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Capitulo 1

Introducao

Nos dltimos anos, o estudo da iteracdo de funcdes seccionalmente diferencidveis
tem atraido a atencdo de vérios autores (ver [2] e referéncias 1a contidas). Isto
deve-se em parte ao facto de muitos processos reais, caracterizados por mudancas
bruscas entre os estados, serem naturalmente representados por este tipo de fungdes.
Uma classe particular de funcdes seccionalmente diferencidveis sdo as fungdes
com secgdes constantes, as quais se obtém através da insercdo de uma sec¢do
constante numa fun¢do unidimensional. Este procedimento, conhecido como con-
trolo com limitadores simples, origina frequentemente a criacdo de uma Orbita
periddica super estavel e tem sido usado no controlo do caos em sistemas dinamicos
unidimensionais, [4, 16, 27, 28, 29], com aplicacdes em dreas tdo distintas como
dindmica cardiaca, [10, 11], telecomunicacdes e conversores elétricos, [29, 12],
dindmica de populagdes, [8], ou dindmica de mercados [7].

Frequentemente deparamo-nos com situacdes de modelacdo em que as equacoes
de evolugdo incluem parametros explicitamente dependentes do tempo. Este € o
caso, por exemplo, quando pretendemos modelar populacdes com forcamentos
dependentes do tempo, provenientes de estratégias de regulacdo ou controlo de
populacdes. Nestas situagdes entramos no campo dos sistemas dindmicos nao
autébnomos. Com base nesta premissa, alguns trabalhos recentes abordam até que
ponto € possivel estender a teoria ja existente no caso autonomo, a iteragao alter-
nadada de duas funcdes reais, [18, 25, 26] ou complexas [35, 6].

Nesta licdo vamos estudar sistemas ndo autonomos discretos provenientes de
equagoes as diferengas ndo auténomas do tipo

Tpt1 = f)\k (xk)

em que f) € uma familia de funcdes reais de varidvel real, dependentes do parametro



real A e (A\x)ren, Uma sequéncia de parametros. Este tipo de sistemas € altamente
relevante para as aplicagdes, por exemplo para modelar estratégias de regulacio ou
de controlo através da sequéncia (A )gen,- Se a sequéncia (A )ren, for periddica,
entdo dizemos que o sistema ndo autdbnomo correspondente € periodico.

Nesta licdo, vamos considerar familias de funcdes tenda com um segmento
constante,

fu(z) = minf{u, T'(x)}

em que
2c+1 se —1<z<0
T(x)_{—2x+1 se0<x<1

¢ a funcdo tenda no intervalo [—1,1] e u € [—1, 1] é o limitador. Se u = 1 entdo
h="T.

Tanto quanto é do conhecimento deste autor, o primeiro trabalho sobre a
iteracdo de funcdes deste tipo remonta aos anos 70 do século passado com o
famoso trabalho de Metropolis, Stein e Stein, [13]. Mais recentemente, em [18],
estas fungdes foram usadas para demonstrar uma conjetura de Milnor, sobre a
conectividade dos conjuntos isentropicos num espaco de polindmios de grau qua-
tro simétricos.

Em [25] estudamos o esqueleto de bifurcagio no caso em que (\x)en, € uma
sequéncia 2-periddica, descrevendo a estrutura de bifurcacio local ao longo e na
vizinhanga dos 0ssos.

Em [26], novamente considerando (\;)xen, 2-periddica, introduzimos o con-
ceito de renormalizagdo no contexto nao autonomo periodico, interpretimo-lo ao
nivel da dindmica simbdlica, através de uma versao apropriada de produto estrela e
calculamos as taxas de convergéncia de sequéncias de parametros correspondentes
a consecutivos produtos estrela. Definimos também sequéncias de parametros cor-
respondentes a sequéncias inarmoénicas de duplicagdes de periodo e calculamos
as taxas de convergéncia correspondentes. Em ambos os casos demonstramos que
as taxas de convergéncia sdo independentes do ponto inicial, observando assim
propriedades de universalidade do tipo observado por Feigenbaum em sistemas
auténomos, ver [9].

Em [19] foi introduzida a ideia de padrao de iterac@o. Os autores consideraram
o esquema de itera¢do z,, 11 = f., (x,), para a familia logistica complexa f.(z) =
224¢, 2 € C, (¢n)nen, € {a, b}, a,b € C. Como a sequéncia de pardmetros s6
pode conter dois elementos, a ou b, entdo pode ser identificada com uma sequéncia
bindria s, 0 padrdo de iteracdo. Entdo os autores estudaram a forma como o padrao
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de iteragdo (s,)nen, € {0, 1} afeta a topologia dos conjuntos de Julia e de
Mandelbrot.

Em [22], considerdmos sequéncias de pardmetros (A, )nen, € {u, 1}, Do
ponto de vista dos limitadores, isto significa introduzir o limitador » apenas nos
istantes i tais que s; = 0, sendo (s,)nen, € {0,1}M° o padrio de iteragdo.
Considerando apenas padrdes de iteragdo periddicos, estudamos os diagramas de
bifurcacdo obtidos através da variacdo de u e a forma como o padrdo s os al-
tera. Estuddmos ainda a existéncia de estruturas de auto semelhanca originadas
pelo produto estrela e de adicdo de periodo, que também descrevemos usando
dindmica simbdlica.

Esta licdo € baseada em [21], [23] e [24]. Em [23] e [24] considerdmos a
introdu¢do de um limitador u segundo um padrdo de iteracdo s. Em [23] es-
tuddmos a existéncia e coexisténcia de atratores locais e de Milnor ndo autébnomos
em fungdo do par (u,s). Em [24] estuddmos os invariantes de amassamento
K (u, s) para os pares (u,s) e descrevemos os limitadores correspondentes aos
atratores de Milnor como limites de sequéncias de limitadores correspondentes a
estruturas de incremento de periodo. Em [21], estuddmos as perturbagdes sobre os
limitadores que preservam os atratores locais e respetiva estrutura combinatoria.

Depois de, no Capitulo 2, introduzirmos as fun¢des tenda com um segmento
constante, os sistemas dindmicos ndo auténomos por elas gerados e respetiva
dinamica simbdlica, no Capitulo 3, correspondente a [23], consideramos sequéncias
de parametros (A, )nen, € {u, 1}, Definimos atratores locais ndo auténomos e
atratores de Milnor ndo auténomos e estudamos a existéncia e coexisténcia destes
atratores em funcao do limitador u e do padrdo de iteracdo s. Os atratores de
Milnor aqui estudados surgem quando a orbita do segmento constante fica presa
numa Orbita periddica repulsiva da fungdo tenda. No Capitulo 4, obtido de [24],
estudamos o surgimento dos parametros u correspondentes a estes atratores, como
limite de sequéncias de parametros correspondentes a atratores locais associados
a sequéncias de incrementos de periodo. Este tipo de estrutura, e correspondentes
atratores de Milnor, foi observada no contexto auténomo em [1], na familia de
funcdes tenda com segmento constante, descontinuas. Neste Capitulo introduz-
imos ainda os invariantes de amassamento ndao autébnomos e, para cada padrao
de iteracdo s, estudamos as sequéncias simbdlicas que podem ser invariantes de
amassamento fixando s.

No Capitulo 5 estudamos perturbacdes sobre os limitadores. Definimos atra-
tores ndo autonomos locais ciclicos dependentes de uma sequéncia simbdlica X
e estudamos as sequéncias genéricas (\,),en, de pardmetros que preservam estes
atratores.



Finalmente, terminamos com um Capitulo onde resumimos as principais con-
clusodes deste trabalho e discutimos possiveis aplicacdes e generalizacgoes.

Esta licdo pode ser proferida, por exemplo, no contexto da unidade curricu-
lar ”Semindrio de Modelacao Matematica” do terceiro semestre do Mestrado em
Matemadtica Aplicada para a Industria do ISEL. Sendo este, um mestrado com
foco na Matemdtica Aplicada, seria adequado desafiar os alunos para explorar a
aplicagdo das ideias aqui apresentadas em modelos como os introduzidos em [7]
e [8].

Optamos por, no documento escrito, apresentar todas as demonstracoes efe-
tuadas nos trabalhos [21], [23] e [24], sobre os quais incide a licao e referir as
restantes para a respetiva fonte.



Capitulo 2

Iteracao sequencial de funcoes tenda
com um segmento constante

Neste capitulo vamos introduzir as defini¢des gerais de itera¢ao sequencial e iteragao
segundo um padrao, bem como introduzir as ferramentas de dinamica simbodlica,
unificando as defini¢cdes e notagdes introduzidas em [21, 23, 24].

2.1 Iteracao sequencial

Consideremos a fungdo tenda 7" : [—1, 1] — [—1, 1], definida por

T(z) = 2c+1, se —1<x<0
]l 2241, sel0<az<1

Para u € [—1,1] definimos a fun¢do tenda com um segmento constante,
fu(x) = min{u, T'(x)}, ou, de forma equivalente,

20 +1, se —1<z<(u—1)/2
fulz) = u, se (u—1)/2<zx<(l—-u)/2 .
—2r+1, se (1—u)/2<z<1

Se u = 1, entdo f,(z) = T(x) para todos os = € [—1,1].

Definicao 1. Para uma sequéncia A € [—1,1]N° definimos a n-ésima iteracdo
sequencial segundo )\, com valor inicial x € [—1, 1] e instante inicial k, como

F;\l(mvk) = (f)‘kJrnfl © "'of)\k)(x)7 sen > 1
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F)(x,k) = x para todos os k.

Nos préximos dois capitulos vamos apenas considerar sequéncias A\ tais que
Ai € {u, 1} para todos os i € Ny, entdo a sequéncia de iteragdo A fica totalmente
identificada pelo par (u, s) em que s € {0, 1} é tal que \; = u se e s6 se s; = 0.
Chamamos a sequéncia bindria s, o padrdo de iteracdo.

