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Chapter 1

Introduction

Hyperspectral remote sensing exploits the fact that all substances scatter
electromagnetic energy, at specific wavelengths, depending on their molecu-
lar composition. Hyperspectral sensors have been developed to sample the
scattered portion of the electromagnetic spectrum collecting hundreds even
thousands of spectral bands at different wavelengths of the same area on
the Earth surface [1]. For instance, the NASA Jet Propulsion Laboratory’s
Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) [2] is able to
record the visible and near-infrared spectrum of the reflected light of an
area of several square kilometers (depending on the duration of the flight)
using 224 spectral bands, which generates large data volumes comprising
several GBs per flight. This high spectral resolution can be used for object
detection and for discrimination between different objects based on their
spectral characteristics [3].

Analyzing the spectral information of hyperspectral images has allowed
the development of many applications in the fields of agriculture [4], surveil-
lance [5], medical imaging [6,7], food safety [8], forensic applications [9,10],
target detection for security/militar purposes, hazard prevention, and mon-
itoring oil spills among others [1, 11]. In most of those applications, one of
the requirements of paramount importance is the ability to give real-time or
near real-time response [12].

Although, these sensors, that have been incorporated in satellite mis-
sions, allow to capture large three dimensional data cubes [2], the available
downlink bandwidth to ground stations is limited, which brings prohibitive
delays that endanger the real-time or near real-time requirements of such
applications.

In recent years, graphics processing units (GPUs) have evolved into
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CHAPTER 1. INTRODUCTION 2

highly parallel and programmable systems [13]. Specifically, several hy-
perspectral imaging algorithms have shown to be able to benefit from this
hardware taking advantage of the extremely high floating-point processing
performance, compact size, huge memory bandwidth, and relatively low cost
of these units, which make them appealing for onboard data processing [14].
These processing systems can overcome the delays between hyperspectral
image acquisition and its interpretation.

On the other hand, the power consumption requirements of this hard-
ware makes them ineffective for onboard applications. Fortunately, over the
last years, the advances in semiconductor industry and the huge interest
on developing mobile devices have allowed companies such as Nvidia to de-
velop low power GPUs like the Jetson AGX or Jetson Orin, which are a low
power consumption GPUs, that nevertheless, can achieve high throughput
in image processing applications at the same time. Additionally, these on-
board systems could also be flexible in order to be adaptable to the needs
of different missions.

Field-programmable gate arrays (FPGA) also represent a good choice to
achieve the above mentioned requirements [15,16]. In recent years, scientific
community have proposed several FPGA implementations of hyperspectral
processing techniques, namely for unmixing [17–19], endmember extraction
[18, 20, 21], abundance estimation [22], target detection [23], dimensionality
reduction [24], image compression [25], among others.

Although hyperspectral sensors have high spectral resolution, due to
technological reasons, hyperspectral images are limited by their relatively
low spatial resolution [26]. In the case of AVIRIS sensor, a pixel cover
an area of approximately 20 meters diameter on the ground. This means
that several spectrally pure signatures (endmembers) are combined into the
same mixed pixel. As a result, spectral unmixing is a very important task
for hyperspectral data exploitation since the spectral signatures collected in
natural environments are invariably a mixture of the pure signatures of the
various materials found within the spatial extent of the ground instantaneous
field view of the imaging instrument.

This document presents the implementation of two unmixing methods
on GPU and FPGA platforms. The remain of the document is organized
as follows, chapter 2 presents the hyperspectral imaging concept and the
models to represent the datasets, chapter 3 present two unmixing methods,
chapter 4 presents the methods implementation on GPU hardware and their
results and chapter 5 presents the design of one method for an FPGA im-
plementation and its results. Chapter 6 draws some lines of future research
lines.
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Chapter 2

Background

Hyperspectral imaging is an emerging and fast growing area in remote sens-
ing [27]. The main characteristic of hyperspectral images is the high resolu-
tion they present in the spectral domain, since they are collected by instru-
ments able to measure hundreds of narrow spectral bands corresponding to
continuous wavelength channels [28]. The very high spectral resolution of hy-
perspectral data offers very significant potential in the identification of ma-
terials and their properties which has opened ground-breaking perspectives
in several applications. Figure 2.1 illustrates the concept of hyperspectral
imagery in Earth surface remote sensing application. Hyperspectral image
consists of a 3D (three dimensional) datacube containing both spectral (one
dimension) and spatial (two dimensions) information.

Although, there have been significant improvements in hyperspectral
sensors, the spectral signatures collected in natural environments are invari-
ably a mixture of the signatures of the various materials found within the
spatial extent of the ground instantaneous field view of the imaging instru-
ment [28]. These pixels, called mixed pixels, occur mainly due to the low
spatial resolution of such images, but they can also result when distinct
materials are combined into a homogeneous or intimate mixture [30].

Spectral unmixing consist on the identification of the spectrally pure
signatures of the materials present in the scene (called endmembers in hy-
perspectral imaging terminology) and the estimation of the fractional abun-
dances for each endmember, or in other words, the contribution of each
endmember on each mixed pixel. In order to perform the spectral unmixing
process, one of the most simple and widely used approaches for charac-
terize mixed pixels in hyperspectral imagery is the Linear Mixture Model
(LMM) [28].

4



CHAPTER 2. BACKGROUND 5

Figure 2.1: Illustration of the hyperspectral imaging concept (courtesy of
the authors of work [29]).

The LMM considers that a mixed pixel is a linear combination of end-
member signatures weighted by the correspondent abundance fractions, i.e.,
at each pixel abundances represent the percentage of each endmember that
is present in the pixel. Let us assume Y ≡ [y1, . . . ,yn] ∈ Rl×n denotes
a matrix holding the n observed spectral vectors with l different spectral
bands. This matrix can be modelled as:

Y = MS+N (2.1)

where M ≡ [m1,m2, . . . , mp] ∈ Rl×p is a matrix containing p endmember
signatures, S = [s1, s2, · · · , sn] ∈ Rp×n is a matrix containing the abun-
dance fractions for each of the p endmembers in M, and N is a noise term.
Notice, however, that this matrix organizations does not take into account
the spatial information contained in the dataset. Due to the nature of the
acquisition process, at a given pixel, abundance fractions sum to one and
are nonnegative, the so-called abundance sum constraint (ASC) and abun-
dance nonnegativity constraint (ANC). This abundance fraction are in the
following p− 1 probability simplex:

{S ∈ Rp×n : S ⪰ 0 , 1Tp S = 1Tn}, (2.2)
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where S ⪰ 0 means sij ≥ 0, for i = 1, . . . , p, and j = 1, . . . , n , 1p and
1n denote a p × 1 and n × 1 column vectors filled of 1’s, and (·)T denotes
the transpose operator. Thus, under the linear mixing model the observed
spectral vectors in a given scene are in a simplex whose vertices correspond
to the endmembers. Assuming that each endmember has at least one pure
pixel on the dataset, i.e., one pixel containing only one endmember, the
endmember extraction aims to identify those pure pixels.

The LMM assumes negligible interaction between distinct endmembers,
which is strictly valid when the endmembers are arranged side-by-side, as
in a chequerboard. Fig. 2.2 schematizes the LMM scenario. It has been
widely exploited and it has been demonstrated in numerous applications
that it is a useful technique in hyperspectral remote sensing [31–34]. There
are, however, many situations, involving multiple light scattering effects,
in which the linear mixing model is not a good approximation. In these
cases, the nonlinear models may provide better assessment of endmember
signatures and abundances, improving the unmixing accuracy [30,35].

Sunmm1

m

m

1

2

Figure 2.2: Illustration of the linear mixture model.

A general nonlinear mixture model can be expressed as follows:

yi = f (M , si) + ni, (2.3)

where f is a nonlinear function and ni ∈ Rl is a noise perturbation asso-
ciated to the i-th pixel vector. In the recent past, several methods have
been proposed in the literature to estimate the function f . Depending on
how they estimate the function f is it possible to do a distinction between
physics-based methods, and data-driven techniques that do not require any
underlying physical assumptions on f . This two major categories may be
divided into sub-categories depending on the different techniques used to
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(a) Multi-layered mixtures (b) Intimate mixtures

Figure 2.3: Illustration of different nonlinear scenarios (a) Multi-layered
mixtures (b) Intimate mixtures.

estimate f such as bilinear models [35–37], models for intimate mineral
mixtures [38, 39], radiosity-based approaches [40], ray tracing [41], neural
networks [42], kernel methods [43], support vectors machine (SVM) tech-
niques [44], manifold learning methods [45], piecewise linear techniques [46],
multilinear model (MLM) [47–49] among others. A full review of many
different nonlinear techniques may be found in [35].

