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Capı́tulo 1

Introdução

Nos últimos anos, o estudo da iteração de funções seccionalmente diferenciáveis
tem atraı́do a atenção de vários autores (ver [2] e referências lá contidas). Isto
deve-se em parte ao facto de muitos processos reais, caracterizados por mudanças
bruscas entre os estados, serem naturalmente representados por este tipo de funções.
Uma classe particular de funções seccionalmente diferenciáveis são as funções
com secções constantes, as quais se obtêm através da inserção de uma secção
constante numa função unidimensional. Este procedimento, conhecido como con-
trolo com limitadores simples, origina frequentemente a criação de uma órbita
periódica super estável e tem sido usado no controlo do caos em sistemas dinâmicos
unidimensionais, [4, 16, 27, 28, 29], com aplicações em áreas tão distintas como
dinâmica cardı́aca, [10, 11], telecomunicações e conversores elétricos, [29, 12],
dinâmica de populações, [8], ou dinâmica de mercados [7].

Frequentemente deparamo-nos com situações de modelação em que as equações
de evolução incluem parâmetros explicitamente dependentes do tempo. Este é o
caso, por exemplo, quando pretendemos modelar populações com forçamentos
dependentes do tempo, provenientes de estratégias de regulação ou controlo de
populações. Nestas situações entramos no campo dos sistemas dinâmicos não
autónomos. Com base nesta premissa, alguns trabalhos recentes abordam até que
ponto é possı́vel estender a teoria já existente no caso autónomo, à iteração alter-
nadada de duas funções reais, [18, 25, 26] ou complexas [5, 6].

Nesta lição vamos estudar sistemas não autónomos discretos provenientes de
equações às diferenças não autónomas do tipo

xk+1 = fλk(xk)

em que fλ é uma famı́lia de funções reais de variável real, dependentes do parâmetro
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real λ e (λk)k∈N0 uma sequência de parâmetros. Este tipo de sistemas é altamente
relevante para as aplicações, por exemplo para modelar estratégias de regulação ou
de controlo através da sequência (λk)k∈N0 . Se a sequência (λk)k∈N0 for periódica,
então dizemos que o sistema não autónomo correspondente é periódico.

Nesta lição, vamos considerar famı́lias de funções tenda com um segmento
constante,

fu(x) = min{u, T (x)}

em que

T (x) =

{
2x+ 1 se − 1 ≤ x ≤ 0
−2x+ 1 se 0 < x ≤ 1

é a função tenda no intervalo [−1, 1] e u ∈ [−1, 1] é o limitador. Se u = 1 então
fλ = T .

Tanto quanto é do conhecimento deste autor, o primeiro trabalho sobre a
iteração de funções deste tipo remonta aos anos 70 do século passado com o
famoso trabalho de Metropolis, Stein e Stein, [13]. Mais recentemente, em [18],
estas funções foram usadas para demonstrar uma conjetura de Milnor, sobre a
conectividade dos conjuntos isentrópicos num espaço de polinómios de grau qua-
tro simétricos.

Em [25] estudámos o esqueleto de bifurcação no caso em que (λk)k∈N0 é uma
sequência 2-periódica, descrevendo a estrutura de bifurcação local ao longo e na
vizinhança dos ossos.

Em [26], novamente considerando (λk)k∈N0 2-periódica, introduzimos o con-
ceito de renormalização no contexto não autónomo periódico, interpretámo-lo ao
nı́vel da dinâmica simbólica, através de uma versão apropriada de produto estrela e
calculámos as taxas de convergência de sequências de parâmetros correspondentes
a consecutivos produtos estrela. Definimos também sequências de parâmetros cor-
respondentes a sequências inarmónicas de duplicações de perı́odo e calculámos
as taxas de convergência correspondentes. Em ambos os casos demonstrámos que
as taxas de convergência são independentes do ponto inicial, observando assim
propriedades de universalidade do tipo observado por Feigenbaum em sistemas
autónomos, ver [9].

Em [19] foi introduzida a ideia de padrão de iteração. Os autores consideraram
o esquema de iteração xn+1 = fcn(xn), para a famı́lia logı́stica complexa fc(z) =
z2 + c, z ∈ C, (cn)n∈N0 ∈ {a, b}N0 , a, b ∈ C. Como a sequência de parâmetros só
pode conter dois elementos, a ou b, então pode ser identificada com uma sequência
binária s, o padrão de iteração. Então os autores estudaram a forma como o padrão
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de iteração (sn)n∈N0 ∈ {0, 1}N0 afeta a topologia dos conjuntos de Julia e de
Mandelbrot.

Em [22], considerámos sequências de parâmetros (λn)n∈N0 ∈ {u, 1}N0 . Do
ponto de vista dos limitadores, isto significa introduzir o limitador u apenas nos
istantes i tais que si = 0, sendo (sn)n∈N0 ∈ {0, 1}N0 o padrão de iteração.
Considerando apenas padrões de iteração periódicos, estudámos os diagramas de
bifurcação obtidos através da variação de u e a forma como o padrão s os al-
tera. Estudámos ainda a existência de estruturas de auto semelhança originadas
pelo produto estrela e de adição de perı́odo, que também descrevemos usando
dinâmica simbólica.

Esta lição é baseada em [21], [23] e [24]. Em [23] e [24] considerámos a
introdução de um limitador u segundo um padrão de iteração s. Em [23] es-
tudámos a existência e coexistência de atratores locais e de Milnor não autónomos
em função do par (u, s). Em [24] estudámos os invariantes de amassamento
K(u, s) para os pares (u, s) e descrevemos os limitadores correspondentes aos
atratores de Milnor como limites de sequências de limitadores correspondentes a
estruturas de incremento de perı́odo. Em [21], estudámos as perturbações sobre os
limitadores que preservam os atratores locais e respetiva estrutura combinatória.

Depois de, no Capı́tulo 2, introduzirmos as funções tenda com um segmento
constante, os sistemas dinâmicos não autónomos por elas gerados e respetiva
dinâmica simbólica, no Capı́tulo 3, correspondente a [23], consideramos sequências
de parâmetros (λn)n∈N0 ∈ {u, 1}N0 . Definimos atratores locais não autónomos e
atratores de Milnor não autónomos e estudamos a existência e coexistência destes
atratores em função do limitador u e do padrão de iteração s. Os atratores de
Milnor aqui estudados surgem quando a órbita do segmento constante fica presa
numa órbita periódica repulsiva da função tenda. No Capı́tulo 4, obtido de [24],
estudamos o surgimento dos parâmetros u correspondentes a estes atratores, como
limite de sequências de parâmetros correspondentes a atratores locais associados
a sequências de incrementos de perı́odo. Este tipo de estrutura, e correspondentes
atratores de Milnor, foi observada no contexto autónomo em [1], na famı́lia de
funções tenda com segmento constante, descontı́nuas. Neste Capı́tulo introduz-
imos ainda os invariantes de amassamento não autónomos e, para cada padrão
de iteração s, estudamos as sequências simbólicas que podem ser invariantes de
amassamento fixando s.

No Capı́tulo 5 estudamos perturbações sobre os limitadores. Definimos atra-
tores não autónomos locais cı́clicos dependentes de uma sequência simbólica X
e estudamos as sequências genéricas (λn)n∈N0 de parâmetros que preservam estes
atratores.
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Finalmente, terminamos com um Capı́tulo onde resumimos as principais con-
clusões deste trabalho e discutimos possı́veis aplicações e generalizações.

Esta lição pode ser proferida, por exemplo, no contexto da unidade curricu-
lar ”Seminário de Modelação Matemática” do terceiro semestre do Mestrado em
Matemática Aplicada para a Indústria do ISEL. Sendo este, um mestrado com
foco na Matemática Aplicada, seria adequado desafiar os alunos para explorar a
aplicação das ideias aqui apresentadas em modelos como os introduzidos em [7]
e [8].

Optámos por, no documento escrito, apresentar todas as demonstrações efe-
tuadas nos trabalhos [21], [23] e [24], sobre os quais incide a lição e referir as
restantes para a respetiva fonte.
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Capı́tulo 2

Iteração sequencial de funções tenda
com um segmento constante

Neste capı́tulo vamos introduzir as definições gerais de iteração sequencial e iteração
segundo um padrão, bem como introduzir as ferramentas de dinâmica simbólica,
unificando as definições e notações introduzidas em [21, 23, 24].

2.1 Iteração sequencial

Consideremos a função tenda T : [−1, 1]→ [−1, 1], definida por

T (x) =

{
2x+ 1, se − 1 ≤ x ≤ 0
−2x+ 1, se 0 < x ≤ 1

.

Para u ∈ [−1, 1] definimos a função tenda com um segmento constante,
fu(x) = min{u, T (x)}, ou, de forma equivalente,

fu(x) =


2x+ 1, se − 1 ≤ x < (u− 1)/2

u, se (u− 1)/2 ≤ x ≤ (1− u)/2
−2x+ 1, se (1− u)/2 < x ≤ 1

.

Se u = 1, então fu(x) = T (x) para todos os x ∈ [−1, 1].

Definição 1. Para uma sequência λ ∈ [−1, 1]N0 definimos a n-ésima iteração
sequencial segundo λ, com valor inicial x ∈ [−1, 1] e instante inicial k, como

F n
λ (x, k) = (fλk+n−1

◦ . . . ◦ fλk)(x), se n ≥ 1
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e

F 0
λ (x, k) = x para todos os k.

Nos próximos dois capı́tulos vamos apenas considerar sequências λ tais que
λi ∈ {u, 1} para todos os i ∈ N0, então a sequência de iteração λ fica totalmente
identificada pelo par (u, s) em que s ∈ {0, 1}N0 é tal que λi = u se e só se si = 0.
Chamamos à sequência binária s, o padrão de iteração.

Definição 2. Para n ∈ N, (u, s) ∈ [−1, 1] × {0, 1}N0 e (x, k) ∈ [−1, 1] × N0,
definimos a n-ésima iteração, segundo o padrão s, em x com instante inicial k,
como

F n
(u,s)(x, k) =

(
fλk+n−1

◦ . . . ◦ fλk
)

(x), se n ≥ 1

e

F 0
(u,s)(x, k) = x,

em que

λi =

{
u se si = 0
1 se si = 1

.

Se si = 0 (resp. si = 1) para todos os i ∈ N0 então a iteração segundo s
corresponde à iteração de fu (resp. de T ).

Temos então o espaço de fases estendido

[−1, 1]× N0,

o espaço de parâmetros estendido

[−1, 1]× {0, 1}N0

e a órbita segundo o parâmetro (u, s) de um ponto x ∈ [−1, 1] com instante inicial
k ∈ N0,

o(u,s)(x, k) = (F i
(u,s)(x, k))i∈N0 .

Na linguagem dos limitadores simples, este esquema de iteração corresponde,
para cada par (u, s) ∈ [−1, 1]×{0, 1}N0 , a introduzir, na função tenda, o limitador
u nos instantes i tais que si = 0.
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2.2 Dinâmica simbólica
Sendo uma função tenda com um segmento constante, definida em três secções,
vamos em seguida associar um sı́mbolo a cada uma delas.

