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Resumo 

Modelos Matemáticos de Crescimento Individual: Aplicação ao Crescimento de Bovinos 

O presente trabalho tem como objetivo avaliar diferentes modelos de crescimento individual, tanto 

determinísticos como estocásticos, aplicados ao crescimento de bovinos da raça Mertolenga. Para 

tal, é analisado o desempenho dos modelos determinísticos de Gompertz, Verhulst e           

Bertalanffy-Richards, bem como os modelos estocásticos de Gompertz e de Bertalanffy-Richards. 

A estimação dos parâmetros foi realizada através dos métodos dos mínimos quadrados e da máxima 

verossimilhança, utilizando dados reais fornecidos pela Associação de Criadores de Bovinos da 

Raça Mertolenga (ACBM). Foram avaliados indicadores como a Raiz do Erro Quadrático Médio 

(REQM) e o Erro Médio Absoluto (EMA) para aferir a qualidade dos ajustes e previsões. As 

previsões dos modelos foram comparadas para identificar qual descreve melhor o crescimento de 

bovino, proporcionando maior precisão na modelação das curvas de crescimento.  

Os resultados contribuirão para uma melhor compreensão da importância de usar os modelos 

estocásticos na previsão do crescimento desta raça e melhorando produtividade da criação desta 

raça. 
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Abstract 

Mathematical Models for Individual Growth: An Application to Cattle Growth 

The present study aims to evaluate different models of individual growth, both deterministic and 

stochastic, applied to the growth of Mertolenga breed cattle. For this purpose, the performance of 

deterministic models such as Gompertz, Verhulst, and Bertalanffy-Richards was analyzed, as well 

as stochastic models of Gompertz and Bertalanffy-Richards. 

Parameter estimation was carried out using the least squares and maximum likelihood methods, 

employing real data provided by the Mertolenga Cattle Breeders Association (ACBM). Indicators 

such as the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) were assessed 

to evaluate the quality of the fits and predictions. The model predictions were compared to identify 

which one best describes cattle growth, allowing for more accurate modeling of growth curves. 

The results will contribute to a better understanding of the importance of using stochastic models in 

the forecast the growth of this breed and improving the productivity of raising this breed. 

  

 

 

 

 

 

 

Keywords: Mertolengo Cattle; EDE; Deterministic and Stochastic Growth Models; Forecasting. 

v 



 

 

Agradecimentos 

Este mestrado representa uma etapa extremamente importante no meu percurso académico, pois 

permitiu-me concretizar conteúdos abstratos dessa área. No entanto, não foi uma etapa fácil de 

realizar sem apoios diretos e indiretos de várias pessoas. Por isso, aproveito esta ocasião para 

expressar os meus agradecimentos especiais: 

Em primeiro lugar, agradeço a Deus pela força, coragem e motivação diárias, essenciais para 

conciliar o trabalho de segurança privada e os estudos em Portugal, particularmente em Évora. 

Agradeço à minha mãe pelo apoio incondicional e pelo amor sempre presente, mesmo à distância. 

Um agradecimento muito especial ao meu filho Patrick Pansau Bequinsa, cuja ausência desde 

dezembro de 2021 tem sido um desafio constante. A sua presença no meu coração foi uma fonte de 

inspiração e determinação ao longo desta etapa académica. 

Manifesto a minha profunda gratidão aos meus professores deste mestrado, que, com dedicação e 

conhecimento, me guiaram ao longo deste percurso académico. Em particular, agradeço ao meu 

orientador, Professor Doutor Gonçalo João Costa Jacinto, pelo acompanhamento atento, pela 

paciência e, sobretudo, por me desafiar a descobrir e compreender os conteúdos desta dissertação, 

contribuindo de forma significativa para o meu crescimento académico e pessoal. 

A todos os que de alguma forma, contribuíram para a concretização deste trabalho, o meu sincero 

obrigado. 

 

 

 

 

 

 

vi 



 

1 
 

1. Introdução  
                                                                                                                        

O estudo dos modelos de crescimento individual é um tema fundamental em diversas 

áreas do conhecimento, incluindo a estatística, a biologia e a economia. Os modelos 

matemáticos desempenham um papel determinante na descrição e previsão da dinâmica 

individual, permitindo compreender os fatores que influenciam o crescimento e 

auxiliando na tomada de decisões em contextos como a gestão da produção, alimentação, 

criação, recria, abate, preservação e comercialização da carne dos bovinos da raça 

Mertolenga.  

Neste trabalho, são explorados diferentes modelos de crescimento individual, tanto 

determinístico como estocásticos. Os modelos determinísticos assumem que o 

crescimento individual do bovino segue uma trajetória fixa definida por equações 

diferenciais, enquanto os modelos estocásticos incorporam variações aleatórias para 

capturar incertezas nos dados que afetam o crescimento. Especificamente, abordamos os 

modelos determinísticos de Gompertz, de Verhulst e de Bertalanffy-Richards, e os 

modelos estocásticos de Gompertz e de Bertalanffy-Richards. No primeiro caso, os 

parâmetros dos modelos serão estimados pelo método dos mínimos quadrados e, no caso 

estocástico, pelo método da máxima verossimilhança. Iremos usar um conjunto de dados 

reais referentes ao peso ao longo do tempo do bovino da raça Mertolenga. O desempenho 

dos modelos será avaliado comparando a precisão das previsões, com o objetivo de 

identificar qual modelo melhor representa os dados e pode ser mais adequado para 

descrever e prever o crescimento deste animal.   

 
 
 
 

 

 



 

2 
 

1.1 Objetivos 

Esta dissertação tem como principais objetivos estudar os diferentes modelos de 

crescimento individual, tanto nas suas versões determinísticas como estocásticas. 

Especificamente, serão abordados os modelos de Verhulst, de Gompertz e de      

Bertalanffy-Richards, explorando as suas características e aplicabilidades em diferentes 

contextos de crescimento individual. Os parâmetros desses modelos serão estimados com 

recurso a diferentes metodologias, utilizando os dados dos pesos do animal da raça 

Mertolenga, disponibilizados pela Associação de Criadores de Bovinos da Raça 

Mertolenga (ACBM). Por fim, será realizada uma análise de desempenho dos modelos, 

avaliando a precisão e a fiabilidade das previsões dos diferentes modelos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

1.2 Associação de Criadores de Bovinos da Raça Mertolenga 

(ACBM) 

A Associação de Criadores de Bovinos da Raça Mertolenga (ACBM) é uma organização 

que defende os interesses dos seus associados no que diz respeito à preservação, ao 

melhoramento genético, à criação e à comercialização dos bovinos da raça Mertolenga, 

além de representar os seus associados perante o Estado e outros organismos, tanto a nível 

nacional como internacional (Januario, 2021). 

Por outro lado, possibilita aos criadores realizarem recria e acabamento dos seus vitelos, 

alcançando um valor económico superior ao normalmente obtido com as vendas no 

desmame, mesmo quando as condições técnicas e econômicas não são favoráveis.  

A sua sede está localizada na região do Alentejo, concretamente na cidade de Évora, uma 

vez que esta região é a maior produtora de carne de bovino em Portugal e concentra o 

maior número desta espécie no país (Januario, 2021).  

A principal missão da associação é preservar as características que os bovinos da raça 

Mertolenga possuem atualmente, uma vez que esta raça é constituída por vacas              

bem-adaptadas ao meio ambiente em que vivem.  

A ACBM tem produzido dois tipos de vitelões da raça Mertolenga: 

 Vitelão Mertolengo DOP (Denominação de Origem Protegida), abatido entre os 

10 e 15 meses de idade, com peso mínimo da carcaça de 120 kg; 

 Vitelão convencional, abatido entre os 8 e 12 meses de idade, com peso da carcaça 

entre 120 kg e 250 kg. 

Denominação de Origem Protegida (DOP) é um selo que utiliza o nome de uma 

localidade ou região para indicar que um produto é originário dessa área. 
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A carne Mertolenga possui este selo e apresenta características organolépticas próprias, 

com algumas infiltrações de gordura intramuscular, que resultam num marmoreado de 

dispersão médio. 

Segundo a Direção Geral de Agricultura e Desenvolvimento Rural (2020), esta carne 

distingue-se ainda pela sua cor escura e pela gordura que pode variar entre amarela e 

branca, dependendo do tipo de vitelo em questão. 

Estes bovinos da raça Mertolenga são bem-adaptados à região do Alentejo, são enérgicos 

e pertencem a uma raça pequena. Estes animais são desmamados por volta de 6 a 8 meses 

de idade, e a ACBM assume as fases de recria e acabamento dos jovens machos 

provenientes dos seus associados. Estas atividades são realizadas no Centro de Testagem 

dos Currais e Simalhas (CTR).  

 

Figura 1: Bovino da Raça Mertolenga 

 Fonte: Fotografia disponível no site da ACBM 
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Segundo Carolino (2016), neste centro também são realizados testes em machos 

mertolengos para reprodução, sendo a sua seleção baseada nos valores genéticos, com 

especial atenção aos indicadores relacionados com o período entre partos e a capacidade 

maternal. 

A recria dos machos Mertolengos é realizada de forma intensiva ou semi-intensiva e o 

sistema de alimentação baseia-se em concentrado e palha ou feno. Já no CTR, a 

alimentação é feita a base de silagem de milho, de consociação de gramíneas ou 

leguminosas, feno, feno-silagem e farinado para completar o perfil nutricional desejado. 

A base de dados fornecida por essa associação, para o estudo dos modelos matemáticos 

de crescimento individual, contém a idade, expressa em anos, e respetivos pesos, em 

quilograma (kg). Além disso, são disponibilizados dados sobre diversas componentes 

genéticas dos animais, embora os mesmos não sejam utilizados nesta dissertação. 

 

1.3 Modelos de Crescimento Individual 

Um modelo de crescimento individual é uma formulação matemática, utilizada em 

diversas áreas para analisar e prever a forma como um determinado indivíduo evolui ao 

longo do tempo. Estes modelos permitem compreender os fatores que influenciam o 

crescimento, facilitando a análise e a formulação de previsões sobre o comportamento 

futuro da variável em estudo. 

Iremos estudar dois tipos principais de modelos de crescimento individual: modelos 

determinísticos e modelos estocásticos.  

Os modelos determinísticos (não possuem uma componente estocástica) assumem que 

todos os parâmetros que afetam o crescimento individual são constantes e previsíveis, ou 
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seja, as mudanças no indivíduo ocorrem de forma previsível e contínua, uma vez que não 

incorporam o efeito de perturbações aleatórias no crescimento.  

Os modelos com componente estocástica são modelos que incorporam algum elemento de 

aleatoriedade ou incerteza que afeta o crescimento do indivíduo. Estes modelos conseguem 

lidar com a incerteza inerente ao crescimento, podendo capturar eventos imprevisíveis e 

flutuações aleatórias dos fatores ambientais e demográficos. Estes modelos utilizam 

frequentemente equações diferenciais estocásticas ou simulações computacionais para 

levar em conta a variação aleatória do ambiente.  
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2. Equação Diferencial Estocástica e Integral Estocástica 

Neste estudo, utilizaremos modelos com componente estocástica, nomeadamente os 

modelos de Gompertz e de Bertalanffy-Richards, para avaliar as diferenças na estimação 

das curvas de crescimento e analisar como os diferentes modelos conseguem prever a 

evolução do crescimento individual do animal em estudo. Para descrevermos estes 

modelos, é necessário explicar o que é um processo estocástico, definir o integral 

estocástico e uma equação diferencial estocástica. 

 

2.1 Processo Estocástico 

Um processo estocástico, conforme definido por Braumann (2005), é uma coleção 

indexada de variáveis aleatórias {𝑋௧ = 𝑋௧(ω): t ∈ T, ω ϵ Ω}, definido no espaço de 

probabilidade {Ω, , ℱ, 𝑃}, onde 𝑋௧ é a variável aleatória, 𝑡 é o tempo, 𝑋௧(𝜔) é o estado do 

processo no instante 𝑡 e do acaso 𝜔, 𝑇 é o conjunto de índices. 

Como cada variável aleatória, 𝑋௧ = 𝑋௧(ω), é uma função do acaso, 𝜔 ∈ Ω, isso implica 

que um processo estocástico pode ser considerado como uma função de duas variáveis, do 

tempo, 𝑡, e do acaso, 𝜔, apesar de quando se usa a notação  𝑋௧ a dependência do acaso não 

aparecer explicitamente representado, é essencial reconhecer que o processo estocástico 

depende dele (Braumann, 2005). 

Para cada 𝑡 fixo, obtemos uma função mensurável de 𝜔, chamada de variável aleatória. Se 

fixarmos o acaso, 𝜔, obtemos uma função do tempo, 𝑡, chamado de trajetória do processo 

estocástico, as trajetórias representam realizações do processo estocástico. 

O espaço de estado (S) é o contradomínio da função 𝑋௧(𝜔), em outras palavras, o espaço 

de estado é o conjunto de todos os valores possíveis que a variável aleatória pode assumir 
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para todo os 𝑡. O processo estocástico pode ser classificado de acordo com o conjunto de 

índices 𝑇 (Braumann, 2005): 

 Se 𝑇 é um conjunto dos inteiros ou conjuntos dos inteiros não-negativos, estamos 

perante um processo estocástico em tempo discreto; 

 Se 𝑇 é um intervalo de tempo escrito na forma [0, +∞[, ] − ∞, +∞[ ou [𝑎, 𝑏], 

estamos perante um processo estocástico em tempo contínuo; 

 Se 𝑇 é um intervalo de ℝௗ, estamos perante um processo espacial. 

Um processo estocástico estacionário pode ser intuitivamente definido como um processo 

em que, mesmo havendo flutuações aleatórias ao longo do tempo, as propriedades 

estatísticas fundamentais, como média, variância e covariância, permanecem constantes e 

não se alteram com o passar do tempo. Matematicamente, essa estacionariedade é 

formalizada de duas maneiras (Braumann, 2005):  

 Primeiro, um processo estocástico é considerado estritamente estacionário se 

todas as distribuições de dimensão finito são iguais sob translações no tempo, ou 

seja, 

𝐹௧భ,௧మ,… ,௧೙
(𝑥ଵ, 𝑥ଶ, … , 𝑥௡) =  𝐹௧భ ା ఛ ,… ,௧೙ା ఛ(𝑥ଵ, 𝑥ଶ, … , 𝑥௡),  

          onde 𝑛𝜖ℕ, 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ ∈ ℝ, 𝑡ଵ, 𝑡ଶ, … , 𝑡௡ ∈ 𝐼 e 𝜏 ∈ ℝ tal que 𝑡ଵ +  𝜏, … , 𝑡௡ +  𝜏 ∈ 𝐼 

 Segundo, um processo estocástico é dito estacionário em sentido lato ou de 

segunda ordem se e somente se: 

 𝐸[𝑋௧] = 𝜇(𝑡) = 𝜇, para todo 𝑡𝜖𝑇, onde 𝜇 é uma constante; 

 𝐸ൣ𝑋௧
ଶ൧ < ∞, para todo 𝑡𝜖𝑇, isso garante que o segundo momento 

(variância) de 𝑋௧ seja finito em todos os pontos no tempo; 

 𝑐𝑜𝑣[𝑋௦, 𝑋௧] = 𝐶(𝑡 − 𝑡), onde 𝐶 é uma função de auto-covariância. 

 

 



 

9 
 

2.2 Processo de Wiener 

Um processo de Wiener, também conhecido como movimento browniano e representado 

por  𝑊௧ é um tipo de processo estocástico contínuo que descreve o movimento aleatório 

de partículas ou variáveis ao longo do tempo. Ele traduz o efeito acumulado de 

perturbações aleatórias que afetam a dinâmica do fenômeno em estudo, sendo a integral 

do ruído perturbador, geralmente assumido como ruído branco em tempo contínuo 

(Braumann, 2005). 

Este processo foi estudado por Norbert Wiener e Lévy na década de 1920, mas já havia 

sido utilizado por Louis Bachelier em 1900 para modelar a variação do preço de ações na 

bolsa e por Albert Einstein para descrever o movimento browniano de partículas 

suspensas em fluido. 

O processo de Wiener tem diversas aplicações em áreas como probabilidade e estatística, 

matemática financeira, biologia, física, entre outras, desempenhando um papel 

fundamental na formulação das equações diferenciais estocásticas, permitindo a resolução 

de equações diferenciais que envolvem elementos aleatórios. Matematicamente, pode ser 

definido por (Braumann, 2005): 

Definição: Dado um espaço de probabilidade (Ω, 𝐹, 𝑃), um processo estocástico 

{𝑊௧}௧ఢ[଴,ାஶ[ definido neste espaço é chamado de processo de Wiener padrão se satisfaz 

as seguintes propriedades (Braumann, 2005): 

 𝑊(0) = 0 q. c. (quase certamente); 

 Os incrementos 𝑊(𝑡) − 𝑊(𝑠), com 𝑡 > 𝑠, têm distribuição normal com média 

zero (0) e variância 𝑡 − 𝑠; 

 Os incrementos 𝑊(𝑡௜) − 𝑊(𝑠௜) (𝑖 = 1, … , 𝑛) em intervalos de tempo não 

sobrepostos (𝑠௜, 𝑡௜) são variáveis aleatórias independentes (chamado de 

incrementos independentes). 
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Além destas propriedades principais, o processo de Wiener apresenta outras propriedades 

interessantes: 

1. A covariância entre 𝑊(𝑠) e 𝑊(𝑡) é: 

𝐶𝑂𝑉[𝑊(𝑠), 𝑊(𝑡)] = 𝐸[𝑊(𝑠), 𝑊(𝑡)] = min (𝑠, 𝑡),                                    (2.2.1) 

            onde min (𝑠, 𝑡) é o mínimo entre 𝑠 e 𝑡. 

