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Abstract Stochastic differential equations are used to model the dynamics of
harvested populations in random environments. The main goal of this work is
to compute, for a particular fish population under constant effort harvesting,
the mean and standard deviation of first passage times by several lower and
upper thresholds values. We apply logistic or logistic-like with Allee effects
average growth dynamics. In addition, we present a method to obtain the
probability density function of the first passage time by a threshold through
the numerical inversion of its Laplace transform.
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1 Introduction
In random varying environments, we can describe the size evolution of a pop-

ulation under constant effort harvesting using stochastic differential equations
as follows:

dX(t) = (X)X (t)dt — gEX (t)dt + o X ()dW (), X(0) =2. (1)
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Following [1-7,9,10], we denote by X (¢) the population size at time ¢, f(X) is
the per capita natural growth rate, ¢ > 0 is the catchability coefficient, £ > 0
is the constant harvesting effort, H(t) = ¢EX (t) represents the yield from
harvesting, o > 0 measures the intensity of environmental fluctuations, W (t)
is a standard Wiener process and X (0) = « > 0 is the population known size
at time 0.

A particular case of SDE (1) is the logistic growth model (as in [12,13]),
ie, f(X(¥) =r (1 - %t)), where r > 0 represents the intrinsic growth rate
and K > 0 is the environment’s carrying capacity. This formulation represents
an evolution where the population grows almost exponentially followed by a
period with less growth intensity. Sometimes, however, the population behaves
differently: to low values of the population size, we observe per capita growth
rates lower than the high rates one would expect considering the higher avail-
ability of resources per individual. When such behavior occurs we say that
the population is influenced by Allee effects. Difficulty in finding mating part-
ners or in setting up an effective pack-hunting size or, in the case of prey
species, in constructing a strong enough group defence against predators can
be some of the causes for the presence of Allee effects (see, for instance, [5,
11,15,21]). In this case, the per capita natural growth rate can be defined
as f(X(@) = r (1 — % %), where A is the Allee parameter rep-
resenting the strength of Allee effects. This functional form for f assumes
that the natural growth rate follows a logistic-like model inspired by a sim-
ilar deterministic model (see, for instance, [15]). However, without changing
the logistic-like model for the average natural growth rate dynamics, we use
a different parametrization of that model to allow easier comparisons with
the logistic model without Allee effects (as in [11]). In particular, the logistic
model and the logistic-like model here considered have in common the same
carrying capacity K and the same slope of the natural growth rate at X = K.
According to the value of A, one can refer to strong (4 € (0,K)) or weak
(A € (—K,0)) Allee effects. Strong Allee effects will not be considered here
since they drive the population to extinction even in the absence of harvesting
(see, for instance, [8,11]). Therefore, we will consider only weak Allee effects.
The closer A is to 0, the more intense is the Allee effect. On the contrary, the
closer A is to —K, the less intense is the Allee effect. Taking A — —oo leads
to the well-known logistic model.

For the models here considered, if the harvesting effort E is not too high,
mathematical extinction (population size X (t) converging to zero) has, as we
will discuss later, a zero probability of occurring. However, since we work with
ergodic processes, all states in the interior of the state space are attainable
with probability one in finite time. In particular, we can consider a threshold
y > 0 and study how long it takes for the process X (t) to reach y for the first
time. This threshold can be a low biological reference point y < X(0), i.e., a
minimum biomass value below which the population self-renewable capacity is
endangered. It can also be some high biomass level y > X (0) that is important
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for the fishery, such as a warning level of danger to the survival of another
species or possible deviations from the optimal fishing effort.

Based on general expressions for the mean and standard deviation of first
passage times by lower and upper thresholds, we compute such values for the
particular cases of the logistic and the logistic-like with weak Allee effects
model and several lower and upper threshold values y. For a fixed threshold
value, we also present a way to obtain, by numerical inversion of its Laplace
transform, the probability density function of the time to reach the thresh-
old. To check the quality of this numerical approximation, we compare the
mean and standard deviation of the first passage time obtained by using this
approximated probability density function with the mean and standard devi-
ation obtained directly.

This paper is organized as follows. In Section 2 we review some results on
the optimal sustainable policy. Section 3 presents the expressions to compute
the mean and standard deviation of first passage times, and respective appli-
cation to the logistic model and the logistic-like model with weak Allee effects.
In Section 4 we compute the probability density function of the first passage
time using the inversion of the Laplace transform. Finally, some concluding
remarks are presented in Section 5.

2 Optimal sustainable policy

In [9,18], for the logistic growth model, and in [5] for the logistic-like growth
model with Allee effects, one can find conditions to avoid population extinc-
tion, to have a unique solution and to grant a stationary density for the popu-

lation size. For the logistic model, it is sufficient to have 0 < E < (31 (1 — g—i)

and, for the logistic-like growth model with weak Allee effects, it is sufficient
2

that 0 < E < 2 (545 - §).