Defini¢iio 2. Paran € N, (u,s) € [—1,1] x {0,1} e (2, k) € [-1,1] x Ny,
definimos a n-ésima iteracdo, segundo o padrdo s, em x com instante inicial k,
como

F(ZLL,S)(‘IJk) = (f)\k+n71 Oo... Of)\k) (I), sen>1

F(Ou,s) (I', k) =,

em que

u ses; =0
)\i_{ 1 ses;=1"

Se s; = 0 (resp. s; = 1) para todos os ¢ € Ny entdo a iteracdo segundo s
corresponde a iteragdo de f, (resp. de 7).
Temos entdo o espacgo de fases estendido

[—1, 1] X No,
o espago de parametros estendido
[_17 1] X {07 1}NO

e a 6rbita segundo o pardmetro (u, s) de um ponto x € [—1, 1] com instante inicial
ke No,

O(u,s)(% k) = (F(iu,s) (7, k))ien,-
Na linguagem dos limitadores simples, este esquema de iteracdo corresponde,

para cada par (u, s) € [—1,1] x {0, 1}, a introduzir, na fungdo tenda, o limitador
1 nos instantes ¢ tais que s; = 0.



2.2 Dinamica simbolica

Sendo uma func¢do tenda com um segmento constante, definida em trés secgoes,
vamos em seguida associar um simbolo a cada uma delas.

Definicao 3. Dados u € [—1,1] e x € [—1,1], 0 enderego de x relativamente ao
pardametro u, é dado por

L, se —1<z<(u—1)/2
ady(z)=4¢ C, se (u—1)/2<x<(1—u)/2
R, se (1—-u)/2<x<1

Podemos agora associar a cada orbita uma sequéncia simbdlica.

Defini¢iio 4. Para (u,s) € [—1,1] x {0, 1} e (2, k) € [—1, 1] x Ny definimos o
itinerdrio de x com instante inicial k como sendo a sequéncia

ad,(F!, ,
O A T

(u,9)

(x,k)) sesgyi =0, v

(z,k)) sespp=1 ' "o
Os itinerdrios das iteragdes segundo um padrao pertencem ao conjunto . das

sequéncias infinitas XX} ... tais que X; € {L,C, R} para todos os j € Nj.

A notagdo (Xy...X,1)", 0 < n < 400 representa a concatenagio de n
copias da sequéncia finita X ... X, 1. Se n = 400 entdo (X, ... X, ;) repre-
senta uma sequéncia p-periddica infinita.

Considerando a ordem natural L < C' < R vamos em seguida introduzir uma
relacdo de ordem em X:

Definimos

—L=R, - C=Ce —R=1L.

Para X € Y e k € Ny, definimos o sinal

(X) = + se #{X;:0<j<ke X;=R} for par
“ ] - se#{Xj:OSjSk:er:R}forimpar.'

Agora, para XY € X, X <Y seesose Xg < Y, ouexiste r € N, tal que
X; =Y, paratodos 0s j <ree_1(X)X, <e_1(Y)Y,.
Para © € [—1, 1], denotamos por I7(x) o itinerdrio de x através da funcédo
tenda,
Ir(z) = ady(x)ady (T (x))ad, (T?(x)) . . ..
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Se T'(z) # 0 para todos os i = 0,...,k — 1 entdo ¢;,_;(I7(x)) = + se e
s6 se T* for estritamente crescente em x € e;_1(I7(r)) = — se e s6 se T* for
estritamente decrescente em .

Se estivermos interessados apenas nos itinerdrios da funcdo tenda 7°, entdao
como T'(0) = 1, T*(0) = —1 para todos os ¢ > 1 e 0 é o tinico ponto com esta
propriedade, os itinerarios de 7" estdo contidos no conjunto ' C ¥ das sequéncias
infinitas X X7 ... taisque X; .1 X;,o... = RL*> paraalgum i, see sé se X; = C.

Sejac : ¥ — ¥, 0(XeX;...) = X;X5 ... afungdo avanco.

Defini¢ao 5. Uma sequéncia X € Y diz-se maximal se o'(X) < X para todos
osi e N

O lema seguinte apresenta um resultado cldssico de dindmica simbdlica, cuja
demonstra¢ao pode ser consultada, por exemplo em [3].

Lema 6. Para quaisquer x,y € [—1,1], Ir(z) < Ir(y) se e s6 se x < y.

Consideremos agora a fungdo ® : ¥’ — I, tal que $(CRL>®) = 0 e, para
todos os X € ¥\ {CRL*>},

n—1 1
O(X) == a(X) gy, @.1)
=0

onde n é tal que X,, = C' e n = 400 se X; # C paratodos os ¢ € N.
As duas primeiras proposicoes do seguinte teorema foram demonstradas em
[21] e a terceira em [24].

Teorema 7. Sejam T' a fungdo tenda, o a fungcdo avango e ® definida em 2.1,
entdo, para todos os X € Y, temos que:

1. X = Ip(9(X));
2. ®(o(X)) = T(®(X));
3. Se X,, = C entdo T"(®(X)) = 0.

Demonstragdo. Os items (1) e (2) foram demonstrados em [21]. Para demonstrar

(3), observamos que, se X = LCORL™ entdo ®(X) = —3 e, se X = RCRL™

entdo ®(X) = 5 e em ambos os casos T(®(X)) = 0. Por outro lado, se aplicar-
mos (2) indutivamente obtemos, para todos 0s i < n, que ®(¢*(X)) = T(®(X)),

logo, como X,, = C implica que 0" (X) € {LCRL>*, RCRL>} obtemos
TM(®(X)) = T(T"H(2(X))) = T(2(0"}(X))) = 0.
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Capitulo 3

Atratores nao autonomos em
iteracoes segundo um padrao

Os resultados deste capitulo foram publicados em [23].

No contexto ndo autbnomo, os atratores e os repulsores vivem naturalmente
no espaco de fases estendido. Para lidar com isto, em [17], Potzsche discutiu estes
conceitos com base na ideia de conjunto ndo auténomo.

Definicao 8. Um conjunto ndo auténomo é um subconjunto A do espaco de fases
estendido [—1, 1] x Nj.

Em [23], inspirados em [17] e em [20], introduzimos as seguintes definicoes
de atrator.

Definicao 9. Seja A um conjunto ndo auténomo. Diz-se que:
o Ak-fibrade A é
Ak) ={z e [-1,1] : (z,k) € A}.
* A projecdo de fibra de A é
P(A) = Ugen, A(k).

o A tem projecdo fechada se P(A) for fechado.

o A é p-ciclico se existir k tal que, para todos os k' > k, A(k' + p) = A(K).
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Defini¢ao 10. Sejam A um conjunto ndo auténomo, (u, s) € [—1,1] x {0, 1} ¢

F (u,5) @ iteragdo sequencial da Definicdo 2. Dizemos que:

» Aé (u, s)-invariante se existir k tal que, para todos os k' > k, F(, \(A(K'), k") C
A(K +1).

» A é (u,s)-localmente atrativo se for (u,s)-invariante e existir | tal que,
para cada ' > 1, existir uma vizinhanga A'(I') de A(l") em [—1, 1] tal que
EG, o (A1), 1) € A(I' + n) para algum n.

Definicao 11 (Atrator local). Sejam A um conjunto ndo auténomo e (u,s) €
[—1,1] x {0,1}. Dizemos que A é um (u, s)-atrator local se tiver projecdo
fechada, for (u, s)-localmente atrativo e ndo existir nenhum conjunto ndo auténomo
A’ com P(A') G P(A) que verifique estas propriedades.

I, = u—171—u 7
2 2

Dado o intervalo

se existir p tal que TP~ '(u) € I, e s € {0,1}" for tal que sj,,, = 0 para
qualquer n € Ny entfo, frequentemente, o conjunto {u, T'(u), ..., TP (u)} é a
projecdo de um (u, s)-atrator local p-ciclico. Contudo os (u, s)-atratores locais
ndo constituem o Unico tipo de atratores. De facto, se u for transformado, apos
algumas iteradas, num ponto de uma 6rbita periddica instavel, entdo esta Orbita
vai atrair um conjunto com medida de Lebesgue positiva, mas possivelmente nao
vai atrair nenhuma vizinhanca de si propria. Estas Orbitas foram batizadas em [1]
como Atratores de Milnor.

Em [14], no contexto auténomo, Milnor discutiu a ideia de atrator num sentido
mais fraco, nomeadamente como um conjunto invariante fechado A cujo conjunto
estdvel W*(A) tem medida positiva e ndo existe nenhum subconjunto A" & A tal
que W*(A’) coincide com W#(A) a menos de um conjunto com medida nula, ver
[1].

Vamos em seguida adaptar este conceito ao contexto ndo autdbnomo.

Sejam p a medida de Lebesgue em [—1, 1] e, para cada x € [—1,1] e A C
[—1,1], d(z, A) = infue4 |z — al.

Defini¢iio 12. Sejam (u,s) € [—1,1] x {0,1}Y, k € Ny e A um conjunto néo
auténomo. Definimos o (u, s)-conjunto estdvel de A com instante inicial k, como

WA k) = {x € [=1,1]: lim d(F}.,(x, k), A(k +n)) = 0}.

n—-+oo
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Vamos em seguida definir um atrator de Milnor ndo auténomo, como sendo
um conjunto ndo autébnomo, invariante, com projecao fechada e minimal, cujos

conjuntos estaveis tenham sempre medida positiva, a partir de um dado instante
k.

Defini¢iio 13 (Atrator de Milnor). Para (u,s) € [—1,1] x {0, 1}, um (u, s)-
atrator de Milnor é um conjunto ndo auténomo, com projegdo fechada e (u, s)-
invariante, A, para o qual existe k € N tal que, para todos os k' > k, n (W*(A, k")) >
0 e ndo existe nenhum outro conjunto néo auténomo A' com P(A') G P(A), que
verifica as mesmas propriedades.

Nota 14. Vamos referir-nos a caracterizacdo “ndo existe nenhum outro conjunto
ndo auténomo A' com P(A') G P(A), que verifica as mesmas propriedades”
nas Defini¢oes 11 e 13, como A tendo projecdo minimal.

Nota 15. Um (u, s)-atrator local é um (u, s)-atrator de Milnor, mas o reciproco
ndo é necessariamente verdade.

De agora em diante, consideramos v € [—1, 1], garantindo assim que j(1,,) >
0.