2.  O processo de Wiener 𝑊௧ é um processo gaussiano para 0 < 𝑡ଵ < ⋯ < 𝑡௡, a f. d. 

p conjunta 𝑓௧భ
, … , 𝑡௡(𝑥ଵ, … , 𝑥௡) de 𝑊(𝑡ଵ), … 𝑊(𝑡௡) é dada por: 

𝑓௧భ
, … , 𝑡௡(𝑥ଵ, … , 𝑥௡) = ∏

ଵ

ඥଶగ(௧೔ି௧೔షభ)
exp ቀ(−

(௫೔ି௫೔షభ)మ

ଶ(௧೔ି௧೔షభ)
ቁ௡

௜ୀଵ ,                                (2.2.2) 

onde se pôs 𝑡଴ = 0 e 𝑥଴ = 0. 

3. O processo de Wiener 𝑊௧ é um processo de Markov homogêneo com densidade de 

transição. 

𝑝(𝜏, 𝑦 ⎸𝑥) = (2𝜋𝜏)ି
భ

మ exp (−
(௬ ି ௫)మ

ଶఛ
) ; 𝜏 > 0.                                                       (2.2.3) 

Isto é, uma distribuição condicional de 𝑊(𝑠 + 𝜏) dado que 𝑊(𝑠) = 𝑥 é normal de 

média 𝑥 e variância 𝜏: 

𝑊(𝑠 + 𝜏)⎸(𝑊(𝑠) = 𝑥)⌒𝑁(𝑥, 𝜏).                                                                     (2.2.4) 

4. O processo de Wiener 𝑊௧ é uma martingala, pois em relação a filtração natural 

{𝑀௦}௦ஹ଴, onde 𝑀௦ = 𝜎(𝑤(𝑢): 0 < 𝑢 < 𝑠), significa que, para 𝑠 ≤ 𝑡, a esperança 

condicional do processo de Wiener 𝑊௧ dado 𝑀௦ é igual a 𝑊(𝑠). Isto é: 

𝐸[𝑊(𝑡)⎸𝑀௦] = 𝑊(𝑠).                                                                                         (2.2.5) 

 

2.3 Integral Estocástica de Itô 

A integral de Itô, batizada em homenagem ao matemático japonês Kiyoshi Itô, representa 

uma extensão do cálculo para processos estocásticos. Tem aplicações significativas nas 
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equações diferenciais estocásticas e em matemática financeira. Enquanto a integral de 

Riemann-Stieltjes resulta num número real, a integral de Itô é um processo estocástico.  

Seja um processo de Wiener padrão 𝑊(𝑡) = 𝑊(𝑡, 𝜔) e (𝑡 ≥ 0) definido no espaço de 

probabilidades (Ω, ℱ, 𝑃). Seja 𝑀௦ = 𝜎(𝑊(𝑢), 0 ≤ 𝑢 ≤ 𝑠) (𝑠 ≥ 0) a sua filtração natural 

e {𝒜௦}s∈[0,t] é uma filtração não-antecipativa se, para 0 ≤ 𝑠 ≤ 𝑡, {𝒜௦} ⊃ 𝑀௦ e 𝒜௦ for 

independente dos incrementos futuros 𝑊(𝑢) − 𝑊(𝑠) e (𝑢 ≥ 𝑠) do processo de Wiener 

(Braumann, 2005). Esta filtração diz-se não-antecipativa em relação ao processo de 

Wiener, pois em um dado momento no tempo 𝑠, a informação disponível sobre o processo 

de Wiener até esse ponto não fornece qualquer informação sobre o comportamento futuro 

do processo de Wiener após o tempo 𝑠. Assim a 𝜎-álgebra 𝒜௦ representa os eventos até 

o instante 𝑠.   

Com as condições descritas a integral de Itô pode ser definido por: 

 

  𝐼(𝐺) = ∫ 𝐺(𝑠)
௧

଴
𝑑𝑊(𝑠)                                                                                                    (2.3.1)                                                                                          

Aqui, 𝐼(𝐺) representa integral de Itô da função 𝐺(𝑠). 𝐺(𝑠) é uma função do tempo 𝑠 e é 

um processo estocástico, enquanto 𝑑𝑊(𝑠) representa a mudança infinitesimal do 

processo estocástico 𝑊(𝑠), geralmente um processo de Wiener (ou movimento 

Browniano). 

 Essa expressão (2.3.1) representa a soma do produto entre os valores da função 𝐺(𝑠) em 

intervalos discretos, multiplicados pelas mudanças correspondentes do processo 

estocástico entre esses intervalos. Quando o número de intervalos 𝑛 aumenta, essa soma 

converge para a integral de Itô. 

A integral de Itô possui algumas propriedades interessantes: 

1) Valor esperado da integral de Itô: 
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 O valor esperado da integral de Itô de uma função estocástica 𝐺(𝑠) num 

intervalo [𝑡଴, 𝑡] é zero: 

𝐸 ቂ∫ 𝐺(𝑠)𝑑𝑊(𝑠)
௧

௧బ
ቃ = 0                                                                          (2.3.2) 

2) Linearidade: 

 A integral de Itô é uma operação linear, ou seja, para uma constante 𝛼 e uma 

função estocástica 𝐺(𝑠), temos: 

 ∫ 𝛼𝐺(𝑠)𝑑𝑊(𝑠)
௧

௧బ
= 𝛼 ∫ 𝐺(𝑠)𝑑𝑊(𝑠)

௧

௧బ
                                              (2.3.3) 

3) Equivalência de linearidade 

 A propriedade de linearidade da integral de Itô é equivalente à propriedade de 

linearidade para combinações lineares de funções estocásticas. Para constantes 

𝛼 e 𝜇 e para funções estocásticas 𝐺(𝑠) e 𝐻(𝑠), temos: 

                     ∫ [𝛼𝐺(𝑠) + 𝜇𝐻(𝑠)]𝑑𝑊(𝑠)
௧

௧బ
= 𝛼 ∫ 𝐺(𝑠)𝑑𝑊(𝑠)

௧

௧బ
+ 𝜇 ∫ 𝐻(𝑠)𝑑𝑊(𝑠)

௧

௧బ
  (2.3.4)                                                            

4) Isometria de Itô 

 A propriedade de isometria de Itô estabelece que o quadrado da integral de 

Itô tem uma esperança igual à integral do quadrado da função estocástica 

𝐺(𝑠), ou seja: 

                       𝐸 ൤ቀ∫ 𝐺(𝑠)𝑑𝑊(𝑠)
௧

௧బ
ቁ

ଶ

൨ = 𝐸 ቂ∫ 𝐺(𝑠)ଶ𝑑𝑊(𝑠)
௧

௧బ
ቃ                                   (2.3.5) 

Quando consideramos o integral estocástico (2.3.1), verificamos que a integral de 

Riemann-Stieljes não existe, uma vez que diferentes escolhas dos pontos intermédios da 

função integranda origina limites diferentes. Isto acontece porque o processo de Wiener 

tem uma variação ilimitada, quase certamente. 

Se considerarmos um caso particular da integral (2.3.1), nomeadamente o caso em que 

𝐺(𝑠) = 𝑊(𝑠), resulta na integral ∫ 𝑊(𝑠)𝑑𝑊(𝑠)
௧

଴
. Usando as regras usuais do cálculo 

teríamos como solução 
ଵ

ଶ
𝑊ଶ(𝑡). No entanto se considerarmos as decomposições 
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[𝑡௡,௞ିଵ, 𝑡௡,௞[ de [0,t], tal que o máximo de [𝑡௡,௞ିଵ, 𝑡௡,௞[  convirja para 0 quando o 𝑛 tende 

para infinito, 0 = 𝑡௡,଴ ≤ 𝑡௡,ଵ ≤ 𝑡௡,ଶ ≤ ⋯ . ≤ 𝑡௡,௡ = 𝑡, então a integral de Itô é obtida 

quando a ecolha do ponto 𝜏௡,௞, situado no intervalo [𝑡௡,௞ିଵ, 𝑡௡,௞[, é uma escolha              

não-atencipativa, ou seja, é igual ao ponto inicial do intervalo 𝜏௡,௞ = 𝑡௡,௞ିଵ. Neste caso 

as somas de Riemann-Stieljes darão origem à integral de Itô: 

 

𝐼(𝐺) = ∫ 𝑊(𝑠)
௧

଴
𝑑𝑊(𝑠) = lim

௡→ஶ,௠.௤.
∑ 𝑊൫𝑡௡,௞ିଵ൯ ∗ (𝑊(𝑡௡,௞)௡

௞ୀଵ − 𝑊(𝑡௡,௞ିଵ))       (2.3.6)                          

A integral de Itô corresponde a uma escolha em que o comportamento atual do processo 

em estudo não depende das flutuações aleatórias que irão ocorrer no futuro. Além disso, 

note-se que esta integral não segue as regras usuais do cálculo, uma vez que seguindo as 

regras usuais de cálculo a integral ∫ 𝑊(𝑠)𝑑𝑊(𝑠)
௧

଴
 deveria ter como solução 

 

𝐼(𝐺) = ∫ 𝑊(𝑠)
௧

଴
𝑑𝑊(𝑠) =

ଵ

ଶ
(𝑊ଶ(𝑡) − 𝑡).                                                                 (2.3.7) 

O caso de por exemplo a escolha do ponto intermédio 𝜏௡,௞, das somas de                 

Rieamann-Sietljes for, por exemplo, o limite superior 𝜏௡,௞ = 𝑡௡,௞, obtemos o limite em 

média quadrática de  

lim
௡→ஶ,௠.௤.

෍ 𝑊൫𝑡௡,௞൯ ∗ (𝑊(𝑡௡,௞)

௡

௞ୀଵ

− 𝑊(𝑡௡,௞ିଵ)) 

resultando na solução 
ଵ

ଶ
(𝑊ଶ(𝑡) + 𝑡).     

Para mostrar este resultado, basta mostrar que:  

𝐸 ቈ൬∑ 𝑊൫𝑡௡,௞൯ ∗ (𝑊(𝑡௡,௞)௡
௞ୀଵ − 𝑊(𝑡௡,௞ିଵ)) −

ଵ

ଶ
(𝑊ଶ(𝑡) + 𝑡)൰

ଶ

቉ → 0                        (2.3.8) 

Como 𝑊ଶ(𝑡) = ∑ (𝑊ଶ(𝑡௡,௞)௡
௞ୀଵ − 𝑊ଶ(𝑡௡,௞ିଵ)), portanto 

෍ 𝑊൫𝑡௡,௞൯ ∗ (𝑊(𝑡௡,௞)

௡

௞ୀଵ

− 𝑊(𝑡௡,௞ିଵ)) −
1

2
(𝑊ଶ(𝑡) + 𝑡)  
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= −
1

2
෍൫𝑊(𝑡௡,௞൯ − 𝑊൫𝑡௡,௞ିଵ൯

ଶ
− 𝑡

௡

௞ୀଵ

 

= −
ଵ

ଶ
∑ ൫𝑊(𝑡௡,௞൯ − 𝑊൫𝑡௡,௞ିଵ൯

ଶ
− ൫𝑡௡,௞ − 𝑡௡,௞ିଵ൯ = −

ଵ

ଶ
∑ ℎ௡,௞

௡
௞ୀଵ

௡
௞ୀଵ                         (2.3.9) 

Como 𝐸ൣℎ௡,௞൧ = 0, obtemos:  

𝐸 ቈ൬∑ 𝑊൫𝑡௡,௞൯ ∗ (𝑊(𝑡௡,௞)௡
௞ୀଵ − 𝑊(𝑡௡,௞ିଵ)) −

ଵ

ଶ
(𝑊ଶ(𝑡) + 𝑡)൰

ଶ

቉ =

ଵ

ସ
𝐸 ቂ൫∑ ℎ௡,௞

௡
௞ୀଵ ൯

ଶ
ቃ =

ଵ

ସ
∑ 𝑉𝑎𝑟ൣℎ௡,௞൧ =

ଵ

ଶ
∑ ൫𝑡௡,௞ − 𝑡௡,௞ିଵ൯

ଶ
≤ 2𝑡 max

௞
൛𝑡௡,௞ −௡

௞ୀଵ
௡
௞ୀଵ

𝑡௡,௞ିଵൟ → 0                                                                                                                      (2.3.10) 

 

2.4 Integral de Stratonovich 

A integral Stratonovich, desenvolvida pelo russo Ruslan Stratonovich, é uma integral 

estocástico utilizada na teoria dos processos estocásticos, especialmente na física, 

estatística e na teoria do controle estocástico. Esta é uma alternativa à integral de Itô. No 

entanto, a integral de Itô é mais comum na matemática aplicada, enquanto a integral de 

Stratonovich é frequentemente empregada na física. 

A principal característica da integral de Stratonovich é que ela considera a simetria 

temporal das flutuações, ao contrário da integral de Itô. Embora seja uma integral 

antecipativa e não possua as mesmas propriedades probabilísticas convenientes da 

integral de Itô, ela tem a vantagem de obedecer às regras usuais do cálculo diferencial. 

Algebricamente essa integral é defina da seguinte forma (Braumann, 2005): 

Definição: Dada a partição do intervalo de tempo [0, 𝑡]: 0 = 𝑡௡,଴ ≤ 𝑡௡,ଵ ≤ 𝑡௡,ଶ ≤ ⋯ ≤

𝑡௡,௡ = 𝑡, a integral de Stratonovich é definido como o limite da soma:  

(𝑆) ∫ 𝑊(𝑠)
௧

଴
𝑑𝑊(𝑠) = ∫ 𝑊(𝑠)

௧

଴
∘ 𝑑𝑊(𝑠) =

lim
௡→ஶ,௠.௤.

∑ ቀ 
ௐ൫௧೙,ೖషభ൯ାௐ൫௧೙,ೖ൯

ଶ
ቁ௡

௞ୀଵ (𝑊൫𝑡௡,௞൯ − 𝑊൫𝑡௡,௞ିଵ൯)                                        (2.4.1) 
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Como segue as regras usuais do cálculo, a solução deste integral estocástico é 
ଵ

ଶ
𝑊ଶ(𝑡). 

 

2.5 Cálculo de Itô e de Stratonovich 

Antes de abordarmos o cálculo de Itô e de Stratonovich, começamos por enunciar o 

teorema de Itô, essencial para a compreensão deste método de cálculo estocástico. 

 

Teorema de Itô (Braumann, 2005) 

Seja  𝑋(𝑡) = 𝑋(𝑡, 𝜔) um processo de Itô definido no intervalo  𝑡 ∈ [0, 𝑑], dado por: 

𝑋(𝑡, 𝜔) = 𝑋଴(𝜔) + ∫ 𝐹(𝑠, 𝜔)𝑑𝑠
௧

଴
+ ∫ 𝐺(𝑠, 𝜔)𝑑𝑊(𝑠, 𝜔)

௧

଴
                                                     (2.5.1) 

Onde:  

 𝑋଴ é uma variável aleatória mensurável-𝒜଴,  podendo também ser uma 

constante determinista. Além disso, 𝑋଴ é independente do processo de Wiener; 

  𝐹(𝑠, 𝜔) é uma função conjuntamente mensurável adaptada à filtração 𝒜௦, e tal 

que∫ |𝐹(𝑠)|𝑑𝑠
ௗ

଴
<  +∞ quase certamente; 

 𝐺(𝑠, 𝜔) ∈ 𝑀ଶ[0, 𝑑]. 

A equação integral estocástica pode ser escrita na forma compacta como: 

𝑑𝑋(𝑡) = 𝐹(𝑡)𝑑𝑡 + 𝐺(𝑡)𝑑𝑊(𝑡) (2.5.2)                                                                                                                             

Seja 𝑌(𝑡) = ℎ൫𝑡, 𝑋(𝑡)൯, onde ℎ(𝑡, 𝑥) é uma função contínua com derivadas parciais 

continuas em relação a 𝑡 e segunda derivada parcial contínua em relação a 𝑥.        