Definição 3. Dados u ∈ [−1, 1] e x ∈ [−1, 1], o endereço de x relativamente ao
parâmetro u, é dado por

adu(x) =


L, se − 1 ≤ x < (u− 1)/2
C, se (u− 1)/2 ≤ x ≤ (1− u)/2
R, se (1− u)/2 < x ≤ 1

Podemos agora associar a cada órbita uma sequência simbólica.

Definição 4. Para (u, s) ∈ [−1, 1]× {0, 1}N0 e (x, k) ∈ [−1, 1]×N0 definimos o
itinerário de x com instante inicial k como sendo a sequência

I(u,s)(x, k) = (Xn)n∈N0 : Xi =

{
adu(F

i
(u,s)(x, k)) se sk+i = 0,

ad1(F
i
(u,s)(x, k)) se sk+i = 1

,∀i∈N0 .

Os itinerários das iterações segundo um padrão pertencem ao conjunto Σ das
sequências infinitas X0X1 . . . tais que Xj ∈ {L,C,R} para todos os j ∈ N0.

A notação (X0 . . . Xp−1)
n, 0 < n ≤ +∞ representa a concatenação de n

cópias da sequência finita X0 . . . Xp−1. Se n = +∞ então (X0 . . . Xp−1)
∞ repre-

senta uma sequência p-periódica infinita.
Considerando a ordem natural L < C < R vamos em seguida introduzir uma

relação de ordem em Σ:
Definimos

−L = R, −C = C e −R = L.

Para X ∈ Σ e k ∈ N0, definimos o sinal

εk(X) =

{
+ se #{Xj : 0 ≤ j ≤ k e Xj = R} for par
− se #{Xj : 0 ≤ j ≤ k e Xj = R} for ímpar. .

Agora, para X, Y ∈ Σ, X < Y se e só se X0 < Y0 ou existe r ∈ N, tal que
Xj = Yj para todos os j < r e εr−1(X)Xr < εr−1(Y )Yr.

Para x ∈ [−1, 1], denotamos por IT (x) o itinerário de x através da função
tenda,

IT (x) = ad1(x)ad1(T (x))ad1(T
2(x)) . . . .
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Se T i(x) 6= 0 para todos os i = 0, . . . , k − 1 então εk−1(IT (x)) = + se e
só se T k for estritamente crescente em x e εk−1(IT (x)) = − se e só se T k for
estritamente decrescente em x.

Se estivermos interessados apenas nos itinerários da função tenda T , então
como T (0) = 1, T i(0) = −1 para todos os i > 1 e 0 é o único ponto com esta
propriedade, os itinerários de T estão contidos no conjunto Σ′ ⊂ Σ das sequências
infinitas X0X1 . . . tais que Xi+1Xi+2 . . . = RL∞ para algum i, se e só se Xi = C.

Seja σ : Σ′ → Σ′, σ(X0X1 . . .) = X1X2 . . . a função avanço.

Definição 5. Uma sequência X ∈ Σ′ diz-se maximal se σi(X) ≤ X para todos
os i ∈ N.

O lema seguinte apresenta um resultado clássico de dinâmica simbólica, cuja
demonstração pode ser consultada, por exemplo em [3].

Lema 6. Para quaisquer x, y ∈ [−1, 1], IT (x) < IT (y) se e só se x < y.

Consideremos agora a função Φ : Σ′ → I , tal que Φ(CRL∞) = 0 e, para
todos os X ∈ Σ′ \ {CRL∞},

Φ(X) = −
n−1∑
i=0

εi(X)
1

2i+1
, (2.1)

onde n é tal que Xn = C e n = +∞ se Xi 6= C para todos os i ∈ N.
As duas primeiras proposições do seguinte teorema foram demonstradas em

[21] e a terceira em [24].

Teorema 7. Sejam T a função tenda, σ a função avanço e Φ definida em 2.1,
então, para todos os X ∈ Σ′, temos que:

1. X = IT (Φ(X));

2. Φ(σ(X)) = T (Φ(X));

3. Se Xn = C então T n(Φ(X)) = 0.

Demonstração. Os items (1) e (2) foram demonstrados em [21]. Para demonstrar
(3), observamos que, se X = LCRL∞ então Φ(X) = −1

2
e, se X = RCRL∞

então Φ(X) = 1
2

e em ambos os casos T (Φ(X)) = 0. Por outro lado, se aplicar-
mos (2) indutivamente obtemos, para todos os i < n, que Φ(σi(X)) = T i(Φ(X)),
logo, como Xn = C implica que σn−1(X) ∈ {LCRL∞, RCRL∞} obtemos

T n(Φ(X)) = T (T n−1(Φ(X))) = T (Φ(σn−1(X))) = 0.
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Capı́tulo 3

Atratores não autónomos em
iterações segundo um padrão

Os resultados deste capı́tulo foram publicados em [23].
No contexto não autónomo, os atratores e os repulsores vivem naturalmente

no espaço de fases estendido. Para lidar com isto, em [17], Potzsche discutiu estes
conceitos com base na ideia de conjunto não autónomo.

Definição 8. Um conjunto não autónomo é um subconjuntoA do espaço de fases
estendido [−1, 1]× N0.

Em [23], inspirados em [17] e em [20], introduzimos as seguintes definições
de atrator.

Definição 9. Seja A um conjunto não autónomo. Diz-se que:

• A k-fibra de A é

A(k) = {x ∈ [−1, 1] : (x, k) ∈ A}.

• A projeção de fibra de A é

P (A) = ∪k∈N0A(k).

• A tem projeção fechada se P (A) for fechado.

• A é p-cı́clico se existir k tal que, para todos os k′ > k, A(k′ + p) = A(k′).
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Definição 10. Sejam A um conjunto não autónomo, (u, s) ∈ [−1, 1]× {0, 1}N0 e
F n
(u,s) a iteração sequencial da Definição 2. Dizemos que:

• A é (u, s)-invariante se existir k tal que, para todos os k′ > k, F(u,s)(A(k′), k′) ⊂
A(k′ + 1).

• A é (u, s)-localmente atrativo se for (u, s)-invariante e existir l tal que,
para cada l′ > l, existir uma vizinhança A′(l′) de A(l′) em [−1, 1] tal que
F n
(u,s)(A′(l′), l′) ⊂ A(l′ + n) para algum n.

Definição 11 (Atrator local). Sejam A um conjunto não autónomo e (u, s) ∈
[−1, 1] × {0, 1}N0 . Dizemos que A é um (u, s)-atrator local se tiver projeção
fechada, for (u, s)-localmente atrativo e não existir nenhum conjunto não autónomo
A′ com P (A′) $ P (A) que verifique estas propriedades.

Dado o intervalo

Iu =

]
u− 1

2
,
1− u

2

[
,

se existir p tal que T p−1(u) ∈ Iu e s ∈ {0, 1}N0 for tal que sk+pn = 0 para
qualquer n ∈ N0 então, frequentemente, o conjunto {u, T (u), . . . , T p−1(u)} é a
projeção de um (u, s)-atrator local p-cı́clico. Contudo os (u, s)-atratores locais
não constituem o único tipo de atratores. De facto, se u for transformado, após
algumas iteradas, num ponto de uma órbita periódica instável, então esta órbita
vai atrair um conjunto com medida de Lebesgue positiva, mas possivelmente não
vai atrair nenhuma vizinhança de si própria. Estas órbitas foram batizadas em [1]
como Atratores de Milnor.

Em [14], no contexto autónomo, Milnor discutiu a ideia de atrator num sentido
mais fraco, nomeadamente como um conjunto invariante fechadoA cujo conjunto
estável W s(A) tem medida positiva e não existe nenhum subconjunto A′ $ A tal
que W s(A′) coincide com W s(A) a menos de um conjunto com medida nula, ver
[1].

Vamos em seguida adaptar este conceito ao contexto não autónomo.
Sejam µ a medida de Lebesgue em [−1, 1] e, para cada x ∈ [−1, 1] e A ⊂

[−1, 1], d(x,A) = infa∈A |x− a|.

Definição 12. Sejam (u, s) ∈ [−1, 1] × {0, 1}N0 , k ∈ N0 e A um conjunto não
autónomo. Definimos o (u, s)-conjunto estável de A com instante inicial k, como

W s(A, k) = {x ∈ [−1, 1] : lim
n→+∞

d(F n
(u,s)(x, k),A(k + n)) = 0}.
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Vamos em seguida definir um atrator de Milnor não autónomo, como sendo
um conjunto não autónomo, invariante, com projeção fechada e minimal, cujos
conjuntos estáveis tenham sempre medida positiva, a partir de um dado instante
k.

Definição 13 (Atrator de Milnor). Para (u, s) ∈ [−1, 1] × {0, 1}N0 , um (u, s)-
atrator de Milnor é um conjunto não autónomo, com projeção fechada e (u, s)-
invariante,A, para o qual existe k ∈ N tal que, para todos os k′ > k, µ (W s(A, k′)) >
0 e não existe nenhum outro conjunto não autónomo A′ com P (A′) $ P (A), que
verifica as mesmas propriedades.

Nota 14. Vamos referir-nos à caracterização ”não existe nenhum outro conjunto
não autónomo A′ com P (A′) $ P (A), que verifica as mesmas propriedades”
nas Definições 11 e 13, como A tendo projeção minimal.

Nota 15. Um (u, s)-atrator local é um (u, s)-atrator de Milnor, mas o recı́proco
não é necessariamente verdade.

De agora em diante, consideramos u ∈ [−1, 1[ , garantindo assim que µ(Iu) >
0.

3.1 Caso maximal

Em primeiro lugar, vamos estudar o caso em que U = IT (u) é uma sequência
maximal. Pelo Lema 6 isto implica que u > T i(u) para qualquer i tal que T i(u) 6=
u. Então, para qualquer i, T i(u) /∈ Iu e fu(T i(u)) = T (T i(u)) = T i+1(u), isto
significa que, se U = IT (u) é maximal então no conjunto correspondente à órbita
oT (u) = {T i(u) : i ∈ N0} não faz diferença aplicar fu ou T .

Para um padrão de iteração s ∈ {0, 1}N0 , denotamos o conjunto dos instantes
em que utilizamos fu na iteração, como

Zs = {i : si = 0}.

Sejam X ∈ Σ′ uma sequência p-periódica,

O(X) = {Φ(σi(X)), i = 0, . . . , p− 1}

a projeção da órbita oT (Φ(X), de Φ(X) por T e O(X) o conjunto não autónomo
tal que O(X)(i) = O(X) para todos os i ∈ N0 (σ0(X) = X). Temos então o
seguinte resultado.
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Teorema 16 (Atrator de Milnor). Sejam X ∈ Σ′ uma sequência p-periódica e
(u, s) ∈ [−1, 1[×{0, 1}N0 tais que:

1. ∃k>0 : T k(u) ∈ O(X).

2. IT (u) é maximal.

3. #(Zs) = +∞.

Então O(X) é um (u, s)-atrator de Milnor.

Demonstração. Como X é periódica então O(X) tem projeção fechada.
Da Condição 1. O(X) ⊂ oT (u), logo da Condição 2. e do Teorema 7, para

todos os i, j ∈ N0,

F(u,s)(Φ(σi(X)), j) = T (Φ(σi(X)) = Φ(σi+1(X))

eO(X) é (u, s)-invariante. Pela sua definição, nenhum outro conjunto não autónomo
A tal que P (A) $ P (O(X)) poderia ser (u, s)-invariante, logoO(X) tem projeção
minimal.