However typically there are two distinct situations where the multiple
scattering effects can be observed [50]:

� Multiple scattering effects on complex vegetated surfaces [35,37]. This
model consist on a multilayered scene model, where there are multiple
interactions among the scatterers at each layer, to study the nonlinear
effects among different materials. Fig. 2.3(a) illustrates this model,
where it is assumed that incident solar radiation is scattered by the
scene through multiple bounces involving several endmembers.

� Materials are intimately mixed [42]. Fig. 2.3(b), schematizes this sce-
nario, where the mixing scale is microscopic. Although, this scenario is
more complex than the linear model, in [51] it is proposed the use of a
nonlinear mixture model based on Hapkes bidirectional spectroscopy
theory [39] to improve the unmixing results in intimate mixtures of
soil.

For both scenarios unmixing methods were developed and can be found on
works [36,50,52].
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2.1 Hyperspectral Linear Unmixing

Hyperspectral unmixing amounts to identify the set of endmembers present
in the dataset and their abundance fractions at each pixel. Methods for
hyperspectral linear unmixing can be classified as geometrical, statistical,
and deep learning (DL)-based methods [53].

Geometrical unmixing algorithms work under the assumption that the
endmembers of an HSI are the vertices of a simplex with the minimum
volume enclosing the dataset or of a simplex with the maximum volume
contained in the convex hull of the dataset. Pure pixel-based and minimum
volume (MV)-based methods belong to this category. The pure pixel-based
algorithms assume that there is one pure pixel at least per endmember,
i.e., there is at least one spectral vector on each vertex of the data sim-
plex [1]. Some popular and efficient algorithms taking this assumption are
vertex component analysis (VCA) [31], the automated morphological end-
member extraction (AMEE) [32], the pixel purity index (PPI) [54], the N-
FINDR [55], the successive volume maximization (SVMAX) [56],the auto-
matic target generation process (ATGP) [57], and the Negative Abundance-
Oriented (NABO) [58].

If the pure pixel assumption is not fulfilled, which is a more realistic
scenario, the unmixing process is a rather challenging task, since some (or
even all) endmembers are not in the dataset. Some methods that have been
developed to cope these scenarios are, the simplex identification via split
augmented Lagrangian (SISAL) [59], the robust minimum volume enclosing
simplex (RMVES) [56], the minimum volume transform-nonnegative matrix
factorization (MVC-NMF) [34], the sparsity-promoting iterative constrained
endmembers (ICE) [60], and the robust and recursive non-negative matrix
factorization (RRNMF) [61].

Statistical methods focus on using parameter estimation techniques to
determine endmember and abundance parameters, very often the problem
is formulated under the Bayesian framework [33, 62–64]. Although these
methods are robust, they are computational very heavy and time expensive.

Recently, some deep learning-based unmixing methods have emerged.
For instance, the model-inspired neural networks [65], that is based on the
LMM and the iterative shrinkage thresholding algorithm, the LMM-based
end-to-end deep neural network with sparsity-constrained nonnegative ma-
trix factorization [66], and the unsupervised nonlinear spectral unmixing
method based on a CNN autoencoder network is presented in [67]. A review
of deep learning techniques applied to hyperspectral unmixing can be found
in [68]. Nevertheless, there are still several drawbacks [69]. For instance,
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Figure 2.4: Illustration of tree linear mixture scenarios: (a): with pure pixels
(solid line - estimated simplex by all methods); (b): without pure pixels
and with pixels in the facets (solid red line - estimated simplex based on
minimum volume; dashed blue line - estimated simplex by pure-pixel based
methods); (c): highly mixed pixels (solid red line - estimated simplex based
on minimum volume; dashed blue line - estimated simplex by pure-pixel
based methods).

current approaches often require a lot of training samples and network pa-
rameters to achieve satisfactory unmixing performance.

Fig. 2.4 illustrates three datasets raising different degrees of difficulties
in what unmixing is concerned: the dataset shown in Fig.2.4(a) contains
pure pixels, i.e., the spectra corresponding to the simplex vertices are in
the dataset. The dataset shown in Fig.2.4(b) does not contain pure pixels,
at least for some endmembers. This is a much more challenging, usually
attacked with the minimum volume based methods, note that pure-pixels
based methods are outperformed under these circumstances; Fig.2.4(c), con-
tains a highly mixed dataset where only statistical and deep learning-based
methods can give accurate unmixing results.



Chapter 3

Unmixing Methods

Herein two well-known methods are presented, Vertex Component Analy-
sis (VCA) [31] and simplex identification via split augmented Lagrangian
(SISAL) [59]. These methods belong to the geometrical unmixing methods
class, where VCA assumes that there are pure pixels in the dataset and
SISAL works without this assumption.

3.1 VCA Unmixing Method

VCA is a unmixing method proposed by Nascimento and Bioucas [31] and
it is one the most popular method within the literature. VCA is an unsu-
pervised method to extract endmembers from hyperspectral datasets and
is based on the geometry of convex sets. It exploits two facts: 1) the end-
members are the vertices of a simplex and 2) the affine transformation of a
simplex is also a simplex. VCA is a fully automatic algorithm and it works
with or without Dimensionality Reduction (DR) pre-processing step. The
algorithm iteratively projects data onto a direction orthogonal to the sub-
space spanned by the endmembers already determined. The new endmember
signature corresponds to the pixel with largest projection. The algorithm
repeats the procedure until the whole set of p endmembers is found. Figure
3.1 illustrates the VCA method working on a simplex defined by a mixture
of three endmembers. In the first iteration, data is projected onto the first
direction f1. The extreme of the projection corresponds to endmember ma.
In the next iteration, endmember mb is found by projecting data onto direc-
tion f2, which is orthogonal to ma. Finally, a new direction f3, orthogonal
to the subspace spanned by ma and mb is generated and the endmember
mc is found by seeking the extreme of the projection of the dataset onto f3.

10
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Figure 3.1: Hyperspectral mixture of three endmembers illustrating the
VCA method.

Algorithm 1, shows the main steps of the VCA, without the DR step.
Although the number of endmembers is much lower than the number of
bands (p ≪ l) and, thus, it is advantageous, in terms of signal-to-noise ratio
(SNR) to represent the spectral vectors in a signal subspace basis [70], this
step can take a larger time consumption, which could not be compatible
with real-time requirements. More details on the full VCA algorithm can
be found in [31]. In Algorithm 1, notation (·)# stands for the pseudoinverse
matrix, symbol V denotes the estimated mixing matrix and [V]:,j stands for
jth column of V.

Algorithm 1 : VCA
1: V := [eu |0 | . . . |0]; {eu := [0, . . . , 0, 1]T and V is a l × p auxiliary matrix}
2: for i := 1 to p do
3: w := randn (0, I); { w is a zero-mean random Gaussian vector}
4: f := (I−VV#)w; {f is a vector orthogonal to the subspace spanned by V:,1:i}
5: v := fTY;
6: k := argmaxj=1,...,n |[v]:,j |;
7: [V]:,i := [Y]:,k;
8: end for

3.1.1 Dimensionality Reduction Methods

Under the linear observation model, spectral vectors are in a subspace of
dimension p. Usually the number of endmembers is much lower than the
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number of bands (p ≪ l) and, has mentioned before, it is worthy to work
on the signal subspace. This leads to significant savings in computational
complexity and to signal-to-noise ratio (SNR) improvements.

Nascimento and Bioucas method, called hyperspectral signal identifica-
tion by minimum error (HySime) [70], estimates the number of endmembers
present in the dataset and selects the subset of eigenvalues that best rep-
resents the signal subspace in the least squared error sense. The results of
using a HySime before dataset unmixing is further illustrated in this section.

Estimating the number of endmembers p is regarded as the first step of
the overall endmember estimation task. The number of endmembers is often
unavailable in realist scenarios. Particularly, information theory-based algo-
rithms, eigenvalue thresholding algorithms, and geometry characterization
algorithms are three main families of techniques for estimating the number
of endmembers. A brief summary of each family can be found in [1,71] Some
examples of methods that have been proposed to estimate the number of
endmembers, are, NWHFC [72], HySime [70], and Second moment linear di-
mensionality (SML) [73]. The robust signal subspace estimation (RSSE) [74]
have been proposed in order to estimate the signal subspace in the presence
of rare signal pixels, thus it can be used as a preprocessing step for small
target detection applications. Sparsity promoting ICE (SPICE) [60] is an
extension of ICE algorithm that incorporates sparsity-promoting priors to
find the correct number of endmembers. The framework presented in [75]
also estimates the number of endmembers when it unmix the data.