Neste caso, 𝑌(𝑡) = 𝑌(𝑡, 𝜔) também é um processo de Itô, com condição inicial              

𝑌଴ = ℎ(0, 𝑋଴) e a sua evolução é dada pela fórmula de Itô, expressa na forma diferencial 

como: 
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𝑑𝑌(𝑡) = ቆ
డ௛൫௧,௑(௧)൯

డ௧
+

డ௛൫௧,௑(௧)൯

డ௫
𝐹(𝑡) +

ଵ

ଶ

డమ௛൫௧,௑(௧)൯

డ௫మ
𝐺ଶ(𝑡)ቇ 𝑑𝑡 +

                    
డ௛൫௧,௑(௧)൯

డ௫
𝐺(𝑡)𝑑𝑊(𝑡)                                                                                (2.5.3) 

A sua forma integral é: 

𝑌(𝑡) = 𝑌଴ + ∫ (
௧

଴

డ௛൫௦,௑(௦)൯

డ௦
+

డ௛൫௦,௑(௦)൯

డ௫
𝐹(𝑠) +

ଵ

ଶ

డమ௛൫௦,௑(௦)൯

డ௫మ
𝐺ଶ(𝑠))𝑑(𝑠) +

 ∫
డ௛൫௦,௑(௦)൯

డ௫
𝐺(𝑠)𝑑𝑊(𝑠)

௧

଴
                                                                                              (2.5.4)                                                                                                                             

Esta integral resulta da expansão de Taylor até à primeira ordem em 𝑡 e até à segunda 

ordem em 𝑥: 

𝑑𝑌(𝑡) =
డ௛൫௧,௑(௧)൯

డ௧
𝑑𝑡 +

డ௛൫௧,௑(௧)൯

డ௫
𝑑𝑋(𝑡) +

ଵ

ଶ

డమ௛൫௧,௑(௧)൯

డ௫మ
(𝑑𝑋(𝑡))ଶ                                     (2.5.5) 

Substituindo 𝑑𝑋(𝑡) pela sua expressão diferencial 𝑑𝑋(𝑡) = 𝐹(𝑡)𝑑𝑡 + 𝐺(𝑡)𝑑𝑊(𝑡), e 

utilizando as regras de multiplicação estocástica específicas para o cálculo de Itô, dados 

na seguinte tabela 

x dW dt 

dW dt 0 

dt 0 0 

 

A aplicação das regras desta tabela resulta que, por exemplo,  (𝑑𝑋(𝑡))ଶ = 𝐺ଶ(𝑡)𝑑𝑡.  

Assim, a equação (2.5.5) poderá escrever-se como:               

𝑑𝑌(𝑡) =
డ௛൫௧,௑(௧)൯

డ௧
𝑑𝑡 +

డ௛൫௧,௑(௧)൯

డ௫
൫𝐹(𝑡)𝑑𝑡 + 𝐺(𝑡)𝑑𝑊(𝑡)൯ +

ଵ

ଶ

డమ௛൫௧,௑(௧)൯

డ௫మ
𝐺ଶ(𝑡)𝑑𝑡  

= ቆ
డ௛൫௧,௑(௧)൯

డ௧
+

డ௛൫௧,௑(௧)൯

డ௫
𝐹(𝑡) +

ଵ

ଶ

డమ௛൫௧,௑(௧)൯

డ௫మ
𝐺ଶ(𝑡)ቇ 𝑑𝑡 +

డ௛൫௧,௑(௧)൯

డ௫
 𝐺(𝑡)𝑑𝑊(𝑡)       (2.5.6)         

2.6 Equação Diferencial Estocástica 

A primeira equação diferencial estocástica conhecida foi o modelo de Leonard Salomon 

Ornstein e George Eugene Uhlenbeck, denominado Ornstein-Uhlenbeck. Introduzido na 
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década de 1930 para descrever o movimento browniano. Versões desse modelo são 

amplamente utilizadas em diversos campos, como no campo financeiro, para estudar 

taxas de juros, taxas de câmbios e outros fenômenos onde a variação ao longo do tempo 

é influenciada por um fator estocástico. Além disso, no campo biológico, o modelo é 

empregado no estudo do crescimento animal, e tem aplicações significativas em muitos 

outros domínios.  

A sua equação diferencial estocástica geral é escrita da seguinte maneira: 

𝑑𝑦(𝑡) = −𝐵(𝑦(𝑡) − 𝐴)𝑑𝑡 + 𝜎𝑑𝑊(𝑡)                                                                              (2.6.1)                                                                                   

Onde 𝑦(𝑡) representa o valor do processo no tempo, 𝐴  é o valor médio de longo prazo 

para o qual o processo tende (valor assintótico médio), 𝐵 (𝐵 > 0) é um coeficiente que 

controla a velocidade com que o processo regressa a 𝐴, 𝜎 é a magnitude da volatilidade 

ou força do meio ambiente, 𝑑𝑡 representa uma variação infinitesimal no tempo e 𝑑𝑊(𝑡) 

é a variação do movimento browniano.  

Formas desta equação diferencial estocástica foram utilizadas por diversos fins: 

 Oldrich Vasicek (modelo Vasicek), para descrever a dinâmica das taxas de juros e 

de câmbios ao longo do tempo, onde 𝑦(𝑡) representa taxas de juros/câmbios e 𝐴 

a taxa de referência; 

 Benjamin Gompertz (Modelo de Gompertz para o crescimento populacional), 

para descrever a dinâmica do crescimento de uma população ao longo do tempo, 

onde 𝑋(𝑡) representa o tamanho da população e 𝑌(𝑡) = ln 𝑋(𝑡) é o tamanho 

transformado da população. 

O modelo de Bertalanffy-Richards surge quando a transformação utilizada é              

𝑌(𝑡) = 𝑋(𝑡)௖, onde 𝑐 é um número real maior que zero (𝑐 > 0). Esta transformação 

permite ajustar a equação para diferentes valores de 𝑐, proporcionando uma flexibilidade 

na formulação do modelo que pode capturar diferentes padrões de crescimento 
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observados em organismos. Dependendo do valor de 𝑐, a função potência pode alterar a 

forma da curva de crescimento, tornando o modelo mais adaptável a diferentes cenários 

biológicos. 

Segundo Braumann (2005), uma equação diferencial estocástica é uma equação em que 

a taxa de variação em relação ao tempo é igual à soma de uma função determinística e de 

um componente estocástico, expressa por:  

ௗ௑(௧)

ௗ௧
= 𝑓൫𝑡, 𝑋(𝑡)൯𝑑𝑡 + 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡)                                                                         (2.6.2)                                                                                       

Onde 
ௗ௑(௧)

ௗ௧
 é a taxa de variação de 𝑋(𝑡) em relação ao tempo, 𝑓൫𝑡, 𝑋(𝑡)൯ é a função 

determinística que descreve o comportamento dinâmico médio e 𝑔(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡) é o 

componente estocástico, em que 𝑔(𝑡, 𝑋(𝑡)) é uma função que multiplica pela variação 

das flutuações aleatórias, descritas pelo processo de Wiener.  

A integral estocástica correspondente a essa equação diferencial estocástica, pode ser 

expressa usando a notação de integral estocástica da seguinte forma: 

𝑋(𝑡) = 𝑋଴ + ∫ 𝑓൫𝑠, 𝑋(𝑠)൯𝑑𝑠
௧

଴
+ ∫ 𝑔൫𝑠, 𝑋(𝑠)൯𝑑𝑊(𝑠)

௧

଴
                                               (2.6.3)                                                       

Onde 𝑋(𝑡) é a solução da equação diferencial estocástica no tempo 𝑡, 𝑋଴ é o valor inicial 

de 𝑋, 𝑓൫𝑠, 𝑋(𝑠)൯ é a função determinística, 𝑔(𝑡, 𝑋(𝑡)) é o componente estocástico e 

𝑑𝑊(𝑠) é o diferencial do processo 𝑊(𝑠). 

 

2.7 Teorema de Existência, Unicidade e Propriedades da    

Solução de uma Equação Diferencial Estocástica de Itô 

Segundo Braumann (2005), seja 𝑋଴  uma variável aleatória com variância finita, ou seja, 

(𝑋଴ ∈ 𝐿ଶ), sendo também mensurável em relação a 𝒜଴ e, consequentemente, independente 

do processo de Wiener. Seja 𝜀 o conjunto das funções reais, ℎ(𝑡, 𝑥), mesuráveis em 
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]0, 𝑑[× ℝ, satisfazendo uma condição de Lipschitiz (ℎ(𝑡, 𝑥) − ℎ(𝑡, 𝑦) ≤ 𝐾|𝑥 − 𝑦|) e uma 

restrição ao crescimento (|ℎ(𝑡, 𝑥)| ≤ 𝐾(1 + |𝑥|ଶ)ଵ/ଶ ). 

Consideremos, agora uma equação diferencial estocástica de Itô no intervalo de tempo 

[0, 𝑑], com 𝑑 > 0 dada por: 

𝑑𝑋௧ = 𝑓൫𝑡, 𝑋(𝑡)൯𝑑𝑡 + 𝑔൫𝑡, 𝑋(𝑡)൯𝑑𝑊(𝑡), 𝑋(0) = 𝑋଴                                                    (2.7.1) 

A solução dessa equação pode ser expressa na forma integral estocástica como: 

𝑋(𝑡) =  𝑋଴ + ∫ 𝑓൫𝑠, 𝑋(𝑠)൯𝑑𝑠
௧

଴
+ ∫ 𝑔൫𝑠, 𝑋(𝑠)൯𝑑𝑊(𝑠)

௧

଴
                                                   (2.7.2) 

Onde o segundo integral é interpretado como uma integral de Itô. 

Suponha–se que 𝑓 e 𝑔 pertencem a 𝜀. Então, a solução satisfaz as seguintes propriedades:  

a) Existe um processo estocástico 𝑋(𝑡) = 𝑋(𝑡, 𝑤) com 𝑡𝜖[0, 𝑑] que é quase 

certamente contínuo e satisfaz a equação diferencial estocástica: 

𝑑𝑋௧ = 𝑓൫𝑡, 𝑋(𝑡)൯𝑑𝑡 + 𝑔൫𝑡, 𝑋(𝑡)൯𝑑𝑊(𝑡), 𝑋(0) = 𝑋଴,                                          (2.7.3) 

ou equivalentemente, com probabilidade 1, a equação integral:                              

𝑋(𝑡) =  𝑋଴ + ∫ 𝑓൫𝑠, 𝑋(𝑠)൯𝑑𝑠
௧

଴
+ ∫ 𝑔൫𝑠, 𝑋(𝑠)൯𝑑𝑊(𝑠)

௧

଴
 , ∀𝑡𝜖[0, 𝑑]                     (2.7.4) 

b) A solução é quase certamente única, no sentido de que, dadas duas soluções quase 

certamente contínuas 𝑋(𝑡) e 𝑋∗(𝑡), tem – se:  

sup |𝑋(𝑡) − 𝑋∗(𝑡)| = 0 ; 0 ≤ 𝑡 ≤ 𝑑 ;                                                                 (2.7.5) 

          Com probabilidade 1.  

c) As seguintes desigualdades são válidas para a solução: 

𝐸[൫𝑋(𝑡)൯
ଶ

] ≤ (1 + 𝐸[(𝑋଴)ଶ]) exp(𝐾(𝐾 + 2)𝑡) − 1                                                (2.7.6) 

𝐸[(𝑋(𝑡) − 𝑋଴)ଶ] ≤ 2𝐾ଶ(𝑑 + 1)(1 + 𝐸[(𝑋଴)ଶ])𝑡𝑒𝑥𝑝(𝐾(𝐾 + 2)𝑡)                  (2.7.7) 

d) A solução 𝑋(𝑡) pertence ao espaço 𝐻ଶ[0, 𝑑] e é contínua em média quadrática. 

e) A solução 𝑋(𝑡) é um processo de Markov com distribuição inicial igual à 

distribuição de 𝑋଴ e com probabilidades de transição dadas por: 
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𝑃(𝑡, 𝐵|𝑠, 𝑥) = 𝑃[𝑋௦,௫(𝑡) ∈ 𝐵], (𝑠 ≤ 𝑡)                                                               (2.7.8) 

Denotamos por 𝑋௦,௫(𝑡) a solução única e contínua da EDE: 

𝑑𝑋(𝑡) = 𝑓൫𝑡, 𝑋(𝑡)൯𝑑𝑡 + 𝑔൫𝑡, 𝑋(𝑡)൯𝑑𝑊(𝑡),  𝑋(𝑠) = 𝑥,                                          (2.7.9) 

ou, de forma integral: 

𝑋(𝑡) = 𝑥 + ∫ 𝑓൫𝑢, 𝑋(𝑢)൯𝑑𝑢
௧

௦
+ ∫ 𝑔൫𝑢, 𝑋(𝑢)൯𝑑𝑊(𝑢)

௧

௦
                                          (2.7.10) 

f) Se 𝑓 e 𝑔 forem contínuas em 𝑡, então a solução 𝑋(𝑡) é um processo de difusão com 

coeficiente de tendência: 

𝑎(𝑠, 𝑥) = 𝑓(𝑠, 𝑥)                                                                                                                (2.7.11) 

e coeficiente de difusão: 

𝑏(𝑠, 𝑥) = |𝑔(𝑠, 𝑥)ଶ.                                                                                                           (2.7.12) 

 

Observação:  

Se forem assumidas condições de regularidade para 𝑓e g, e consideramos uma EDE de 

Stratonovich: 

(𝑆)   𝑑𝑋௧ = 𝑓൫𝑡, 𝑋(𝑡)൯𝑑𝑡 + 𝑔൫𝑡, 𝑋(𝑡)൯𝑑𝑊(𝑡),                                                           (2.7.13) 

que é equivalente à equação de Itô: 

𝑑𝑋௧ = ቆ 𝑓൫𝑡, 𝑋(𝑡)൯ +
ଵ

ଶ

డ௚൫௧,௑(௧)൯

డ௫
𝑔൫𝑡, 𝑋(𝑡)൯ቇ 𝑑𝑡 + 𝑔൫𝑡, 𝑋(𝑡)൯𝑑𝑊(𝑡),                        (2.7.14) 

então a sua solução será um processo de difusão com coeficiente de tendência: 

𝑎(𝑠, 𝑥) = 𝑓(𝑠, 𝑥) +
ଵ

ଶ

డ௚(௦,௫)

డ௫
𝑔(𝑠, 𝑥) = 𝑓(𝑠, 𝑥) +

ଵ

ସ

డ௕(௦,௫)

డ௫
,                                          (2.7.15) 

e coeficiente de difusão:  

𝑏(𝑠, 𝑥) = |𝑔(𝑠, 𝑥)|ଶ.                                                                                                  (2.7.16) 
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3. Modelos Matemáticos de Crescimento Individual 

Os modelos matemáticos de crescimento individual são representações matemáticas que 

descrevem como o peso de um indivíduo varia ao longo do tempo. Estes modelos utilizam 

equações diferenciais para explicar a dinâmica de crescimento do indivíduo e podem ser 

aplicados em diversas áreas, como biologia e demografia. 

 

3.1 Modelos Matemáticos Determinísticos 

Nos modelos matemáticos determinísticos, as equações diferenciais são fundamentais, 

pois permitem formular as relações entre as variáveis que influenciam o crescimento, 

como a taxa de crescimento, o tamanho máximo e os fatores que afetam o 

desenvolvimento do indivíduo. Os modelos de Verhulst, de Gompertz e de          

Bertalanffy-Richards descrevem o crescimento individual sem considerar a aleatoriedade 

dos eventos ambientais e demográficos. 

 

3.1.1   Modelo de Verhulst 

Em 1838, o matemático e estatístico belga Pierre François Verhulst (1804-1849) propôs, 

no seu artigo Notice sur la loi que la population poursuit dans son accroissement, um 

modelo alternativo ao de Malthus (Pinheiro, 2021). Nesse modelo, Verhulst introduziu a 

ideia de que o crescimento é limitado pela capacidade de suporte do ambiente, 

conduzindo à estabilização ao longo do tempo. Embora originalmente formulado para 

populações, o modelo logístico pode ser aplicado ao crescimento individual de animais, 

como o bovino, permitindo descrever o aumento do peso ou tamanho do indivíduo, 

considerando que o crescimento desacelera à medida que o animal se aproxima do 

tamanho máximo.  
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Figura 2: Pierre François Verhulst  

Fonte: Wikipédia, a enciclopédia livre 

O modelo de Verhulst é uma equação diferencial que descreve como a taxa de crescimento 

de um indivíduo (bovino) varia ao longo do tempo, tendo em conta a capacidade de 

suporte do ambiente. Neste modelo, a taxa de crescimento diminui à medida que o 

tamanho do indivíduo se aproxima do limite máximo permitido pelo ambiente.  

Denotando por 𝑃(𝑡) o peso (ou tamanho) do indivíduo no instante 𝑡, a equação é expressa 

da seguinte forma (Pinheiro, 2021): 

ௗ௉(௧)

ௗ௧
= 𝑟𝑃(𝑡) ቀ 1 −  

௉(௧)

௄
 ቁ                                                                                                     (3.1.1.1) 

Onde: 

 
ௗ௉(௧)

ௗ௧
 representa a taxa de variação do peso (ou tamanho) do indivíduo em relação 

ao tempo; 

  𝑟 (𝑟 > 0) é a taxa intrínseca de crescimento do indivíduo;  

  𝐾 é o peso máximo que o indivíduo pode atingir (peso assimptótico ou 

capacidade do suporte do ambiente). 