Para qualquer m ∈ N, seja tm = min{i ∈ N : m + i ∈ Zs}, tm existe devido
à Condição 3.. Então, da Condição 2., para qualquer x ∈ T−tm(Iu)

F tm+k+1
(u,s) (x,m) = T k(u) ∈ O(X),

logo T−tm(Iu) ⊂ W s(O(X),m) e, como u < 1 então T−tm(Iu) tem medida
positiva.

O próximo resultado estabelece as condições para que, no caso em que u seja
periódico em relação a T e IT (u) seja maximal, a órbita oT (u) seja a projeção de
um atrator local.

Teorema 17 (Atrator local). Seja (u, s) ∈ [−1, 1[×{0, 1}N0 tal que:

1. Existe p, mı́nimo, tal que T p(u) = u.

2. U = IT (u) é maximal.

3. Existe j tal que sj+np = 0 para qualquer n ∈ N0.

Então o conjunto não autónomo A tal que A(i) = ∅ se i ≤ j e A(j + i +
1) = {T i(u)} para todos os i ∈ N0 é um (u, s)-atrator local se e só se o sinal
εp−1(U) = −. Nesse caso, este (u, s)-atrator local é p-cı́clico.
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Demonstração. Como T p(u) = u, A tem projeção fechada. Como U é maximal,
então F(u,s)(T

i(u), k) = T i+1(u) para todos os i, k, logo A é (u, s)-invariante e
isto implica também que tem projeção minimal.

Vamos agora demonstrar que A é (u, s)-localmente atrativo se e só se o sinal
εp−1(U) = −.

U maximal e p-periódico implica que T p−1(u) é uma pré-imagem de u através
de T , logo T p−1(u) ∈

{
u−1
2
, 1−u

2

}
.

Vamos fazer a demonstração apenas considerando T p−1(u) = u−1
2

, uma vez
que o caso T p−1(u) = 1−u

2
segue de forma análoga. Vamos também supor sem

perda de generalidade que j = 0 e consequentemente snp = 0 para todos os
n ∈ N0.

Suponhamos primeiro que εp−1(U) = −. Se x ∈ Iu =
]
u−1
2
, 1−u

2

[
então

F(u,s)(x, np) = u para todos os n ∈ N0.
Como T p−1(u) = u−1

2
então Up−1 = L, logo εp−2(U) = εp−1(U) = − e T p−1

é decrescente e sobrejetiva numa vizinhança de u, daı́, nesta vizinhança existe
a < u tal que T p−1(a) = 1−u

2
. De forma análoga, nesta vizinhança existe b > u

tal que T p(b) = a.
Consideremos agora a vizinhança deA(i+1+np),A′(i+1+np) = T i(]a, b[),

n ∈ N0 e i = 0, . . . , p− 1.
Por um lado, como U é maximal, então

F p−1
(u,s)(]a, u], 1) = T p−1(]a, u]) = [T p−1(u), T p−1(a)[=

[
u− 1

2
,
1− u

2

[
e, como sp = 0,

F p
(u,s)(]a, u], 1) = fu

(
F p−1
(u,s)(]a, u], 1)

)
= {u}.

Por outro lado,

T p−1(b) < T p−1(u) =
u− 1

2
,

logo
F p
(u,s)([u, b[, 1) =]a, u]

e
F 2p([u, b[, 1) = {u}.

Concluimos que A é (u, s)-localmente atrativo. A ciclicidade de A resulta imedi-
atamente da sua definição.
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Se εp−1(U) = +, então como εp−2(U) = εp−1(U) = +, T p−1 é crescente
numa vizinhança de u, logo para qualquer n, se x < u estiver suficientemente
próximo de u, então T np−1(x) < u−1

2
e F np

(u,s)(x, 1) = T np(x) < u.

Nota 18. Em qualquer dos casos, εp(U) = ±, do teorema anterior concluimos
que o conjunto não autónomo A tal que A(i) = {u, T (u), . . . , T p−1(u)} para
todos os i, é um atrator de Milnor.

Concluı́mos das definições 11 e 13 que, na iteração segundo um padrão de
funções tenda com segmento constante, qualquer (u, s)-atrator local ou (u, s)-
atrator de Milnor A atrai Iu e consequentemente u. Se U for maximal as iteradas
F i
(u,s)(u, k) = T i(u) não dependem do instante inicial k, o que nos permite con-

cluir o seguinte.

Teorema 19 (Não coexistência). Se U = IT (u) for maximal, então para qualquer
(u, s) ∈ [0, 1[×{0, 1}N0 , não podem existir simultaneamente dois (u, s)-atratores
A e B, local e/ou Milnor, com projeções de fibra diferentes P (A) 6= P (B).

3.2 Caso não maximal

Vamos em seguida estudar o que acontece quando U = IT (u) não é maximal.
Neste contexto precisamos considerar Z ′s ⊂ Zs definido da seguinte forma:

Sejam l1 < . . . < ln < . . . tais que σli(U) > U , então

Z ′s(U) = {j : sj = 0 e sj+li = 1 ∀i}.

Como T i(u) ∈ Iu se e só se T i+1(u) > u, então Z ′s(U) é o conjunto dos
ı́ndices j tais que sj = 0 e F n

(u,s)(u, j + 1) = T n(u) para todos os n ∈ N0.

Teorema 20. [Atrator de Milnor] Sejam X ∈ Σ′ uma sequência p-periódica e
(u, s) ∈ [−1, 1[×{0, 1}N0 tais que U = IT (u) não é maximal e se verificam as
seguintes propriedades:

1. Para qualquer i = 0, . . . , p− 1, U > σi(X).

2. ∃k : T k(u) ∈ O(X).

3. #(Z ′s(U)) = +∞.

Então O(X) é um (u, s)-atrator de Milnor.
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Demonstração. A Condição 1. permite-nos usar os mesmos argumentos que no
Teorema 16 para concluir que O(X) é (u, s)-invariante e tem projeção minimal.

Para cada m ∈ N, seja t′m = min{i : m + i ∈ Z ′s(U)}, t′m existe devido à
Condição 3.. Consideremos agora TL(x) = 2x + 1 o ramo esquerdo da função
tenda,

a1 = T−1L

(
u− 1

2

)
e

b1 = T−1L (min{u, 0}).

Para I1 =]a1, b1[ temos que I1 ∩ Iu = ∅ e F(u,s)(I1, j) = T (I1) ⊂ Iu para to-
dos os j. Para além disso, para In = T−n+1

L (I1), temos que, para todos os j,
F n
(u,s)(In, j) = T n(In) ⊂ Iu, logo para todos os x ∈ It′m , F t′m

(u,s)(x,m) ∈ Iu e,
como m+ t′m ∈ Z ′s(U) então

F
t′m+1+k
(u,s) (x,m) = F k

(u,s)(u,m+ t′m + 1) = T k(u) ∈ O(X),

logo It′m ⊂ W s(O(X),m) e µ(W s(O(X),m)) > 0.

Nota 21. As condições 1. e 2. no Teorema anterior implicam que li < k para
todos os i.

Nota 22. Note-se que os atratores de Milnor, por um lado não são robustos em
relação ao parâmetro u, no sentido em que o atrator não persiste sob pequenas
perturbações de u, mas por outro lado apresentam uma certa robustez em relação
ao padrão de iteração s. Pelo Teorema 16, se U = IT (u) for maximal então o
atrator persiste para todos os padrões s tais que #(Zs) = +∞ e, pelo Teorema
20, se U = IT (u) não for maximal então o atrator persiste para todos os padrões
s tais que #(Z ′s(U)) = +∞.

Exemplo 23. Consideremos agora u = Φ(RLRLLR∞). Temos queU = IT (u) =
RLRLLR∞ não é maximal porque σ2(U) > U , logo T 2(u) > u implica que
T (u) ∈ Iu e que existem 0 < a < u < b tais que T (b) = u−1

2
e T (a) = 1−u

2
.

Considerando uma sequência s tal que s0 = s2 = 0, para todos os x ∈]a, b[,
temos F 2

(u,s)(x, 1) = F(u,s)(0, 0) = u, então, se s for tal que s2n = 0 para todos os
n ∈ N0, o conjunto não autónomoA tal queA(2n) = {T (u)} eA(2n+1) = {u}
para todos os n ∈ N0 é um (u, s)-atrator local. Assim a introdução da condição
s2n = 0 para todos os n criou um (u, s)-atrator local 2-cı́clico, ver a Figura 3.1.
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Figura 3.1: Iteração com u = Φ(RLRLLR∞). Se s0 = 0 então F 2(x, 0) =
F 2(u, 1) = T (u) ∈ Iu para todos os x ∈ Iu e 2 é a única iterada de ordem menor
ou igual a 6 com esta propriedade, logo a órbita só pode ser alterada pelos termos
pares de si.

Mais geralmente, se U for tal que σk(U) > U para algum k, seja

Bk(U) = {0 < i < k : σi(U) > U},

temos então o seguinte teorema.

Teorema 24. [Atrator local] Seja (u, s) ∈ [−1, 1[×{0, 1}N0 tal que:

1. U = IT (u) não é maximal, i.e., existe k tal que σk(U) > U .

2. Existe p ∈ N0 tal que, para todos os n ∈ N0 e i ∈ Bk(U), sp+nk = 0 e
sp+nk+i = 1.

Então o conjunto não autónomo A tal que A(i) = ∅ para todos os i ≤ p e, para
todos os n ∈ N0, e j = 1, . . . , k,A(p+ kn+ j) = {T j−1(u)}, é um (u, s)-atrator
local k-cı́clico.

Demonstração. Vamos considerar p = 0. Se σk(U) > U , então, pelo Lema 6
T k−1(u) ∈ Iu. Por outro lado si = 1 para todos os i ∈ Bk(U) implica que
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F k−1
(u,s)(u, 1) = T k−1(u) ∈ Iu e então F k

(u,s)(u, 1) = u. Para além disso, para todos
os j = 1, . . . , k − 1,

F(u,s)(A(nk + j), nk + j) = T ({T j−1})(u)) = A(j + 1)

e
F(u,s)(A(nk + k), nk + k) = fu({T k−1(u)}) = {u},

entãoA é (u, s)-invariante e k-cı́clico e consequentemente tem projeção minimal.
Por outro lado, como para todos os n, T n é sobrejetivo em cada um dos seus
intervalos, existem a < u < b tais que T k−1|[a,b] é monótono e T k−1({a, b}) ={
u−1
2
, 1−u

2

}
. Para cada j = 1, . . . , k e cada n ∈ N0 consideramos as vizinhanças

de A(nk + j), A′(nk + j) = T j−1(]a, b[). Para simplificar a notação vamos
considerar p = n = 0.

Se não existir i < k − j tal que si+j = 0 e A′(i+ j) ∩ Iu 6= ∅ então

F k−j+1
(u,s) (A′(j), j) = F(u,s)(Iu, k) = fu(Iu) = {u} = A(k + 1).