Dimensionality reduction aims to find the subspace that best represent
the signal in a lower dimension. This can be done after knowing the num-
ber of endmembers present in the scene or done at the same time. Several
approaches have been published, for instance band selection or band extrac-
tion, as the name suggests, exploits the high correlation existing between
adjacent bands to select a few spectral components among those with higher
SNR. Projection techniques seek for the best subspace to project data by
minimizing an objective function. Among these methods are, principal com-
ponent analysis (PCA) [76] which is the best data representation in the least
squares sense; singular value decomposition (SVD) [77] provides the projec-
tion that best represents data in the maximum power sense; maximum noise
fraction (MNF) [78] seek for the projection that optimizes the ratio of noise
power to signal power; HySime [70], selects the subset of eigenvalues that
best represents the signal subspace in the least squared error sense; and
HFC [72] which is a Neyman-Pearson detection theory-based thresholding
method to determine the virtual dimensionality (VD).

For illustration purposes, a simulated scene was generated according to
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Figure 3.2: Scatter-plot (bands λ = 827nm and λ = 1780nm) of the three
endmembers mixture. (a) Unprojected data. (b) Projected data using SVD.
Solid and dashed lines represent, respectively, simplexes computed from orig-
inal and estimated endmembers (using VCA).

the linear mixture model. Three spectral signatures were selected from the
U.S. geological survey (USGS) digital spectral library [79], the abundance
fractions follow a Dirichlet distribution in order to respect the nonegativity
and full additivity constraints [33], and the additive noise is zero-mean white
Gaussian, where the SNR is set to 20 dB. Fig. 3.2(a) presents a scatter-plot
of the simulated spectral mixtures without projection. It is also plotted two
triangles whose vertices represent the true endmembers (solid line) and the
estimated endmembers (dashed line) by the VCA algorithm, respectively.
Fig. 3.2(b) presents a scatter-plot (same bands) of projected data onto the
estimated affine set inferred by SVD. Noise is clearly reduced, leading to a
visible improvement on the VCA results.

3.2 SISAL Unmixing Method

SISAL is a unmixing method proposed by Bioucas [59] and it belongs to the
minimum volume class unmixing methods. SISAL is able to unmix hyper-
spectral datasets in which the pure pixel assumption is violated. Moreover,
on SISAL method, the positivity hard constraints are replaced by hinge type
soft constraints, whose strength is controlled by a regularization parameter.
This replacement has three advantages: 1) robustness to outliers and noise;
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2) robustness to poor initialization; 3) opens the door to dealing with large
problems. The non-convex optimization problem is solved as a sequence of
non-smooth convex sub-problems using variable splitting to obtain a con-
straint formulation, and then applying an augmented Lagrangian technique.

SISAL method assumes that the number of endmembers and signal
subspace is known before hand [70] and that the observed vectors yi, for
i = 1, . . . , n, are projected to a p-dimensional basis signal subspace.

Let Ep be a matrix, with orthonormal columns, spanning the signal
subspace. Thus

X ≡ ET
pY (3.1)

X = ET
pMS+ET

pN

= AS+N∗

where X ≡ [x1, . . . ,xn] ∈ Rp×n denote a matrix holding the projected spec-
tral vectors, A = ET

pM is a p × p square mixing matrix, and N∗ accounts
for the projected noise. The input data of this method are the regulariza-
tion parameter in the problem λ, the augmented Lagrange regularization
parameter τ , the quadratic regularization parameter µ, the reduced matrix
X which size is p× n, and the initial simplex, a p× p matrix, performed by
VCA using the reduced matrix X.

Linear unmixing amounts to infer matrices A and S. This can be
achieved by fitting a minimum volume simplex to the dataset [80]. Since the
volume defined by the columns of A is proportional to |detA|, then finding
a minimum volume matrix A subject to the ANC and ASC, leads to the
non-convex optimization problem

Â = argmin
A

|detA| (3.2)

s.t. :QX ⪰ 0 , 1TpQX = 1Tn ,

where Q ≡ A−1. Since | detQ| = 1/|detA|, problem (3.2) can be replaced
by

Q̂ = argmin
Q

{− log | detQ|} (3.3)

s.t. :QX ⪰ 0 , 1TpQX = 1Tn .

Considering that matrix Q is symmetric and positive-definite, problem (3.3)
is convex. However, in most of practical scenarios matrixQ is not symmetric
nor positive-definite, thus the minimization of expression (3.3) is not convex.
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Aiming to give a sub-optimal solution of (3.3), a sequence of augmented
Lagrangian optimizations is applied (see [59] for details).

Instead of solving problem (3.3), a modified version is proposed:

Q̂ =argmin
Q

{− log | detQ|+ λ∥QX∥h} (3.4)

s.t. :1TpQ = aT ,

where ∥QX∥h ≡
∑

ij h(QX), h(x) ≡ max(−x, 0) is the so-called hinge func-

tion, λ is the regularization parameter, and aT = 1TnX
T
(
XXT

)−1
. Notice

that ∥QX∥h penalizes the negative components of QX proportionally to
their magnitude, thus playing the rule of a soft constraint or a regularizer,
yielding solutions that are robust to outliers, noise, and poor initialization.



Chapter 4

GPU Methods Design and
Implementation

In recent years, high-performance computing systems have become more
widespread in remote sensing applications, namely the emergence of pro-
grammable graphics processing units (GPUs). Driven by the increasing
demands of the videogame industry, GPUs have evolved from expensive
application specific units into highly parallel and programmable systems.
GPUs can be abstracted as an array of highly threaded streaming multi-
processors (SMs), where each multiprocessor is characterized by a single
instruction multiple data (SIMD) architecture, i.e., in each clock cycle each
processor executes the same instruction while operating on multiple data
streams. Each SM has a number of streaming processors that share a con-
trol logic and instruction cache and have access to a local shared memory
and to local cache memories in the multiprocessor, while the multiprocessors
have access to the global GPU (device) memory. Fig. 4.1 presents a typical
architecture and the data flow communication between CPU and GPU.

The algorithms are constructed by chaining the so-called kernels which
operate on entire streams and which are executed by a multiprocessor, tak-
ing one or more streams as inputs and producing one or more streams as
outputs. Thereby, data-level parallelism is exposed to hardware, and kernels
can be concurrently applied without any sort of synchronization. The ker-
nels can perform a kind of batch processing arranged in the form of a grid of
blocks where each block is composed by a group of threads that share data
efficiently through the shared local memory and synchronize their execution
for coordinating accesses to memory. As a result, there are different levels
of memory in the GPU for the thread, block, and grid concepts. There is

16
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Figure 4.1: Typical NVidia GPU architecture, computation, and data trans-
fer flow from/to CPU.

also a maximum number of threads that a block can contain (depending on
the GPU model), however, the number of threads that can be concurrently
executed is much larger due to the fact that several blocks executed by the
same kernel can be managed concurrently. With the above ideas in mind,
the next sections present the unmixing methods implementations and their
fast optimizations [81].

4.1 VCA implementation on GPU

As mentioned in the previous section, VCA iteratively project all pixels to a
direction orthogonal to the subspace spanned by the endmembers found so
far. At each iteration the pixels projection are independent from each other,
thus, it is highly desirable that this procedure be parallel implemented in
order to increase in processing speed.

Algorithm 2, shows the main steps of the VCA, where symbol M̂ denotes
the estimated mixing matrix and [M̂]:,j stands for the jth column of M̂.
Red and blue lines denote operations to be computed in CPU and GPU,
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respectively. Briefly, the dataset is read to the memory, where is shared by
the GPU cores, the direction determination, which is composed by small
matrix operations, is made on the CPU, whereas the pixel projections are
made in the GPU in parallel fashion.

Algorithm 2 : VCA Parallel Implementation

1: M̂ := 0p;
2: for i := 1 to p do

3: V := orth (M̂) {Orthogonal vectors that spans M̂ range}

4: P := (I−VVT )

5: f := generate a vector from span(P)

6: v := fTY;

7: k := argmaxj=1,...,n |v|;

8: [M̂]:,i := [Y]:,k;
9: end for

(Red and blue lines denote operations to be computed in CPU and GPU, respectively.)