De acordo com este modelo, observa-se: 

 Se 𝑃 > 𝐾, então 
ௗ௉(௧)

ௗ௧
< 0, o peso diminui; 

 Se 𝑃 = 𝐾, então 
ௗ௉(௧)

ௗ௧
= 0, o peso permanece estável; 

 Se 𝑃 < 𝐾, então 
ௗ௉(௧)

ௗ௧
> 0, o peso aumenta. 
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Para determinar a solução geral da equação diferencial (3.1.1.1), consideramos o seguinte 

problema de valor inicial: 

ቊ
ௗ௉

ௗ௧
= 𝑟𝑃 ቀ1 −  

௉

௄
ቁ

𝑃(0) = 𝑃଴

                                                                                                           (3.1.1.2)                                                                                                      

Separando as variáveis e integrando ambos os membros: 

∫
ଵ

௉ቀଵି
ು

಼
ቁ

𝑑𝑃 = ∫ 𝑟𝑑𝑡                                                                                                  (3.1.1.3)                                                                                           

Resolvendo a integral do primeiro membro, utilizando o método de frações parciais: 

௄

௉(௄ି௉)
=  

஺

௉
+  

஻

௄ି௉
                                                                                                    (3.1.1.4)                                                                                         

Multiplicando ambos os membros por 𝑃(𝐾 − 𝑃) e igualando os coeficientes 

correspondentes, obtemos: 

ቄ
𝐴 = 1

𝐵 − 𝐴 = 0
 ⟺ ቄ

𝐴 = 1
𝐵 = 1

                                                                                                                     (3.1.1.5) 

Substituindo o valor de A e B na equação (3.1.1.4), obtemos: 

 ∫ ቀ
ଵ

௉
+

ଵ

௄ି௉
ቁ 𝑑𝑃 = ∫ 𝑟𝑑𝑡                                                                                (3.1.1.6) 

Integrando ambos os membros e aplicando a condição inicial 𝑃(0) = 𝑃଴, obtemos: 

ln ቚ
௉బ

௄ି௉బ
ቚ = 𝑐                                                                                                              (3.1.1.7) 

Substituindo (3.1.1.7) em (3.1.1.6), obtemos: 

ln ቀ
௉

௄ି௉
ቁ = 𝑟𝑡 + ln ቀ 

௉బ

௄ି௉బ
 ቁ                                                                                                              (3.1.1.8) 

Resultando na solução geral do modelo de Verhulst: 

𝑃(𝑡) =
௉బ௄

(௄ି௉బ)௘షೝ೟ା௉బ
                                                                                                 (3.1.1.9) 

Onde: 𝑃(𝑡) é o peso (ou tamanho) do indivíduo no instante 𝑡 e 𝑃଴ é o peso inicial do 
indivíduo no instante 𝑡 = 0. 

Este modelo apresenta as seguintes propriedades: 

 Quando 𝑡 → +∞, 𝑃(𝑡) → 𝐾, independentemente de 𝑃଴; 

 Se 𝑃଴ > 𝐾, o peso decresce até atingir 𝐾; 
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 Se 0 < 𝑃଴ < 𝐾, o peso cresce até atingir 𝐾. 

Nesta última condição, o gráfico da função 𝑃(𝑡) assume a forma de uma curva logística, 

que apresenta um ponto de inflexão onde a taxa de crescimento individual é máxima. Este 

ponto ocorre em 𝑃 = 𝐾
2ൗ , o valor no qual o crescimento atinge a sua velocidade máxima. 

Graficamente temos: 

 

Fonte: Autoria própria, 2024. 

 

3.1.2 Modelo de Gompertz 

Benjamin Gompertz (1779-1865) foi um matemático, estatístico e atuário britânico, 

conhecido principalmente por propor a Lei de Gompertz, que descreve o crescimento 

exponencial da taxa de mortalidade humana com a idade. Em 1825, apresentou um modelo 

matemático alternativo aos existentes na época, no qual a taxa de crescimento é elevada no 

início e diminui rapidamente, conduzindo a um crescimento mais lento à medida que o 

tempo avança. Este modelo, conhecido como modelo de Gompertz, tem sido amplamente 

utilizado na descrição do crescimento de populações biológicas, como células, plantas, 

bactérias e tumores, bem como em áreas como a demografia, a biologia e as ciências da 

saúde. A sua flexibilidade e capacidade de modelar comportamentos assimétricos de 

crescimento tornam-no particularmente útil em contextos onde há limitação ambiental ou 

restrições de recursos. 
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Figura 3: Benjamin Gompertz 

Fonte: Wikipédia, a enciclopédia livre 

O modelo de Gompertz descreve um crescimento individual de um animal, caracterizado 

por uma taxa de crescimento elevada no início, que diminui gradualmente à medida que 

o indivíduo se aproxima do peso máximo. É representado matematicamente pela seguinte 

equação diferencial (Pinheiro, 2021): 

ௗ௉(௧)

ௗ௧
= 𝑟 𝑃(𝑡) 𝑙𝑛 ቀ

௄

௉(௧)
ቁ                                                                                                                 (3.1.2.1)                                                                                               

Onde: 

 
ௗ௉(௧)

ௗ௧
 representa a taxa de variação de peso do indivíduo em relação ao tempo; 

 𝑃(𝑡) é o peso do indivíduo no instante 𝑡; 

 𝑡 é o tempo; 

 𝑟 é a taxa intrínseca de crescimento do indivíduo; 

 𝐾 é o peso máximo que o indivíduo pode atingir (peso assimptótico ou 

capacidade do suporte do ambiente); 

Para determinar a solução geral da equação diferencial (3.1.2.1), consideramos o seguinte 

problema de valor inicial: 

ቊ
ௗ௉

ௗ௧
= 𝑟𝑃𝑙𝑛 ቀ

௄

௉
ቁ

𝑃(0) = 𝑃଴

                                                                                                      (3.1.2.2)                                                                                  

Aplicando as mesmas técnicas utilizadas no modelo de Verhulst, obtemos:  
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− ln ൬𝑙𝑛 ቀ
௄

௉
ቁ൰ + 𝑐 = 𝑟𝑡, onde 𝑐 é a constante de integração.                                (3.1.2.3)                                                                 

Aplicando a condição inicial 𝑃(0) = 𝑃଴ na equação (3.1.2.3), obtemos:  

− ln ቆ𝑙𝑛 ቀ
௄

௉బ
ቁቇ + 𝑐 = 𝑟 ∗ 0 ⟺ 𝑐 = ln ቀ𝑙𝑛 ቀ

௄

௉బ
ቁቁ                                                       (3.1.2.4) 

Substituindo este valor de 𝑐 na equação (3.1.2.3) e realizando as manipulações algébricas 

necessárias, obtemos a solução do modelo de Gompertz: 

𝑃(𝑡) =  𝐾𝑒𝑥𝑝 ቀ − ln ቀ
௄

௉బ
ቁ 𝑒ି௥௧ ቁ                                                                                            (3.1.2.5)                                                                                                               

Onde: 𝑃(𝑡) é o peso do indivíduo no instante 𝑡 e 𝑃଴ é o peso inicial para 𝑡 = 0. 

Graficamente temos: 

 

Fonte: Autoria própria, 2024. 

 

3.1.3 Modelo de Bertalanffy-Richards 

O modelo de crescimento de Bertalanffy-Richards proposto por Bertalanffy (1938, 1957, 

1968) e posteriormente estudado por Richards (1959) é um modelo bioenergético que 

descreve o crescimento de um organismo com base nos processos de anabolismo e 

catabolismo. Embora originalmente desenvolvido para organismos em geral, este modelo 

pode ser usado para descrever o crescimento individual de um bovino. O anabolismo está 

relacionado com a síntese e é considerado proporcional à respiração, que, por sua vez, é 

proporcional à superfície do organismo. O catabolismo, associado à degradação, é 
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proporcional ao volume ou peso do organismo. Este modelo procura equilibrar esses dois 

processos para descrever o crescimento do indivíduo ao longo do tempo. 

A equação diferencial que representa este modelo é dada por (Filipe, 2011):  

ௗ௉(௧)

ௗ௧
= 𝜂𝑃(𝑡)௖ − 𝑘𝑃(𝑡)௡                                                                                                                  (3.1.3.1) 

Onde: 

 
ௗ௉(௧)

ௗ௧
 representa a taxa de variação de peso do indivíduo em relação ao tempo; 

 𝑃(𝑡) é o peso do indivíduo no instante 𝑡; 

 𝜂 é a constante de anabolismo; 

 𝑘 é a constante de catabolismo;  

 𝑐 e 𝑛 são constantes que representam a relação alométrica com o tamanho do 

organismo. 

A solução geral desta equação, no caso particular em que 𝑛 = 1, é dada por: 

𝑃(𝑡) = 𝐾 ቂ 1 − ቀ1 − ቀ
௉(௧బ)

௄
ቁ

௠

ቁ 𝑒ି௥௠(௧ି௧బ) ቃ
ି

భ

೘
                                                     (3.1.3.2)                                                                

Onde: 

 𝑚 = 1 − 𝑐; 

  𝐾௖ =
ఎ

఑
; 

   𝑟 = 𝜅. 
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3.2 Modelos Estocásticos de Crescimento Individual  

Os modelos de equações diferenciais estocásticas incorporam um componente de 

aleatoriedade para descrever como as flutuações ambientais afetam a taxa de crescimento 

de um animal. 

Neste contexto, se um animal cresce num ambiente sujeito a variações imprevisíveis, o 

seu crescimento pode ser descrito por uma equação diferencial estocástica. Para descrever 

o crescimento (mais concretamente o peso, em Kg) 𝑋௧ de um animal, é possível escrever 

os vários modelos de uma forma geral, através do seu peso transformado 𝑌௧ = ℎ(𝑋௧), 

sendo ℎ uma função contínua, estritamente crescente e diferenciável. Usando o peso 

transformado, podemos escrever a equação diferencial da seguinte forma: 

𝑑𝑌௧ = 𝛽(𝛼 − 𝑌௧)𝑑𝑡 + 𝜎𝑑𝑊௧ ; 𝑌(𝑡଴) = 𝑦଴, 𝜎 > 0 e 𝛽 > 0                                                   (3.2.1) 

Onde: 

 𝑌௧ é o peso transformado do animal no instante 𝑡; 

  𝑡 é o tempo (Idade), e 𝑡଴ é o tempo inicial (Idade inicial); 

  𝛽 é o coeficiente de crescimento; 

 𝑊௧ é o processo de Wiener; 

 𝛼 é o peso médio esperado que o animal atinge na maturidade; 

 𝜎 representa a intensidade das flutuações ambientais.  

A solução desta equação diferencial é dada por: 

𝑌௧ = 𝛼 + 𝑒ିఉ(௧ି௧బ)(𝑦௢ − 𝛼) + 𝜎𝑒ିఉ ∫ 𝑒ఉೞ𝑑𝑊௦
௧

௧బ
                                                             (3.2.2) 

Note-se que condicionado a 𝑌௦ = 𝑦, a distribuição condicional do processo estocástico, 

𝑌௧| 𝑌௦ = 𝑦,  com 𝑡 > 𝑠, segue uma distribuição normal com valor esperado dada por  

𝛼 + (𝑦 − 𝛼)𝑒ିఉ(௧ି௦)                                                                                                   (3.2.3)                                                                                                    
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e variância  

ఙమ

ଶఉ
൫1 − 𝑒ିଶఉ(௧ି௦)൯.                                                                                                                                  (3.2.4) 

A escolha da função ℎ, permite obter diversos modelos. Com base em estudos anteriores 

(Filipe, 2011), iremos apenas estudar os modelos que melhor se aplicam a estes dados: 

 Modelo estocástico de Gompertz, obtido quando 𝐘𝒕 = 𝐡(𝑿𝒕) = 𝐥𝐧 (𝑿𝒕); 

 Modelo estocástico de Bertalanffy-Richards, obtido quando 𝐘𝒕 = (𝑿𝒕)𝒄, e que 

após diferente estudo se concluiu que o valor de 𝑐 que melhor se ajusta a estes 

dados é o valor de 𝒄 =
𝟏

𝟑
. 
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4. Métodos de Estimação 

Para estimarmos os parâmetros dos modelos determinísticos e estocásticos, iremos 

recorrer a dois métodos de estimação pontual:  o método dos mínimos quadrados no caso 

dos modelos determinísticos e o método da máxima verossimilhança nos modelos 

estocásticos. 

O método da máxima verosimilhança, permite obter a matriz Hessiana através da função 

de log-verosimilhança. Com base nela podemos obter a matriz de informação de Fisher 

(através do valor esperado do seu simétrico), e obtendo a matriz inversa conseguimos 

derivar a matriz de covariâncias empíricas, cujos elementos das diagonais nos permite 

obter uma estimativa das variâncias das estimativas dos parâmetros. Desta forma, também 

nos será possível obter estimativas intervalares para os parâmetros dos modelos 

estocásticos. 

Para os modelos determinísticos, obteremos os resíduos do modelo e, com base neles, 

estimaremos a sua variância. Esta estimativa permitirá também construir intervalos de 

confiança para os parâmetros dos modelos determinísticos. 

 

4.1 Método dos Mínimos Quadrados (MMQ) 

O método dos mínimos quadrados é um procedimento estatístico utilizado para ajustar um 

modelo a um conjunto de dados observados, minimizando a soma dos quadrados das 

diferenças entre os valores observados e os valores previstos pelo modelo. 

Consideremos um conjunto de dados (𝑥௜, 𝑦௜), para 𝑖 = 1, 2, … , 𝑛. No nosso problema serão 

os dados da idade (𝑥௜) e do peso do animal 𝑦௜.  

Para cada ponto de dados, o resíduo ou erro é a diferença entre o valor observado 𝑦௜ e o 

valor previsto 𝑦పෞ pelo modelo determinístico, denotado por: 
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𝑒௜ = 𝑦௜ − 𝑦పෝ                                                                                                                             (4,1.1) 

A soma dos quadrados dos resíduos é expressa por: 

𝑆 = ∑ 𝑒ଶ௡
௜ୀଵ =  ∑ (𝑦௜ − 𝑦పෝ)ଶ௡

௜ୀଵ                                                                                            (4.1.2) 

A função S é uma função dos parâmetros do modelo, e através de derivadas parciais em 

ralação a cada um dos parâmetros, consegue-se obter os valores das estimativas dos 

parâmetros que minimizam o erro 𝑒௜. 

Este método é amplamente utilizado devido à sua simplicidade e eficácia em fornecer uma 

boa aproximação para um determinado conjunto de dados, constituindo a base para muitos 

métodos de regressão em estatística (Fonseca, 1994). 

No entanto, nesta dissertação optou-se por usar modelos determinístico, mais complexos, 

não sendo possível transformar a solução da equação diferencial numa equação linear (tal 

como seria possível no modelo de Malthus, por exemplo). Desta forma, para a estimação 

dos parâmetros do modelo não linear, foi utilizada a função nlsLM do pacote minpack.lm 

em R. Este método consiste numa versão modificada do método dos mínimos quadrados 

não lineares, recorrendo ao algoritmo de Levenberg-Marquardt (este algoritmo combina 

os métodos de Gauss-Newton e de gradiente). A estimativa da variância dos parâmetros 

ajustados é obtida a partir da inversa da matriz de informação de Fisher empírica, dada por  

(J்J)ିଵ, onde J é a matriz Jacobiana dos resíduos em relação aos parâmetros. Usando esta 

matriz e dividindo pela variância residual estimada 𝜎ො =
∑௘೔

మ

௡ି௣
, com p o número de 

parâmetros e n o número de observações, é possível estimar a variância empírica dos 

parâmetros. 
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4.2 Método da Máxima Verossimilhança (MMV) 

O método da máxima verossimilhança é uma técnica estatística amplamente utilizada 

para estimar os parâmetros desconhecidos de um modelo, podendo ser utilizada se as 

densidades de transição do processo 𝑋௧ forem conhecidas.  

De acordo com Filipe (2011), para os diferentes modelos de crescimento estocásticos, 

Gompertz e Bertalanffy-Richards, o vetor dos parâmetros que pretendermos estimar é 

𝑃 = (𝛼, 𝛽, 𝜎). Já foi referido que a distribuição condicional do processo estocástico do 

animal j no instante k, 𝑡௝,௞, condicional ao valor conhecido de Y para o mesmo animal j 

no instante anterior 𝑡௝,௞ିଵ, segue uma distribuição normal. A sua função densidade de 

probabilidade é então dada por: 

𝑓௒ೕ,ೖ|௒ೕ,ೖషభస𝒴ೕ,ೖషభ
൫𝒴௝,௞൯ =

ଵ

ටଶగ
഑మ

మഁ
ቀଵିா

ೕ,ೖ
మഁ

ቁ

exp ൭−
ቀ𝒴ೕ,ೖିఈି൫𝒴ೕ,ೖషభିఈ൯ாೕ,ೖ

ഁ
ቁ

మ

ଶ
഑మ

మഁ
ቀଵିா

ೕ,ೖ
మഁ

ቁ
൱                    (4.2.1)                           

Onde: 𝐸௝,௞ é a função exponencial da diferença de tempos ( 𝐸௝,௞ = 𝑒ି(௧ೕ,ೖି ௧ೕ,ೖషభ)). 

Como a distribuição condicional do estado atual (𝑌௝,௞) depende apenas do estado anterior 

(𝑌௝,௞ିଵ), isso significa que estamos perante um processo de Markov. A função densidade 

probabilidade (f. d. p) conjunta de 𝑌௝,ଵ, … , 𝑌௝,௡ೕ
, dado 𝑌௝,଴ = 𝒴௝,଴ é o produto destas 

funções densidade probabilidade (f. d. p). 