3.1 Caso maximal

Em primeiro lugar, vamos estudar o caso em que U = Ir(u) é uma sequéncia
maximal. Pelo Lema 6 isto implica que v > T"(u) para qualquer i tal que 7" (u) #
u. Entdo, para qualquer i, T%(u) ¢ I, € f(T(u)) = T(T*(u)) = T (u), isto
significa que, se U = Ir(u) é maximal entdo no conjunto correspondente a rbita
or(u) = {T%(u) : ¢ € Ny} ndo faz diferenga aplicar f, ou T

Para um padrdo de iteragdo s € {0, 1}"°, denotamos o conjunto dos instantes
em que utilizamos f, na iteragdo, como

Zs={i:s; =0}
Sejam X € Y’ uma sequéncia p-periddica,
O(X) ={®(c"(X)),i=0,...,p—1}
(P

a projecgao da orbita o (P(X), de ®(X) por 7' e O(X) o conjunto ndo auténomo
tal que O(X)(:) = O(X) para todos os i € Ny (¢°(X) = X). Temos entdo o
seguinte resultado.
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Teorema 16 (Atrator de Milnor). Sejam X € Y/ uma sequéncia p-periddica e
(u,s) € [—1,1[x{0, 1} tais que:

1. Fps0 : TF(u) € O(X).
2. Ir(u) € maximal.
3. #(Zs) = +o0.
Entdo O(X) é um (u, s)-atrator de Milnor.

Demonstracdo. Como X é periddica entdo O(X) tem projegdo fechada.
Da Condig¢do 1. O(X) C or(u), logo da Condi¢do 2. e do Teorema 7, para
todos os 7, j € Ny,

Flus)(®(0'(X)), j) = T(2(0" (X)) = (" (X))

e O(X) é (u, s)-invariante. Pela sua defini¢do, nenhum outro conjunto nao auténomo
Atalque P(A) & P(O(X)) poderia ser (u, s)-invariante, logo O(X) tem projecao
minimal.
Para qualquer m € N, seja t,, = min{i € N:m + i € Z}, t,, existe devido
a Condig¢do 3.. Entdo, da Condigdo 2., para qualquer x € T~ (I,)
F(tgjs‘gﬂl(:c,m) = T"(u) € O(X),

logo T7'(I,) € W*(O(X),m) e, como u < 1 entdo T ' (I,) tem medida
positiva. [

O préximo resultado estabelece as condicdes para que, no caso em que u seja
periddico em relagdo a 7" e I (u) seja maximal, a 6rbita or(u) seja a projegdo de
um atrator local.

Teorema 17 (Atrator local). Seja (u,s) € [—1, 1[x{0, 1} tal que:
1. Existe p, minimo, tal que T?(u) = u.
2. U = Ir(u) é maximal.
3. Existe j tal que s, = 0 para qualquer n € Nj,.

Entdo o conjunto nédo auténomo A tal que A(i) = O sei < je A(j + i+
1) = {T%(u)} para todos os i € Ny é um (u, s)-atrator local se e s6 se o sinal
ep—1(U) = —. Nesse caso, este (u, s)-atrator local é p-ciclico.
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Demonstra¢do. Como T?(u) = u, A tem projecio fechada. Como U é maximal,
entdo Fi, ¢ (T"(u), k) = T""(u) para todos os i, k, logo A é (u, s)-invariante e
isto implica também que tem projecao minimal.

Vamos agora demonstrar que .4 é (u, s)-localmente atrativo se e s6 se o sinal
Ep_l(U) = —.

U maximal e p-periddico implica que 777! (u) é uma pré-imagem de u através
de T, logo TP~ !(u) € {51, 54}

Vamos fazer a demonstragio apenas considerando TP~ (u) = “T’l, uma vez
que o caso TP 1(u) = 1_7“ segue de forma anédloga. Vamos também supor sem

perda de generalidade que j = 0 e consequentemente s,, = 0 para todos os
n € Np.
Suponhamos primeiro que €, 1(U) = —. Se z € I, = |*,5%] entdo

Flu.s)(z,np) = u para todos os n € N.

Como 77 *(u) = “5* entdo U,y = L, logo €, o(U) = ¢, (U) = —e TP}
€ decrescente e sobrejetiva numa vizinhanga de u, dai, nesta vizinhanga existe
a < utal que 777! (a) = 5%, De forma andloga, nesta vizinhanca existe b > u
tal que 77(b) = a.

Consideremos agora a vizinhanga de A(i+1+np), A’ (i+1+np) = T(]a, b]),
neNyei=0,...,p—1.

Por um lado, como U é maximal, entdao

o (a,u), 1) = T (Ja ) = (17 (0), T (a)[= [

u—1 1—u{
,8)

2 7 2
e, como s, = 0,

Fp ol ) = fu (F(a,ul, 1)) = {u}.

Por outro lado,
u—1

2 Y

TP (b) < TP H(u) =
logo

Fp

(s ([u, 0, 1) =Ja, u]

F2(ju, b, 1) = {u}.

Concluimos que A é (u, s)-localmente atrativo. A ciclicidade de A resulta imedi-
atamente da sua defini¢do.
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7

Se €,_1(U) = +, entdo como €, »(U) = €, 1(U) = +, TP~' € crescente
numa vizinhanca de u, logo para qualquer n, se x < w estiver suficientemente
préximo de u, entdo T (z) < “Sle Fiobo(@,1) =T (z) < u.

[

Nota 18. Em qualquer dos casos, €,(U) = %, do teorema anterior concluimos
que o conjunto ndo auténomo A tal que A(i) = {u,T(u),..., TP (u)} para
todos os 1, € um atrator de Milnor.

Concluimos das defini¢des 11 e 13 que, na iteragdo segundo um padrio de
funcgdes tenda com segmento constante, qualquer (u, s)-atrator local ou (u, s)-
atrator de Milnor A atrai I, e consequentemente «. Se U for maximal as iteradas
I, o(u, k) = T'(u) ndo dependem do instante inicial k, 0 que nos permite con-
cluir o seguinte.

Teorema 19 (Nio coexisténcia). Se U = I(u) for maximal, entdo para qualquer
(u, ) € [0,1[x{0, 1}, ndo podem existir simultaneamente dois (u, s)-atratores
A e B, local e/ou Milnor, com projecées de fibra diferentes P(A) # P(B).

3.2 Caso nao maximal

Vamos em seguida estudar o que acontece quando U = I7(u) ndo é maximal.
Neste contexto precisamos considerar Z. C Z definido da seguinte forma:
Sejam [; < ... <1, < ... tais que 0'i(U) > U, entdo

Z(U)={j:s;=0esj4, =1V}

Como T*(u) € I, se e s6 se T (u) > u, entdo Z's(U) é o conjunto dos
indices j tais que s; = 0 e F, ,(u,j + 1) =T"(u) para todos os n € No.

Teorema 20. [Atrator de Milnor] Sejam X € ¥’ uma sequéncia p-periddica e
(u,s) € [=1,1[x{0, 1} tais que U = Ir(u) ndo é maximal e se verificam as
seguintes propriedades:

1. Para qualqueri=0,...,p—1, U > o'(X).
2. 3y : TH(u) € O(X).
3. #(Z1(U)) = +o0.

Entdo O(X) é um (u, s)-atrator de Milnor.
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Demonstracdo. A Condig@o 1. permite-nos usar oS mesmos argumentos que no

Teorema 16 para concluir que O(X) é (u, s)-invariante e tem proje¢do minimal.
Para cada m € N, sejat/, = min{i : m +1i € Z.(U)}, t,, existe devido a

Condicao 3.. Consideremos agora 77,(x) = 2z + 1 o ramo esquerdo da fungdo

tenda,
s fu—1
“FTLl( 2 )

by = T; ' (min{u, 0}).

Para I} =]ay,bi[ temos que [y N1, = O e F,5(,5) = T(l1) C I, para to-
dos os j. Para além disso, para [,, = TL_”“(Il), temos que, para todos os 7,
(G, oUn,j) = T"(In) C I, logo para todos os = € I, , F(t;js)(x,m) € l,e,
comom +t € Z(U) entdo

st wm) = Bl (wm+ £, +1) = TH(u) € O(X),
logo Iy € W*(O(X),m) e pu(W3(O(X),m)) > 0.
O

Nota 21. As condicoes 1. e 2. no Teorema anterior implicam que l; < k para
todos o0s 1.

Nota 22. Note-se que os atratores de Milnor, por um lado ndo sdo robustos em
relagdo ao pardmetro u, no sentido em que o atrator ndo persiste sob pequenas
perturbagdes de u, mas por outro lado apresentam uma certa robustez em relagdo
ao padrdo de iteragdo s. Pelo Teorema 16, se U = Ir(u) for maximal entdo o
atrator persiste para todos os padroes s tais que #(Zs) = +00 e, pelo Teorema
20, se U = Ir(u) ndo for maximal entdo o atrator persiste para todos os padroes

s tais que #(ZL(U)) = 4o0.

Exemplo 23. Consideremos agorau = ®(RLRLLR*). Temos que U = Ir(u) =
RLRLLR™ néo é maximal porque o*(U) > U, logo T*(u) > u implica que
T(u) € I, e que existem 0 < a < u < b tais que T'(b) = “>* e T'(a) = 5%
Considerando uma sequéncia s tal que sy = sy = 0, para todos os x €a,b|,
temos F(%M) (2,1) = Flu.5)(0,0) = u, entdo, se s for tal que s5, = 0 para todos os
n € No, o conjunto ndo auténomo A tal que A(2n) = {T'(u)} e A2n+1) = {u}
para todos os n € Ny é um (u, s)-atrator local. Assim a introdug¢do da condi¢do
Son = 0 para todos os n criou um (u, s)-atrator local 2-ciclico, ver a Figura 3.1.
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Figura 3.1: Iteragdo com v = ®(RLRLLR™). Se sy = 0 entdo F?%(z,0) =
F?*(u,1) = T(u) € I, para todos os = € I, e 2 é a dnica iterada de ordem menor
ou igual a 6 com esta propriedade, logo a orbita s6 pode ser alterada pelos termos
pares de s;.

Mais geralmente, se U for tal que o*(U) > U para algum k, seja
Br(U)={0<i<k:c'(U)>U},
temos entio o seguinte teorema.
Teorema 24. [Atrator local] Seja (u,s) € [—1,1[x{0, 1} tal que:
1. U = Iy(u) ndo é maximal, i.e., existe k tal que o*(U) > U.

2. Existe p € Ny tal que, para todos os n € Ny ei € Bi(U), spinpy = 0 e
Sptnk+i = L

Entdo o conjunto ndo auténomo A tal que A(i) = () para todos os i < p e, para
todososn € No,ej=1,....k Alp+kn+j) ={T""Y(u)}, é um (u, s)-atrator
local k-ciclico.