4.1.1 Abundance Estimation Method

Has the VCA method extract the endmember signatures, the endmember’s
abundance estimation problem can be posed in the framework of convex
optimization [82]. Under this context, the alternating direction method of
multipliers (ADMM) [83] is a powerful algorithm that can be parallelized.
SUNSAL method proposed by Bioucas and Figueiredo [82] is an ADMM
based approach to estimate the abundance fractions under ASC and ANC.
Assuming that matrix M is already obtained by the VCA algorithm, the
abundance fraction estimation can be defined as

min
s

1

2
∥Y −MS∥2F

subject to : S ⪰ 0 , 1Tp S = 1Tn , (4.1)

where notation ∥(·)∥F stands for Frobenius norm. The above formulation
is a particular case of the constrained ℓ2 − ℓ1 problems solved by SUNSAL,
corresponding to the absence of the ℓ1 term. The pseudo-code is presented
in Algorithm 3.
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Algorithm 3 : SUNSAL Parallel Implementation
1: choose µ > 0, U0, and D0.

2: A := MTY

3: B :=
(
MTM+ µI

)−1

4: c := B1p
(
1T
p B1p

)−1

5: G := B− c1T
p B

6: k := 0
7: repeat

8: R := A+ µ (Uk +Dk)

9: Sk+1 := GR+ c1T
N

10: Vk := Sk+1 −Dk

11: Uk+1 := max{0,Vk}

12: Dk+1 := Dk − (Sk+1 −Uk+1)

13: k := k + 1
14: until stopping criterion is satisfied
15: Ŝ = Sk

(Red and blue lines denote operations to be computed in CPU and GPU, respectively.)

4.2 VCA - Experimental Results on GPU

Nacimento et al, on work [84] have developed methods VCA and SUNSAL
for GPU. These methods were analyzed in order to determine the most
consuming parts that can be parallelized. Table 4.1 presents the processing
time of each step of both algorithms for a CPU (Intel core i7-2600) as a
function of the number of endmembers (p = {10, 20}) and the number of
pixels (n = {105, 5× 105}). It should be noted that these processing times
only depend on the number of pixels (n) and the number of endmembers
(p), hence these can be generalized for any hyperspectral dataset. It is clear
that the projection of all pixels onto direction f inside VCA loop Algorithm
2 (line 6), calculation of A in Algorithm 3 (line 2), and the operations inside
Algorithm 3 loop (lines 8 - 12), are the most consuming parts of the method
and they grow with p and n.

Assuming that VCA is applied after the projection of the dataset onto
the signal subspace [70], the computational complexity of VCA is 2p2n float-
ing point operations, where the projection of each pixel of Y onto direction
fk, can be done independently from the remaining pixels, thus, it can be
parallelized. After the dataset is transferred to the global memory of GPU,
using 4pn bytes, on each iteration the generation of the direction fk is per-
formed on the CPU and transferred to the constant memory of the device
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Table 4.1: VCA and SUNSAL processing time (10−3 seconds) for a Intel
core i7-2600 CPU as a function of the number of endmembers (p) and of the
number of pixels (n).

n = 1× 105 n = 5× 105

operation p = 10 p = 20 p = 10 p = 20

A f (lines 3-5) 0.09 0.57 0.09 0.57

C v (line 6) 535.16 445.68 2 677.62 2 193.38

V k (lines 7) 2.36 4.72 12.40 24.82

A (line 2) 2 394.23 4 868.62 10 509.91 21 160.15

B (line 3) 0.01 0.08 0.01 0.08

L c (line 4) ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00

A G (line 5) ≈ 0.00 0.02 ≈ 0.00 0.02

S R (line 8) 476.00 1 601.21 2 903.37 9 040.34

N S (line 9) 2 400.48 15 560.41 14 486.93 88 144.44

U V (lines 10) 169.72 572.17 1 034.20 3 210.11

S U (lines 11) 794.46 2 689.25 4 741.11 15 580.76

D (lines 12) 337.27 1 127.14 2 044.35 6 414.02

(4p bytes). Then, a first kernel initially puts into execution many threads
as the number of pixels vectors of the image (n) divided into blocks of 32
threads, so that each thread is responsible for computing the dot product of
fTk by the pixel vector Yi, i.e., one element of vector v. Then, the second
kernel determines the index of the maximum absolute value of vector v, in-
dicating the position of the endmember signature on the dataset. This task
is performed using a binary reduction operation. These kernels correspond
to instruction on line 7 of Algorithm 2 (blue lines). Fig. 4.2 presents a
illustrative example of a single thread functioning. It is worth noting that
to fully optimize the parallel algorithm, the size of v must be power of two
(with zero padding, if necessary).

The proposed implementation of SUNSAL follows the same rule, i.e.,
the most consuming time operations are developed in a parallel fashion to
be processed in the GPU. The operations outside the loop, namely, the
inversion of p × p matrix in line 3 of Algorithm 3 are implemented in the
CPU since it has a low computational cost (red lines in Algorithm 3). Inside
the SUNSAL loop the first kernel compute matrix R (see line 8 of Algorithm
3). This kernel launches as many threads as elements that are present in R,
where each thread computes an element of the A+µ (Uk +Dk). The result
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Figure 4.2: Illustration of parallel VCA in the GPU:(a) thread to compute
v = fTY; (b) thread to find the index of maximum absolute value of v.
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[32 x 32]

Figure 4.3: Illustration of parallel SUNSAL in the GPU: Thread to compute
one element of RG.

is stored in the global memory. The second kernel computes the abundance
estimates, S, on each iteration (line 9 of Algorithm 3), by first computing
the product of matrices G and R followed by the addition of matrix c1Tn .
In order to minimize the number of global memory accesses, matrix R is
partitioned into sub-blocks of 32 × 32 elements, which is the size of the
block, and transferred to the shared memory. Each block uses a total of
8 Kbytes of the shared memory. Fig 4.3 illustrates this procedure, where
one can see that each thread is responsible to compute each element of S.
The kernels for update V and D follow the same strategy used on the first
kernel, whereas U is updated by a kernel which analyze if each element of
V is negative. It should be noted that matrices are stored in global memory
which occupies around 28pn bytes.
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4.2.1 Accuracy Evaluation

In this section, the proposed implementation accuracy is evaluated using a
real hyperspectral data collected by the AVIRIS sensor. A subset of the
Cuprite dataset 1 containing 350×350 pixels with 187 spectral bands (noisy
and water absorption bands were removed) is considered. This site is well
understood mineralogically, it has several exposed minerals of interest, in-
cluding Alunite GDS83 Na63, Buddingtonite GDS85 D-206, Calcite WS272,
Kaolinite CM9, and Muscovite GDS108, and it has been extensively used
for remote sensing experiments over the past years and its geology was pre-
viously mapped in detail [85].

Table 4.2 shows the well-known evaluation metric, spectral angle distance
(SAD), for five minerals of interest where the signatures estimated by the
different methods are compared with the nearest laboratory spectra.

Table 4.2: Spectral angle scores (in degrees) between the USGS mineral
spectra and their corresponding endmember pixel produced by our imple-
mentation for the AVIRIS Cuprite scene.

Alunite Buddingtonite Calcite Kaolinite Muscovite

5.15 5.71 7.36 2.24 4.90

4.2.2 Performance Evaluation

In this section, we apply the sequential and the parallel versions of the
unmixing method based on VCA and SUNSAL for both simulated data and
for the real dataset of Cuprite collected by the AVIRIS sensor.

In order to evaluate the performance of the proposed method in terms of
processing time, the sequential version was implemented in C programming
language running on a computer platform equipped with a quad core Intel
i7-2600 CPU, 3.4GHz clock speed, 16 Gbyte memory, 1Mbyte and 8Mbyte of
L2 and L3 cache memory. The parallel version was implemented in OpenCL
programming language for three different GPU cards from NVidiaTM . Table
4.3 presents a summary of the characteristics of the three cards. The follow-
ing subsections will present the performance results in terms of acceleration
factors or speedups.

1Available online at http://aviris.jpl.nasa. gov/html/aviris.freedata.html
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Table 4.3: characteristics of NVidia GPU cards used in the VCA tests.
GTX 590 GTX 680 C2050

Cores 1024 1536 448

Clock (MHz) 607 1006 574

Memory (GB) 3.0 2.0 3.0

Bandwidth (GB/s) 163.9 192.2 144

Evaluation with Simulated Data

Several synthetic scenes are created with different number of pixels and
different number of endmembers. Each pixel is generated according to ex-
pression (2.1), where spectral signatures are selected from the USGS digital
spectral library, containing 224 spectral bands covering wavelengths from
0.38 to 2.5µm with a spectral resolution of 10nm. The abundance fractions
are generated according to a Dirichlet distribution which enforces positivity
and full additivity constraints (see [33] for details).

Table 4.4 illustrates data transfer from/to device time, processing time,
and speedup factors for a dataset composed of 105 pixels with thirty end-
members (p = 30). The processing time on GPU is lower than the CPU
time, due to the parallel processing implementation.