A função de log-verossimilhança para o animal número 𝑗 é dada da seguinte maneira: 

𝐿௒ೕ
൫𝑃ห𝑌௝൯ = ln ቀ∏ 𝑓௒ೕ,ೖ|௒ೕ,ೖషభస𝒴ೕ,ೖషభ

൫𝒴௝,௞൯
௡ೕ

௄ୀଵ ቁ = ∑ ln
௡ೕ

௄ୀଵ 𝑓௒ೕ,ೖ|௒ೕ,ೖషభస𝒴ೕ,ೖషభ
൫𝒴௝,௞൯(4.2.2)                      
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Substituindo a expressão (4.2.1) em (4.2.2), teremos: 

𝐿௒ೕ
൫𝑃ห𝑌௝൯ = ෍ ln

௡ೕ

௞ୀଵ

𝑓௒ೕ,ೖ|௒ೕ,ೖషభస𝒴ೕ,ೖషభ
൫𝒴௝,௞൯ 

= ∑ ln
௡ೕ

௞ୀଵ
ቌ 

ଵ

ටଶగ
഑మ

మഁ
(ଵିா

ೕ,ೖ
మഁ

)

exp ൭−
ቀ𝒴ೕ,ೖିఈି൫𝒴ೕ,ೖషభିఈ൯ாೕ,ೖ

ഁ
ቁ

మ

ଶ
഑మ

మഁ
ቀଵିா

ೕ,ೖ
మഁ

ቁ
൱ ቍ                                     (4.2.3) 

Aplicando as propriedades logarítmica em (4.2.3), obtemos: 

𝐿௒ೕ
൫𝑃ห𝑌௝൯ = ෍

⎝

⎜⎜
⎛

ln1 − ln ቆ2𝜋
𝜎ଶ

2𝛽
(1 − 𝐸௝,௞

ଶఉ
)ቇ

ଵ
ଶ

௡ೕ

௞ୀଵ

+ ln

⎝

⎜
⎛

exp ൮−
ቀ𝒴௝,௞ − 𝛼 − ൫𝒴௝,௞ିଵ − 𝛼൯𝐸௝,௞

ఉ
ቁ

ଶ

2
𝜎ଶ

2𝛽
ቀ1 − 𝐸௝,௞

ଶఉ
ቁ

൲

⎠

⎟
⎞

⎠

⎟⎟
⎞

⟺ 

𝐿௒ೕ
൫𝑃ห𝑌௝൯ = ∑ ൭−

ଵ

ଶ
ቀln ቀ2π

ఙమ

ଶఉ
ቁ + lnቀ1 − 𝐸௝,௞

ଶఉ
ቁቁ −

ቀ𝒴ೕ,ೖିఈି൫𝒴ೕ,ೖషభିఈ൯ாೕ,ೖ
ഁ

ቁ
మ

ଶ
഑మ

మഁ
ቀଵିா

ೕ,ೖ
మഁ

ቁ
൱

௡ೕ

௞ୀଵ     (4.2.4)                 

Aplicando as propriedades do somatório em (4.2.4), obtemos: 

𝐿௒ೕ
൫𝑃ห𝑌௝൯ = −

1

2
෍ ln(2𝜋)

௡ೕ

௞ୀଵ

−
1

2
෍ ln ቆ

𝜎ଶ

2𝛽
ቇ −

1

2
෍ ln(1 −

௡ೕ

௞ୀଵ

௡ೕ

௞ୀଵ

𝐸௝,௞
ଶఉ

)

− ෍
𝛽

𝜎ଶ

௡ೕ

௞ୀଵ

ቀ𝒴௝,௞ − 𝛼 − ൫𝒴௝,௞ିଵ − 𝛼൯𝐸௝,௞
ఉ

ቁ
ଶ

ቀ1 − 𝐸௝,௞
ଶఉ

ቁ
 ⟺ 

𝐿௒ೕ
൫𝑃ห𝑌௝൯ = −

𝑛௝

2
ln(2𝜋) −

𝑛௝

2
ln ቆ

𝜎ଶ

2𝛽
ቇ −

1

2
෍ lnቀ1 − 𝐸௝,௞

ଶఉ
ቁ −

௡ೕ

௞ୀଵ

 

                                           
ఉ

ఙమ
∑

ቀ𝒴ೕ,ೖିఈି൫𝒴ೕ,ೖషభିఈ൯ாೕ,ೖ
ഁ

ቁ
మ

ቀଵିா
ೕ,ೖ
మഁ

ቁ

௡ೕ

௞ୀଵ                                          (4.2.5)                                                                                      
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A função log-verossimilhança global para os 𝑚 animais é a soma das                                     

log-verossimilhanças individuais para todos os animais, assumindo independência entre 

eles. Algebricamente escreve-se: 

𝐿௒ = 𝐿௒భ,…,௒೘
(Р|𝑌ଵ, … , 𝑌௠) = ∑ 𝐿௒ೕ

(𝑃|𝑌௝)௠
௝ୀଵ                                                                   (4.2.6) 

De referir que 𝑌௝ é o tamanho transformado de 𝑋௝. 

Segundo Filipe (2011), o intervalo de confiança de (1 − 𝛼)100% para um determinado 

parâmetro  é:  

ቈ 𝜃ప
෡ − 𝑧(ଵିఈ/ଶ)ට𝑉𝑎𝑟෢ (𝜃ప

෡ ) ; 𝜃ప
෡ + 𝑧(ଵିఈ/ଶ)ට𝑉𝑎𝑟෢ ( 𝜃ప ෢) ቉                                              (4.2.7) 

Sendo que a variância do estimador 𝜃ప
෡  pode ser obtida a partir da matriz de informação de 

Fisher empírica, cuja inversa fornece uma estimativa da matriz de variâncias-covariâncias 

dos estimadores. Assim: 

𝑉𝑎𝑟෢ ൫𝜃ప
෡ ൯ = ቂ𝐹൫𝜃ప

෡ ൯
ି ଵ

ቃ
௜,௜

                                                                                                      (4.2.8)  

A matriz de informação de Fisher é definida por: 

𝐹(𝜃) = −𝐸 ቂ 
డమ௟௡௅(ఏ)

డఏమ
 ቃ                                                                                                  (4.2.9) 
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5. Resultados 

Neste estudo, ajustámos diferentes modelos de crescimento individual, tanto 

determinísticos como estocásticos, aos dados do animal da raça Mertolenga. Em 

particular, utilizámos os modelos determinísticos de Gompertz, de Verhulst e de 

Bertalanffy-Richards, bem como os modelos estocásticos de Gompertz e de          

Bertalanffy-Richards, com o objetivo de estimar os parâmetros que melhor descrevem a 

dinâmica do crescimento deste animal. 

 

5.1 Estimação dos Parâmetros 

Os resultados incluem a estimativa dos parâmetros dos modelos determinístico e 

estocástico pelos métodos dos mínimos quadrados e da máxima verossimilhança, 

respetivamente.  

Consideramos, em primeiro lugar, a estimativa dos parâmetros dos vários modelos para 

um determinado animal existente na base de dados fornecida pela ACBM. Selecionou-se 

um animal que tivesse muitas medições do seu peso, e que estas medições se 

prolongassem com a idade do animal. Este animal tem medições desde a nascença até aos 

13 anos de idade, com um total de 62 medições de peso. 

Considerando o modelo estocástico de Gompertz (MEG), ou seja, 𝑌௧ = ℎ(𝑋௧) = ln(𝑋௧), e 

o modelo estocástico de Bertalanffy-Richards (MEBR) com   𝑌௧ = ℎ(𝑋௧) = 𝑋௧

భ

య, na Tabela 

1 são apresentadas as estimativas dos parâmetros dos modelos estocásticos de Gompertz 

e de Bertalanffy-Richards, respetivamente. O valor da log-verosimilhança de cada 

modelo, relativamente às 62 medições de peso (para efeitos de comparação) são 

apresentadas. Note-se que as estimativas dos parâmetros dos dois modelos não são 

comparáveis, com exceção da estimativa do peso médio assimptótico, que é dado por 
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𝐴 ෡ = ℎିଵ(𝛼ො). Para além das estimativas dos parâmetros dos modelos, são também 

apresentados na Tabela 1 as margens de erro dos intervalos de confiança a 95%. Para 

construir estes intervalos de confiança assimptóticos, usamos (4.2.7), sendo que a 

estimativa da variância será obtida pela inversa da matriz de informação de Fisher (4.2.8). 

Este método será usado para estimar a margem de erro dos parâmetros 𝛼, 𝛽 e 𝜎. 

No entanto como para o parâmetro A, e de forma a poder comparar na mesma escala, 

teremos que usar o método delta para obter o intervalo de confiança. Ou seja, a estimativa 

pontual será dada por 𝑒ఈෝ  no caso do modelo MEG, e será dada por 𝛼ොଷ no caso do modelo 

MEBR. Já a estimativa da margem de erro, usando o método delta, será dada por 

𝑒ఈෝ ඥ𝑉𝑎𝑟෢ (𝛼) no caso do modelo MEG e dada por 3𝛼ොଶඥ𝑉𝑎𝑟෢ (𝛼) no caso do modelo 

MEBR. 

Tabela 1: Estimativas dos parâmetros obtidas pelo método da máxima 
verossimilhança para os modelos estocásticos de Gompertz e de                   
BertalanƯy-Richards, e os respetivos valores das log-verossimilhanças. 

 MEG MEBR 

 Estimativa Margem de 
erro 

Estimativa Margem de 
erro 

𝐴መ (kg) 423,22 36,31 428,14 43,34 

𝛼ො (kg) 6,048 0,086 7,537 0,254 

𝛽መ  (/ano) 1,351 0,329 1,092 0,373 

𝜎 ෝ  (/ano) 0,037 0,013 0,206 0,074 

LX -279,5 -280,8 

Para estes dois modelos, na Figura 4, são representadas as curvas de crescimento real e 

as curvas estimadas pelos modelos MEG e MEBR. Note-se que a curva ajustada nestas 

situações de modelos estocásticos não é mais que a curva dos valores esperados do peso 

do animal (peso transformado 𝑌௧), isto é, a curva determinística resultante do tamanho 

inicial 𝑌௧బ
, com os parâmetros estimados por máxima verossimilhança, e no caso de não 
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existirem flutuações aleatórias do ambiente, isto é, fixando o parâmetro da variabilidade 

ambiental em 𝜎 = 0. A estimativa desta curva esperada seria então dada por: 

𝑌௧
෡ = 𝛼ො + ൫𝑌௧బ

− 𝛼ො൯ exp ቀ−𝛽መ(𝑡 − 𝑡଴)ቁ                                                                        (5.1.1)     

 

Figura 4: Ajustamento dos modelos estocásticos de Gompertz (MEG) e de 
BertalanƯy-Richards (MEBR) aos dados observados. 

No caso dos modelos determinísticos, iremos considerar os dados do mesmo animal e 

iremos estimar os parâmetros do modelo respetivo. Como a estimação irá recorrer ao 

método dos mínimos quadrados não lineares, recorrendo ao algoritmo de            

Levenberg-Marquardt (pacote minpack.lm do R), as estimativas das variâncias dos 

parâmetros serão fornecidas diretamente pelo método numérico. Na Tabela 2 

apresentamos as estimativas dos parâmetros e respetivas margens de erro para os 

diferentes modelos. 
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Tabela 2: Estimativas dos parâmetros obtidas pelo método dos mínimos quadrados 
para o modelo determinístico de Gompertz (MDG), o modelo determinístico de                    
BertalanƯy-Richards (MDBR) e o modelo determinístico de Verhulst (MDV). 

 MDV MDG MDBR 

 Estimativa Margem de 
erro 

Estimativa Margem de 
erro 

Estimativa Margem 
de erro 

P0
 103,49 32,74 86,06 34,55 44,78 62,88 

r 1,161 0,295 0,875 0,198 0,292 0,305 

K 443,88 13,27 446,56 13,18 455,83 16,15 

m     1,560 0,918 

 

De notar que no modelo determinístico de Bertalanffy-Richards a estimativa do peso à 

nascença (P0) e a estimativa da taxa de crescimento r, não foram significativamente 

diferentes de 0. 

Para estes três modelos, na Figura 5, são representadas as curvas de crescimento real e as 

curvas estimadas pelos modelos MDV, MDG e MDBR. As curvas dos modelos de 

Verhulst e de Gompertz são muito semelhantes. A curva do modelo de                  

Bertalanffy-Richards apresenta um crescimento inicial mais acentuado, todavia culmina 

com um peso assimptótico superior ao das outras curvas. 
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Figura 5: Ajustamento dos modelos determinísticos de Gompertz (MDG), de 
BertalanƯy-Richards (MDBR) e de Verhulst (MDV) aos dados observados. 

Se representamos graficamente as curvas estocásticas e determinísticas (não 

apresentado), verificamos que as curvas estocásticas apresentam um peso estimado 

assimptótico mais pequeno que as curvas determinísticas, embora a taxa de crescimento 

inicial seja superior, inclusivamente superior à observada no modelo de              

Bertalanffy-Richards. 

Na Tabela 3 apresentamos a comparação entre os diferentes modelos com base na raiz do 

erro quadrático médio (REQM) e do erro médio absoluto (EMA). Podemos observar que 

os modelos determinísticos superaram os modelos estocásticos em termos de ajustamento 

aos dados na métrica REQM. De facto, tal já seria de esperar uma vez que o método dos 

mínimos quadrados minimiza a soma dos quadrados dos erros. No entanto esta diferença 

é muito reduzida. Analisando os resultados da Tabela 3, observa-se que o modelo 

determinístico de Bertalanffy–Richards (MDBR) apresenta o menor valor de EQM, pois 

possui o menor valor de REQM (37,2).  Na métrica do EMA o modelo estocástico de 
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Gompertz apresenta o pior valor. E o modelo MDBR volta a presentar o melhor 

desempenho. 

 

Tabela 3: Comparação da qualidade de ajustamento dos diferentes modelos 
determinísticos e estocásticos. 

 

5.2 Previsão 

Iremos comparar a qualidade do ajuste e previsão entre os modelos determinísticos, e os 

modelos estocásticos.  

Para avaliar a qualidade da previsão de cada modelo, iremos usar a REQM e o EMA. 

Iremos realizar em primeiro lugar uma previsão a longo prazo e depois uma previsão a 

curto prazo (passo a passo). Na previsão a longo prazo iremos deixar algumas 

observações de fora da estimação (as últimas 15) e posteriormente avaliamos a qualidade 

das previsões. Ou seja, neste caso, para estimação da curva serão utlizadas as 62 

observações exceto as últimas 15 observações. Iremos usar os parâmetros estimados pelos 

modelos para de seguida prever o peso do animal nas últimas 15 observações e comparar 

as estimativas com os valores reais. 

Já na estimação a curto prazo (passo a passo), em cada instante a estimar, todas as 

observações até esse instante são utlizadas para estimar os parâmetros da curva de 

crescimento, e com base nesses parâmetros o próximo peso do animal é estimado. 

 

Modelos 

 

MEG 

 
 

MEBR 

 

MDV 

 

MDG 

 

MDBR 

REQM 44,3 
 

42,5 
 

40,6 
 

39,0 
 

37,2 
 

EMA 34,4 32,8 33,4 31,3 28,8 
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Faremos esse processo de forma recursiva, ou passo a passo, para estimarmos as últimas 

15 observações. 

O que esperamos observar é que os modelos estocásticos ofereçam uma abordagem mais 

realista e adequada, uma vez que no crescimento dos bovinos da raça Mertolenga, existem 

fatores aleatórios que afetam o processo, tais como variações individuais, condições 

ambientais e genéticas.  

No caso dos modelos estocásticos, para prever o valor futuro de  𝑌௧, dado o histórico até 

ao instante  𝑡௞,  usaremos a solução da equação diferencial estocástica do tipo: 

𝑌௧ = 𝛼 + ൫𝑌௧಼
− 𝛼൯𝑒ିఉ(௧ି௧ೖ) + 𝜎𝑒ିఉ௧ ∫ 𝑒ఉೞ

௧

௧ೖ
𝑑𝑊(𝑠)                                                  (5.2.1)     

Sabendo que os tamanhos observados até  𝑡௞ são dados exatos, a previsão dos valores 

futuros depende apenas do último valor  𝑌௧ೖ
, uma vez que  𝑌௧ constitui um processo de 

Markov. Assim, a média condicional é: 

𝔼ൣ𝑌௧ห𝑌௧ೖ
൧ = 𝛼 + ൫𝑌௧ೖ

− 𝛼൯ exp൫−𝛽(𝑡 − 𝑡௞)൯                                                                (5.2.2) 

E a variância condicional é dada por: 

 Varൣ𝑌௧ห𝑌௧ೖ
൧ =

ఙమ

ଶఉ
൫1 − exp൫−2𝛽(𝑡 − 𝑡௞)൯ ൯                                                                                (5.2.3) 

Desta forma, a previsão estocástica do tamanho futuro dos animais é obtida através da 

média condicional estimada: 

𝑌௧
෡ = 𝛼ො + ൫𝑌௧ೖ

− 𝛼ො൯ exp ቀ−𝛽መ(𝑡 − 𝑡௞)ቁ                                                                            (5.2.4)     

Na Tabela 4 são apresentados os valores da REQM e do EMA para as estimativas a longo 

prazo das últimas 15 observações para os diferentes modelos determinísticos e 

estocásticos. Os valores das métricas de desempenho dos modelos estocásticos nem todos 

são inferiores aos dos modelos determinísticos, devido à existência de uma observação 

que praticamente coincide com as curvas planas, fazendo diminuir as medidas de erro. 
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Mesmo assim, o modelo estocástico de Bertalanffy-Richards (MEBR) apresentou o 

melhor desempenho entre os 5 modelos. 