Demonstragdo. Vamos considerar p = 0. Se o*(U) > U, entdo, pelo Lema 6
T+ Y(u) € I,. Por outro lado s; = 1 para todos os i € By(U) implica que
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F(ku sl)(u 1) = T"(u) € I, e entdo I, (u,1) = u. Para além disso, para todos

osj=1,....k—1,

Flus)(A(nk +j),nk +j) = T{T'"'})(u) = A(j + 1)

Fus) (A(nk + k), nk + k) = f,({T*""(u)}) = {u},

entdo A é (u, s)-invariante e k-ciclico e consequentemente tem proje¢do minimal.
Por outro lado, como para todos os n, T € sobrejetivo em cada um dos seus
intervalos, existem a < u < b tais que 7% *|(, 4 € monétono e T*~!({a,b}) =
{ut = “} Paracada j = 1,...,k e cadan € Ny consideramos as vizinhancas
de A(nk + ), A(nk + j) = Tj‘l(}a, b[). Para simplificar a notacdo vamos
considerar p = n = 0.

Se ndo existir i < k — j tal que s;,4; = 0e A'(i + j) N I, # () entdo

Flo 3 THAG), 5) = Fs (Lis k) = fulL) = {u} = Ak +1).

Por outro lado, se existir i < k— j tal que s;; = 0e A'(: +7) NI, # 0, entdo
a Condigdo 2. e a monotonia de 7"} o,y iImplicam que

—1 L
T]—i—z 1( ) T]—i—z 1( )< UT <T]+z—1(b/> SO

ou

0< Tj+i—1(a/) - (u) < Tj—i-i—l(b/)

para alguns @', b € {a, b}.

Sem perda de generalidade, vamos considerar apenas a primeira situacao.
Entdo

L L —1 L L L
Tk—(]—i-z)—l(u) — Tk=(+9) (U > ) e Tr=(+9) (]T]+Z—1(&/)’ Tj+Z—1(bl)[) — 1,
Suponhamos que 7 € Unico, entao

Fo (G = ijw A+, +9)



Se 7 ndo for Unico, i.e., se existirem
n<...<tp<k—7j

tais que, paratodosos [ = 1,...,n, sj4;, = 0e A'(j + i) N I, # (), entdo, como
atrds, podemos tomar a’, b’ € {a, b} tais que

u—1

T ) < Tt (y) < < Tty <o,

entao - o i S
Ft (A G),7) = fu(T77 Hd), T (1))
= (T ), 5L
C]Tj-i-zi (a/)’ Ti+ia (b') D
Se continuarmos este procedimento, entao
Fi(AG).d) = Fiog (B A0+ i+ 1)
CFEMAG +in+1), 5+ i+ 1)
Tal como para i; podemos considerar a”, b” € {a, b} tais que

u —

TItY (g < TIte"1(y) < L < Tite=L(p") <0,

e
Fa g A G +in+ 1), 5 +i+1) = Fg (T (@), T (") 5 + i+ 1)
= £ @), T 1)
C A'(j+ixa+1).
Concluimos entdo que
FESAG+i+1),7+i+1) C A +ia+1)

e, recursivamente, que

FUrt (A (5),5) C A +in + 1),
Finalmente temos
FETAG) ) = Fo 3 (FRi (A, 4), 5+ in + 1)
CEL A G +in+ 1), +in+ 1)
= fu(TF=n =2 (J T ¥ (a), T (D))
= fu(JT* " (a), T*1(b)[)
= fullu) = {u}.
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Exemplo 25. Consideremos o padrdo de iteracdo s = (001010)>°, u; = 0,519
e ug = 0,5215. Temos que Ir(u;) = RLRLLLRRLRLR... e Ir(ug) =
RLRLLLRRR..., entdo, pelo Lema 6, para qualquer pardmetro u € |uy, us),
Ir(u) = U = RLRLL... e, como c*(U) > U, By(U) = 0 e sgpi1 = 0 para
todos os n € Ny, pelo Teorema 24 o sistema tem um (u, s)-atrator local 2-ciclico.
Isto pode ser observado na Figura 3.2, onde o atrator estd assinalado a vermelho.

Olhando agora para o ponto assinalado a azul na Figura 3.2, este tem coor-
denadas (u,y) = (0.5208(3), %) e

1 1 1 1 1 1 1
-4 = — | -1+ =) =®(RLRLLR™).
TRt T Ty 25+26( +3) ( )
Numericamente T°(u) = % é um ponto fixo repulsivo de T

Tendo em atencdo o Teorema 20, para U = RLRLLR™, c'(U) > U = i =
2, logo Iy = 2. Por outro lado, para todos os n € Ny, Sg, = 0 € s = 1,
logo Z\(U) = {6n : n € No}. Entdo, considerando X = R>, O(X) = {3}
e O(X) é um (u, s)-atrator de Milnor. Concluimos que, para u = 0.5208(3) e
s = (001010)*° um (u, s)-atrator local e um (u, s)-atrator de Milnor coexistem.
Note-se que isto apenas é possivel porque U = I1(u) ndo é maximal.

Podemos fundir os Teoremas 20 e 24 para obter o seguinte.

Teorema 26 (Coexisténcia). Sejam X € X' uma sequéncia p-periédica e (u, s) €
[—1,1[x {0, 1}M° tais que:

1. Paratodososi=0,...,p—1,U > o' (X).
Iy tal que T*(u) € O(X).

Para U = Ir(u) existe | tal que o'(U) > U.
#(Z,(U)) = +o0.

SR D

Existe uma ordem p € Ny tal que, para todos os n € Ny, 5,1y = 0 e
Sjtniti = 1 para todos os i € B(U).

Entdo o conjunto ndo auténomo A tal que A(i) = 0 para todos os i < p e
A(ln +j) = {T ")}, i = 1,...,1 é um (u, s)-atrator local e O(X) é um
(u, s)-atrator de Milnor.

Vamos ver no proximo exemplo que, no caso nao maximal, dois (u, s)-atratores
locais também podem coexistir.
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100 : -
05190 05195 05200 05205 05210 05215

Figura 3.2: Diagrama de bifurcacdo com s = (001010)>° e u € [0.519,0.5215].
Iterdmos 1500 vezes com valor inicial O e instante inicial 0. O atrator local 2-
ciclico estd marcado a vermelho e o atrator de Milnor é o ponto azul. As linhas
pretas no lado esquerdo do atrator de Milnor correspondem a regimes de transicao
antes de as Orbitas ficarem presas no atrator local. No lado direito do atrator de
Milnor as linhas pretas podem corresponder a outros atratores locais que coexis-
tem com o atrator local 2-ciclico.
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Exemplo 27. Consideremos de novo, s = (001010)> e, agora, uw = 0, 521. Temos
que
U= Ir(u)= RLRLLLRRRRRLRLLLLL....

E fdcil verificar que j = 2 e j = 12 sdo os tinicos j < 12 tais que o7 (U) > U,
entdo, tendo em atengdo o Teorema 24, By2(U) = {2}. Como s é 6-periddico,
sog = 0e sy =1, entdo s12, = 0 e S1on12 = 1 para todos os n € Ny, entdo, pelo
Teorema 24, o conjunto ndo auténomo A tal que A(12n + j) = {T""(u)} para
todos os j = 1,...,12 e todos os n € Ny é um (u, s)-atrator local 12-ciclico.
Como u = 0.521 € [0.519,0.5215|, este (u, s)-atrator local 12-ciclico coexiste
com o atrator local 2-ciclico estudado no Exemplo 25. Observando a Figura 3.2,
observamos que esta situagdo persiste numa vizinhanga em torno de u = 0.521.

Outra diferenca notavel entre os casos maximal e ndo maximal € a seguinte:
no caso maximal todos os (u, s)-atratores locais sdo ciclicos. Para ilustrar o caso
nao maximal consideremos U = RLRLLRLLLR> e u = ®(U). Obviamente
U é ndo maximal porque o?(U) > U e o°(U) > U. Agora, adaptando os
argumentos da demonstracdo do Teorema 24, para qualquer padriao de iteracao
s = 01*01%201% .. ., onde (a,)nen € {1,4}", o conjunto ndo auténomo A tal
que A(0)=0e A(j) = {F(jujsl) (u,0)} para todos os j > 1 é um (u, s)-atrator lo-
cal, mas apesar de P(A) C {u, T(u), T*(u), T3(u), T*(u), T°(u)}, ao contrdrio
do caso maximal, este pode ndo ser ciclico. Este é o caso quando a sequéncia
(an)nen ndo € periddica nem eventualmente periddica.

Neste caso continuamos a poder ter coexisténcia de um (u, s)-atrator local
com um (u, s)-atrator de Milnor. Consideremos por exemplo o padrao

s = (01)00(01111)"(01)*200(01111)*> . ..

tal que, para todos os ¢, a; € Ny e b; € N.

Por um lado temos uma subsequéncia (s;, )nen, tal que, para todos os j, i; €
Zseij —1i; € {2,5} eisto gera o (u, s)-atrator local. Por outro lado temos uma
subsequéncia infinita s;; tal que, para todos os j, l; € Zs € s;,10 = 51,45 = 1€
isto gera o (u, s)-atrator de Milnor.

Nota 28. Uma formulacdo mais geral de uma condigcdo suficiente para a ex-

isténcia de um (u, s)-atrator local é a existéncia de i, . . . , iy tais que 01 (U) > U
para todos os j = 1,...,k e uma sequéncia (a,)nen tais que, para todos os
n €N, a, € Z, eexiste j(n) € {1,...,k} tal que a1 — an = ijn) € Sqpt1 = 1

para todos osl € B;.. (U).

Tj(n)
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A partir dos resultados deste capitulo, concluimos ndo ser necessario intro-
duzir limitadores em todos os passos de iteracdo para criar atratores locais ou de
Milnor. Concluimos também que, por um lado, varios padrdes de iteracao podem
criar o mesmo atrator e que, por outro lado, 0 mesmo limitador pode criar difer-
entes atratores, conforme o padrdo de iteracdo. Para além disso, no contexto nao
auténomo, ao contrario do que acontece no contexto unimodal auténomo, podem
coexistir varios atratores, do mesmo tipo ou de tipos diferentes.
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Capitulo 4

Invariantes de amassamento,
incrementos de periodo e atratores
de Milnor em iteracoes segundo um
padrao

Neste capitulo, come¢amos por introduzir os invariantes de amassamento K (u, s)
para iteracdes segundo um padrao, F(Z’s), de funcdes tenda com um segmento
constante. Em seguida introduzimos uma estrutura de incrementos de periodo nos
invariantes de amassamento e concluimos com a descri¢ao dos parametros cor-
respondentes aos atratores de Milnor, como limites de sequéncias de parametros
correspondentes a sequéncias de atratores locais, organizados segundo esta estru-
tura de incrementos de periodo.
Os resultados deste capitulo encontram-se em [24].