Fig. 4.4 shows the speedup of the parallel version (with regards to the
sequential version) for three different GPU cards as a function of the number
of endmembers and for n = 5×105. For illustration purposes the results for
the method running on all CPU cores is also presented. Herein, the method
implemented in OpenCL is compiled for the quad core Intel processor. The
speedup of GTX680 is higher than 100, for p = 30, which is quite remarkable
taking into account that the sequential version has been carefully optimized.
As expected the speedup grows with the number of endmembers. Note that
GTX680 GPU card, which has more cores, has the best performance, and
the 4 core CPU has a speedup smaller than 8, achieving always the worst
result.

Evaluation with Real Data

The proposed method is applied to real hyperspectral data collected by the
AVIRIS sensor. Table 4.5 shows the processing time (in seconds) for the
CPU sequential versions of VCA and SUNSAL and also for the paralell
versions using three different GPUs. One can note that the best speedup is
higher than 100 times, achieved on the GTX680 card. These results are in
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Table 4.4: Processing time and data transfer (seconds) for a Intel core i7-
2600 CPU and for a GTX590 GPU card (p = 30 and n = 105).

CPU GTX 590

RAM → Global Mem. - 0.014

VCA: f (lines 3 - 5) 0.002

VCA loop (line 6 - 7) 1.479 0.008

RAM ← Global Mem. - 0.001

SUNSAL: compute A (line 2) 7.230 0.423

SUNSAL (lines 3 - 5) 0.036

RAM → Global Mem. - 0.221

SUNSAL loop (lines 8 - 12) 57.39 0.624

RAM ← Global Mem. - 0.028

Total Time 65.389 1.607

Speedup (CPU time / GTX590 time) - 48.12
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Figure 4.4: Speedup of parallel version as a function of the number of end-
members (p) for n = 5× 105.
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Table 4.5: Processing time (seconds) for the Cuprite dataset.

Total time VCA SUNSAL Speedup

CPU 98.270 0.400 97.870 -

CPU (4 cores) 19.537 0.296 19.241 5.029

GTX590 1.169 0.021 1.148 84.06

GTX680 0.975 0.021 0.954 100.79

Tesla C2050 1.367 0.022 1.345 71.88

agreement with the ones for the simulated scenarios.
Finally, it is worth to mention that as the AVIRIS sensor is able to collect

512 hyperspectral pixels in 8.3 ms [86], thus, a 350 × 350 subimage takes
nearly 2 seconds. Consequently, the proposed parallel method using GPUs
is suitable for real-time hyperspectral unmixing systems.

4.3 SISAL Implementation on GPU

In this section, the GPU implementation of the SISAL algorithm, developed
in Nascimento el al work [87] is described. This work is carried out using
the compute unified device architecture (CUDA) developed by NVidiaTM .

SISAL implementation has been first optimized in the C version by re-
ducing the number of operations and the size of the matrices. Since the
original algorithm proposed in [59] is based on diagonal matrices in the
range of p2 × p2, herein the same calculations by using just the profitable
data, in this way the algorithm works with p×p matrices instead of p2×p2.
Algorithm 4 shows the parallel implementation of SISAL, the method was
analyzed in order to determine the most consuming parts that can be par-
allelized. The part of the code that can be parallelized is limited by the
inverse and determinant matrix calculations that can be performed faster in
CPU, due to the small size of the p×p matrices. In addition, lines 16 and 25
were tested in both architectures and they show better results in CPU. Al-
gorithm 4 shows in blue color the operations performed in the GPU. These
operations have been implemented in order to optimize the memory access.
Notice that q matrix is the only dataset updated in CPU memory because
its dependency on the GPU code. The kernels provide memory coalescence
by setting contiguous memory access to contiguous threads, in addition to
use shared memory to store and sum the thread results in parallel. First, the
p×p matrix Ŷ is performed in GPU using a CublasDgemm multiplication to
solveYYT. In line 7, a kernel called computeA calculates the vector a with p
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elements. This launches p blocks with the maximum number of thread possi-
ble in the block. Each thread calculates a given number of matrix products
(depending of number of threads) and sum the thread results in parallel,
then the result of each block is multiplied by a position of H (p elements).
Later, a kernel called computeHinge is in charge of executing line 14, which
launches as many blocks as number of bands present in the reduced image,
p, and uses the maximum number of thread possible in the block to perform
the multiplication and evaluate the maximum values. On the other hand,
the operations inside the quadratic approximation loop are performed in the
GPU, a kernel called computeSum executes the sum of b1 = (z + d)YT

launching as many threads as elements of (z + d), then the result is mul-
tiplied by YT using the CublasDgemm multiplication. Later, a new kernel
called computeQ is in charge of calculate q = G(b1τ + b aux)+a using as
many threads as elements in the resulting matrix p × p. First, each thread
sums each element of (b1τ + b aux) and stores the results in shared mem-
ory, then multiplies the resulting matrix stored in shared memory by G and
sums a to the results. The last two operations, lines 20 and 21 are performed
by a CublasDgemm multiplication and a new kernel called computeSoft, this
kernel launches as many threads as number of elements in data set p × n,
and updates the values of z and d. In our implementation, parallel streams
and dynamic parallelism do not improve the timing results because of the
data dependence among the kernels, and dynamic parallelism also induces
to repeat memory access and thread divergence.

4.4 SISAL - Experimental Results on GPU

The experiments have been carried out using both synthetic and real datasets.
Three synthetic hyperspectral images were generated from spectral signa-
tures, with 224 bands, randomly selected from the United States Geological
Survey (USGS), and using the procedure described in work [88] to simu-
late natural spatial patterns and applying uniform signal-to-noise ratio with
SNR = 40dB: SyntheticSmall with 100×100 pixels, SyntheticMedium with
400 × 250 pixels and SyntheticLarge with 512 × 600 pixels. Each image
has three different versions generated with different number of endmembers
p = 10, p = 20 and p = 30, without including pure pixel in the scenes.
In this way, the experiments evaluate the performance behaviour increasing
both the number of pixels and the number of endmembers.

On the other hand, in order to illustrate the efficiency of our method over
real data sets, the well-known AVIRIS Cuprite scene has been analyzed. In
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Algorithm 4 : SISAL Parallel Implementation

1: Set λ > 0, µ > 0, τ > 0 and M̂ = VCA(Y)

2: Q = M̂−1;q = vec(Q);

3: Ŷ = YYT

4: IF = (µI+ τŶ)−1

5: H = (IF1p)
1

||IF||F
6: ÎY = Ŷ−1

7: a = H
⊗

((ÎYY)1n) {Simbol
⊗

denotes the Hadamard product}
8: G = IF−H(1T

p IF)
9: for k = 1 to Max Iter do

10: g = −vec(Q−1) {Q is updated with q}
11: b aux = µq− g
12: qk = q
13: repeat

14: hinge = λmax{−qY, 0}
15: valk = − log(abs(det(q))) + hinge
16: quadk = (q− qk)

T g + µ
2
(q− qk)

T (q− qk) + hinge
17: for t := 1 to AL Iter do {Quadratic approximation}
18: b = b aux+ τ((z+ d)YT )

19: q = Gb+ a

20: z = soft(qY − d, λ/τ)

21: d = d− (qY − z)

22: end for
23: hinge = λmax{−qY, 0}
24: valk+1 = − log(abs(det(q))) + hinge
25: quadk+1 = (q− qk)

T g + µ
2
(q− qk)

T (q− qk) + hinge
26: if quadk ⩾ quadk+1 then
27: repeat
28: q = (q+ qk)/2

29: hinge = λmax{−qY, 0}
30: valk+1 = − log(abs(det(q))) + hinge
31: until valk ⩾ valk+1

32: end if
33: until valk ⩾ valk+1 AND quadk ⩾ quadk+1
34: end for

(blue lines denote operations performed in the GPU, respectively.)
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Table 4.6: Spectral angle scores (in degrees) between the USGS mineral
spectra and their corresponding endmember pixel produced by our imple-
mentation for the AVIRIS Cuprite scene.

Alunite Buddingtonite Calcite Kaolinite Muscovite

4.89 7.13 10.59 7.16 5.64

the following, the accuracy and performance results of the proposed parallel
method are analyzed.

4.4.1 Accuracy Evaluation

In order to analyze the accuracy of the parallel implementation, the well-
known spectral angle distance (SAD) is adopted. All the synthetic im-
ages involved in the experiments were made up using the same matrix of
p = 30 (generated randomly from the USGS spectral library) and applying
SNR = 40dB. The parameters of the algorithm were set to Max Iter = 60,
AL Iter = 10, 10−2 ≤ λ ≤ 10−4, τ = p × 1000/n, and µ = 10−6, which
show very accurate results over all the images. The SAD was performed be-
tween the extracted endmembers and ground-truth spectral signatures used
to generate the image. In all the cases, the results present very low aver-
age SAD scores under 9 degrees in the worst case, which indicates that the
implementation provides accurate results, since the best case of SAD is 0
degrees and the worst case is 90 degrees.