Por outro lado, se existir i < k− j tal que sj+i = 0 eA′(i+ j)∩ Iu 6= ∅, então
a Condição 2. e a monotonia de T k−1|[a,b] implicam que

T j+i−1(a′) < T j+i−1(u) <
u− 1

2
< T j+i−1(b′) ≤ 0

ou
0 ≤ T j+i−1(a′) <

1− u
2

< T j+i−1(u) < T j+i−1(b′)

para alguns a′, b′ ∈ {a, b}.
Sem perda de generalidade, vamos considerar apenas a primeira situação.
Então

T k−(j+i)−1(u) = T k−(j+i)
(
u− 1

2

)
∈ T k−(j+i)(]T j+i−1(a′), T j+i−1(b′)[) = Iu.

Suponhamos que i é único, então

F k−j+1
(u,s) (A′(j), j) = F

k−(j+i)+1
(u,s) (A′(j + i), j + i)

= F
k−(j+i)
(u,s) (fu(A′(j + i)), j + i+ 1)

= F
k−(j+i)
(u,s) (]T j+i(a′), u], j + i+ 1)

= F(u,s)(]T
k−1(a′), T k−(j+i)−1(u)], k)

= fu(Iu) = {u} = A(k + 1).
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Se i não for único, i.e., se existirem

i1 < . . . < in < k − j
tais que, para todos os l = 1, . . . , n, sj+il = 0 e A′(j + il) ∩ Iu 6= ∅, então, como
atrás, podemos tomar a′, b′ ∈ {a, b} tais que

T j+i1−1(a′) < T j+i1−1(u) <
u− 1

2
< T j+i1−1(b′) ≤ 0,

então
F i1+1
(u,s) (A′(j), j) = fu(]T

j+i1−1(a′), T j+i1−1(b′)[)

= T (]T j+i1−1(a′), u−1
2

[)
⊂]T j+i1(a′), T j+i1(b′)[)
= A′(j + i1 + 1).

Se continuarmos este procedimento, então

F i2+1
(u,s) (A′(j), j) = F i2−i1

(u,s) (F i1+1
(u,s) (A′(j), j), j + i1 + 1)

⊂ F i2−i1
(u,s) (A′(j + i1 + 1), j + i1 + 1).

Tal como para i1 podemos considerar a′′, b′′ ∈ {a, b} tais que

T j+i2−1(a′′) < T j+i2−1(u) <
u− 1

2
< T j+i2−1(b′′) ≤ 0,

e
F i2−i1
(u,s) (A′(j + i1 + 1), j + i1 + 1) = F i2−i1

(u,s) (]T j+i1(a′′), T j+i1(b′′)[, j + i1 + 1)

= fu(]T
j+i2−1(a′′), T j+i2−1(b′′)[)

⊂ A′(j + i2 + 1).

Concluimos então que

F i2−i1
(u,s) (A′(j + i1 + 1), j + i1 + 1) ⊂ A′(j + i2 + 1)

e, recursivamente, que

F in+1
(u,s) (A′(j), j) ⊂ A′(j + in + 1).

Finalmente temos

F k−j+1
(u,s) (A′(j), j) = F k−j−in

(u,s) (F in+1
(u,s) (A′(j), j), j + in + 1)

⊂ F k−j−in
(u,s) (A′(j + in + 1), j + in + 1)

= fu(T
k−j−in−1(]T j+in(a), T j+in(b)[)

= fu(]T
k−1(a), T k−1(b)[)

= fu(Iu) = {u}.
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Exemplo 25. Consideremos o padrão de iteração s = (001010)∞, u1 = 0, 519
e u2 = 0, 5215. Temos que IT (u1) = RLRLLLRRLRLR . . . e IT (u2) =
RLRLLLRRR . . ., então, pelo Lema 6, para qualquer parâmetro u ∈ [u1, u2],
IT (u) = U = RLRLL . . . e, como σ2(U) > U , B2(U) = ∅ e s2n+1 = 0 para
todos os n ∈ N0, pelo Teorema 24 o sistema tem um (u, s)-atrator local 2-cı́clico.
Isto pode ser observado na Figura 3.2, onde o atrator está assinalado a vermelho.

Olhando agora para o ponto assinalado a azul na Figura 3.2, este tem coor-
denadas (u, y) = (0.5208(3), 1

3
) e

u =
1

2
+

1

22
− 1

23
− 1

24
− 1

25
+

1

26

(
−1 +

1

3

)
= Φ(RLRLLR∞).

Numericamente T 5(u) = 1
3

é um ponto fixo repulsivo de T .
Tendo em atenção o Teorema 20, para U = RLRLLR∞, σi(U) > U ⇒ i =

2, logo l1 = 2. Por outro lado, para todos os n ∈ N0, s6n = 0 e s6n+2 = 1,
logo Z ′s(U) = {6n : n ∈ N0}. Então, considerando X = R∞, O(X) = {1

3
}

e O(X) é um (u, s)-atrator de Milnor. Concluimos que, para u = 0.5208(3) e
s = (001010)∞ um (u, s)-atrator local e um (u, s)-atrator de Milnor coexistem.
Note-se que isto apenas é possı́vel porque U = IT (u) não é maximal.

Podemos fundir os Teoremas 20 e 24 para obter o seguinte.

Teorema 26 (Coexistência). Sejam X ∈ Σ′ uma sequência p-periódica e (u, s) ∈
[−1, 1[×{0, 1}N0 tais que:

1. Para todos os i = 0, . . . , p− 1, U > σi(X).

2. ∃k tal que T k(u) ∈ O(X).

3. Para U = IT (u) existe l tal que σl(U) > U .

4. #(Z ′s(U)) = +∞.

5. Existe uma ordem p ∈ N0 tal que, para todos os n ∈ N0, sp+nl = 0 e
sj+nl+i = 1 para todos os i ∈ Bl(U).

Então o conjunto não autónomo A tal que A(i) = ∅ para todos os i ≤ p e
A(ln + j) = {T i−1(u)}, i = 1, . . . , l é um (u, s)-atrator local e O(X) é um
(u, s)-atrator de Milnor.

Vamos ver no próximo exemplo que, no caso não maximal, dois (u, s)-atratores
locais também podem coexistir.
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Figura 3.2: Diagrama de bifurcação com s = (001010)∞ e u ∈ [0.519, 0.5215].
Iterámos 1500 vezes com valor inicial 0 e instante inicial 0. O atrator local 2-
cı́clico está marcado a vermelho e o atrator de Milnor é o ponto azul. As linhas
pretas no lado esquerdo do atrator de Milnor correspondem a regimes de transição
antes de as órbitas ficarem presas no atrator local. No lado direito do atrator de
Milnor as linhas pretas podem corresponder a outros atratores locais que coexis-
tem com o atrator local 2-cı́clico.
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Exemplo 27. Consideremos de novo, s = (001010)∞ e, agora, u = 0, 521. Temos
que

U = IT (u) = RLRLLLRRRRRLRLLLLL . . . .

É fácil verificar que j = 2 e j = 12 são os únicos j ≤ 12 tais que σj(U) > U ,
então, tendo em atenção o Teorema 24, B12(U) = {2}. Como s é 6-periódico,
s0 = 0 e s2 = 1, então s12n = 0 e s12n+2 = 1 para todos os n ∈ N0, então, pelo
Teorema 24, o conjunto não autónomo A tal que A(12n + j) = {T j−1(u)} para
todos os j = 1, . . . , 12 e todos os n ∈ N0 é um (u, s)-atrator local 12-cı́clico.
Como u = 0.521 ∈ [0.519, 0.5215], este (u, s)-atrator local 12-cı́clico coexiste
com o atrator local 2-cı́clico estudado no Exemplo 25. Observando a Figura 3.2,
observamos que esta situação persiste numa vizinhança em torno de u = 0.521.

Outra diferença notável entre os casos maximal e não maximal é a seguinte:
no caso maximal todos os (u, s)-atratores locais são cı́clicos. Para ilustrar o caso
não maximal consideremos U = RLRLLRLLLR∞ e u = Φ(U). Obviamente
U é não maximal porque σ2(U) > U e σ5(U) > U . Agora, adaptando os
argumentos da demonstração do Teorema 24, para qualquer padrão de iteração
s = 01a101a201a3 . . ., onde (an)n∈N ∈ {1, 4}N, o conjunto não autónomo A tal
que A(0) = ∅ e A(j) = {F j−1

(u,s)(u, 0)} para todos os j ≥ 1 é um (u, s)-atrator lo-
cal, mas apesar de P (A) ⊂ {u, T (u), T 2(u), T 3(u), T 4(u), T 5(u)}, ao contrário
do caso maximal, este pode não ser cı́clico. Este é o caso quando a sequência
(an)n∈N não é periódica nem eventualmente periódica.

Neste caso continuamos a poder ter coexistência de um (u, s)-atrator local
com um (u, s)-atrator de Milnor. Consideremos por exemplo o padrão

s = (01)a100(01111)b1(01)a200(01111)b2 . . .

tal que, para todos os i, ai ∈ N0 e bi ∈ N.
Por um lado temos uma subsequência (sin)n∈N0 tal que, para todos os j, ij ∈

Zs e ij+1− ij ∈ {2, 5} e isto gera o (u, s)-atrator local. Por outro lado temos uma
subsequência infinita slj tal que, para todos os j, lj ∈ Zs e slj+2 = slj+5 = 1 e
isto gera o (u, s)-atrator de Milnor.

Nota 28. Uma formulação mais geral de uma condição suficiente para a ex-
istência de um (u, s)-atrator local é a existência de i1, . . . , ik tais que σij(U) > U
para todos os j = 1, . . . , k e uma sequência (an)n∈N tais que, para todos os
n ∈ N, an ∈ Zs e existe j(n) ∈ {1, . . . , k} tal que an+1 − an = ij(n) e san+l = 1
para todos os l ∈ Bij(n)

(U).
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A partir dos resultados deste capı́tulo, concluı́mos não ser necessário intro-
duzir limitadores em todos os passos de iteração para criar atratores locais ou de
Milnor. Concluı́mos também que, por um lado, vários padrões de iteração podem
criar o mesmo atrator e que, por outro lado, o mesmo limitador pode criar difer-
entes atratores, conforme o padrão de iteração. Para além disso, no contexto não
autónomo, ao contrário do que acontece no contexto unimodal autónomo, podem
coexistir vários atratores, do mesmo tipo ou de tipos diferentes.
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Capı́tulo 4

Invariantes de amassamento,
incrementos de perı́odo e atratores
de Milnor em iterações segundo um
padrão

Neste capı́tulo, começamos por introduzir os invariantes de amassamento K(u, s)
para iterações segundo um padrão, F n

(u,s), de funções tenda com um segmento
constante. Em seguida introduzimos uma estrutura de incrementos de perı́odo nos
invariantes de amassamento e concluimos com a descrição dos parâmetros cor-
respondentes aos atratores de Milnor, como limites de sequências de parâmetros
correspondentes a sequências de atratores locais, organizados segundo esta estru-
tura de incrementos de perı́odo.

Os resultados deste capı́tulo encontram-se em [24].

4.1 Invariantes de amassamento

Uma forma bastante eficaz de identificar e descrever as estruturas combinatórias
presentes nas famı́lias de sistemas dinâmicos unidimensionais, é através dos chama-
dos invariantes de amassamento, que foram introduzidos por Milnor e Thurston,
no contexto autónomo, em [15].