The state space of X is (0,400) for both models. If the above conditions
on E hold, then the boundaries X = 0 and X = oo are non-attractive.
The non-attractiveness of X = 0 ensures that there is a zero probability of
mathematical extinction. The non-attractiveness of X = +oco ensures non-
explosion and the existence and uniqueness of the solution for all ¢ > 0. Thus,
the transient distribution of X (¢) can stabilize and converge to a stationary
density as t — +o0o. This is indeed the case when the above conditions on E
are met. Denoting by X, the random variable with such stationary density,
a good approximation of the expected size of the population E[X,], for large
t, is the expected value of X .

For the growth models here considered, the expected value and the second
moment of X, can be found in [5] and [9]. Their expressions are, respectively,

E[X.] :K(1—ﬂ—0—2) and E[X2] = K2 (1—ﬂ— 0)( —%) for the

T 2r r 2r
L. L(E) L(E .
logistic model, and E[X ] = and E[X2] = for the logistic-like
Kol = gy B = )
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model with Allee affects, where
400
,(E) = / BB o Tz — (K + A))?) dz,
0

2rA 1.5 2q and r
= — = — T = —
2(A-FK) VT T R EK A

According to [4-7,9,10], the sustainable profit per unit time is defined as
the difference between sales revenues and harvesting costs at the steady sate,
i.e., [loo = Roo — C, where Roo = (p1 — p2qF X o0 )qE X are the sales revenues
per unit time (p; > 0, pa > 0) and C' = (¢; +c2F) E represent the fishing costs
per unit time (¢; > 0, co > 0). Hence, I, = (p1¢Xoo—c1)E—(p2¢? X2 +co) E2
and so, E[ITo] = (01qE[X o] — 1) E — (p2q®E[X2 ] + c2) E%. To determine the
harvesting effort E that maximizes E[//] we use numerical methods and
denote this optimal sustainable effort by E°P¢.

For each of the models here considered, the optimal expected sustainable
profit per unit time is, respectively,

Eopt 2
BT = <p1qK <1 1 - U—) - 01) Eort
r 2r

Eopt 2 Eopt
- (p2q2K2 (1 L ”—) (1 -4 ) +cQ> B2 (2)
r 2r r

(07

and

I (E°P) 2 I2(EP)

opt] — _ opt _ opt2
E[IIF] = (pquO(EOPt) C1> E (pzq To(Eort) +62> Eort, (3)

Note that, in [4-7,9,10], the authors refer to E°P* as E** due to the presence
of the alternative optimal variable effort E*(t).

3 Moments of the first passage times

In this section, we will consider, for comparison purposes, a logistic growth
model and a logistic-like model with weak Allee effects, given by
X()
dX(t)=rX(#)(1- ' dt —gEX (t)dt + o X (t)dW (t), X(0) =z (4)

and

dX(t) = rX (1) (1 - X;{”) (XI(;)__ AA) di—qEX (t)di+o X ()dW (1), X(0) = z,
(5)

respectively.
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For model (4), the scale and speed densities (see, for instance, [8] and [19])
are given, respectively, by

s(X) = C1 X P Lexp{0X},
m(X) = Co X' exp{—0X},

2(r —qFE 2
(T—Qq) —-1,0= % and C7, Cy are positive constants. For
model (5), the scale and speed densities, obtained in [5], are given, respectively,

by

with p =

$(X) = C3 X~V exp {4(X — (K + A))*},
m(X) = Cy X Pt exp {—’y(X — (K + A))Q} ,

2rA _2q

.
itha=——2 _ 1= -
withe = o2 ~ L= 20 = Rk = a2

and C3, C4 are positive

constants.

The definitions of the first passage time by a threshold are as follows:

— the first passage time of X (¢) by a lower threshold L (0 < L < z < 400)
is
Tp:=inf{t >0: X(t) =L},

— the first passage time of X (¢) by an upper threshold U (0 <z < U < +00)
is
Ty :=inf{t > 0: X(t) = U},

where x is the initial population size. Our main interest is to study the mean
of the first passage by lower and upper thresholds. Such values represent, on
average, the amount of time that the process needs to attain L or U. In [11] one
can see, for a general class of stochastic processes (where our models can be
included with minor adaptations), the expressions for the mean and variance
of Ty, and Ty. They are given by

— Mean of Tp:

— Variance of T7.:

Var[Ty|X(0) = 2] =8 / " sw) / +oos(z) ( / +Oom(e)cze> dzdy.  (7)

L Y

— Mean of Ty

v Yy
E[Ty|X(0) = 2] = 2/ s(y)/o m(z)dzdy. (8)
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Table 1 Values used in the computations. Adapted from [5].