4.1 Invariantes de amassamento

Uma forma bastante eficaz de identificar e descrever as estruturas combinatdrias
presentes nas familias de sistemas dinamicos unidimensionais, € através dos chama-
dos invariantes de amassamento, que foram introduzidos por Milnor e Thurston,
no contexto auténomo, em [15].

Vamos em seguida adaptar esta definicdo ao nosso contexto e depois
estabelecer condi¢des suficientes para que uma sequéncia simbdlica X € X seja
o invariante de amassamento K (u, s) para algum par (u, s) € [—1, 1] x {0, 1},
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Defini¢iio 29. Para (u,s) € [—1,1] x {0, 1}, definimos o invariante de amas-
samento
K(u, S) = I(%S)(O, O)

Para X € X, sejam

e, para cada i € Ny,
li =min{r:i4+r € C(X)}.

Por simplicidade de exposi¢do, consideramos apenas padrdes de iteracdo s
tais que so = 0 e sequéncias X tais que X; = 0 e o maior bloco entre dois C"’s
consecutivos se situe no inicio da sequéncia. Isto € expresso nas condigdes 1. e 2.
da proxima defini¢do.

Defini¢iio 30. Seja s € {0, 1} com sy = 0, entdo dizemos que uma sequéncia
simbolica X € Y é estritamente s-admissivel se se verificam as condi¢oes seguintes:

1. 0eC(X), esei€C(X)entdoi € Z, ouc'(X)=CRL™.
2. lp=max{l; : i € C(X)}.
3. Paratodososi € C(X)N Z:
(@) Xiy1.. Xigg,o1 = X1 Xg1;
(b) sel; <ly, entdo Xy ... Xjo—1,-1 < Xpj41... X1
4. Sei,jforemtais quei < j <i+ 1, i€ C(X)eje€ Zs\C(X) entdo

Xj+1 .. 'Xi+li—1 <Xi... Xli—j—l'

Representamos o conjunto de sequéncias estritamente s-admissiveis por Y°.

Vamos ver no proximo teorema, que a s-admissibilidade estrita de uma sequéncia
X € X é suficiente, para que X = K (u, s) para algum u € [—1, 1]. A designagio
“estrita” prende-se com as desigualdades das condigdes 3.(b) e 4., as quais podem
ser enfraquecidas, permitindo igualdade numa série de situagdes especificas cuja
descricao iria prejudicar fortemente a clareza da exposicao.

Teorema 31. Sejam s € {0,1}° ¢ X € ¥. Se X € ¥¢ entdo existe u € [—1,1]
tal que X = K (u, s).
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Demonstracdo. A Condicao 1. é consequéncia imediata das condi¢des sobre s e
da definicdo de invariante de amassamento.
Para X = XX ... € ¥° definimos ¢, : ¥* — ¥ como

ng(X) = Xl .- -Xlo_lcRLoo,

A construgio assegura que o0t (¢ (X)) > ¢4(X).

Vamos demonstrar que, para u = ®(¢p4(X)), X = K(u, s).

Seja Y = K(u, S) = I(u,s)(O, 0).

Se0 < j<lyej € Zsentdo, da Condigdo 2., j ¢ C(X), logo pela Condigdo
4. T Yu) ¢ I, e

Yy...Y, 1Y, = Cady(u) . ..ad (T2 (u))C = Xq... X,

Pelo Teorema 7, T ' (u) = 0,logo Y}, = C'e F(ZSJ;)I(O, 0) = u, entdo para

todos os 1 < j < [, F(lgtf(o, 0) = T9"!(u) e, pela Condigdo 4., se 1 < j < [,

entdo Y}, 1, = ady(T?"(u)) = X; e, pela Condi¢do 3.(a) X; = Xj,,. Por outro
lado, se [;, < ly entdo, pela Condigao 3.(b) Flzglo (0,0) = T (u) € I, logo
Yigss, = adu(T"0 (u)) = C.
Podemos agora repetir estes argumentos para qualquer i € C(X) para concluir
que X = K(u,s).
[]

4.2 Atratores de Milnor e incrementos de periodo

Vamos em seguida demonstrar que, para cada sequéncia periddica Y € Y/, os
pardmetros correspondentes aos atratores de Milnor O(Y’) sdo limites de sequéncias
de parametros correspondentes a sequéncias de atratores locais, organizados se-
gundo uma estrutura de incrementos de periodo com incremento |Y|. A descri¢do
dos parametros correspondentes aos atratores de Milnor, como limites de sequéncias
de parametros correspondentes a incrementos de periodo, foi apresentada em [1],
no contexto autébnomo, para a familia das fun¢des tenda com um segmento con-
stante descontinuas.

Seja ¥ C X o conjunto das sequéncias da forma (CX; ... X, ;)™ tais que
X; # C, paratodos os i = 1,...,n — 1. Dizemos que X tem comprimento 7 e
denotamos por | X | = n. Denotamos ainda abreviadamente €|x|_1(X) por €(X).
Recordemos que —L = Re —R = L. Parasequéncias X = (CX; ... X|x|_1)®,Y =
(CY7...Y]y|—1)> pertencentes a Y, sejam
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FLX,Y) = (CX1 ... Xy 1 (e(X)L)Yi ... Yy 1)

[rR(X)Y) = (CXy ... Xix—1(e(X)R)Y1 ... Yjy|-1)™
Nota 32. Notemos que e(fr(X,Y)) = €(Y) e e(fr(X,Y)) = —€¢(Y).

Defini¢ao 33. Para p € N, uma sequéncia bindria s € {0, 1} é uma p-sequéncia
se sp, = 0 para todos os n € Nj,.

Para uma p-sequéncia s, seja > o conjunto de todas as sequéncias
(CX;y... Xpp—1)® € ¥*NXtaisque X; # C paratodososi = 1,...,np — 1.
Note-se que, se X € % entdo p|| X]|.

Definicao 34. Seja s uma p-sequéncia. O par (X,Y) € ¥’ x 3 ¢ s-compativel
se:

L pllY].

2. Nao existiromm € No,n € N, 0 < j < | X| tais que m(| X |+n|Y|)+j € Z;
e Xj+1 e X|X\—1 Z X1 c. X|X\—1—j-

3. Nao existirem m € No, n € N, | X| < j < |X| + n|Y]| tais que m(| X | +
TL|Y|) +] S ZS e }/j—|X|+1 .. Y]y‘_l Z X1 c. X2|X\—1—j-

Lema 35. Sejam s uma p-sequéncia e (X,Y) € ¥ xS um par s-compativel,
entdo (fr(X,Y),Y) e (fr(X,Y),Y) s@o ambos s-compativeis.

Demonstracdo. Seja W = f(X,Y), em primeiro lugar vamos demonstrar que
W e ¥°. Como |W| = |X| + |Y| entdo p||W|. As condicdes 1., 2. e 3. da
Defini¢ao 30 sdo verificadas automaticamente pela defini¢do de f7(X,Y’), uma
vez que C(W) = {n(|X|+|Y]) : n € Nyo}.

A condic¢ao 4. da Definicao 30 é consequéncia imediata das condigdes 2. e 3.
da Defini¢do 34.

Verifiquemos agora a s-compatibilidade do par (W, Y):

A condigdo 2. da Defini¢ao 34 em relag@o a (W, Y) sai da condigdo 2. em
relagdo a (X,Y) se j < |X| e da condigdo 3. se j > |X|. A condi¢do 3. em
relagdo a (W, Y) sai da condig@o 3. em relagéo a (X,Y"), uma vez que m(|W| +
nlY))+j=m(X[+n+ 1Y) +je W <j<|[W+nl]Y]=|X|<j<
| X+ (n+ 1Y

Todos os critérios usados sdo igualmente validos se W = fr(X,Y).
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Sejam s uma p-sequéncia e (X,Y) € ¥° x ¥ um par s-compativel. Sejam
RX,Y) = fAUX,)Y) = fRR(X,Y) = f2,(X,Y) = X. Vamos agora consid-
erar as seguintes quatro sucessoes de sequéncias simbdlicas, para todos os £ € N:

* fE<X7Y> :fL( E_I(X7Y>>Y>'
¢ fE(X,Y) :fR( E_1<X7Y)7Y)'

fo(fir'(X,Y),Y) sek fmpar
fir(X,Y) =
frRUfEN(X,Y),Y) sek par

Ir( Egl(X, Y),Y) sek impar
f}’%L(X> Y) =
fr( fil(X,Y),Y) se k par

Exemplo 36. Por exemplo, se considerarmos X = (CRR)® eY = (CLR)*,
temos

fo(X,Y) = (CRRLLR)*®, f2(X,Y) =(CRRLLRRLR)>, [f3(X,Y) = (CRRL(LRR)2LR)>,

fr(X,Y) =(CRRRLR)*®, f%(X,Y) =(CRRRLRRLR)>®, [f3(X,Y) = (CRRR(LRR)?LR)>,
fLr(X,Y) =(CRRLLR)>®, f2.(X,Y) = (CRRLLRLLR)>, f3,(X,Y) = (CRRL(LRL)2LR)",
frL(X,Y) =(CRRRLR)*®, f%,(X,Y) = (CRRRLRLLR)*, f3,(X,Y) =(CRRR(LRL)2LR)>.

Cada uma das sequéncias simbolicas fF(X|Y), f5(X,Y), fFp(X,Y)e f5,(X,Y)
¢ periddica com periodo | X | + k|Y'|, correspondendo assim a um incremento de
|Y'| no periodo, em cada avango do indice k. Vamos em seguida demonstrar que
estas quatro sucessoes convergem em ..

Teorema 37. Sejam s uma p-sequéncia e (X,Y') um par s-compativel, entao para
todos os k, fF(X,Y), fE(X,Y), fEa(X,Y), f& (X,Y) pertencema ¥’ e:

1. f¥(X,Y) é estritamente decrescente e converge para

CXi.o Xix—1(e(X)L) (Y .. Yy-1(e(Y)L))™.

2. fE(X, Y) é estritamente crescente e converge para
CXl .. X‘X|_1(€(X>R)(Y1 e }/"y‘_l((?(Y)L))OO .