Vamos em seguida adaptar esta definição ao nosso contexto e depois
estabelecer condições suficientes para que uma sequência simbólica X ∈ Σ seja
o invariante de amassamento K(u, s) para algum par (u, s) ∈ [−1, 1]× {0, 1}N0 .
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Definição 29. Para (u, s) ∈ [−1, 1] × {0, 1}N0 , definimos o invariante de amas-
samento

K(u, s) = I(u,s)(0, 0).

Para X ∈ Σ, sejam

C(X) = {i ∈ N0 : Xi = C}

e, para cada i ∈ N0,
li = min{r : i+ r ∈ C(X)}.

Por simplicidade de exposição, consideramos apenas padrões de iteração s
tais que s0 = 0 e sequências X tais que X0 = 0 e o maior bloco entre dois C’s
consecutivos se situe no inı́cio da sequência. Isto é expresso nas condições 1. e 2.
da próxima definição.

Definição 30. Seja s ∈ {0, 1}N0 com s0 = 0, então dizemos que uma sequência
simbólicaX ∈ Σ é estritamente s-admissı́vel se se verificam as condições seguintes:

1. 0 ∈ C(X), e se i ∈ C(X) então i ∈ Zs ou σi(X) = CRL∞.

2. l0 = max{li : i ∈ C(X)}.

3. Para todos os i ∈ C(X) ∩ Zs:

(a) Xi+1 . . . Xi+li−1 = X1 . . . Xli−1;

(b) se li < l0, então X1 . . . Xl0−li−1 < Xli+1 . . . Xl0−1.

4. Se i, j forem tais que i < j < i+ li, i ∈ C(X) e j ∈ Zs \ C(X) então

Xj+1 . . . Xi+li−1 < X1 . . . Xli−j−1.

Representamos o conjunto de sequências estritamente s-admissı́veis por Σs.

Vamos ver no próximo teorema, que a s-admissibilidade estrita de uma sequência
X ∈ Σ é suficiente, para que X = K(u, s) para algum u ∈ [−1, 1]. A designação
”estrita” prende-se com as desigualdades das condições 3.(b) e 4., as quais podem
ser enfraquecidas, permitindo igualdade numa série de situações especı́ficas cuja
descrição iria prejudicar fortemente a clareza da exposição.

Teorema 31. Sejam s ∈ {0, 1}N0 e X ∈ Σ. Se X ∈ Σs então existe u ∈ [−1, 1[
tal que X = K(u, s).
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Demonstração. A Condição 1. é consequência imediata das condições sobre s e
da definição de invariante de amassamento.

Para X = X0X1 . . . ∈ Σs definimos φs : Σs → Σ′ como

φs(X) = X1 . . . Xl0−1CRL
∞,

A construção assegura que σl0+1(φs(X)) > φs(X).
Vamos demonstrar que, para u = Φ(φs(X)), X = K(u, s).
Seja Y = K(u, s) = I(u,s)(0, 0).
Se 0 < j < l0 e j ∈ Zs então, da Condição 2., j /∈ C(X), logo pela Condição

4. T j−1(u) /∈ Iu e

Y0 . . . Yl0−1Yl0 = Cad1(u) . . . ad1(T
l0−2(u))C = X0 . . . Xl0 .

Pelo Teorema 7, T l0−1(u) = 0, logo Yl0 = C e F l0+1
(u,s) (0, 0) = u, então para

todos os 1 ≤ j ≤ ll0 , F l0+j
(u,s) (0, 0) = T j−1(u) e, pela Condição 4., se 1 ≤ j < ll0

então Yl0+j = ad1(T
j−1(u)) = Xj e, pela Condição 3.(a) Xj = Xl0+j . Por outro

lado, se ll0 < l0 então, pela Condição 3.(b) F
l0+ll0
(u,s) (0, 0) = T ll0−1(u) ∈ Iu, logo

Yl0+ll0 = adu(T
ll0−1(u)) = C.

Podemos agora repetir estes argumentos para qualquer i ∈ C(X) para concluir
que X = K(u, s).

4.2 Atratores de Milnor e incrementos de perı́odo

Vamos em seguida demonstrar que, para cada sequência periódica Y ∈ Σ′, os
parâmetros correspondentes aos atratores de MilnorO(Y ) são limites de sequências
de parâmetros correspondentes a sequências de atratores locais, organizados se-
gundo uma estrutura de incrementos de perı́odo com incremento |Y |. A descrição
dos parâmetros correspondentes aos atratores de Milnor, como limites de sequências
de parâmetros correspondentes a incrementos de perı́odo, foi apresentada em [1],
no contexto autónomo, para a famı́lia das funções tenda com um segmento con-
stante descontı́nuas.

Seja Σ ⊂ Σ o conjunto das sequências da forma (CX1 . . . Xn−1)
∞ tais que

Xi 6= C, para todos os i = 1, . . . , n − 1. Dizemos que X tem comprimento n e
denotamos por |X| = n. Denotamos ainda abreviadamente ε|X|−1(X) por ε(X).
Recordemos que−L = R e−R = L. Para sequênciasX = (CX1 . . . X|X|−1)

∞, Y =
(CY1 . . . Y|Y |−1)

∞ pertencentes a Σ, sejam
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fL(X, Y ) = (CX1 . . . X|X|−1(ε(X)L)Y1 . . . Y|Y |−1)
∞

e
fR(X, Y ) = (CX1 . . . X|X|−1(ε(X)R)Y1 . . . Y|Y |−1)

∞

Nota 32. Notemos que ε(fL(X, Y )) = ε(Y ) e ε(fR(X, Y )) = −ε(Y ).

Definição 33. Para p ∈ N, uma sequência binária s ∈ {0, 1}N0 é uma p-sequência
se snp = 0 para todos os n ∈ N0.

Para uma p-sequência s, seja Σ
s

o conjunto de todas as sequências
(CX1 . . . Xnp−1)

∞ ∈ Σs ∩ Σ tais que Xi 6= C para todos os i = 1, . . . , np − 1.
Note-se que, se X ∈ Σ

s
então p||X|.

Definição 34. Seja s uma p-sequência. O par (X, Y ) ∈ Σ
s × Σ é s-compatı́vel

se:

1. p||Y |.

2. Não existiremm ∈ N0, n ∈ N, 0 < j < |X| tais quem(|X|+n|Y |)+j ∈ Zs
e Xj+1 . . . X|X|−1 ≥ X1 . . . X|X|−1−j .

3. Não existirem m ∈ N0, n ∈ N, |X| ≤ j < |X| + n|Y | tais que m(|X| +
n|Y |) + j ∈ Zs e Yj−|X|+1 . . . Y|Y |−1 ≥ X1 . . . X2|X|−1−j .

Lema 35. Sejam s uma p-sequência e (X, Y ) ∈ Σ
s × Σ um par s-compatı́vel,

então (fL(X, Y ), Y ) e (fR(X, Y ), Y ) são ambos s-compatı́veis.

Demonstração. Seja W = fL(X, Y ), em primeiro lugar vamos demonstrar que
W ∈ Σs. Como |W | = |X| + |Y | então p||W |. As condições 1., 2. e 3. da
Definição 30 são verificadas automaticamente pela definição de fL(X, Y ), uma
vez que C(W ) = {n(|X|+ |Y |) : n ∈ N0}.

A condição 4. da Definição 30 é consequência imediata das condições 2. e 3.
da Definição 34.

Verifiquemos agora a s-compatibilidade do par (W,Y ):
A condição 2. da Definição 34 em relação a (W,Y ) sai da condição 2. em

relação a (X, Y ) se j < |X| e da condição 3. se j ≥ |X|. A condição 3. em
relação a (W,Y ) sai da condição 3. em relação a (X, Y ), uma vez que m(|W | +
n|Y |) + j = m(|X| + (n + 1)|Y |) + j e |W | ≤ j < |W | + n|Y | ⇒ |X| ≤ j <
|X|+ (n+ 1)|Y |.

Todos os critérios usados são igualmente válidos se W = fR(X, Y ).
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Sejam s uma p-sequência e (X, Y ) ∈ Σ
s × Σ um par s-compatı́vel. Sejam

f 0
L(X, Y ) = f 0

R(X, Y ) = f 0
LR(X, Y ) = f 0

RL(X, Y ) = X . Vamos agora consid-
erar as seguintes quatro sucessões de sequências simbólicas, para todos os k ∈ N:

• fkL(X, Y ) = fL(fk−1L (X, Y ), Y ).

• fkR(X, Y ) = fR(fk−1R (X, Y ), Y ).

•

fkLR(X, Y ) =


fL(fk−1LR (X, Y ), Y ) se k ı́mpar

fR(fk−1LR (X, Y ), Y ) se k par
.

•

fkRL(X, Y ) =


fR(fk−1RL (X, Y ), Y ) se k ı́mpar

fL(fk−1RL (X, Y ), Y ) se k par
.

Exemplo 36. Por exemplo, se considerarmos X = (CRR)∞ e Y = (CLR)∞,
temos

fL(X,Y ) = (CRRLLR)∞, f2L(X,Y ) = (CRRLLRRLR)∞, f3L(X,Y ) = (CRRL(LRR)2LR)∞,

fR(X,Y ) = (CRRRLR)∞, f2R(X,Y ) = (CRRRLRRLR)∞, f3R(X,Y ) = (CRRR(LRR)2LR)∞,

fLR(X,Y ) = (CRRLLR)∞, f2LR(X,Y ) = (CRRLLRLLR)∞, f3LR(X,Y ) = (CRRL(LRL)2LR)∞,

fRL(X,Y ) = (CRRRLR)∞, f2RL(X,Y ) = (CRRRLRLLR)∞, f3RL(X,Y ) = (CRRR(LRL)2LR)∞.

Cada uma das sequências simbólicas fkL(X, Y ), fkR(X, Y ), fkLR(X, Y ) e fkRL(X, Y )
é periódica com perı́odo |X| + k|Y |, correspondendo assim a um incremento de
|Y | no perı́odo, em cada avanço do ı́ndice k. Vamos em seguida demonstrar que
estas quatro sucessões convergem em Σ.

Teorema 37. Sejam s uma p-sequência e (X, Y ) um par s-compatı́vel, então para
todos os k, fkL(X, Y ), fkR(X, Y ), fkLR(X, Y ), fkRL(X, Y ) pertencem a Σ

s
e:

1. fkL(X, Y ) é estritamente decrescente e converge para
CX1 . . . X|X|−1(ε(X)L)(Y1 . . . Y|Y |−1(ε(Y )L))∞.

2. fkR(X, Y ) é estritamente crescente e converge para
CX1 . . . X|X|−1(ε(X)R)(Y1 . . . Y|Y |−1(ε(Y )L))∞ .

3. fkLR(X, Y ) é estritamente crescente para k ı́mpar, estritamente decrescente
para k par e converge paraCX1 . . . X|X|−1(ε(X)L)(Y1 . . . Y|Y |−1(ε(Y )R))∞.
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4. fkRL(X, Y ) é estritamente crescente para k par, estritamente decrescente
para k ı́mpar e converge paraCX1 . . . X|X|−1(ε(X)R)(Y1 . . . Y|Y |−1(ε(Y )R))∞.

Demonstração. Segue indutivamente do Lema anterior que, para todos os k, fkL(X, Y ),
fkR(X, Y ), fkLR(X, Y ), fkRL(X, Y ) pertencem a Σ

s
.