On the other hand, Table 4.6 shows the SAD scores performed between
the endmembers extracted from AVIRIS Cuprite dataset and the spectral
signatures of the USGS spectral library. The SAD scores are in the range of
4 to 11, which demonstrates the accuracy of the proposed implementation
over real datasets.

Before describing the results, it is important to emphasize that our GPU
version provides exactly the same results as the serial version of the algo-
rithms, implemented in C programming language using the gcc (gnu com-
piler default) with optimization flag -O3. In order to keep the method’s
accuracy, the algorithm is implemented using double precision.

4.4.2 Performance Evaluation

In order to evaluate the performance of the proposed method in terms of
processing time, our implementations were executed on two GPU platforms.
First, a quad-core Intel i7-4790 CPU, 3.6-GHz clock speed and 32-GB RAM
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Table 4.7: characteristics of Nvidia GPU cards used in the SISAL tests.
GTX 980 TITAN X

Cores 2048 3072

Clock (MHz) 1126 1000

Memory (GB) 4.0 12.0

Bandwidth (GB/s) 224.0 336.6

Figure 4.5: Speedup of the parallel version as a function of the number of
pixels and number of endmembers (p) over the synthetic datasets.

memory connected to a GPU NVidiaTM GeForce GTX 980 (denoted by
GPU1 ). Second, a quad-core Intel i7-4790K CPU, 4.0-GHz clock speed
and 32-GB RAM memory connected to a GPU NVidiaTM GeForce TITAN
X (denoted by GPU2 ). The sequential implementation, in C programming
language, was executed in one core available of the multi-core Intel i7-4790K.
For each experiment, ten runs were performed and the mean values were
reported with minor standard deviations. Table 4.7 presents a summary of
the characteristics of the cards.

Evaluation with Simulated Data

This section presents the results over three synthetic hyperspectral images.
Fig. 4.5 displays the results based on the experiments conducted using
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the three synthetic hyperspectral datasets (described above) with different
number of endmembers.

These results indicate that the GPU implementation can significantly
accelerate the execution of SISAL over big datasets, when compared with
the sequential version which has been carefully optimized for one CPU core.
As expected, the speedups factor is higher as the number of endmembers in
the image increases.

All of the results include the memory transfers overhead among CPU
and GPU; those transfers are synchronous since the kernel invocation is
iterative. Times for VCA endmember initial estimation and dimensionality
reduction step are not included in our experiments since these algorithms
are aside from the original SISAL method.

Fig. 4.5 shows that the best results are achieved on GPU2 with speedup
higher than 47 times. The GPU2 clock frequency is slower but it has more
CUDA cores than GPU1.

In order to widely analyze the GPU implementation performance, Table
4.8 displays the resulting times of the different parts of the code, measured
using the NVidiaTM profile tool, after processing the synthetic datasets
with 30 endmembers on the considered GPU device. This table specifies
the memory transfers overhead among CPU and GPU, the non-parallelized
execution time, the total times for each kernel (described in Section 4.3),
the Cublas multiplications times and finally the speedups achieved over the
synthetic datasets. Note that each kernel is launched several times during
the different iterations that the algorithm takes to converge.

Table 4.8 shows that, in all the cases, the memory transfers among CPU
and GPU take a tiny percentage of the execution time, thus the GPU spent
most of the time in data processing which is an outstanding result. In addi-
tion, one can also note that the times spent executing the non-parallelized
code are very small comparing to the parallel execution time. Therefore,
the most time consuming parts of the algorithm have been parallelized.
Furthermore, the scores for each particular kernel reveals that all of them
are positively contributing to reach the encouraging speedups.

Table 4.9 presents the GPU occupancy achieved by the different kernels
for the experiments conducted using the synthetic hyperspectral datasets
with 30 endmembers. The scores reveal that the GPU implementation prop-
erly takes advantage of the GPU architecture in all the experiments. Note,
however, that although the ComputeQ kernel works with small matrices and
shows a low use of the GPU, the main reason to keep this kernel is to avoid
memory transfers between CPU and GPU.
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Table 4.8: Processing times (in seconds) and Speedups achieved for the GPU
implementation of the algorithm on the CPU-GPU platform, tested with the
four synthetic datasets (p = 30).

Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4

100 × 100 400 × 250 512 × 600 600 × 1024

CPU GPU CPU GPU CPU GPU CPU GPU

RAM → GlobalMem. (Image) – 0.0029 – 0.0286 – 0.0899 – 0.1762

RAM → GlobalMem. – 0.0001 – 0.0011 – 0.0038 – 0.0077

Global Mem. → RAM – 0.0003 – 0.0003 – 0.0003 – 0.0003

YT × Y (Line 3) 0.0068 0.0003 0.0722 0.0020 0.2192 0.0055 0.5278 0.0109

A (Line 7) 0.0057 0.0002 0.0720 0.0019 0.4079 0.0058 0.8330 0.0151

Sum (Line 18) 0.2261 0.0266 3.5457 0.2642 10.8152 0.8114 21.5404 1.6215

sum × YT (Line 18) 3.3205 0.1878 37.3522 1.2214 111.7478 3.2046 224.8251 6.1614

Q (Line 19) 0.3058 0.0150 3.6222 0.0144 10.7925 0.0144 21.3635 0.0144

q × Y (Line 20) 3.3957 0.1195 34.4545 0.9056 217.2635 2.7357 414.3540 5.4544

Hinge (Lines 14,23,29) 0.6989 0.0217 7.1441 0.1965 42.9824 0.5905 86.8990 1.6623

Soft (Line 20,21) 0.7290 0.0643 9.7433 0.5787 29.6798 1.3329 59.4543 2.6829

Total Parallelized - 0.4354 - 3.0305 - 8.5268 - 17.6229

Non-parallelized 0.0067 0.0118 0.0378 0.0534

Total 8.6952 0.4448 96.0180 3.0673 423.9461 8.6465 856.8505 17.7774

Speedups - 19.2873 - 31.3037 - 49.0309 - 48.2091

Table 4.9: Achieved occupancy (%) for the GPU implementation of the
algorithm on the CPU-GPU platform, tested with the four synthetic datasets
(p = 30).

Synthetic 1 Synthetic 2 Synthetic 3 Synthetic 4

100× 100 400× 250 512× 600 1024× 600

A 96.2 96.2 95.9 96.5

Sum 84.2 84.1 84.4 84.3

Q 45.3 45.3 45.3 45.3

Hinge 96.1 96.6 96.1 96.7

Soft 86.7 86.2 85.8 79.3
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Table 4.10: Processing times (in seconds) and speedups achieved for the
GPU implementation of the algorithm on GPU1 and GPU2, tested for the
real AVIRIS Cuprite data set (p = 19).

n CPU GPU1 Speedup1 GPU2 Speedup2

350× 350 45.267 3.585 12.626 2.910 15.556

Evaluation with Real Data

The proposed method is applied to real hyperspectral data collected by the
AVIRIS sensor. Table 4.10 shows the resulting times for the Cuprite dataset
for 19 endmembers, where the results include the memory transfers overhead
among CPU and GPU.

This results reveals that the proposed implementation can reach high
speedups over real datasets, and are in agreement with the ones for the sim-
ulated scenarios. One can note that best results are achieved on GPU2 with
speedup higher than 15 times. The GPU2 clock frequency is slower but it
has more CUDA cores than GPU1. It is worth to mention that, consider-
ing the results achieved over Cuprite dataset the proposed parallel method
using GPU2 is suitable for real-time hyperspectral unmixing systems.



Chapter 5

VCA Architecture Design
and Implementation on
FPGA

Herein, the Nascimento and Vestias work on VCA Architecture Design for
FPGA is presented [89]. The methodology followed to design the hardware
architecture starts with an analysis of the algorithm to identify the most
computationally demanding steps followed by a detailed description of how
each step of the algorithm is calculated. Then, a hardware architecture that
supports the execution of each step of the algorithm is proposed.

5.1 Analysis and Implementation of the VCAMethod

Knowing that the dataset live in a lower signal subspace one can use a
pre-processing (DR) step to reduce the dimension of the data space before
entering the hardware system, and consequently to simplify the hardware.
However, the time taken by the DR step is quite large and is not compatible
with real-time requirements making these hardware solutions not applicable
to real-time processing. Since VCA also works without this pre-processing
step, the proposed hardware implementation does not consider a DR pre-
processing step.