3. fro(X,Y) € estritamente crescente para k impar, estritamente decrescente
para k par e converge para C X, ... X x|_1(e(X)L)(Y1 ... Yy—1(e(Y)R))*>.
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4. fr (X,Y) € estritamente crescente para k par, estritamente decrescente
para k impar e converge para C Xy ... X|x|—1(e(X)R)(Y1 ... Yjy|-1(e(Y)R))>.

Demonstracdo. Segue indutivamente do Lema anterlor que, paratodos os k, f¥(XY),
FEX,Y), fEa(X,Y), fE(X,Y) pertencema .

As propriedades de monotonia concluem-se indutivamente do facto que as
seguintes desigualdades ocorrem para todos os X, Y € X:

fL(X,Y) < fia(X,Y) < X < f2,.(X,Y) < fr(X,Y).

Pela Nota 32, € imediato demonstrar por indu¢do que, para todos os £ € N,

FEXY) = (CX1 . Xy (O L) (Vi Yy (e(Y)D) 1Y Vi)™,
Ig(X,Y) :(OXl X|X|_1<€(X)R>(}/1 Y|y|_1(€(Y)L>>k_1Y1Yy‘ 1)00
EAXY) = (CXy .. Xjx 1 (e(X)D) (Y1 .. Yiy 1 (e(Y)R)FIYh .. Yiy_1)™,
£ (X)Y) = (CXy .. Xjx-1(e(X)R)(Yi ... Yiy1(e(Y)R)F1Y; .. Vi)

As propriedades de convergéncia sao imediatas, usando em X a topologia in-
duzida pela distancia

91
n=1
em que
07 SC XZ = }/;7
&_E_{L se X; £ Y,
O
Para W = (CW; ... Wy —1)® € X, seja t(W) = Wi...Ww-1CRL>® €
Y.
Consideremos as sequéncias
up = P(H(fL(X.Y) o = S(H(fR(X,Y))) 4.1
e
Ik = Q(tH(fLp(X.Y) s wp = S(t(frr(X,Y))) 4.2)

O proximo resultado estabelece que as sequéncias de parametros uy, vy, [y €
wy, correspondem a existéncia de sequéncias de atratores locais py-ciclicos, p, =
, com um incremento |Y’| no periodo, para cada k.
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Teorema 38. Sejam s uma p-sequéncia e (X,Y') um par s-compativel. Entdo,
para cada k € N, existem:

1. u), < wy, < uj tais que, para todos os u €|}, u}[, o conjunto ndo auténomo
A tal que A(n(|X| + k|Y|) + j) = T7"!(u) para todos os n € Ny e j =
L...,|X|+k|Y]| éum (u, s)-atrator local py-ciclico com p,, = | X|+k|Y|.

2. v, < vy, < vy tais que, para todos os v €|y, v}|, 0 conjunto ndo auténomo
A tal que A(n(|X| + k|Y|) + j) = T"Y(v) para todos os n € Ny e j =
..., |X|+ k|Y| éum (v, s) atrator local py-ciclico.

3. I, <l <l tais que, para todos os | €]l;,l][, o conjunto ndo auténomo
A tal que A(n(|X| + k|Y]) + j) = T'"*(u) para todos os n € Ny e
jg=1,...,|X|+k|Y| éum (l,s) atrator local py-ciclico.

4. wp, < wy, < wy tais que, para todos os w €|w;,wy|, o conjunto nédo
auténomo A tal que A(n(|X|+k|Y])+7) = T (u) para todos os n € Ny
ej=1,...,|X|+k|Y| éum (w,s) atrator local py-ciclico..

Demonstragdo. Vamos apenas demonstrar a Condicao 1., visto que as outras tém
demonstracoes andlogas.
Seja
W = fH(X,Y).
Temos que |W,| = | X| + kY| = pi.
Sejam agora

WHER) = (WF.. . Wy _(e(WF)R))>,
WHEL) =WE. . WE_ (e(WF)L)WH(R),

uf, = ®(W*(L)) e uj = ®(W*(R)), ver a Figura 4.1.

Pelo Lema 6, concluimos imediatamente que u), < uj < uj e, pelo Teorema
777 (u}) = TP (uf) = .

Por outro lado,

TP () = D((e(WH)L)WH(R))

T (uf) = B(((WH RIWH(R)),

logo, se u €|uj,, u}[ entdo

TP (u) €]@((e(WF)L)WH(R), D((e(W*)R)W*(R))]

31



(os extremos deste intervalo podem ndo estar na ordem correta) e
TP (u) = T(TP 1) (u) > uf > u.

Temos entdo, sendo U = Ir(u), que o?*(U) > U. Como s é uma p-sequéncia
e p|px, entdo s, = 0 para todos os n € Ny, além disso, pelas condi¢des 2. e 3. da
Defini¢ao 34 ndo podem existirn € Nye i € B, (U) tais que npy, +1i € Z,. Logo,
pelo Teorema 24, o conjunto ndo auténomo A tal que A(npy + 1) = {7 *(u)}
paratodos osn € Ngei =1,...,p, é um (u, s)-atrator local. ]

Figura 4.1: Considerando X = (CRL)>®, X(R) = (RLL)® e X(L) =
RLR(RLL)®>, os trés pontos assinalados no eixo das abcissas sdo, da esquerda
para a direita, v’ = ®(X (L)), u = ®(t(X)) e " = P(X(R)).

O coroldrio seguinte estabelece que as sequéncias de parametros uy, v, [y, € W
convergem para parimetros com atratores de Milnor O(Y") em que Y corresponde
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as sequéncias periddicas

(V1. Yy (e(Y) L)),
nos casos de uy e vy, €

(Y1... Yy —1(e(Y)R))>,
nos casos de [ e wy. Ver a Figura 4.2.

Corolario 39. Sejam s uma p-sequéncia e (X,Y') um par s-compativel tais que
Y. . Yy-1 < Xi...X|xj-1paratodosos j =1,...,|Y| =1, entdo:

1. As sequéncias uy e vy sdo convergentes, respetivamente, para parametros
u < veO((Yr...Yy-1(e(Y)L))>®) é um (u,s) e um (v,s)-atrator de
Milnor.

2. As sequéncias lj, e wy sdo convergentes, respetivamente, para pardmetros
I <weO((Yr...Yy—1(e(Y)R))>®) é um (I, s) e um (w, s)-atrator de
Milnor.

Demonstragdo. Sejam
U=Xi... Xix-1(e(X)L)Y1 ... Yjy—1(e(Y)L))™

eu= d(U), entdo

<+oo 1 B 1 .
e wl €D 55 = 3 S

1=pg

Se U nao for maximal, a Condicdo 1. do Teorema 20 € satisfeita devido
a condigdo sobre os Yj...Yy|_1, a Condicdo 2. ¢ satisfeita para k = [X| e
a Condicao 3., vem do facto que, pelas Condicdes 2. e 3. da Definicdo 34,
para quaisquer m,n € N, m(|X| + n|Y]) € Z.(U). Entdo, pelo Teorema 20
O((Yr...Yiy—1(e(Y)L))>) é um (u, s)-atrator de Milnor. Se U for maximal, a
demonstra¢ao € andloga, usando o Teorema 16.

As restantes afirmagdes tém demonstracdes andlogas considerando, respetiva-
mente,

v==>(Xy . Xix 1 (e(X)R)Yr . Yy m1(e(Y)L))™),

I= (X, ... Xix|_1(e(X)L)
V= @(Xl .. .X‘X|,1<€(X)R)
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Figura 4.2: Incremento de periodo com s = (011)*, X = (CRR)* eY =
(CLR)®°. Imprimimos as iteradas F("u,s) (0,0) com 500 < ¢ < 1000. Na figura
de cima considerdmos u € [0.093,0.114] e os pardmetros assinalados sdo [; =
O(t(fre(X,Y))), Iy = ®(t(f2,(X,Y))) el = ®(RRL(LRL)>). Na figura de
baixo, ampliamos o intervalo em torno de /, considerando v € [0.1108,0.1113].
Os pardmetros assinalados s3o I3 = P(¢(fiz(X,Y))), Iy = ®t(f1r(X,Y))) e
| =®(RRL(LRL)>)
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Vamos em seguida considerar o caso em que Y = (CLP~)*>.
Para X € &\ {(CL™~1)> (CRL"2)*® :n € N},, sejam

S_(X) =X... XZ_QORLOO, onde [ = max{j >1: (X1 R X|X|_1<€(X)L))J = R}

sT(X)=Xy...X;—oCRL>™, ondel=max{j >1:(X;...X|x—1(e(X)R));

Se X = (CL"™~1)> entdo, como ¢(X )L = L apenas podemos calcular s*(X) =
L"P72CRL>®. Se X = (CRL"™2)> entdo, como ¢(X )R = L apenas podemos
calcular s~ (X) = RL"™3CRL™.

Exemplo 40. Consideremos p = 3 e s = (011)*°. Se nos focarmos apenas
nas sequéncias X € % com |X| = 3, temos X = (CLL)>, Y = (CLR)*,
7Z = (CRR)® e W = (CRL)>, entdo:

X = (CLL)® st(X) = LCRL®
Y = (CLR)® s (Y)=LCRL® st (Y)=CRL®
7 =(CRR)® s (Z)=CRL®  s*(Z)=RCRL®
W = (CRL)® s (W)= RCRL®

A . =9 .~ .
Se s for uma p-sequéncia e X € X, as condi¢cdes dos resultados anteriores
sao satisfeitas. Além disso,

fHXY) = (CXy ... Xix-1 (e(X) L) (LR 1),

f]]%(X, Y) = (CX1 - X|X|71(€(X)R) (L)pk—l)oo
e as sequéncias uy e vi definidas em (4.1) convergem, respetivamente, para u =

O(s7 (X)) ev =P(s"(X)). Podemos entdo enunciar a seguinte proposi¢ao.

Proposicao 41. Sejam s uma p-sequéncia, X € & e Y = (CLP~1)™, entdo as
sequéncias
u, = O(H(fL(X,Y)))

v = O(H(fR(X,Y)))

convergem, respectivamente, para u = ®(s~ (X)) ev = ®(s7(X)). Além disso,
o conjunto ndo auténomo A tal que A(i) = {—1} para todos os i é um (u, s) e
um (v, s)-atrator de Milnor.
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Demonstracdo. Vamos apenas demonstrar que 1y, COnverge para 1.
Como, para cada k, up = ®(X; ... X;_ RIPF=HIXIZIO RL>), entdo

1 1
|Uk — u’ = 5 ‘(I)(lelRkaHX‘H*l)} N 5 ‘®(X171RLOO>’ .

k—+o00

Se X;_; = R, entdo

1 = 1
®(X, | RL®) = — (—5 +y %1) =0.