As propriedades de monotonia concluem-se indutivamente do facto que as
seguintes desigualdades ocorrem para todos os X, Y ∈ Σ:

fL(X, Y ) < f 2
LR(X, Y ) < X < f 2

RL(X, Y ) < fR(X, Y ).

Pela Nota 32, é imediato demonstrar por indução que, para todos os k ∈ N,

fkL(X, Y ) = (CX1 . . . X|X|−1(ε(X)L)(Y1 . . . Y|Y |−1(ε(Y )L))k−1Y1 . . . Y|Y |−1)
∞,

fkR(X, Y ) = (CX1 . . . X|X|−1(ε(X)R)(Y1 . . . Y|Y |−1(ε(Y )L))k−1Y1 . . . Y|Y |−1)
∞,

fkLR(X, Y ) = (CX1 . . . X|X|−1(ε(X)L)(Y1 . . . Y|Y |−1(ε(Y )R))k−1Y1 . . . Y|Y |−1)
∞,

fkRL(X, Y ) = (CX1 . . . X|X|−1(ε(X)R)(Y1 . . . Y|Y |−1(ε(Y )R))k−1Y1 . . . Y|Y |−1)
∞.

As propriedades de convergência são imediatas, usando em Σ a topologia in-
duzida pela distância

d(X, Y ) =
∞∑
n=1

1

2i
(Xi − Yi),

em que

Xi − Yi =

{
0, se Xi = Yi,
1, se Xi 6= Yi

Para W = (CW1 . . .W|W |−1)
∞ ∈ Σ, seja t(W ) = W1 . . .W|W |−1CRL

∞ ∈
Σ′.

Consideremos as sequências

uk = Φ(t(fkL(X, Y ))) , vk = Φ(t(fkR(X, Y ))) (4.1)

e
lk = Φ(t(fkLR(X, Y ))) , wk = Φ(t(fkRL(X, Y ))) (4.2)

O próximo resultado estabelece que as sequências de parâmetros uk, vk, lk e
wk correspondem à existência de sequências de atratores locais pk-cı́clicos, pk =
|X|+ k|Y |, com um incremento |Y | no perı́odo, para cada k.
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Teorema 38. Sejam s uma p-sequência e (X, Y ) um par s-compatı́vel. Então,
para cada k ∈ N, existem:

1. u′k < uk < u′′k tais que, para todos os u ∈]u′k, u
′′
k[, o conjunto não autónomo

A tal que A(n(|X| + k|Y |) + j) = T j−1(u) para todos os n ∈ N0 e j =
1, . . . , |X|+k|Y | é um (u, s)-atrator local pk-cı́clico com pk = |X|+k|Y |.

2. v′k < vk < v′′k tais que, para todos os v ∈]v′k, v
′′
k [, o conjunto não autónomo

A tal que A(n(|X| + k|Y |) + j) = T j−1(v) para todos os n ∈ N0 e j =
1, . . . , |X|+ k|Y | é um (v, s) atrator local pk-cı́clico.

3. l′k < lk < l′′k tais que, para todos os l ∈]l′k, l
′′
k[, o conjunto não autónomo

A tal que A(n(|X| + k|Y |) + j) = T j−1(u) para todos os n ∈ N0 e
j = 1, . . . , |X|+ k|Y | é um (l, s) atrator local pk-cı́clico.

4. w′k < wk < w′′k tais que, para todos os w ∈]w′k, w
′′
k [, o conjunto não

autónomoA tal queA(n(|X|+k|Y |)+j) = T j−1(u) para todos os n ∈ N0

e j = 1, . . . , |X|+ k|Y | é um (w, s) atrator local pk-cı́clico..

Demonstração. Vamos apenas demonstrar a Condição 1., visto que as outras têm
demonstrações análogas.

Seja
W k = fkL(X, Y ).

Temos que |Wk| = |X|+ k|Y | = pk.
Sejam agora

W k(R) = (W k
1 . . .W

k
pk−1(ε(W

k)R))∞,
W k(L) = W k

1 . . .W
k
pk−1(ε(W

k)L)W k(R),

u′k = Φ(W k(L)) e u′′k = Φ(W k(R)), ver a Figura 4.1.
Pelo Lema 6, concluı́mos imediatamente que u′k < uk < u′′k e, pelo Teorema

7, T pk(u′k) = T pk(u′′k) = u′′k.
Por outro lado,

T pk−1(u′k) = Φ((ε(W k)L)W k(R))

e
T pk−1(u′′k) = Φ((ε(W k)R)W k(R)),

logo, se u ∈]u′k, u
′′
k[ então

T pk−1(u) ∈]Φ((ε(W k)L)W k(R),Φ((ε(W k)R)W k(R))[
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(os extremos deste intervalo podem não estar na ordem correta) e

T pk(u) = T (T pk−1)(u) > u′′k > u.

Temos então, sendo U = IT (u), que σpk(U) > U . Como s é uma p-sequência
e p|pk então snpk = 0 para todos os n ∈ N0, além disso, pelas condições 2. e 3. da
Definição 34 não podem existir n ∈ N0 e i ∈ Bpk(U) tais que npk+ i ∈ Zs. Logo,
pelo Teorema 24, o conjunto não autónomo A tal que A(npk + i) = {T i−1(u)}
para todos os n ∈ N0 e i = 1, . . . , pk é um (u, s)-atrator local.

Figura 4.1: Considerando X = (CRL)∞, X(R) = (RLL)∞ e X(L) =
RLR(RLL)∞, os três pontos assinalados no eixo das abcissas são, da esquerda
para a direita, u′ = Φ(X(L)), u = Φ(t(X)) e u′′ = Φ(X(R)).

O corolário seguinte estabelece que as sequências de parâmetros uk, vk, lk ewk
convergem para parâmetros com atratores de MilnorO(Y ) em que Y corresponde
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às sequências periódicas

(Y1 . . . Y|Y |−1(ε(Y )L))∞,

nos casos de uk e vk, e
(Y1 . . . Y|Y |−1(ε(Y )R))∞,

nos casos de lk e wk. Ver a Figura 4.2.

Corolário 39. Sejam s uma p-sequência e (X, Y ) um par s-compatı́vel tais que
Yj . . . Y|Y |−1 < X1 . . . X|X|−1 para todos os j = 1, . . . , |Y | − 1, então:

1. As sequências uk e vk são convergentes, respetivamente, para parâmetros
u < v e O((Y1 . . . Y|Y |−1(ε(Y )L))∞) é um (u, s) e um (v, s)-atrator de
Milnor.

2. As sequências lk e wk são convergentes, respetivamente, para parâmetros
l < w e O((Y1 . . . Y|Y |−1(ε(Y )R))∞) é um (l, s) e um (w, s)-atrator de
Milnor.

Demonstração. Sejam

U = X1 . . . X|X|−1(ε(X)L)Y1 . . . Y|Y |−1(ε(Y )L))∞

e u = Φ(U), então

|u− uk| ≤
+∞∑
i=pk

1

2i+1
=

1

2pk
−→
k→+∞

0.

Se U não for maximal, a Condição 1. do Teorema 20 é satisfeita devido
à condição sobre os Yj . . . Y|Y |−1, a Condição 2. é satisfeita para k = |X| e
a Condição 3., vem do facto que, pelas Condições 2. e 3. da Definição 34,
para quaisquer m,n ∈ N, m(|X| + n|Y |) ∈ Z ′s(U). Então, pelo Teorema 20
O((Y1 . . . Y|Y |−1(ε(Y )L))∞) é um (u, s)-atrator de Milnor. Se U for maximal, a
demonstração é análoga, usando o Teorema 16.

As restantes afirmações têm demonstrações análogas considerando, respetiva-
mente,

v = Φ(X1 . . . X|X|−1(ε(X)R)Y1 . . . Y|Y |−1(ε(Y )L))∞),

l = Φ(X1 . . . X|X|−1(ε(X)L)Y1 . . . Y|Y |−1(ε(Y )R))∞),

v = Φ(X1 . . . X|X|−1(ε(X)R)Y1 . . . Y|Y |−1(ε(Y )R))∞).
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Figura 4.2: Incremento de perı́odo com s = (011)∞, X = (CRR)∞ e Y =
(CLR)∞. Imprimimos as iteradas F i

(u,s)(0, 0) com 500 ≤ i ≤ 1000. Na figura
de cima considerámos u ∈ [0.093, 0.114] e os parâmetros assinalados são l1 =
Φ(t(fRL(X, Y ))), l2 = Φ(t(f 2

RL(X, Y ))) e l = Φ(RRL(LRL)∞). Na figura de
baixo, ampliámos o intervalo em torno de l, considerando u ∈ [0.1108, 0.1113].
Os parâmetros assinalados são l3 = Φ(t(f 3

LR(X, Y ))), l4 = Φ(t(f 4
LR(X, Y ))) e

l = Φ(RRL(LRL)∞)
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Vamos em seguida considerar o caso em que Y = (CLp−1)∞.
Para X ∈ Σ

s \ {(CLnp−1)∞, (CRLnp−2)∞ : n ∈ N}, , sejam

s−(X) = X1 . . . Xl−2CRL
∞, onde l = max{j > 1 : (X1 . . . X|X|−1(ε(X)L))j = R}

s+(X) = X1 . . . Xl−2CRL
∞, onde l = max{j > 1 : (X1 . . . X|X|−1(ε(X)R))j = R}.

Se X = (CLnp−1)∞ então, como ε(X)L = L apenas podemos calcular s+(X) =
Lnp−2CRL∞. Se X = (CRLnp−2)∞ então, como ε(X)R = L apenas podemos
calcular s−(X) = RLnp−3CRL∞.

Exemplo 40. Consideremos p = 3 e s = (011)∞. Se nos focarmos apenas
nas sequências X ∈ Σ

s
com |X| = 3, temos X = (CLL)∞, Y = (CLR)∞,

Z = (CRR)∞ e W = (CRL)∞, então:

X = (CLL)∞ s+(X) = LCRL∞

Y = (CLR)∞ s−(Y ) = LCRL∞ s+(Y ) = CRL∞

Z = (CRR)∞ s−(Z) = CRL∞ s+(Z) = RCRL∞

W = (CRL)∞ s−(W ) = RCRL∞

Se s for uma p-sequência e X ∈ Σ
s
, as condições dos resultados anteriores

são satisfeitas. Além disso,

fkL(X, Y ) = (CX1 . . . X|X|−1(ε(X)L)(L)pk−1)∞,

fkR(X, Y ) = (CX1 . . . X|X|−1(ε(X)R)(L)pk−1)∞

e as sequências uk e vk definidas em (4.1) convergem, respetivamente, para u =
Φ(s−(X)) e v = Φ(s+(X)). Podemos então enunciar a seguinte proposição.

Proposição 41. Sejam s uma p-sequência, X ∈ Σ
s

e Y = (CLp−1)∞, então as
sequências

uk = Φ(t(fkL(X, Y )))

e
vk = Φ(t(fkR(X, Y )))

convergem, respectivamente, para u = Φ(s−(X)) e v = Φ(s+(X)). Além disso,
o conjunto não autónomo A tal que A(i) = {−1} para todos os i é um (u, s) e
um (v, s)-atrator de Milnor.
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Demonstração. Vamos apenas demonstrar que uk converge para u.
Como, para cada k, uk = Φ(X1 . . . Xl−1RL

pk−1+|X|−lCRL∞), então

|uk − u| =
1

2l
∣∣Φ(Xl−1RL

pk+|X|+l−1)
∣∣ −→
k→+∞

1

2l
|Φ(Xl−1RL

∞)| .