The most complex task of VCA is the calculation of vector f (see line 4
on Algorithm 1), which requires the computation of a pseudo-inverse matrix,
typically using the SVD [90], which is numerically very stable and accurate
[91], but it is computationally very complex and demanding. The projection
of the image onto the orthogonal direction (see line 5 on Algorithm 1) is
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also computationally very demanding, due to the large spatial dimensions
of the image. To reduce the complexity and improve the performance of the
hardware implementation, several optimizations have been considered in the
implementation of the VCA algorithm (see Algorithm 5).

Algorithm 5 VCA hardware implementation
1: INPUT Y
2: w := rand(1, L);
3: temp := eu;
4: f := w;
5: j := 1;
6: for i := 1 to 8 do
7: if i > 1 then
8: temp := Y(:, index(i− 1));
9: if i > 2 then

10: j := j + 1;
11: for k := 1 to j − 1 do
12: r := Dot product(Q(:, k), temp);
13: temp := temp− r ×Q(:, k);
14: end for
15: end if
16: r := 1/

√
Dot product(temp, temp);

17: Q(:, j) := r × temp;
18: proj := Dot product(w,Q(:, j));
19: f := f − proj ×Q(:, j);
20: end if
21: v old = 0;
22: for k := 1 to 614 do
23: v := Dot product(f,Y(:, k));
24: if v > v old then
25: v old := v;
26: index(i) := k;
27: end if
28: end for
29: end for
30: OUPUT index

In Algorithm 5 a QR decomposition using the classic Gram-Schmidt
process [90] is used to determine vector f on Algorithm 1 instead of the
SVD method. The QR decomposition is computationally less complex and
demanding than SVD, however it is numerically less stable and accurate [92].
To reduce the computation time of the QR decomposition an incremental
procedure is used. The procedure consists on reusing the orthogonal vectors
Q determined so far, thus only one orthogonal vector needs to be computed
on each iteration (see lines 9–17 on algorithm 5). Moreover, instead of
normalizing the vector by performing multiple divisions (lines 16 and 17
on algorithm 5), the reciprocal of the norm of the vector is calculated first
and then multiplied by the vector. Since the multiplication operation is
faster and uses less hardware resources compared to the division operation,



CHAPTER 5. VCA ARCHITECTURE DESIGN AND IMPLEMENTATIONON FPGA35

a parallel implementation of the operation becomes faster and smaller when
implemented in hardware [93,94].

The number of additions and products,Na and Np, respectively, will
increase with the number of iteration, thus for a number of endmembers p,
these number of operations are given by

Na = 4l + 2l
p2 − 3p+ 2

2
, (5.1)

Na = 3l − 2 + (2l − 1)
p2 − 3p+ 2

2
, (5.2)

where usually the number of endmember(p) is smaller than the number of
bands (l).

The projection of the image onto a direction to obtain vector v on Al-
gorithm 1 consists on a vector-matrix multiplication (see lines 22–28 on Al-
gorithm 5). The operation was speeded up by parallelizing the dot-product
operation (sub–routine Dot product in line 23 on algorithm 5) in order to
process several bands on each cycle reducing proportionally the number of
cycles needed to project a single pixel. The determination of k on Algorithm
1, the maximum entry of vector v, is done in parallel with the dot-product
operations, that is, the result of each dot-product is immediately compared
with the previous entry to find and keep the maximum value. This opti-
mization avoids the storage of the result of the dot product and reduces the
execution time of the algorithm.

5.2 FPGA Architecture

This section presents the proposed hardware implementation of Algorithm
5 described in the previous section. The architecture is designed to support
real-time processing of hyperspectral images acquired from AVIRIS sensor.

The architecture consists of a general-purpose processor (ARM) used
to send the image to the hardware and to get the index of the pixels that
were identified as endmembers by the hardware, a random number genera-
tor (Random), a memory module (Distributed memory) to store inputs and
outputs of the algorithm, as well as temporary vectors and variables, an in-
teger to float converter (Int2float), a dot-product calculator (Dot-product),
a multiply-subtract module (Mult-Sub), a reciprocal square-root calculator
used to normalize the last coefficient r of the QR decomposition (1/

√
x), and

a floating-point comparator (Max) used to determine the biggest argument
of all projections (see Figure 5.1).
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Figure 5.1: General overview of the VCA hardware architecture

Following the algorithm 5 described previously, the ARM starts transfer-
ring the hyperspectral image to theMemorymodule and then sends a control
signal to the dedicated hardware. Initially, a pseudo-random vector (w) is
generated using the Random-generator module. At the same time a QR de-
composition is computed using modules Dot-product, Multiplier-Subtractor,
and Reciprocal-square-root that generate a new orthogonal vector. The re-
sult of this decomposition and its intermediate results are stored in Memory.
Then, the orthogonal direction f is computed, using modules Dot-product
and Multiplier-Subtractor and stored in Memory. Finally, the projection of
image Y on vector f is computed using module Dot-product. As the results
are produced they are sent to module Comparator that determines the index
of the highest projection value. At the end of all processing a control signal
is sent to the processor indicating the end of the algorithm and that the
indexes of those pixels found as endmembers are available in memory.

In order to efficiently utilize the available resources, some modules are
reused to implement different steps of the algorithm. For example, the
Dot-product and the Multiplier-Subtractor modules are both used on the
QR decomposition and the image projection. Also, all modules operates
on single-precision floating-point data, following the standard IEEE 754-
2008.51 [95]. Since the data image is stored as 15-bit integers, the Int2float
module is used to convert from 15-bit integers to single-precision floating-
point to be used on the Dot-product and in the Multiplier-Subtrator modules.



CHAPTER 5. VCA ARCHITECTURE DESIGN AND IMPLEMENTATIONON FPGA37

Hardware Modules of the VCA Architecture

The Memory module is composed by nine memory modules with different
datawidths (see figure 5.2).

RAM y

RAM w

RAM f

RAM temp

RAM q

RAM idx

RAM r

REG proj

REG last

32

15

32x2

10

32

32

32x2

32x2

Image data

Random

Mult-Sub

32x2

32x2

32x2

10

32

32

32

Max

Dot 

product

1/ x

Figure 5.2: Structure of the memory module

RAM y is used to store the input image. RAM w is used to store the
random vector consisting of the numbers generated by the random genera-
tor. Another RAM f is used to store the orthogonal direction produced by
the multiplier-sutractor. RAM temp is used to store intermediate results
from QR decomposition at the output of the multiplier-subtractor module.
Memory RAM q stores orthogonal vectors from QR decomposition at the
output of the multiplier-subtractor. Memory idx stores those pixels elected
as endmembers found with module comparator. Memory r stores the coef-
ficients from the QR decomposition produced by the dot product module.
Register last stores the last coefficient from QR decomposition generated by
the inverse square root module. Finally, register proj stores an intermediate
result from the QR decomposition generated at module dot product.

The Random-generator module generates 32-bit integer numbers using
the Mersenne twister algorithm [96]. The integers generated are then rear-
ranged to form a single-precision floating point number, avoiding the use of
an integer to floating point converter.

TheMultiplier-Subtractormodule is used to calculate a multiply-subtract
operation over vectors. The module is designed with two multipliers and
subtractors capable to process two bands at the same time (see figure 5.3).

The Dot-product block is used to multiply vectors and is composed by
two parallel multiply-add blocks, DP, and an adder tree (see Figure 5.4).
Each multiply-add block consists of a multiplier followed by an accumulator.
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The accumulator is designed with three cycles of latency to allow an higher
operating frequency. Every block computes the dot product of 112 (= 224

2 )
bands, which are then added with the tree adder.
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This particular implementation uses two parallel multiplier blocks ca-
pable to process two spectral bands each clock cycle. Since the method
is scalable, more parallel multiplier blocks can be considered, which would
reduce the number of computation cycles and consequently the total process-
ing time of the algorithm. The scalability is only limited by the available
hardware resources. In the proposed architecture, the number of parallel
multipliers was determined based on the timing requirements to guarantee
real-time processing of hyperspectral data collected from AVIRIS, as will be
shown in Section 5.3.

5.3 VCA - Experimental Results on FPGA

The proposed hardware architecture has been described in VHSIC (very
high speed integrated circuit) hardware description language (VHDL) and
implemented on a Xilinx Zynq Zedboard with a XC7Z020 SoC. The ar-
chitecture is scalable in terms of parallel processing operators allowing to
design architectures with different tradeoffs between area and performance.
The hardware design has been done with Xilinx ISE, PlanAhead, Platform
Studio and Software Development Kit tools. The FPGA board has 1 GB
of DDR3 memory with 1.6 GB/s of memory bandwidth. This bandwidth
is large enough to sustain the communication of the hyperspectral image to
the FPGA. For example, real hyperspectral data collected by AVIRIS sensor
requires only around 40 MB/s of memory bandwidth to guarantee real-time
collection of data.