=1

Como, se X; 1 = L, obtemos de forma andloga que ®(X; ;RL>*) = 0, con-
cluimos que

lim wu, = wu.
k——+o0

]

Como podemos observar no diagrama de bifurcacdo da Figura 4.3, os parametros
u e v, de certa forma correspondem a parametros de separagdo. Isto é expresso no
seguinte resultado.

Proposicdo 42. Sejam s uma p-sequéncia e X € % tais que p|| X |. Entdo

[Cs™(X), X[NY" ={Y €% tal que Y =CX;... X|x|_1(e(X)L)...}

|1X,CsT(X)NE" ={Y €% tal que Y =CX;... X|x-1(e(X)R)...}.

Demonstragdo. Vamos apenas demonstrar a primeira igualdade, uma vez que a
segunda se demonstra de forma anéloga.
SejaY € ¥ tal que s~ (X) < o(Y) < o(X), ou seja,

Xl...Xl_QORLOO <}/1Y2_2 <Xl---Xl—2Xl—1---X\X|—1C----
Temos imediatamente que
Xl---leQZ)/l---}/zfQ-

Além disso, s~(X) < o(X) e Y € ¥ implica que Yi_» = Xj—» = 5(X)R.
Entao,
O'(X) = X1 . Xl*2<€lf2(X)R)RL|lelflc

ee_1(X) = —,logo
oY) <o(X)=>0Y)=X1... X|x-1(e(X)L).
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O(s' (X)) (s (V) ®(sT(Z))
Figura 4.3: Diagrama de bifurcagﬁo coms = (011)® (p = 3), u € [—1,1],

= (CLL)*,Y = (CLR)*, Z = (CRR)®. Se u €] — 1,®(s*(X)] entdo
Ir(u) = LL..., se u €]P(s ( ) (s ( ) entdo Iz(u) = LR..., seu €
|®(sT(Y),®(sT(Z)] entdo Ip(u) = RR..., se u €]®(sT(Z),1] entdo Ir(u) =
RL ...

Nota 43. A redacdo dos resultados anteriores pode transmitir a ideia de que,
se s for uma p sequéncia, entdo as sequéncias de incrementos de periodo com
a sequéncia s s6 podem gerar atratores de Milnor correspondentes a orbitas
periodicas repulsivas com periodo muiiltiplo de p.
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Esta ideia é errada, pois se Y = Yi...Y, e p { q entdo podemos tomar
Y = (C(Yr...Y)" YY) ... Y, 1)>, onde ng = mmc(p, q).

Por exemplo, se p = 3, obtemos CRLL(LR)> e o correspondente atrator de
Milnor cuja projecdo é uma orbita 2-periddica repulsiva de T', como limite de
fE((CRL)*®,Y") comY' = (CLRLRL)>.

Também com p = 3, obtemos C RLL(R)* e o correspondente atrator de Mil-
nor cuja projecdo é um ponto fixo repulsivo de T, como limite de f%; ((CRL)>®,Y")
comY' = (CRR)*, ver a Figura 4.4.

Figura 4.4: Incremento de periodo convergindo para um ponto fixo repulsivo, com
s =(011)>, X = (CRL)>®eY’' = (CRR)>. Consideramos u € [0.8318, 0.844]
e imprimimos as iteradas F(iu,s) (0,0) com 500 < ¢ < 1000. Os pardmetros assi-
nalados s3o I} = ®(¢(fLr(X,Y"))), lo = ®(t(f}(X,Y"))) el = ®(RLL(R)™).

Exemplo 44. A alteracdo do padrdo de iteracdo s pode provocar alteracoes
dramdticas nos cendrios de bifurcagdo.
Consideremos, por exemplo, p = 3 e a sequéncia de incrementos de periodo

fir((CRR)™, (CLR)™),
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convergente para a sequéncia
CRRL(LRL)>

e originando o correspondente atrator de Milnor.

Para s = (011)* podemos observar na Figura 4.2 os (u, s)-atratores locais
correspondentes aos incrementos de periodo e o (u, s)-atrator de Milnor corre-
spondente.

Contudo, se s = (010 001)* entdo para qualquer U = RRLLRL ... temos
que c*(U) > U e s4, = 0 para todos os n, logo qualquer parametro u tal que U =
Ir(u) tenha prefixo RRLLRL gera um (u, s)-atrator local 4-ciclico que elimina
todos as sequéncias de incremento de periodo e os atratores correspondentes, ver
a Figura 4.5

Figura 4.5: u € [0.093,0.114], s = (010 001)*°. A estrutura de incrementos de
periodo e respetivo atrator de Milnor foram eliminados pelo padrio de iteracao.

Neste Capitulo estabelecemos condi¢des suficientes para a admissibilidade das
sequéncias simbdlicas como invariantes de amassamento, em funcdo do padrao
de iteracdo. Estas condi¢cdes permitiram-nos descrever os limitadores correspon-
dentes aos atratores de Milnor como limites de sequéncias de limitadores, cor-
respondentes a atratores locais ciclicos, organizadas segundo uma estrutura de
incrementos de periodo, cuja existéncia é fortemente dependente do padrdao de
iteracdo considerado.
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Capitulo 5

Atratores nao autonomos locais,
para sequéncias genéricas
A e [—1,1]No

Neste Capitulo, baseado em [21], vamos estudar perturbagcdes sobre os limita-
dores. Para isso vamos abandonar o foco no padrdo de iteracido s e considerar
sequéncias genéricas A € [—1, 1],

Tal como antes, consideramos a iteragao sequencial de fun¢des tenda com um
segmento constante, f, : [—1,1] — [—1,1], u € [—1,1] e, para uma sequéncia
A € [—1, 1] definimos a n-ésima iteragdo segundo A, com valor inicial z €
[—1, 1] e instante inicial k, como

F/(L<x7k) - (f)\k+n71 O. f)\k>(x)7 sen > 1

e
F)(x,k) = x para todos os k.
Para X = (CX;... X|x-1)® € %, sejam
e

X(L) = X1 ... Xjxj-1(e(X)L)X(R).

Pelo Teorema 7 temos imediatamente que
TH(@(X (L) = TH(@(X(R))) = (X (R)).
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Definiciio 45. Seja X € ¥ com | X| = p < +oo. Uma sequéncia \ € [—1,1]" é
uma X -sequéncia se, para todos os n € Ny, ®(X (L)) < A\pp < P(X(R)) e, para
todos 0s 0 < j < p, Appyj > max{®(c?(X(L))), ®(c?(X(R)))}.

Uma X-sequéncia )\ é uma X-sequéncia estrita se \,, = \o para todos os
n e No.

Os sistemas dinamicos nao auténomos obtidos através de iteracdo sequencial
do tipo F}'(z, k) em que A = (\,)nen, € uma sequéncia de parimetros, dizem-se
periddicos se A for uma sequéncia periddica. Os sistemas ndo auténomos asso-
ciados a uma X -sequéncia podem ser periddicos ou ndo, mesmo no caso estrito.
Contudo podem ser encarados como perturbagdes dependentes do tempo, de sis-
temas periddicos com periodo |X |, sendo que a diferencga entre os casos estrito
e ndo estrito é que, no caso estrito nao sdo permitidas perturbacdes nos instantes
TL|X , N € No.

Vamos agora adaptar a Definicdo 10 ao presente contexto.

Defini¢iio 46. Sejam A C [—1,1]xNy um conjunto nédo auténomo e A € [—1, 1],

* A é M-invariante, se existir k tal que fy  (A(K')) C A(K' + 1) para todos
os k' > k.

o A ¢é A\-localmente atrativo se for \-invariante e existir k tal que, para cada
k' > k existe uma vizinhanga A'(k') de A(K') em [—1,1] tal que, para
algumn, F(A'(K') C AK' +n).

Defini¢iio 47. Seja A € [—1,1]"°, entdo um \-atrator local ndo auténomo p-
ciclico é um subconjunto ndo auténomo proprio, A & [—1,1] x Ny com proje¢do
fechada, \-localmente atrativo e p-ciclico.

Nota 48. Notemos que, nesta definicdo de atrator local ndo autéonomo deixdmos
cair a condi¢do do conjunto ter projecdo minimal. Isto deve-se ao facto de, neste
caso, o objetivo principal ser o de controlar as perturbagoes de modo a preservar
um conjunto ndo auténomo ciclico que atrai a generalidade das orbitas. Apesar
de no caso estrito a minimalidade da projecdo ser automaticamente garantida,
no caso geral tal ndo seria possivel sem impor mais condicdes sobre a sequéncia
A, ver a Figura 5.1.

Sejam X € X uma sequéncia simbdlica com |X| = p < +oo, A uma X-

sequéncia, e
N—1 1-—=MN\
Ji - )
"]
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Figura 5.1: Um diagrama de bifurcagdo com uma sequéncia de A\-atratores
locais ndo auténomos p-periédicos com periodos consecutivamente duplicados
p = 3,0,..., para sequéncias A, tais que )\ varia entre —0.6 ¢ —0.5, A\3,11 =
Asnio = 1 e A3, = Ag + 0.0017,,, onde os r,, sdo inteiros aleatdrios entre 0 e 9.

os segmentos constantes de f), para cada ¢. Consideremos entdo os segmentos
constantes generalizados

P(Franp © -0 ) = JupU Lol (Juprn) U
U(fA(n+1)p72 O...0O fAnp)il(z](n+1)p71)

’P(f/\(nﬁ)%2 0...0 f,\(n+1)p71) = J(n+1)p—1 U f>\7(711+1)p—1 (J(n+1)p) U...
U(fk(n+2)p73 ©...0 f>\(n+1)p—1)71({](”"!‘2)17_2)'

Consideremos também os intervalos A; = T ([®(X (L)), (X (R))]), i =
1,...,p(T° = id), ver a Figura 5.2.

Lema 49. Sejam X € X uma sequéncia simbélica com |X| = p < +oo, e
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A 2 A 3 A 1

Figura 5.2: Construcdo dos conjuntos A; para X = (CRL)*, X(R) = (RLL)*®
e X(L) = RLR(RLL)>.