No gráfico da Figura 6 apresentamos as 15 observações reais e as estimativas por cada 

um dos 5 modelos. Observamos que os modelos determinísticos apresentam estimativas 

de peso praticamente inalteradas ao longo das 15 observações, o que significa que com o 

avanço da idade o peso permanece constante em cada um dos modelos determinísticos. 

Já as estimativas dos modelos estocásticos tentam acompanhar o comportamento da 

evolução dos pesos de uma forma decrescente com o avanço da idade em cada um dos 

modelos estocásticos. 

Tabela 4:  Valores da REQM e do EMA para as estimativas a longo prazo das últimas 
15 observações para os diferentes modelos determinísticos e estocásticos. 

Modelos REQM EMA 
MEG 78,2 71,0 

MEBR 
 

73,2 
 

66,2 

MDV 
 

79,5 72,3 

MDG 
 

77,2 69,7 

MDBR 
 

75,4 67,9 
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Figura 6:  Representação gráfica das estimativas dos 5 modelos para as últimas 15 
observações, para estimativas a longo prazo. 

 

Na Tabela 5 são apresentados os valores da REQM e do EMA para as estimativas a curto 

prazo (passo a passo) das últimas 15 observações para os diferentes modelos 

determinísticos e estocásticos. Os valores das métricas de desempenho dos modelos 

estocásticos neste caso são bastante inferiores aos dos modelos determinísticos, 

evidenciando a superioridade dos modelos estocásticos para prever a evolução futura do 

peso do animal e o modelo estocástico Bertalanffy-Richards apresenta melhor 

desempenho entre os 5 modelos. 

No gráfico da Figura 7 apresentamos as 15 observações reais e as estimativas por cada 

um dos 5 modelos para as estimativas a curto prazo (passo a passo). Observamos que os 

modelos determinísticos apresentam uma tendência crescente e regular, prevendo um 

aumento contínuo do peso ao longo das 15 observações. Já as estimativas dos modelos 
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estocásticos acompanham de uma forma bastante regular o comportamento do peso futuro 

do animal. 

Tabela 5: Valores da REQM e do EMA para as estimativas a curto prazo (passo a 
Zpasso) das últimas 15 observações para os diferentes modelos determinísticos e 
estocásticos. 

Modelos REQM EMA 
MEG 35,5 26,6 

MEBR 
 

33,2 24,7 

MDV 
 

66,7 59,8 

MDG 
 

64,4 57,2 

MDBR 
 

60,5 53,2 

 

 

 

Figura 7: Representação gráfica das estimativas dos 5 modelos para as últimas 15 
observações, para estimativas a curto prazo (passo a passo). 
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6. Conclusões 

Nesta dissertação, estudámos diferentes modelos de crescimento individual, tanto na sua 

versão determinística como estocástica, conforme referido anteriormente. Procedemos à 

estimação dos parâmetros dos modelos determinísticos e estocásticos, bem como ao 

ajustamento dos mesmos, recorrendo ao método dos mínimos quadrados para os modelos 

determinísticos e ao método da máxima verossimilhança para os modelos estocásticos. 

Além disso, os modelos determinísticos e estocásticos foram representados graficamente. 

 Realizámos previsões a longo prazo e a curto prazo (passo a passo), bem como a respetiva 

representação gráfica. Para tal, utilizámos dados reais de um animal existente na base de 

dados fornecida pela ACBM. Este animal tem medições desde o nascimento até aos 13 

anos de idade, com um total de 62 medições de peso, com o objetivo de identificar qual 

dos modelos apresenta melhor desempenho, com base na raiz do erro quadrático médio 

(REQM) e no erro médio absoluto (EMA). 

Ao analisarmos os resultados obtidos na modelação, concluímos que a estimativa do 

parâmetro do peso médio assimptótico (𝐴መ, em kg) do modelo estocástico            

Bertalanffy-Richards é superior à do modelo estocástico de Gompertz. Esta diferença é 

confirmada pela representação gráfica, onde se observa que a curva do modelo estocástico 

Bertalanffy-Richards se ajusta ligeiramente melhor aos dados observados, especialmente 

na fase de estabilização do crescimento. 

Na estimativa do parâmetro K nos modelos determinísticos, observa-se que o valor obtido 

pelo modelo Bertalanffy-Richards é superior aos dos modelos de Gompertz e de Verhulst. 

Esta diferença é confirmada pela representação gráfica, onde se verifica que a curva do 

modelo de Bertalanffy-Richards apresenta um ajustamento ligeiramente melhor aos 

dados observados.  
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No que diz respeito à comparação da qualidade de ajustamento dos diferentes modelos 

determinísticos e estocásticos, observa-se que os modelos determinísticos apresentam 

melhor desempenho do que os modelos estocásticos na métrica REQM. Relativamente à 

métrica EMA, o modelo estocástico de Gompertz apresenta o pior desempenho, enquanto 

o modelo determinístico de Bertalanffy-Richards apresenta o melhor desempenho. 

Importa ainda salientar que o modelo determinístico de Bertalanffy-Richards apresenta 

os melhores resultados nas duas métricas, registando os menores valores quer na REQM 

quer no EMA.  

Relativamente às estimativas a longo prazo para as últimas 15 observações dos diferentes 

modelos determinísticos e estocásticos, observa-se que o modelo estocástico de 

Bertalanffy-Richards (MEBR) apresenta o melhor desempenho em ambas as métricas 

(REQM e EMA), em comparação com os restantes modelos. Esta superioridade é também 

confirmada pela representação gráfica. 

 Por outro lado, verifica-se que, com o avanço da idade, o peso previsto permanece 

praticamente constante nos modelos determinísticos, enquanto os modelos estocásticos 

procuram acompanhar a evolução dos pesos observados de forma decrescente.  

Em relação às estimativas de curto prazo (passo a passo) para as últimas 15 observações, 

obtidas a partir de diferentes modelos determinísticos e estocásticos, verifica-se que os 

modelos estocásticos apresentam um desempenho superior aos modelos determinísticos 

em ambas as métricas de avaliação consideradas (REQM e EMA). Entre os modelos 

estocásticos analisados, o modelo estocástico de Bertalanffy-Richards destaca-se como 

aquele que melhor antecipa a evolução futura do peso do animal. Esta superioridade é 

igualmente corroborada pela análise gráfica, que evidencia uma maior proximidade entre 

os valores observados e os valores estimados por este modelo. 
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Por outro lado, observa-se que os modelos determinísticos tendem a apresentar uma 

trajetória de crescimento monotónica, prevendo um aumento contínuo do peso ao longo 

das 15 observações. Em contraste, as estimativas dos modelos estocásticos reproduzem 

de forma mais fiel a dinâmica real do peso do animal, captando flutuações e variações de 

curto prazo. 

Este melhor desempenho dos modelos estocásticos pode ser explicado pelo facto de 

incorporarem explicitamente a dependência temporal entre observações sucessivas de 

peso, enquanto os modelos determinísticos assumem implicitamente que as observações 

são independentes. Assim ao considerar a estrutura de dependência inerente aos dados, os 

modelos estocásticos conseguem fornecer previsões mais realistas e precisas do 

comportamento futuro do peso do animal. 
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Anexo 

A modelação dos dados foi realizada com recurso ao software R studio, utilizando-se os 

registos de um animal da raça Mertolenga, disponibilizados pela ACBM. Este animal tem 

62 medições de peso desde a nascença até aos 13 anos de idade. 

Leitura e Organização dos Dados 
setwd("C:/Users/huilb/OneDrive/Ambiente de Trabalho/Animal") # Definir a diretória de 
trabalho.  
#Livraárias utilizadas 
library(minpack.lm) 
library(ggplot2)  
EstcGompeAnimal <- read.csv2("Animal3.csv") # Ler base de dados do 3º animal.  
str(EstcGompeAnimal) # Mostrar a estrutura da base de dados. 
View(EstcGompeAnimal) # Visualizar os dados. 
# Verificar se a base de dados tem NA (valores ausentes) 
any(is.na (EstcGompeAnimal)) 
#Matriz de peso por coluna por animal (transposta) 
P<-((EstcGompeAnimal$Peso)) # Extrair a coluna de Peso da base de dados e armazenar na 
variável " P ". 
#Matriz de idade por coluna por animal (transposta) 
I<-((EstcGompeAnimal$Idade)) # Extrair a coluna de Idade da base de dados e armazenar na 
variável " I ". 
#Representação gráfica das variáveis I e P. 
plot(I, P) 
m<-length(P) # Calcular o número de elementos da variável P e armazenar em "m". 
n<-length(I) # Calcular o número de elementos da variável P e armazenar em "n". 
 
Modelação dos Modelos Determinísticos 

o Modelo Determinístico de Bertalanffy-Richards  
# Atribuição do primeiro valor à variável t0 
t0<-I [1] 
 
# Definição da função do modelo determinístico de Bertalanffy-Richards  
BR_solution <- function(t, K, r, m, P0, t0) {t0<-I[1] 
K * (1 - (1 - (P0/K) ^m) * exp(- r * m * (t-t0))) ^(1 / m)} 
 
# Estimação dos parâmetros do modelo 
start_vals <- list(K = 500, r = 0.1, m = 0.5, P0 = 40) 
dat<-EstcGompeAnimal 
fit_BR <- nlsLM(Peso ~ BR_solution(I, K, r, m, P0, t0), data = dat, start = start_vals) 
summary(fit_BR) 
 
# Cálculo das margens do erro dos parâmetros do modelo 
coef(summary(fit_BR)) [, "Std. Error"] *1.96 
 
# Cálculo dos valores ajustados pelo modelo 
predicted_BR_est<-BR_solution 
(EstcGompeAnimal$Idade[1:length(EstcGompeAnimal$Idade)],coef(fit_BR)["K"], 
coef(fit_BR) ["r"], coef(fit_BR) ["m"],coef(fit_BR) ["P0"], t0) 
predicted_BR<-c(predicted_BR_est) 
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# Cálculo da REQM e do EMA(MAE) do modelo 
MSE_BR <- mean((P - predicted_BR)^2) 
MAE <- mean(abs(P - predicted_BR)) 
sqrt(MSE_BR) 
MAE 
##############                    Previsões de Longo Prazo do                          ########### 
##############     Modelo Determinístico de Bertalanffy-Richards         ########### 
# Função do modelo determinístico de Bertalanffy-Richards 
bertalanffy_richards <- function(t, K, r, m, P0, t0) {K * (1 - (1 - (P0/K) ^m) * exp(- r * m * (t-t0) 
))^(1 / m)} 
 
# Definir o número de observações a serem excluídas da previsão 
np <- 15 
Nc <- nrow(EstcGompeAnimal) 
Dados_Ajuste <- EstcGompeAnimal[1:(Nc - np),] 
Dados_Prev <- EstcGompeAnimal[(Nc - np + 1):Nc, ] 
 
t0<-Dados_Ajuste$Idade[1] 
# Ajuste do modelo com os dados de treino 
start_vals <- list(K = 400, r = 0.8, m = 0.3, P0=40) 
fit_BR_LP <-nlsLM(Peso ~ bertalanffy_richards(Idade, K, r, m, P0, t0), data = Dados_Ajuste,                     
start = start_vals) 
 
# Previsões dos valores futuros 
Idade_Futura <- Dados_Prev$Idade 
Pred_BR<-bertalanffy_richards(Idade_Futura,coef(fit_BR_LP)["K"], coef(fit_BR_LP)["r"], 
coef(fit_BR_LP)["m"],coef(fit_BR_LP)["P0"], t0) 
 
# Cálculo da REQM e do EMA do modelo para a previsão de longo prazo 
MSE_GD <- mean((Dados_Prev$Peso - Pred_BR)^2) 
MAE <- mean(abs(Dados_Prev$Peso - Pred_BR)) 
sqrt(MSE_GD) 
MAE 
###########                         Previsão de Curto Prazo (Passo a Passo)                    ############ 
###########              do Modelo Determinístico de Bertalanffy-Richards          ############ 
# Definir o número de observações a serem excluídas da previsão 
np <- 15   
Nc <- nrow(EstcGompeAnimal) 
 
# Definir corretamente Yobs e leY  
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]   
leY <- length(Yobs) 
 
# Índice de início de previsão 
k <- Nc - leY   
# Inicializar vetor de previsões 
Pred_BR_PP <- numeric(np) 
 
# Realização de previsão de curto prazo 
for (i in 1:np) { 
IobsPP <- EstcGompeAnimal$Idade[1:(Nc - np + i-1)] 
PobsPP <- EstcGompeAnimal$Peso[1:(Nc - np + i-1)] 
dataPP <- data.frame(Idade = IobsPP, Peso = PobsPP) 
t0<-IobsPP[1] 
start_vals <- list(K = 400, r = 0.8, m = 0.3,P0=40) 
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fit_BR_PP <- nlsLM(Peso ~ bertalanffy_richards(Idade, K, r, m, P0, t0), data = dataPP, start = 
start_vals) 
Pred_BR_PP[i] <- bertalanffy_richards(EstcGompeAnimal$Idade[Nc - np + i],  
                                        coef(fit_BR_PP)["K"],  
                                        coef(fit_BR_PP)["r"],  
                                        coef(fit_BR_PP)["m"], 
                                        coef(fit_BR_PP)["P0"], 
                                        t0)} 
 
# Cálculo da REQM e do EMA para a previsão de curto prazo 
Iobs <- EstcGompeAnimal$Idade[(Nc - np + 1):Nc] 
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc] 
MSE_GD <- mean((Yobs - Pred_BR_PP)^2) 
MAE <- mean(abs(Yobs - Pred_BR_PP)) 
sqrt(MSE_GD) 
MAE 
 

o Modelo Determinístico de Gompertz 
# Definição da função do modelo determinístico de Gompertz 
gompertz_solution <- function(t, K, r, P0, t0) {K * exp(-log (K / P0) * exp(-r * (t-t0)))} 
# Atribuição do primeiro valor à variável t0 
t0<-I [1] 
 
# Estimação dos parâmetros do modelo 
start_vals <- list(K = 549, r = 0.8, P0 = 40) 
fit_G <- nlsLM(Peso ~ gompertz_solution(Idade, K, r, P0, t0), data = EstcGompeAnimal, start = 
start_vals) 
summary(fit_G) 
 
# Cálculo das margens do erro dos parâmetros do modelo 
coef(summary(fit_G) [, "Std. Error”] *1.96 
 
# Cálculo dos valores ajustados pelo modelo 
predicted_GD_est <- gompertz_solution(EstcGompeAnimal$Idade, coef(fit_G)["K"], 
coef(fit_G)["r"],coef(fit_G) ["P0"], t0) 
 
# Cálculo da REQM e do EMA (MAE) do modelo 
MSE_GD <- mean((P - predicted_GD_est)^2) 
MAE <- mean(abs(P - predicted_GD_est)) 
sqrt(MSE_GD) 
MAE 
#################                      Previsão de Longo Prazo do                     ################# 
#################                Modelo Determinístico de Gompertz                 ################# 
# Definir o número de observações a serem excluídas da previsão 
np <- 15 
 
# Separação dos dados para ajuste e previsão 
Nc <- nrow(EstcGompeAnimal) 
Dados_Ajuste <- EstcGompeAnimal[1:(Nc - np), ]  # Dados para ajustar o modelo 
Dados_Prev <- EstcGompeAnimal[(Nc - np + 1):Nc, ]  # Dados para previsão 
 
# Estimação dos parâmetros com os dados de ajuste 
start_vals <- list(K = 549, r = 0.8, P0=40) 
t0<-Dados_Ajuste$Idade[1] 
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fit_G_LP <- nlsLM(Peso ~ gompertz_solution(Idade, K, r, P0, t0), data = Dados_Ajuste, start = 
start_vals) 
summary(fit_G_LP) 
 
# Previsões dos valores futuros 
Idade_Futura <- Dados_Prev$Idade 
predict(fit_G_LP, Dados_Prev) 
Pred_GD <- gompertz_solution(Idade_Futura, coef(fit_G_LP)["K"], 
coef(fit_G_LP)["r"],coef(fit_G_LP)["P0"],t0) 
 
# Cálculo da REQM e do EMA para a previsão de longo prazo 
MSE_GD <- mean((Dados_Prev$Peso - Pred_GD)^2) 
MAE <- mean(abs(Dados_Prev$Peso - Pred_GD)) 
sqrt(MSE_GD) 
MAE 
###########                           Previsão de Curto Prazo (Passo a Passo)                             ########### 
###########                            do Modelo Determinístico de Gompertz                              ########### 
# Definir o número de observações a serem excluídas da previsão 
np <- 15   
Nc <- nrow(EstcGompeAnimal) 
 
# Definir corretamente Yobs e leY  
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]   
leY <- length(Yobs) 
 
# Índice de início da previsão 
k <- Nc - leY   
 
# Inicializar vetor de previsões 
PredGompPP <- numeric(leY) 
 
# Realização de previsão de curto prazo 
start_vals <- list (K = 518, r = 1.05, P0=40) 
for (i in 1: leY) { 
IobsPP <- EstcGompeAnimal$Idade[1:(k + i-1)] 
PobsPP <- EstcGompeAnimal$Peso[1:(k + i-1)] 
dataPP <- data.frame(Idade = IobsPP, Peso = PobsPP) 
t0<-IobsPP[1] 
fit_GPP <- nlsLM(Peso ~ gompertz_solution(Idade, K, r, P0, t0),  
                   data = dataPP, start = start_vals) 
PredGompPP[i] <- gompertz_solution(EstcGompeAnimal$Idade[k + i],  
                                     coef(fit_GPP)["K"],  
                                     coef(fit_GPP)["r"],  
                                     coef(fit_GPP)["P0"],  
                                    t0)} 
# Definir os vetores de observações 
Iobs <- EstcGompeAnimal$Idade[(Nc - np + 1):Nc] 
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1): Nc] 
 