Se Xl−1 = R, então

Φ(Xl−1RL
∞) = −

(
−1

2
+

+∞∑
i=1

1

2i+1

)
= 0.

Como, se Xl−1 = L, obtemos de forma análoga que Φ(Xl−1RL
∞) = 0, con-

cluı́mos que
lim

k→+∞
uk = u.

Como podemos observar no diagrama de bifurcação da Figura 4.3, os parâmetros
u e v, de certa forma correspondem a parâmetros de separação. Isto é expresso no
seguinte resultado.

Proposição 42. Sejam s uma p-sequência e X ∈ Σ
s

tais que p||X|. Então

]Cs−(X), X[∩Σ
s

= {Y ∈ Σ
s
tal que Y = CX1 . . . X|X|−1(ε(X)L) . . .}

e

]X,Cs+(X)[∩Σ
s

= {Y ∈ Σ
s
tal que Y = CX1 . . . X|X|−1(ε(X)R) . . .}.

Demonstração. Vamos apenas demonstrar a primeira igualdade, uma vez que a
segunda se demonstra de forma análoga.

Seja Y ∈ Σ
s

tal que s−(X) < σ(Y ) < σ(X), ou seja,

X1 . . . Xl−2CRL
∞ < Y1 . . . Yl−2 . . . < X1 . . . Xl−2Xl−1 . . . X|X|−1C . . . .

Temos imediatamente que

X1 . . . Xl−2 = Y1 . . . Yl−2.

Além disso, s−(X) < σ(X) e Y ∈ Σ
s

implica que Yl−2 = Xl−2 = εl−2(X)R.
Então,

σ(X) = X1 . . . Xl−2(εl−2(X)R)RL|X|−l−1C

e εl−1(X) = −, logo

σ(Y ) < σ(X)⇒ σ(Y ) = X1 . . . X|X|−1(ε(X)L).
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Figura 4.3: Diagrama de bifurcação com s = (011)∞ (p = 3), u ∈ [−1, 1],
X = (CLL)∞, Y = (CLR)∞, Z = (CRR)∞. Se u ∈] − 1,Φ(s+(X)[ então
IT (u) = LL . . ., se u ∈]Φ(s+(X),Φ(s+(Y )[ então IT (u) = LR . . ., se u ∈
]Φ(s+(Y ),Φ(s+(Z)[ então IT (u) = RR . . ., se u ∈]Φ(s+(Z), 1[ então IT (u) =
RL . . ..

Nota 43. A redação dos resultados anteriores pode transmitir a ideia de que,
se s for uma p sequência, então as sequências de incrementos de perı́odo com
a sequência s só podem gerar atratores de Milnor correspondentes a órbitas
periódicas repulsivas com perı́odo múltiplo de p.
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Esta ideia é errada, pois se Y = Y1 . . . Yq e p - q então podemos tomar
Y ′ = (C(Y1 . . . Yq)

n−1Y1 . . . Yq−1)
∞, onde nq = mmc(p, q).

Por exemplo, se p = 3, obtemos CRLL(LR)∞ e o correspondente atrator de
Milnor cuja projeção é uma órbita 2-periódica repulsiva de T , como limite de
fkLR((CRL)∞, Y ′) com Y ′ = (CLRLRL)∞.

Também com p = 3, obtemos CRLL(R)∞ e o correspondente atrator de Mil-
nor cuja projeção é um ponto fixo repulsivo de T , como limite de fkRL((CRL)∞, Y ′)
com Y ′ = (CRR)∞, ver a Figura 4.4.

Figura 4.4: Incremento de perı́odo convergindo para um ponto fixo repulsivo, com
s = (011)∞, X = (CRL)∞ e Y ′ = (CRR)∞. Considerámos u ∈ [0.8318, 0.844]
e imprimimos as iteradas F i

(u,s)(0, 0) com 500 ≤ i ≤ 1000. Os parâmetros assi-
nalados são l1 = Φ(t(fLR(X, Y ′))), l2 = Φ(t(f 2

LR(X, Y ′))) e l = Φ(RLL(R)∞).

Exemplo 44. A alteração do padrão de iteração s pode provocar alterações
dramáticas nos cenários de bifurcação.

Consideremos, por exemplo, p = 3 e a sequência de incrementos de perı́odo

fkLR((CRR)∞, (CLR)∞),
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convergente para a sequência

CRRL(LRL)∞

e originando o correspondente atrator de Milnor.
Para s = (011)∞ podemos observar na Figura 4.2 os (u, s)-atratores locais

correspondentes aos incrementos de perı́odo e o (u, s)-atrator de Milnor corre-
spondente.

Contudo, se s = (010 001)∞ então para qualquer U = RRLLRL . . . temos
que σ4(U) > U e s4n = 0 para todos os n, logo qualquer parâmetro u tal queU =
IT (u) tenha prefixo RRLLRL gera um (u, s)-atrator local 4-cı́clico que elimina
todos as sequências de incremento de perı́odo e os atratores correspondentes, ver
a Figura 4.5

Figura 4.5: u ∈ [0.093, 0.114], s = (010 001)∞. A estrutura de incrementos de
perı́odo e respetivo atrator de Milnor foram eliminados pelo padrão de iteração.

Neste Capı́tulo estabelecemos condições suficientes para a admissibilidade das
sequências simbólicas como invariantes de amassamento, em função do padrão
de iteração. Estas condições permitiram-nos descrever os limitadores correspon-
dentes aos atratores de Milnor como limites de sequências de limitadores, cor-
respondentes a atratores locais cı́clicos, organizadas segundo uma estrutura de
incrementos de perı́odo, cuja existência é fortemente dependente do padrão de
iteração considerado.
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Capı́tulo 5

Atratores não autónomos locais,
para sequências genéricas
λ ∈ [−1, 1]N0

Neste Capı́tulo, baseado em [21], vamos estudar perturbações sobre os limita-
dores. Para isso vamos abandonar o foco no padrão de iteração s e considerar
sequências genéricas λ ∈ [−1, 1]N0 .

Tal como antes, consideramos a iteração sequencial de funções tenda com um
segmento constante, fu : [−1, 1] → [−1, 1], u ∈ [−1, 1] e, para uma sequência
λ ∈ [−1, 1]N0 definimos a n-ésima iteração segundo λ, com valor inicial x ∈
[−1, 1] e instante inicial k, como

F n
λ (x, k) = (fλk+n−1

◦ . . . fλk)(x), se n ≥ 1

e
F 0
λ (x, k) = x para todos os k.

Para X = (CX1 . . . X|X|−1)
∞ ∈ Σ, sejam

X(R) = (X1 . . . X|X|−1(ε(X)R))∞

e
X(L) = X1 . . . X|X|−1(ε(X)L)X(R).

Pelo Teorema 7 temos imediatamente que

T |X|(Φ(X(L))) = T |X|(Φ(X(R))) = Φ(X(R)).
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Definição 45. Seja X ∈ Σ com |X| = p < +∞. Uma sequência λ ∈ [−1, 1]N0 é
uma X-sequência se, para todos os n ∈ N0, Φ(X(L)) < λnp < Φ(X(R)) e, para
todos os 0 < j < p, λnp+j > max{Φ(σj(X(L))),Φ(σj(X(R)))}.

Uma X-sequência λ é uma X-sequência estrita se λnp = λ0 para todos os
n ∈ N0.

Os sistemas dinâmicos não autónomos obtidos através de iteração sequencial
do tipo F n

λ (x, k) em que λ = (λn)n∈N0 é uma sequência de parâmetros, dizem-se
periódicos se λ for uma sequência periódica. Os sistemas não autónomos asso-
ciados a uma X-sequência podem ser periódicos ou não, mesmo no caso estrito.
Contudo podem ser encarados como perturbações dependentes do tempo, de sis-
temas periódicos com perı́odo |X|, sendo que a diferença entre os casos estrito
e não estrito é que, no caso estrito não são permitidas perturbações nos instantes
n|X|, n ∈ N0.

Vamos agora adaptar a Definição 10 ao presente contexto.

Definição 46. SejamA ⊂ [−1, 1]×N0 um conjunto não autónomo e λ ∈ [−1, 1]N0 .

• A é λ-invariante, se existir k tal que fλk′ (A(k′)) ⊂ A(k′ + 1) para todos
os k′ > k.

• A é λ-localmente atrativo se for λ-invariante e existir k tal que, para cada
k′ > k existe uma vizinhança A′(k′) de A(k′) em [−1, 1] tal que, para
algum n, F n

λ (A′(k′)) ⊂ A(k′ + n) .

Definição 47. Seja λ ∈ [−1, 1]N0 , então um λ-atrator local não autónomo p-
cı́clico é um subconjunto não autónomo próprio, A  [−1, 1]×N0 com projeção
fechada, λ-localmente atrativo e p-cı́clico.

Nota 48. Notemos que, nesta definição de atrator local não autónomo deixámos
caı́r a condição do conjunto ter projeção minimal. Isto deve-se ao facto de, neste
caso, o objetivo principal ser o de controlar as perturbações de modo a preservar
um conjunto não autónomo cı́clico que atrai a generalidade das órbitas. Apesar
de no caso estrito a minimalidade da projeção ser automaticamente garantida,
no caso geral tal não seria possı́vel sem impor mais condições sobre a sequência
λ, ver a Figura 5.1.

Sejam X ∈ Σ uma sequência simbólica com |X| = p < +∞, λ uma X-
sequência, e

Ji =

]
λi − 1

2
,
1− λi

2

[
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Figura 5.1: Um diagrama de bifurcação com uma sequência de λ-atratores
locais não autónomos p-periódicos com perı́odos consecutivamente duplicados
p = 3, 6, . . ., para sequências λ, tais que λ0 varia entre −0.6 e −0.5, λ3n+1 =
λ3n+2 = 1 e λ3n = λ0 + 0.001rn, onde os rn são inteiros aleatórios entre 0 e 9.

os segmentos constantes de fλi para cada i. Consideremos então os segmentos
constantes generalizados

P(fλ(n+1)p−1
◦ . . . ◦ fλnp) = Jnp ∪ f−1λnp

(Jnp+1) ∪ . . .
∪(fλ(n+1)p−2

◦ . . . ◦ fλnp)−1(J(n+1)p−1)
...

P(fλ(n+2)p−2
◦ . . . ◦ fλ(n+1)p−1

) = J(n+1)p−1 ∪ f−1λ(n+1)p−1
(J(n+1)p) ∪ . . .

∪(fλ(n+2)p−3
◦ . . . ◦ fλ(n+1)p−1

)−1(J(n+2)p−2).

Consideremos também os intervalos Ai = T i−1([Φ(X(L)),Φ(X(R))]), i =
1, . . . , p (T 0 ≡ id), ver a Figura 5.2.