A € [—1,1]N° uma X -sequéncia. Entdo, para todos os n € Ny,

Ap C P(fruanypr © 0 foany)s
A1 C ,P(fk(n-ﬁ»l)p o0...0 f)\anrl)?

Ap—l C P(f)\(nJrg)p,g ©...0 f)\(n+1)p71)

Demonstragdo. Notemos que, ao longo desta demonstracao, os extremos dos in-
tervalos podem ndo estar na ordem correta, ou seja, podemos escrever |a, b[ com
b<a.

Agora, como ¢;(X (L)) = ¢(X(R)) para todos os ¢ = 0,...,p — 1, pelo
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Teorema 7
A, =T H[2(X(L ))#P(X(R))]

= [0(o?1(X(L))), D(oP

((e(X)L)X(R)), ((e

=[®
entdo, como \,, < ®(X(R)),

[@((e(X) L)X (R)), 2(((X)R)X(R))] C Jnp € P(friuiappes © - © )

Parai=1,...,p—1ej < p—1i,como A € uma X-sequéncia,

f’\np+i+jf1 ©...0 f)\an(Ai) = TJ(AZ)

A
~—
/\
~
~—
~—
—

entdo, para j =p — i — 1,
f)\np+p71 o. f)\np+z (A ) Tp 1(A1) C J(n—|—1)p7

e entao

A C (f>\np+p 1 -+- 0 f>\np+i)_1<(](n+1)p> C ,P(fAnp+i+p—l ©...0 f>\np+1)
[

Lema 50. Sob as condicoes do lema anterior, se x € A; entdo, para todos os
J <p—1ietodososn e Ny

(f)\np+i+j—1 ©...0 f>\np+z)(x> = TJ<$>

Demonstracdo. Se x € A; entdo T(x) € [TY(®(X (L)), T(P(X(R))], logo,
como

Anpri > max{®(c" (X (L))), ®(c’(X(R)))}, entdo T'(x) = fx,,,.(r). Uma vez
que T'(xz) € A;;; a demonstragdo segue indutivamente. O]

E imediato deduzir o seguinte coroldrio.

Coroldrio 51. Sejam X € ¥ com |X| = p < +oo e A € [1,1]N uma X-
sequéncia, entdo, para todos osn € Nope j =0,...,p—1,

(faups © -0 fan)(0) = T7 (M),

(f)‘(n+1>p ©...0 fAnp+1)()‘np) = >‘(n+1)p-
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Teorema 52. Sejam X € ¥ com |X| = p < +ooe A € [—1,1]" uma X-
sequéncia, entdo o conjunto ndo autonomo Ay, em que

A\(0) = A, e Ax(np+ j) = Aj paratodososn € Npej=1,...,p,
é um \-atrator local ndo auténomo p-ciclico.

Demonstragcdo. A, é p-periddico pela definicdo e € A-invariante pelo Lema 50.
Finalmente vamos ver que A, é A-localmente atrativo.
Vamos demonstrar que, para todos os n € Ny e todos 0s 0 < j < p — 1, existe
uma vizinhanga V,, ; de A; tal que

FY(Vagmp+37) C Ax((n+1)p+7)

e entdo o resultado segue da p-periodicidade e da A-invariancia de A,.
Em primeiro lugar consideramos j = 0. Como ®(X*) < A, < ®(X*), J,,
¢ uma vizinhanga de A,,, = Ay e, pelo Lema 50,

F/Z\7(an7 np) = F)Z\)(A()’ np)
TP 1(Ay) € Ao = Ay((n+ 1)p)

Consideramos agora j > 0. Da demonstracao do Lema 49, para todos os
n € Npe 0 < j < p podemos tomar V;, ;, a componente conexa de (f,, .,

0 frpss) (Jms1)p) que contém A;. Para além disso, como A(,41), < P(X7),
V,,; € uma vizinhanga de A; e

(fA(""‘l)ZH’J‘*l ©...0 f>‘(n+1)p fAnp+7 )( )

v,
(f)\(n+l)p+_j71 O.. f>\(n+1)p f/\npﬂ)( ) -
{T ( (n+1) )}

]

Teorema 53. Sejam X € ¥ com |X| = p < +ooe A € [-1,1]" wuma X-
sequéncia estrita, entdo o conjunto ndo autonomo B, tal que

B, (0) = By(p) e By(j +np) = {Fg(O, 0)} paratodososn € Ngej=1,...,p,
é um \-atrator local ndo auténomo p-ciclico.
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Demonstragcdo. B € p-ciclico pela defini¢do e, pelo Lema 50, é também A-invariante.
Pelo Corolario 51, como A € estrito entdo para todos os n € Nye j =
0,...,p—1
(Prapss © -0 fanp)(0) = T7(Anp) = T7(No),

logo, Pelo Lema 49, para todos os n

By(j +np) = Tj()‘O) = Tj()‘np) - P(fA(n+l)p+j ©...9 f/\np+j+1)'

Consequentemente, se C; ¢ a componente conexa de P ( P wsiyps; O -0 Propsies)
que contém B, (j + np), entdo, para todos os n’ > p

FY(Cy,j+np) = FY(BA(j +np),j +np)
= (Ba(j+np+n'),j+np+n').

O

Concluimos dos resultados deste capitulo, que a estrutura dos atratores locais
€ robusta em relacd@o a perturbacdes sobre os limitadores.
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Capitulo 6

Discussao e conclusoes

Ja se sabia que a introdugdo de limitadores simples em sistemas dinamicos discre-
tos unidimensionais pode criar Orbitas periddicas super estaveis e também atra-
tores de Milnor. A partir do exposto no Capitulo 3 concluimos ndo ser necessario
introduzir os limitadores em todos os passos de iteragdo para criar estes atratores.
Para além disso, os sistemas ndo auténomos estudados exibem uma riqueza de
diferentes comportamentos que nio sao possiveis no caso unimodal auténomo.
Ao contrario do caso auténomo, em que cada limitador u pode levar a criagdo de,
no maximo um atrator, € os atratores locais sao ciclicos, no caso nao autonomo,
dependendo do padrao de iteragdo escolhido, cada limitador « pode criar vérios
atratores diferentes, os atratores locais podem ndo ser ciclicos e podem coexistir
varios atratores, do mesmo tipo ou de tipos diferentes.

No Capitulo 4, exploramos a riqueza combinatéria das iteracdes segundo
padrdes, ao procurar estabelecer as condi¢des para a admissibilidade das sequéncias
simbdlicas como invariantes de amassamento, em fun¢do do padrdo de iteragao.
Estas condi¢des permitiram-nos descrever os limitadores correspondentes aos atra-
tores de Milnor como limites de sequéncias de limitadores, correspondentes a
atratores locais ciclicos, organizadas segundo uma estrutura de incrementos de
periodo.

A descri¢do dos atratores de Milnor como limites de sequéncias de incremen-
tos de periodo, juntamente com a generalizacao do produto * de [22] a padrdes de
iteracdo que sdo p-sequéncias, permitir-nos-a uma descri¢do completa da estrutura
dos diagramas de bifurcagdo neste contexto, 0s quais, como se observa no final do
Capitulo, sdo altamente dependentes do padrao de iteracao.

Por fim, os resultados do Capitulo 5 mostram que a estrutura dos atratores
locais € robusta em relacdo a perturbacdes dos limitadores. Seria interessante
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considerar perturbacdes nos limitadores da familia de funcdes tendas abertas in-
troduzida em [27], uma vez que, nesta familia de funcdes, as perturbacdes nos
limitadores induzem perturbacdes nos ramos nao constantes da respetiva funcao
tenda.

Em [8] afirma-se que, em termos biologicos, a aplicacdo de um limitador sim-
ples a fun¢do unidimensional corresponde a medidas de controlo, tais como abate,
caca ou captura de uma populacdo. Contudo, também se observa que a aplicacao
de um limitador de controlo a uma varidvel de estado pode alterar significativa-
mente o valor médio, tornando esta medida contra-eficaz em muitas situacoes.

De forma semelhante, em [7] observa-se que a introdu¢@o de limitadores in-
feriores nos precos pode baixar o preco médio e a introducdo de limitadores su-
periores pode aumentd-lo. Também se observa que as politicas de limitacao de
precos podem ter custos substanciais para as autoridades centrais. Por exem-
plo, para evitar que o pre¢o caia abaixo (acima) do preco minimo (maximo), a
autoridade central tem que comprar (vender) permanentemente uma fracao da
mercadoria fornecida (armazenada). E entdo razodvel esperar que a reducio do
numero de vezes em que sdo introduzidos os limitadores possa reduzir os custos
de implementacdo. Seria entdo interessante tentar aplicar os nossos métodos aos
modelos de [8] e de [7] para tentar controlar os valores médios e reduzir os custos
de implementacao.

No contexto do Capitulo 3 o parametro u define o limitador e o padrao de
iteracdo s define a estratégia de implementacao do limitador. Por exemplo, con-
siderando a introdugdo do limitador © = 0.521 obtemos o mesmo (u, s)-atrator
local 2-ciclico A com P(A) = {—0.042,0.521} quer o limitador seja aplicado
de forma permanente (s = 0°) ou alternadamente (s = (01)°°), potencialmente
reduzindo custos. Por outro lado, para s = (01'')> obtemos um atrator local 12-
ciclico com um valor médio das drbitas diferente € um custo de implementacao
ainda mais baixo.

Apesar de termos apenas considerado fungdes tenda com segmentos constantes,
os resultados apresentados podem ser estendidos a outras familias de fung¢des uni-
modais com segmentos constantes, como por exemplo a familia de quadréticas

fu(r) = min{u, 1 — 222}, u € [-1,1].

O abandono da restricdo \; = 1 se s; = 1, nas iteracdes segundo um padrdo
bindrio, considerando duas fun¢des tenda com segmento constante f,,, se s; = 0 e
fuy s€ 5, =1 com —1 < wugp,uy <1 vai trazer ainda mais complexidade, tal como
a coexisténcia de atratores relacionados com ambos os limitadores, bifurcacdes
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com codimensdo dois, como as estudadas em [25], dinAmica simbdlica compli-
cada, etc.. Por outro lado é expectdvel que esta generalizacdo tenha bastantes
semelhangas com a generalizacdo a fungdes seccionalmente lineares [-modais
com [ — 1 patamares.
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