The proposed architecture may be easily implemented on other FPGAs
with higher density or faster technologies, like Virtex-7. Since the proposed
VCA implementation have reached real time results, there was no needed
to use a better Xilinx FPGA. However, unmixing chain is a challenging
task where DR step and inversion step (to estimate the abundances) are
also included. For this purpose, in future work, an higher capability Xilinx
FPGA may be used in order to implement the full unmixing chain and get
real time or near real time response.

All basic modules, including multipliers, adders, subtractors and memo-
ries were generated using the Xilinx Core generator tool. The floating-point
units were generated with the Xilinx LogiCORE IP CORE Floating point
v6.1 [97], and memories were generated using the Xilinx LogiCORE IP Block
Memory Generator v7.3 [98].

To test the architecture, the DDR memory available in the board was
utilized to store the dataset. The ARM processor available in the FPGA
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Table 5.1: SAD results between extracted endmembers and laboratory re-
flectances for the proposed Algorithm 2.

SAD SAD

Substance without DR with DR

Alunite 3.95 3.72

Buddingtonite 3.41 3.12

Calcite 3.99 3.53

Kaolinite 4.74 4.50

Muscovite 3.78 3.44

was utilized to send and to receive data between the external memory and
the architecture.

The following sections describe the endmembers extraction accuracy re-
sults performed by the developed hardware architecture and the implemen-
tation results in terms of used hardware resources and working frequency.

5.3.1 Endmember Extraction Accuracy Evaluation

The hardware implementation was evaluated with real hyperspectral data
collected by AVIRIS [99] sensor over Cuprite mining district at Nevada. In
order to process all pixels of the dataset, the architecture processes blocks
of 614 pixels each time. The endmembers found on the last iteration are
grouped with the next block of pixels.

To measure the accuracy of the implemented hardware the well known
spectral angle distance (SAD) is adopted. Table 5.1 presents the SAD be-
tween the extracted endmembers and the closest laboratory reflectance for
the substances that are most representative on the scene. For accuracy com-
parison purposes it is also shown the results for the same dataset with DR
pre-processing step on the third column. As expected, the results with DR
step are better than without this step.

5.3.2 Implementation Results

Due to the limited hardware resources the architecture is capable to process
a dataset composed by 614 pixels with 224 spectral bands, which corresponds
to one line of an image acquired by the AVIRIS sensor. For larger datasets,
after the endmembers’s signatures extraction of each line, a final selection
is done to select the set of endmembers. Notice however, that if the dataset
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has been already projected onto the signal subspace, by a DR method, the
architecture herein presented still works in the same way, where unused
bands are simply filled with zeros.

EEA Size Bands p Device F.(MHz) Time(s) Slice LUT DSP
NFINDR [18] 350 × 350 224 16 Virtex-4 XC4VFX60 43 13,46 11700 20779 128
PPI [100] 350 × 350 189 22 Virtex-IIPROXC2VP30 187 31,30 10423 19317 0
PPI [101] 350 × 350 15 16 Virtex-4 XC4VFX60 102 1,35 21148 39432 0
NFINDR [101] 350 × 350 15 16 Virtex-4 XC4VFX60 42 13,46 11700 20779 128
MVCA [102] 250 × 191 14 14 Virtex-5 LX110T 150 0,063 NA 26164 54
MVCA [86] 250 × 191 14 14 Virtex5-XC5XS95T 210 0,042 NA 34000 0
MVCA [103] 250 × 191 14 14 Virtex5-XC5XS95T 244 0,042 NA 31000 0
VCA 614 × 512 224 8 ZYNQ-7020 100 2,86 3077 6753 35
VCA 350 × 350 224 8 ZYNQ-7020 100 1,13 3077 6753 35
VCA 614 × 512 224 16 ZYNQ-7020 100 2,90 4525 11159 63
VCA 350 × 350 224 16 ZYNQ-7020 100 1,16 4525 11159 63

Table 5.2: State-of-the-Art comparison with FPGAs.

Table 5.2 presents a comparison of the proposed algorithm and FPGA
State-of-the-Art architectures. The proposed solution works at low fre-
quency (100 MHz) and achieves the best performances compared to works
that do not use dimensionality reduction. Works [86, 101, 102] perform di-
mensionality reduction whose execution time is not included in the total ex-
ecution time. In these cases, we have tested our architecture considering also
dimensionality reduction and achieved less than 30 ms, better than than the
state-of-the-art at only 100 MHz of working frequency. Since AVIRIS sensor
acquires 512 pixels of 224 spectral bands in 8.3 ms [104], the implemented
architecture achieves real-time on-board hyperspectral data processing.

In terms of resources, it is difficult to compare with the state-of-art
since different generations of FPGAs have different architectural structures.
Virtex-4 and previous generations use 4-input LUTs, while recent FPGAs
use 6-input LUTS. Also, some proposals use embedded multipliers and/or
BRAM while others just use LUTs and most of the proposals work with in-
teger and fixed-point arithmetic while our proposal considers single floating-
point arithmetic. Comparing to previous Virtex-5 based architectures, which
also use 6-input LUTs, our solution for 16 endmembers uses from 60% less
number of LUTs and about the same number of DSP. Considering work [86]
and [102], we use about 70% less number of LUTs but they do not use DSP.
This is due to the fact that we are implementing single precision floating-
point arithmetic, while they implemented integer arithmetic. A final aspect
is the utilization of BRAMs. Our proposal utilizes the available BRAMs of
FPGAs (72 BRAMs for 8 endmembers and 76 for 16 endmembers), which
improves the performance of the solution and reduces the utilization of
LUTs.

Considering the area of the target device, our architecture capable to
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extract 16 endmembers from a 614 × 512 hyperspectral image at real-time
uses only 34% of a low cost SoC FPGA. Since the architecture is scalable,
more endmembers and faster architectures can be achieved with the same
FPGA device. For example, with about 60% of the resources available we
can improve performance almost two times.

EEA Size Bands p Device Freq. Time
(MHz) (s)

OSP [105] 350× 350 188 19 GeForce GTX 580 1544 0,56
VCA [106] 350× 191 188 18 Nvidia GTX460 1350 0,81
PPI [107] 350× 350 192 NA Nvidia TeslaC1060 1300 3,37
VCA [84] 105 187 16 Nvidia GTX590 1250 0,72
NFINDR [108] 350× 350 188 NA Nvidia GTX275 1550 1,43
NFINDR [109] 250× 191 189 16 Nvidia GTX460 1350 8.00
NFINDR [110] 350× 350 192 19 IntelXeon E5520 2270 0,64
OSP [110] 350× 350 192 19 IntelXeon E5520 2270 0,88
MVCA [111] 250× 191 224 16 Nvidia GTX480 1400 0,56
VCA 614× 512 224 8 ZYNQ-7020 100 2,86
VCA 350× 350 224 8 ZYNQ-7020 100 1,13
VCA 614× 512 224 16 ZYNQ-7020 100 2,90
VCA 350× 350 224 16 ZYNQ-7020 100 1,16

Table 5.3: State-of-the-Art comparison with GPU and CPU.

Table 5.3 presents a comparison of the proposed algorithm and FPGA
State-of-the-Art implementations for GPU and CPU. Compared to GPU
and CPU platforms, FPGA proposals reach performances similar to the
best GPU and CPU implementations but operating at 12 to 23 times lower
clock frequencies. This is a very important factor given the low power re-
quirements of embedded systems for hyperspectral unmixing. Also, since
the architecture is scalable, we still have space for improvement as long as
there are resources available in the FPGA.



Chapter 6

Conclusions

Onboard processing systems have recently emerged, in order to overcome
the huge amount of data to transfer from the satellite to the ground station.
Hyperspectral imagery is a remote sensing technology that can benefit of on-
board processing. On the other hand, recently, deep learning-based methods
applied to hyperspectral unmixing have emerged, nevertheless, there are still
several drawbacks, namely, the requirement of a lot of training samples to
achieve satisfactory accuracy performance.

As lines of research for the future are the optimization of the design of
the methods herein presented in order to achieve higher working frequencies,
opening new perspectives for low-cost onboard hyperspectral image process-
ing; the implementation on reconfigurable hardware of a full hyperspectral
unmixing chain and of statistical unmixing methods in order to get real-time
or near real-time response for such demanding methods; the development
of unmixing and compression methods based on deep-learning architectures
with small data.
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