Lema 49. Sejam X ∈ Σ uma sequência simbólica com |X| = p < +∞, e
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Figura 5.2: Construção dos conjuntos Ai para X = (CRL)∞, X(R) = (RLL)∞

e X(L) = RLR(RLL)∞.

λ ∈ [−1, 1]N0 uma X-sequência. Então, para todos os n ∈ N0,

Ap ⊂ P(fλ(n+1)p−1
◦ . . . ◦ fλnp),

A1 ⊂ P(fλ(n+1)p
◦ . . . ◦ fλnp+1),

...
Ap−1 ⊂ P(fλ(n+2)p−2

◦ . . . ◦ fλ(n+1)p−1
)

.

Demonstração. Notemos que, ao longo desta demonstração, os extremos dos in-
tervalos podem não estar na ordem correta, ou seja, podemos escrever ]a, b[ com
b < a.

Agora, como εi(X(L)) = εi(X(R)) para todos os i = 0, . . . , p − 1, pelo
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Teorema 7
Ap = T p−1([Φ(X(L)),Φ(X(R))])

= [Φ(σp−1(X(L))),Φ(σp−1(X(R)))]
= [Φ((ε(X)L)X(R)),Φ((ε(X)R)X(R))]

então, como λnp < Φ(X(R)),

[Φ((ε(X)L)X(R)),Φ((ε(X)R)X(R))] ⊂ Jnp ⊂ P(fλ(n+1)p−1
◦ . . . ◦ fλnp).

Para i = 1, . . . , p− 1 e j < p− i, como λ é uma X-sequência,

fλnp+i+j−1
◦ . . . ◦ fλnp+i

(Ai) = T j(Ai)
= T i+j−1([Φ(X(L)),Φ(X(R))])
= [Φ(σi+j−1(X(L))),Φ(σi+j−1(X(R)))]

então, para j = p− i− 1,

fλnp+p−1 ◦ . . . ◦ fλnp+i
(Ai) = T p−1(A1) ⊂ J(n+1)p,

e então

Ai ⊂ (fλnp+p−1 ◦ . . . ◦ fλnp+i
)−1(J(n+1)p) ⊂ P(fλnp+i+p−1

◦ . . . ◦ fλnp+i
).

Lema 50. Sob as condições do lema anterior, se x ∈ Ai então, para todos os
j ≤ p− i e todos os n ∈ N0

(fλnp+i+j−1
◦ . . . ◦ fλnp+i

)(x) = T j(x).

Demonstração. Se x ∈ Ai então T (x) ∈ [T i(Φ(X(L)), T i(Φ(X(R))], logo,
como
λnp+i > max{Φ(σi(X(L))),Φ(σi(X(R)))}, então T (x) = fλnp+i

(x). Uma vez
que T (x) ∈ Ai+1 a demonstração segue indutivamente.

É imediato deduzir o seguinte corolário.

Corolário 51. Sejam X ∈ Σ com |X| = p < +∞ e λ ∈ [−1, 1]N0 uma X-
sequência, então, para todos os n ∈ N0 e j = 0, . . . , p− 1,

(fλnp+j
◦ . . . ◦ fλnp)(0) = T j(λnp),

e
(fλ(n+1)p

◦ . . . ◦ fλnp+1)(λnp) = λ(n+1)p.
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Teorema 52. Sejam X ∈ Σ com |X| = p < +∞ e λ ∈ [−1, 1]N0 uma X-
sequência, então o conjunto não autónomo Aλ, em que

Aλ(0) = Ap e Aλ(np+ j) = Aj para todos os n ∈ N0 e j = 1, . . . , p,

é um λ-atrator local não autónomo p-cı́clico.

Demonstração. Aλ é p-periódico pela definição e é λ-invariante pelo Lema 50.
Finalmente vamos ver que Aλ é λ-localmente atrativo.
Vamos demonstrar que, para todos os n ∈ N0 e todos os 0 ≤ j < p− 1, existe

uma vizinhança Vn,j de Aj tal que

F p
λ (Vn,j, np+ j) ⊂ Aλ((n+ 1)p+ j)

e então o resultado segue da p-periodicidade e da λ-invariância de Aλ.
Em primeiro lugar consideramos j = 0. Como Φ(XL) < λnp < Φ(XR), Jnp

é uma vizinhança de Anp = A0 e, pelo Lema 50,

F p
λ (Jnp, np) = F p

λ (A0, np)
= T p−1(λnp) ⊂ A0 = Aλ((n+ 1)p)

.

Consideramos agora j > 0. Da demonstração do Lema 49, para todos os
n ∈ N0 e 0 ≤ j < p podemos tomar Vn,j , a componente conexa de (fλnp+p−1 ◦
. . .◦fλnp+j

)−1(J(n+1)p) que contém Aj . Para além disso, como λ(n+1)p < Φ(XR),
Vn,j é uma vizinhança de Aj e

(fλ(n+1)p+j−1
◦ . . . ◦ fλ(n+1)p

◦ . . . ◦ fλnp+j
)(Vn,j) =

(fλ(n+1)p+j−1
◦ . . . ◦ fλ(n+1)p

◦ . . . ◦ fλnp+j
)(Aj) =

{T j−1(λ(n+1)p)} ⊂ Aj

.

Teorema 53. Sejam X ∈ Σ com |X| = p < +∞ e λ ∈ [−1, 1]N0 uma X-
sequência estrita, então o conjunto não autónomo Bλ tal que

Bλ(0) = Bλ(p) e Bλ(j +np) =
{
F j
λ(0, 0)

}
para todos os n ∈ N0 e j = 1, . . . , p,

é um λ-atrator local não autónomo p-cı́clico.
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Demonstração. Bλ é p-cı́clico pela definição e, pelo Lema 50, é também λ-invariante.
Pelo Corolário 51, como λ é estrito então para todos os n ∈ N0 e j =

0, . . . , p− 1
(fλnp+j

◦ . . . ◦ fλnp)(0) = T j(λnp) = T j(λ0),

logo, Pelo Lema 49, para todos os n

Bλ(j + np) = T j(λ0) = T j(λnp) ⊂ P(fλ(n+1)p+j
◦ . . . ◦ fλnp+j+1

).

Consequentemente, se Cj é a componente conexa de P(fλ(n+1)p+j
◦ . . . ◦ fλnp+j+1

)
que contém Bλ(j + np), então, para todos os n′ ≥ p

F n′

λ (Cj, j + np) = F n′

λ (Bλ(j + np), j + np)
= (Bλ(j + np+ n′), j + np+ n′).

Concluı́mos dos resultados deste capı́tulo, que a estrutura dos atratores locais
é robusta em relação a perturbações sobre os limitadores.
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Capı́tulo 6

Discussão e conclusões

Já se sabia que a introdução de limitadores simples em sistemas dinâmicos discre-
tos unidimensionais pode criar órbitas periódicas super estáveis e também atra-
tores de Milnor. A partir do exposto no Capı́tulo 3 concluı́mos não ser necessário
introduzir os limitadores em todos os passos de iteração para criar estes atratores.
Para além disso, os sistemas não autónomos estudados exibem uma riqueza de
diferentes comportamentos que não são possı́veis no caso unimodal autónomo.
Ao contrário do caso autónomo, em que cada limitador u pode levar à criação de,
no máximo um atrator, e os atratores locais são cı́clicos, no caso não autónomo,
dependendo do padrão de iteração escolhido, cada limitador u pode criar vários
atratores diferentes, os atratores locais podem não ser cı́clicos e podem coexistir
vários atratores, do mesmo tipo ou de tipos diferentes.

No Capı́tulo 4, exploramos a riqueza combinatória das iterações segundo
padrões, ao procurar estabelecer as condições para a admissibilidade das sequências
simbólicas como invariantes de amassamento, em função do padrão de iteração.
Estas condições permitiram-nos descrever os limitadores correspondentes aos atra-
tores de Milnor como limites de sequências de limitadores, correspondentes a
atratores locais cı́clicos, organizadas segundo uma estrutura de incrementos de
perı́odo.

A descrição dos atratores de Milnor como limites de sequências de incremen-
tos de perı́odo, juntamente com a generalização do produto ∗ de [22] a padrões de
iteração que são p-sequências, permitir-nos-á uma descrição completa da estrutura
dos diagramas de bifurcação neste contexto, os quais, como se observa no final do
Capı́tulo, são altamente dependentes do padrão de iteração.

Por fim, os resultados do Capı́tulo 5 mostram que a estrutura dos atratores
locais é robusta em relação a perturbações dos limitadores. Seria interessante
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considerar perturbações nos limitadores da famı́lia de funções tendas abertas in-
troduzida em [27], uma vez que, nesta famı́lia de funções, as perturbações nos
limitadores induzem perturbações nos ramos não constantes da respetiva função
tenda.

Em [8] afirma-se que, em termos biológicos, a aplicação de um limitador sim-
ples à função unidimensional corresponde a medidas de controlo, tais como abate,
caça ou captura de uma população. Contudo, também se observa que a aplicação
de um limitador de controlo a uma variável de estado pode alterar significativa-
mente o valor médio, tornando esta medida contra-eficaz em muitas situações.

De forma semelhante, em [7] observa-se que a introdução de limitadores in-
feriores nos preços pode baixar o preço médio e a introdução de limitadores su-
periores pode aumentá-lo. Também se observa que as polı́ticas de limitação de
preços podem ter custos substanciais para as autoridades centrais. Por exem-
plo, para evitar que o preço caia abaixo (acima) do preço mı́nimo (máximo), a
autoridade central tem que comprar (vender) permanentemente uma fração da
mercadoria fornecida (armazenada). É então razoável esperar que a redução do
número de vezes em que são introduzidos os limitadores possa reduzir os custos
de implementação. Seria então interessante tentar aplicar os nossos métodos aos
modelos de [8] e de [7] para tentar controlar os valores médios e reduzir os custos
de implementação.

No contexto do Capı́tulo 3 o parâmetro u define o limitador e o padrão de
iteração s define a estratégia de implementação do limitador. Por exemplo, con-
siderando a introdução do limitador u = 0.521 obtemos o mesmo (u, s)-atrator
local 2-cı́clico A com P (A) = {−0.042, 0.521} quer o limitador seja aplicado
de forma permanente (s = 0∞) ou alternadamente (s = (01)∞), potencialmente
reduzindo custos. Por outro lado, para s = (0111)∞ obtemos um atrator local 12-
cı́clico com um valor médio das órbitas diferente e um custo de implementação
ainda mais baixo.

Apesar de termos apenas considerado funções tenda com segmentos constantes,
os resultados apresentados podem ser estendidos a outras famı́lias de funções uni-
modais com segmentos constantes, como por exemplo a famı́lia de quadráticas

fu(x) = min{u, 1− 2x2}, u ∈ [−1, 1].

O abandono da restrição λi = 1 se si = 1, nas iterações segundo um padrão
binário, considerando duas funções tenda com segmento constante fu0 se si = 0 e
fu1 se si = 1 com −1 ≤ u0, u1 ≤ 1 vai trazer ainda mais complexidade, tal como
a coexistência de atratores relacionados com ambos os limitadores, bifurcações
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com codimensão dois, como as estudadas em [25], dinâmica simbólica compli-
cada, etc.. Por outro lado é expectável que esta generalização tenha bastantes
semelhanças com a generalização a funções seccionalmente lineares l-modais
com l − 1 patamares.
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