element text(hjust = 0.5, size = 12),axis.title = element text(size = 14),axis.text =
element text(size = 12),legend.position = "bottom" # Define a posicao da legenda)

# Apresentar o grafico

print(grafico)

ggsave("CurvaPasso_Deterministico.png”, grafico, width = 9, height = 6, dpi = 500)

# Preparar dados para o grafico das curvas deterministica ¢ estocastica

Dados_LP <- data.frame(Idade = I[(Tempo+1 ):m],Peso_Observado = P[(Tempo+1 ):m],

Peso MGE PP = c¢(Previsao GEDE PP),Peso MBRE PP =  ¢(Previsao BR PP),
Peso MVD_PP = ¢(PredVerhulstPP),Peso MGD PP = ¢(PredGompPP),

Peso MBRD PP = c(Pred BR PP))

# Grafico com curvas dos modelos deterministicos e estocasticos

grafico <- ggplot(data = Dados_LP, aes(x = Idade)) +

geom_point(aes(y = Peso Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos
observados

geom_line(aes(y = Peso MGE PP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada
MEG

geom_line(aes(y = Peso. MBRE PP, color = "MEBR"), size = 1, alpha = 0.7) + # Curva ajustada
MEBR

geom_line(aes(y = Peso MVD PP, color ="MDV"), size = 1, alpha = 0.7) + # Curva ajustada M
det verhulst

geom_line(aes(y = Peso MGD_PP, color ="MDG"), size = 1, alpha = 0.7) + # Curva ajustada M
det Gompertz

geom_line(aes(y = Peso MBRD PP, color = "MDBR"), size = 1, alpha = 0.7) + # Curva ajustada
M det BR

scale color manual(values = ¢("Peso observado" = "black", "MEG" = "purple", "MEBR" =
"orange","MDV" = "red", "MDG" = "blue", "MDBR" = "green"), # Define as cores

name = "Legenda" # Titulo da legenda) +labs(

# title = "Todos os modelos",

x = "Idade do animal (Anos)",

y = "Peso do animal (kg)",) +

theme minimal() +theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),
plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14),

axis.text = element_text(size = 12),

legend.position = "bottom" # Define a posi¢ao da legenda)

# Apresentar o grafico

print(grafico)
ggsave("CurvaPassoo_All.png", grafico, width =9, height = 6, dpi = 500)
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