# Cálculo da REQM e do EMA para a previsões de curto prazo 
EQM_PP <- mean((Yobs - PredGompPP) ^2) 
MAE_PP <- mean (abs(Yobs - PredGompPP)) # Média das diferenças absolutas 
REQM_PP<-sqrt (EQM_PP) 
REQM_PP 
MAE_PP  
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o Modelo Determinístico de Verhulst 
# Definição da função do modelo determinístico de Verhulst 
verhulst_solution <- function(t, r, K, P0, t0) { 
K * P0 / ((K - P0) * exp(-r * (t-t0)) + P0)} 
 
# Atribuição do primeiro valor à variável t0 
t0<-I [1] 
 
# Estimação dos parâmetros do modelo 
start_vals <- list(K = 550, r = 0.5, P0 = 40) 
fit_V <- nlsLM(Peso ~ verhulst_solution(Idade, r, K, P0, t0), data = EstcGompeAnimal, start = 
start_vals) 
summary(fit_V) 
 
# Cálculo das margens do erro dos parâmetros do modelo 
coef(summary(fit_V)) [, "Std. Error"] *1.96 
 
# Cálculo dos valores ajustados pelo modelo 
predicted_VD_est <- verhulst_solution(EstcGompeAnimal$Idade, coef(fit_V) ["r"], 
coef(fit_V)["K"], coef(fit_V) ["P0"], t0) 
predicted_VD<-c(predicted_VD_est) 
 
# Cálculo da REQM e do EMA (MAE) do modelo  
MSE_VD <- mean((EstcGompeAnimal$Peso - predicted_VD)^2) 
MAE_VD <- mean(abs(EstcGompeAnimal$Peso - predicted_VD)) 
RMSE_VD <- sqrt(MSE_VD) #Raiz do erro quadrático médio 
RMSE_VD 
MAE_VD 
#################                   Previsões de Longo Prazo do                         ################# 
#################               Modelo Determinístico de Verhulst                     ################# 
# Definir o número de observações a serem excluídas da previsão 
np <- 15 
 
# Separação dos dados para ajuste e previsão 
Nc <- nrow(EstcGompeAnimal) 
Dados_Ajuste <- EstcGompeAnimal[1:(Nc - np),] # Dados para ajustar o modelo 
Dados_Prev <- EstcGompeAnimal[(Nc - np + 1): Nc,] # Dados para previsão 
 
# Estimação dos parâmetros com os dados de ajuste 
start_vals <- list(K = 550, r = 0.5, P0 = 40) 
t0<-Dados_Ajuste$Idade[1] 
fit_V_LP <- nlsLM(Peso ~ verhulst_solution(Idade, r, K, P0, t0), data = Dados_Ajuste, start = 
start_vals) 
summary(fit_V_LP) 
 
# Previsão dos valores futuros 
Idade_Futura <- Dados_Prev$Idade 
Pred_VD <- verhulst_solution(Idade_Futura, coef(fit_V_LP)["r"], coef(fit_V_LP)["K"], 
coef(fit_V_LP)["P0"], t0) 
 
# Cálculo da REQM e do EMA do modelo para a previsão de longo prazo 
Yobs_LP <- Dados_Prev$Peso 
EQM_LP <- mean((Yobs_LP - Pred_VD) ^2) 
MAE <- mean(abs(Yobs_LP - Pred_VD)) 
sqrt(EQM_LP) 
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MAE 
############                     Previsão de Curto Prazo (Passo a Passo)                      ############### 
############                    do Modelo Determinístico de Verhulst                       ############### 
# Definir o número de observações a serem excluídas da previsão 
np <- 15   
Nc <- nrow(EstcGompeAnimal) 
 
# Definir corretamente Yobs e leY  
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1):Nc]   
leY <- length(Yobs) 
 
# Índice de início da previsão 
k <- Nc - leY   
 
# Inicializar vetor de previsões 
PredVerhulstPP <- numeric(leY) 
 
# Parâmetros iniciais para estimar 
start_vals <- list(K = 550, r = 0.5, P0=40) 
 
# Previsão de curto prazo 
for (i in 1: leY) { 
IobsPP <- EstcGompeAnimal$Idade[1:(k + i-1)] 
PobsPP <- EstcGompeAnimal$Peso[1:(k + i-1)] 
dataPP <- data.frame(Idade = IobsPP, Peso = PobsPP) 
t0<-IobsPP[1] 
fit_VPP <- nlsLM(Peso ~ verhulst_solution(Idade, r, K, P0,t0),  
                   data = dataPP, start = start_vals) 
PredVerhulstPP[i] <- verhulst_solution(EstcGompeAnimal$Idade[k + i],  
                                         coef(fit_VPP)["r"],  
                                         coef(fit_VPP)["K"],  
                                         coef(fit_VPP)["P0"], 
                                         t0)} 
 
# Definição dos vetores de observações 
Iobs <- EstcGompeAnimal$Idade[(Nc - np + 1):Nc] 
Yobs <- EstcGompeAnimal$Peso[(Nc - np + 1): Nc] 
 
# Cálculo da REQM e do EMA do modelo para a previsão de curto prazo 
EQM_PP <- mean((Yobs - PredVerhulstPP) ^2) 
MAE_PP <- mean(abs(Yobs - PredVerhulstPP)) # Média das diferenças absolutas 
REQM_PP<-sqrt(EQM_PP) 
REQM_PP 
MAE_PP 
 
Modelação dos Modelos Estocásticos 

o Modelo Estocástico de Bertalanffy-Richards 
# Modelo EBR Com parâmetro c=1/3 
#  Y=X^ (1/3) =h(X) -> X= Y^3 
 
#-Função de log-verosimilhança para uma trajetória do modelo 
L<-function(I1, I2, P1, P2N, x) {(N*log(2*pi) /2) + ((N/2)*log((x[3])/(2*x[2])))+ 
(sum(log(1-exp(-2*x[2]*(I2-I1))))/2)+(x[2]/(x[3]))*(sum(((P2-x[1]-(P1-x[1])*exp(-x[2]*(I2-
I1)))^2)/(1-exp(-2*x[2]*(I2-I1)))))} 
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# Definição da função de log-verosimilhança global do modelo  
LTG_BR<-function(x){LTG_BR<-L(I[1:(m-1)],I[2:m],(P[1:(m-1)])^(1/3),(P[2:m]) ^(1/3), 
m,c(x[1],x[2],x[3])) return(LTG_BR)} 
 
#Minimizar a função de log-verosimilhança global do modelo 
minLTBR<-nlm(LTG_BR,c(6.5,0.000005,0.1), hessian=TRUE) 
minLTBR 
 
#Estimativas de MV dos parâmetros do modelo 
aBR<-minLTBR$estimate[1] 
ABR<-aBR^3 ## A=h(aBR) -> ABR=aBR^3 
bBR<-minLTBR$estimate[2] 
sBR<-minLTBR$estimate[3] 
aBR;ABR; bBR;sBR  # Apresentar os resultados dos parâmetros aBR; ABR; bBR; sBR. 
 
# Cálculo do valor de log-verosimilhança do modelo 
LYBR<-minLTBR$minimum 
LYBR 
LXBR<-LYBR+-sum (log ((1/3) *((P [-1])^(-2/3))), na.rm = TRUE) 
-LXBR 
 
# Cálculo das variâncias dos estimadores do modelo 
VarBR<-solve(minLTBR$hessian) 
VarBR 
 
# Cálculo das Margens de erro dos ICs assintóticos dos parâmetros do modelo 
MEa<-1.96*sqrt(VarBR[1,1]) 
MEA<-1.96*sqrt(VarBR[1,1]) *3*aBR^2 
MEb<-1.96*sqrt(VarBR[2,2]) 
MEs<-1.96*sqrt(VarBR[3,3]) 
MEa 
MEA 
MEb 
MEs 
 
# Curva estimada e previsão do modelo 
SDE_BR <- aBR + ((P [1]) ^(1/3) - aBR) * exp(-bBR * (I[2:m] - I[1]))   
SDE_BR 
Previsao_BR <- c(P[1], (SDE_BR) ^3) 
Previsao_BR 
# Cálculo da REQM (MSE) e do EMA (MAE) do modelo 
Dif_EQM_BR <- Previsao_BR[2:m] - P[2:m] 
EQM_BR <- sqrt(sum (Dif_EQM_BR^2) / length(Dif_EQM_BR)) 
Erro_Absoluto_BR <- abs(P[2:m] - Previsao_BR[2:m])   
MAE_BR <- mean(Erro_Absoluto_BR)   
EQM_BR 
MAE_BR 
##########                                    Previsão de Longo Prazo                                         ########### 
##########                    do Modelo Estocástico de Bertalanffy- Richards                     ########### 
# Definir o número de observações a serem excluídas da previsão 
Testim<-15 
Tempo<-(m-Testim) 
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# Definição da função de log-verosimilhança global do modelo  
LTG_BR<-function(x){LTG_BR<-L(I[1:(Tempo-1)],I[2:Tempo],(P[1:(Tempo-
1)])^(1/3),(P[2:Tempo])^(1/3), Tempo,c(x[1],x[2],x[3]))  
  return(LTG_BR)} 
 
#Minimizar a função de log-verosimilhança global do modelo 
minLTBR<-nlm(LTG_BR,c(6.5,0.0000000005,0.1),hessian=TRUE) 
minLTBR 
 
#Estimativas de MV dos parâmetros do modelo 
aBR<-minLTBR$estimate[1] 
ABR<-aBR^3 ## A=h(aBR) -> ABR=aBR^3 
bBR<-minLTBR$estimate[2] 
sBR<-minLTBR$estimate[3] 
aBR;ABR; bBR;sBR   
 
# Cálculo do valor de log-verosimilhança do modelo 
LYBR<-minLTBR$minimum 
LYBR 
LXBR<-LYBR+-sum(log((1/3)*((P[-1])^(-2/3))), na.rm = TRUE) 
-LXBR 
 
# Curva estimada e previsão do modelo 
SDE_BR_PrevLP <- aBR + ((P[Tempo])^(1/3) - aBR) * exp(-bBR * (I[(Tempo+1):m] - 
I[Tempo])) 
SDE_BR_PrevLP 
Previsao_BR_LP <- c(SDE_BR_PrevLP^3) 
Previsao_BR_LP 
 
# Cálculo da REQM e do EMA (MAE) do modelo para a previsão de longo prazo 
Yobs_LP<-P[(Tempo + 1):m] 
EQM_LP <- mean((Yobs_LP - Previsao_BR_LP) ^2)   
REQM_LP <- sqrt(EQM_LP) 
REQM_LP 
MAE <- mean(abs(Yobs_LP - Previsao_BR_LP))  
MAE 
##########                         Previsão de Curto Prazo (Passo a Passo)                             ############ 
##########                  do Modelo Estocástico de Bertalanffy - Richards                     ############  
# Definir o número de observações a serem excluídas da previsão 
nr <- 15 
PrevPP_BR<-vector(length= nr) 
 
for (k in 1:(nr)) { 
Tempo<-(length(P)-(nr-k+1)) 
P_prev<-P[1: Tempo] 
I_Prev<-I[1: Tempo] 
 
# Definição da função de log-verosimilhança global do modelo 
LTG_BR<-function(x) { 
LTG_BR<-L(I[1:(m-1)],I[2:m],(P[1:(m-1)])^(1/3),(P[2:m])^(1/3),m,c(x[1],x[2],x[3]))  
return(LTG_BR)} 
 
#Minimizar a função de log-verosimilhança global do modelo 
minLTBR<-nlm(LTG_BR,c(6.5,0.000005,0.1),hessian=TRUE) 
minLTBR 
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#Estimativas de MV dos parâmetros do modelo 
aBR<-minLTBR$estimate[1] 
ABR<-aBR^3 ## A=h(aBR) -> ABR=aBR^3 
bBR<-minLTBR$estimate[2] 
sBR<-minLTBR$estimate[3] 
aBR;ABR; bBR;sBR 
 
#Cálculo do valor de log-verosimilhança do modelo 
LYBR<-minLTBR$minimum 
LYBR 
LXBR<-LYBR+-sum(log((1/3)*((P[-1])^(-2/3))), na.rm = TRUE) 
-LXBR 
   
# Curva estimada e previsão do modelo 
SDE_BRX_PrevCP<-aBR+((P[Tempo])^(1/3)-aBR)*exp(-bBR*(I[(Tempo+1)]-I[Tempo])) # 
porque I[1]=0 
PrevPP_BR[k]<-SDE_BRX_PrevCP} 
Previsao_BR_PP<-c((PrevPP_BR)^3) 
 
# Cálculo da REQM e do EMA (MAE) do modelo para a previsão de curto prazo 
Yobs_PP <- P[(length(P) - nr + 1):length(P)]   
EQM_PP <- mean((Yobs_PP - Previsao_BR_PP)^2)   
REQM_PP <- sqrt(EQM_PP) 
REQM_PP 
MAE_BR <- mean(abs(Yobs_PP - Previsao_BR_PP))  
MAE_BR 
 

o Modelo Estocástico de Gompertz  
# Modelo Estocástico de Gompertz  
#  Y = ln(X)=h(X) -> X= exp(Y) 
 
#-Função de log-verosimilhança para uma trajectória do modelo 
L<-function(I1, I2, P1, P2, N, x){(N*log(2*pi) /2)+((N/2)*log((x[3])/(2*x[2])))+ 
(sum(log(1-exp(-2*x[2]*(I2-I1))))/2)+(x[2]/(x[3]))*(sum(((P2-x[1]-(P1-x[1])*exp(-x[2]*(I2-
I1)))^2)/(1-exp(-2*x[2]*(I2-I1)))))} # Calcular a função log-verossimilhança de uma trajectória e 
armazenar na variável "L" 
 
# Definição da função de log-verosimilhança global do modelo  
LTG<-function(x){LTG<-L(I[1:(m-1)],I[2:m],log(P[1:(m-1)]),log(P[2:m]), m,c(x[1],x[2], x[3]))  
return(LTG)} 
 
#Minimizar a função de log-verosimilhança global do modelo 
minLTG<-nlm(LTG,c(7.0,0.000005,0.05),hessian=TRUE) # Minimizar a função LTG usando a 
função nlm com valores iniciais e calcular a matriz Hessiana.  
minLTG  
 
# Cálculo do valor de log-verosimilhança do modelo 
mLTG<-minLTG$minimum 
mLTG 
mLTG_X<-mLTG+sum(log(P[-1]), na.rm = TRUE) 
-mLTG_X 
#Estimativas de MV dos parâmetros do modelo 
aG<-minLTG$estimate[1] # Extrair a estimativa do 1º parâmetro e armazenar em aG. 
bG<-minLTG$estimate[2] # Extrair a estimativa do 2º parâmetro e armazenar em bG. 
sG<-minLTG$estimate[3] # Extrair a estimativa do 3º parâmetro e armazenar em sG. 
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aG;bG;sG  # Apresentar os resultados dos parâmetros aG;bG;sG. 
 
# Estimativa de peso na idade da maturidade 
# Se aG=h(A) -> AG=exp(aG) - peso na maturidade estimado deste animal. 
AG<-exp(aG) # Calcular exponencial de aG. 
AG     
 
# Cálculo das variâncias dos estimadores do modelo 
VarG<-solve(minLTG$hessian) 
VarG 
 
# Cálculo das margens de erro dos ICs assimptóticos dos parâmetros do modelo 
MEa<-1.96*sqrt(VarG[1,1]) 
MEA<-1.96*sqrt(VarG[1,1])*AG 
MEb<-1.96*sqrt(VarG[2,2]) 
MEs<-1.96*sqrt(VarG[3,3]) 
MEa 
MEA 
MEb 
MEs 
 
# Curva estimada e previsão do modelo 
SDE_GompX<-aG+(log(P[1])-aG)*exp(-bG*(I[2:m]-I[1])) # I[1] corresponde ao primeiro 
instante (pode ser I[1]=0) e P[1] o 1º peso medido (em) 
SDE_GompX 
Previsao_GEDE<-c(P[1], exp(SDE_GompX)) 
 
# Cálculo da REQM (MSE) e do EMA (MAE) do modelo 
REQM_ajustamento <- sqrt(mean((P - Previsao_GEDE)^2, na.rm = TRUE)) 
Erro_Absoluto <- abs(P[2:m] - Previsao_GEDE[2:m])  
MAE_Gomp <- mean(Erro_Absoluto)  
REQM_ajustamento 
MAE_Gomp  
#################                           Previsão de Longo Prazo do                         ################# 
#################                      Modelo Estocástico de Gompertz                   ################# 
# Definir o número de observações a serem excluídas da previsão 
Testim <- 15 
Tempo <- (length(P) - Testim) 
 
# Definição da função de log-verosimilhança do modelo  
LTG <- function(x) { 
LTG <- L(I[1:(Tempo - 1)], I[2:Tempo], log(P[1:(Tempo - 1)]), log(P[2:Tempo]), Tempo, c(x[1], 
x[2], x[3]))  
return(LTG)} 
# Minimizar a função de log-verosimilhança global do modelo. 
minLTG <- nlm(LTG, c(7.0,0.0000005,0.05), hessian = TRUE)  
minLTG  
 
# Estimativas de MV dos parâmetros do modelo 
aG <- minLTG$estimate[1] # Extrair a estimativa do 1º parâmetro e armazenar em aG. 
bG <- minLTG$estimate[2] # Extrair a estimativa do 2º parâmetro e armazenar em bG. 
sG <- minLTG$estimate[3] # Extrair a estimativa do 3º parâmetro e armazenar em sG. 
aG; bG; sG  # Apresentar os resultados dos parâmetros aG; bG; sG. 
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# Estimativa de peso na idade da maturidade 
# Se aG=h(A) -> AG=exp(aG) - peso na maturidade estimado deste animal. 
AG <- exp(aG) # Calcular exponencial de aG. 
AG 
# Curva estimada e previsão do modelo 
SDE_GompX_PrevLP <- aG + (log(P[Tempo]) - aG) * exp(-bG * (I[(Tempo + 1):m] - I[Tempo])) 
# porque I[1] = 0 
Previsao_GEDE_LP <- c(exp(SDE_GompX_PrevLP)) 
 
# Cálculo da REQM e do EMA (MAE) do modelo 
Yobs_LP <- P[(Tempo+1):m]   
EQM_LP <- mean((Yobs_LP - Previsao_GEDE_LP)^2) 
REQM_LP <- sqrt(EQM_LP) 
REQM_LP 
MAE_Gomp <- mean(abs(Yobs_LP - Previsao_GEDE_LP))  
MAE_Gomp  
############                    Previsão de Curto Prazo (Passo a Passo)                        ############### 
###########                            do Modelo Estocástico de Gompertz                           ############### 
# Definir o número de observações a serem excluídas da previsão 
nr <- 15 
PrevPP <- vector(length = nr) 
 
for (k in 1:(nr)) { 
Tempo <- (length(P) - (nr - k + 1)) 
 
#-Função de log-verosimilhança para uma trajetória do modelo 
L <- function(I1, I2, P1, P2, N, x) { 
(N * log(2 * pi) / 2) + ((N / 2) * log((x[3]) / (2 * x[2]))) + 
(sum(log(1 - exp(-2 * x[2] * (I2 - I1)))) / 2) + (x[2] / (x[3])) * (sum(((P2 - x[1] - (P1 - x[1]) * 
exp(-x[2] * (I2 - I1)))^2) / (1 - exp(-2 * x[2] * (I2 - I1)))))}  
# Definição da função de log-verosimilhança do modelo  
LTG <- function(x) { 
LTG <- L(I[1:(Tempo - 1)], I[2: Tempo], log(P[1:(Tempo - 1)]), log(P[2:Tempo]), Tempo, c(x[1], 
x[2], x[3])) 
return(LTG)} 
 
# Minimizar a função de log-verosimilhança global do modelo 
minLTG <- nlm(LTG, c(6.98, 0.0000052, 0.0455), hessian = TRUE) 
minLTG  
   
# Estimativas de MV dos parâmetros do modelo 
aG <- minLTG$estimate[1] # Extrair a estimativa do 1º parâmetro e armazenar em aG. 
bG <- minLTG$estimate[2] # Extrair a estimativa do 2º parâmetro e armazenar em bG. 
sG <- minLTG$estimate[3] # Extrair a estimativa do 3º parâmetro e armazenar em sG. 
aG; bG; sG  # Apresentar os resultados dos parâmetros aG; bG; sG. 
   
# Estimativa de peso na idade da maturidade 
# Se aG=h(A) -> AG=exp(aG) - peso na maturidade estimado deste animal 
AG <- exp(aG)  
AG   
# Curva estimada e previsão do modelo 
SDE_GompX_PrevCP <- aG + (log(P[Tempo]) - aG) * exp(-bG * (I[(Tempo + 1)] - I[Tempo])) 
# porque I[1]=0 
PrevPP[k] <- SDE_GompX_PrevCP} 
Previsao_GEDE_PP <- c(exp(PrevPP)) 
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# Cálculo da REQM e do EMA (MAE) do modelo 
Yobs_PP <- P[(length(P) - nr + 1):length(P)]   
EQM_PP <- mean((Yobs_PP - exp(PrevPP))^2)   
REQM_PP <- sqrt(EQM_PP) 
REQM_PP 
MAE_Gomp <- mean(abs(Yobs_PP -exp(PrevPP)))  
MAE_Gomp  
 

o Gráfico das Curvas Estimadas pelos Modelos Estocásticos e dos Pesos Observados 
# Gráfico do Modelo Estocástico de Gompertz + BR 
dados_plot <- data.frame( 
Idade = I, 
Peso_Observado = P, 
Peso_AjustadoG = Previsao_GEDE, # Gompertz 
Peso_AjustadoBR = Previsao_BR # Gompertz) 
grafico <- ggplot(data = dados_plot, aes(x = Idade)) + 
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observados 
geom_line(aes(y = Peso_AjustadoG, color = "MEG (sigma=0)"), size = 1, alpha = 0.7) + # Curva 
ajustada MEG 
geom_line(aes(y = Peso_AjustadoBR, color = "MEBR (sigma=0)"), size = 1, alpha = 0.7) + # 
Curva ajustada MEBR 
scale_color_manual( 
values = c("Peso observado" = "black", "MEG (sigma=0)" = "red", "MEBR (sigma=0)" = "blue"), 
# Define as cores 
name = "Legenda" # Título da legenda 
  ) + 
labs( 
# title = "Modelo Estocástico de Gompertz", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)", 
# subtitle = "Ajuste do Modelo Estocástico de Gompertz + BR aos Dados Observados" 
) + 
theme_minimal() + 
theme( 
plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 
plot.subtitle = element_text(hjust = 0.5, size = 12), 
axis.title = element_text(size = 14), 
axis.text = element_text(size = 12), 
legend.position = "bottom" # Define a posição da legenda) 
 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaEstimada_Estocatico.png", grafico, width = 9, height = 6, dpi = 500) 
 

o Gráfico das Curvas Estimadas pelos Modelos Determinísticos e dos Pesos 
Observados 

# Gráfico do Modelo Determinístico 
dados_plot <- data.frame(Idade = I,Peso_Observado = P, 
Peso_AjustadoV = predicted_VD, # Verhulst Det 
Peso_AjustadoG = predicted_GD, # Gompertz Det 
Peso_AjustadoBR = predicted_BR # BR Det) 
grafico <- ggplot(data = dados_plot, aes(x = Idade)) + 
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observados 
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geom_line(aes(y = Peso_AjustadoV, color = "MDV"), size = 1, alpha = 0.7) + # Curva ajustada 
M det verhulst 
geom_line(aes(y = Peso_AjustadoG, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada 
M det Gompertz 
geom_line(aes(y = Peso_AjustadoBR, color = "MDBR"), size = 1, alpha = 0.7) + # Curva ajustada 
M det BR 
scale_color_manual( 
values = c("Peso observado" = "black", "MDV" = "red", "MDG" = "blue", "MDBR" = "green"), 
# Define as cores 
name = "Legenda" # Título da legenda 
) + labs( # title = "Modelos Determinístico", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)", 
# subtitle = "Ajuste dos Modelos Determinístico aos Dados Observados”) + 
theme_minimal() + theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 
plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14), 
axis.text = element_text(size = 12),legend.position = "bottom" # Define a posição da legenda) 
grafico 
ggsave("CurvaEstimada_Deterministico.png", grafico, width = 9, height = 6, dpi = 500) 
 

o Gráfico de Previsão de Longo Prazo do Modelo Determinístico e Estocástico 
# Preparar dados de previsão para gráfico de longo prazo 
Testim <- 15 
Tempo <- (length(P) - Testim) 
Dados_LP <- data.frame( Idade = I[(Tempo+1 ):m], Peso_Observado = P[(Tempo+1 ):m], 
 Peso_MGE_LP = c(Previsao_GEDE_LP), Peso_MBRE_LP = c(Previsao_BR_LP)) 
#Gráfico de modelo estocástico 
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) + geom_point(aes(y = Peso_Observado, color 
= "Peso observado"), size = 2, size = 0.7) + # Pontos observados 
geom_line(aes(y = Peso_MGE_LP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada 
MEG 
geom_line(aes(y = Peso_MBRE_LP, color = "MEBR"), size = 1, alpha = 0.7) + # Curva ajustada 
MEBR 
scale_color_manual( 
values = c("Peso observado" = "black", "MEG" = "red", "MEBR" = "blue"), # Define as cores 
name = "Legenda" # Título da legenda) +labs( 
# title = "Modelo Estocástico", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)", 
) + theme_minimal() +theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 
plot.subtitle = element_text(hjust = 0.5, size = 12), axis.title = element_text(size = 14),axis.text = 
element_text(size = 12), legend.position = "bottom" # Define a posição da legenda) 
 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaLongoPrazo_Estocatico.png", grafico, width = 9, height = 6, dpi = 500) 
 
# Preparar dados para o gráfico determinístico 
Dados_LP <- data.frame(Idade = I[(Tempo+1): m], Peso_Observado = P[(Tempo+1 ):m], 
Peso_MVD_LP = c(Pred_VD), Peso_MGD_LP = c(Pred_GD), Peso_MBRD_LP = c(Pred_BR)) 
 
#Gráfico de modelo determinístico 
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) + 
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geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observadosgeom_line(aes(y = Peso_MVD_LP, color = "MDV"), size = 1, alpha = 0.7) + # Curva 
ajustada M det verhulst 
geom_line(aes(y = Peso_MGD_LP, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada M 
det Gompertz 
geom_line(aes(y = Peso_MBRD_LP, color = "MDBR"), size = 1, alpha = 0.7) + # Curva ajustada 
M det BR 
scale_color_manual(values = c("Peso observado" = "black", "MDV" = "red", "MDG" = "blue", 
"MDBR" = "green"), # Define as cores 
name = "Legenda" # Título da legenda) + labs(# title = "Modelo Determinísticos", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)", 
 ) + theme_minimal() +theme(plot.title = element_text(hjust = 0.5, size = 16, face = 
"bold"),plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 
14),axis.text = element_text(size = 12),legend.position = "bottom" # Define a posição da legenda) 
 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaLongoPrazo_Deterministico.png", grafico, width = 9, height = 6, dpi = 500) 
 
# Preparar dados para o gráfico das curvas determinística e estocástica 
Dados_LP <- data.frame(Idade = I[(Tempo+1 ):m],Peso_Observado = P[(Tempo+1 ):m], 
Peso_MVD_LP = c(Pred_VD), Peso_MGD_LP = c(Pred_GD),Peso_MBRD_LP = 
c(Pred_BR),Peso_MGE_LP=c(Previsao_GEDE_LP),Peso_MBRE_LP=c(Previsao_BR_LP)) 
 
# Gráfico com curvas dos modelos determinísticos e estocásticos  
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) + 
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observados 
geom_line(aes(y = Peso_MGE_LP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada 
MEG 
geom_line(aes(y = Peso_MBRE_LP, color = "MEBR"), size = 1, alpha = 0.7) + # Curva ajustada 
MEBR 
geom_line(aes(y = Peso_MVD_LP, color = "MDV"), size = 1, alpha = 0.7) + # Curva ajustada M 
det verhulst 
geom_line(aes(y = Peso_MGD_LP, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada M 
det Gompertz 
geom_line(aes(y = Peso_MBRD_LP, color = "MDBR"), size = 1, alpha = 0.7) + # Curva ajustada 
M det BR 
scale_color_manual(values = c("Peso observado" = "black", "MEG" = "purple", "MEBR" = 
"orange","MDV" = "red", "MDG" = "blue", "MDBR" = "green"), # Define as cores name = 
"Legenda" # Título da legenda) +labs( 
# title = "Todos os modelos", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)",) + 
theme_minimal() + theme( plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 
plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14), 
 axis.text = element_text(size = 12),legend.position = "bottom" # Define a posição da legenda) 
 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaLongoPrazo_All.png", grafico, width = 9, height = 6, dpi = 500) 
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o Gráfico de Previsão de Curto Prazo (Passo a Passo) do Modelo Determinístico e 
Estocástico 

# Preparar dados de previsão para gráfico de longo prazo 
Testim <- 15 
Tempo <- (length(P) - Testim) 
Dados_PP <- data.frame( Idade = I[(Tempo+1 ):m],Peso_Observado = P[(Tempo+1 ):m], 
Peso_MGE_PP = c(Previsao_GEDE_PP),Peso_MBRE_PP = c(Previsao_BR_PP)) 
 
# Gráfico de modelo estocástico 
grafico <- ggplot(data = Dados_PP, aes(x = Idade)) + 
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observados 
geom_line(aes(y = Peso_MGE_PP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada 
MEG 
geom_line(aes(y = Peso_MBRE_PP, color = "MEBR"), size = 1, alpha = 0.7) + # Curva ajustada 
MEBR 
scale_color_manual( 
values = c("Peso observado" = "black", "MEG" = "red", "MEBR" = "blue"), # Define as cores 
name = "Legenda" # Título da legenda 
) +labs( 
# title = "Modelo Estocástico", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)", 
) +theme_minimal() +theme(plot.title = element_text(hjust = 0.5, size = 16, face = 
"bold"),plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 
14),axis.text = element_text(size = 12),legend.position = "bottom" # Define a posição da legenda) 
 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaPasso_Estocatico.png", grafico, width = 9, height = 6, dpi = 500) 
 
# Preparar dados para o gráfico determinístico 
Dados_LP <- data.frame(Idade = I[(Tempo+1 ):m],Peso_Observado = P[(Tempo+1 ):m], 
Peso_MVD_PP=c(PredVerhulstPP),Peso_MGD_PP=c(PredGompPP), Peso_MBRD_PP = 
c(Pred_BR_PP)) 
 
# Gráfico de modelo determinístico 
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) + 
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observados 
geom_line(aes(y = Peso_MVD_PP, color = "MDV"), size = 1, alpha = 0.7) + # Curva ajustada M 
det verhulst 
geom_line(aes(y = Peso_MGD_PP, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada M 
det Gompertz 
geom_line(aes(y = Peso_MBRD_PP, color = "MDBR"), size = 1, alpha = 0.7) + # Curva 
ajustada M det BR 
scale_color_manual(values = c("Peso observado" = "black", "MDV" = "red", "MDG" "blue", 
"MDBR" = "green"), # Define as cores 
name = "Legenda" # Título da legenda) +labs( 
 # title = "Modelo determinístico", 
 x = "Idade do animal (Anos)", 
 y = "Peso do animal (kg)", 
  ) +theme_minimal() + 
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theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), plot.subtitle = 
element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14),axis.text = 
element_text(size = 12),legend.position = "bottom" # Define a posição da legenda) 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaPasso_Deterministico.png", grafico, width = 9, height = 6, dpi = 500) 
 
# Preparar dados para o gráfico das curvas determinística e estocástica 
Dados_LP <- data.frame(Idade = I[(Tempo+1 ):m],Peso_Observado = P[(Tempo+1 ):m], 
Peso_MGE_PP = c(Previsao_GEDE_PP),Peso_MBRE_PP = c(Previsao_BR_PP),  
Peso_MVD_PP = c(PredVerhulstPP),Peso_MGD_PP = c(PredGompPP), 
Peso_MBRD_PP = c(Pred_BR_PP)) 
 
# Gráfico com curvas dos modelos determinísticos e estocásticos  
grafico <- ggplot(data = Dados_LP, aes(x = Idade)) + 
geom_point(aes(y = Peso_Observado, color = "Peso observado"), size = 2, size = 0.7) + # Pontos 
observados 
geom_line(aes(y = Peso_MGE_PP, color = "MEG"), size = 1, alpha = 0.7) + # Curva ajustada 
MEG 
geom_line(aes(y = Peso_MBRE_PP, color = "MEBR"), size = 1, alpha = 0.7) + # Curva ajustada 
MEBR 
geom_line(aes(y = Peso_MVD_PP, color = "MDV"), size = 1, alpha = 0.7) + # Curva ajustada M 
det verhulst 
geom_line(aes(y = Peso_MGD_PP, color = "MDG"), size = 1, alpha = 0.7) + # Curva ajustada M 
det Gompertz 
geom_line(aes(y = Peso_MBRD_PP, color = "MDBR"), size = 1, alpha = 0.7) + # Curva ajustada 
M det BR 
scale_color_manual(values = c("Peso observado" = "black", "MEG" = "purple", "MEBR" = 
"orange","MDV" = "red", "MDG" = "blue", "MDBR" = "green"), # Define as cores 
name = "Legenda" # Título da legenda) +labs( 
# title = "Todos os modelos", 
x = "Idade do animal (Anos)", 
y = "Peso do animal (kg)",) + 
theme_minimal() +theme(plot.title = element_text(hjust = 0.5, size = 16, face = "bold"), 
plot.subtitle = element_text(hjust = 0.5, size = 12),axis.title = element_text(size = 14), 
axis.text = element_text(size = 12), 
legend.position = "bottom" # Define a posição da legenda) 
 
# Apresentar o gráfico 
print(grafico) 
ggsave("CurvaPassoo_All.png", grafico, width = 9, height = 6, dpi = 500) 
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