Item Description Value Unit®

T Intrinsic growth rate 0.71 y~ 1

K Carrying capacity 80.5 - 106 kg

A Allee parameter —0.75K kg

q Catchability coefficient 3.30-10~6 SFU-ly—?
o Strength of environmental fluctuations 0.2 y~1/2

T Initial population size 05K kg

E°Pt  Optimal sustainable effort (logistic model)® 104540 SFU

E°rt Opt. sust. effort (logistic-like model w/ Allee effects)® 60546 SFU

aValue taken from [9]. PValue taken from [5]. °SFU represents the Standardized Fishing
Unit. The definition can be found in [17]. y stands for year.

— Variance of Ty:

Var[Ty|X(0) =z] = 8/:5(3,) /Oys(z) (/Ozm(t?)dt?)zdzdy. (9)

In these expressions, we have used upper limits of integration +oo in (6)
and (7), and lower limits of integration 0 in (8) and (9) because +o0o and 0
are, respectively, the upper and lower boundaries of the state space. If they
have different values, one should use such values instead.

So, we compute the values (6) to (9) by numerical integration methods
that are very precise. We have done that for the data presented in Table
1. For both growth models, the effort E was set to the optimal effort E°P!
obtained by maximizing (2) and (3), respectively. The mean and variance of
the first passage time by T, and Ty were computed at the following values for
L and U:

L =(0.05,0.10,0.15,...,0.90,0.95,1.00) x x, (10)

and
U = (1.00,1.05,1.10, ..., 3.90,3.95,4.00) x z, (11)

where x is, in both cases, the initial population size.

Figures 1 and 2, for the logistic model, and Figures 3 and 4, for the logistic-
like model with weak Allee effects (A = —0.75K), show, for the list of L and U
values presented in (10) and (11), the mean value and the standard deviation
(both in logarithmic scale) of T, and Ty using expressions (6) to (9).

From Figures 1 and 3 one can see that, as L increases towards the initial
population level = (the end of the X-axis), the mean and standard deviation
of Ty, are decreasing, taking obviously the value zero at L = x (not depicted
since log(0) = —o0). From these Figures it is also clear that the mean and
the standard deviation of Ty, have the same order of magnitude, except for
values of L very close to x, where the standard deviation is slightly greater,
being this difference more pronounced in the case of the logistic-like model
with weak Allee effects. We also conclude that the results for the mean and
standard deviation have qualitatively similar behavior for both models but,
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Fig. 1 Logistic model without Allee effects: mean (gray line with square points) and stan-
dard deviation (black line with circular points) of the first passage time by several values
of L, when the initial population size is z = 4.03 x 10* tonnes. We use a log scale on the
vertical axis.

years

-~ Mean time
-©- Standard deviation
1071 . i i
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Fig. 2 Logistic model without Allee effects: mean (gray line with square points) and stan-
dard deviation (black line with circular points) of the first passage time by several values
of U, when the initial population size is 2 = 4.03 x 10* tonnes. We use a log scale on the
vertical axis.

when there are weak Allee effects, it takes much less time to reach the lower
thresholds, thus increasing the risk of the population reaching low dangerous
levels (notice that, for both models, the values of K and z are the same).
Figures 2 and 4 show that the upper threshold U has a behavior different
from the lower threshold L. One can see that the mean time and standard
deviation are increasing as the threshold U increases. Of course, when U = «,
the mean and standard deviation are zero. Again, the standard deviation has
the same order of magnitude as the mean. In the presence of weak Allee effects,
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Fig. 3 Logistic-like model with weak Allee effects: mean (gray line with square points) and
standard deviation (black line with circular points) of the first passage time by several values
of L, when the initial population size is z = 4.03 x 10* tonnes. We use a log scale on the
vertical axis.
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Fig. 4 Logistic-like model with weak Allee effects mean (gray line with square points) and
standard deviation (black line with circular points) of the first passage time by several values
of U, when the initial population size is 2 = 4.03 x 10* tonnes. We use a log scale on the
vertical axis.

the mean time (and the respective standard deviation) needed to reach any
value of U is quite larger than for the logistic model, thus increasing the time
to recovery.

Table 2 presents, for the logistic model, a list of scenarios with variations
in thresholds L and U, in initial population size z and in effort E. For the
first 3 scenarios (Sr,, Sr, and Sr,) the mean and standard variation values of
the first passage time by L are computed when the initial population size is x,
and the lower threshold to reach is 10% of x, 50% of x and 75% of x. These 3
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Table 2 Logistic model without Allee effects: alternative scenarios with approximate values
for the mean and standard deviation of T, and Ty when varying the parameters L, U, z
and E. L, U, x are measured in tonnes x10%, E[-] and sd[-] are in years and harvesting efforts
are measured in SFU.

Scenario L x E E[Ty] sd[T]
SL, 0.10z = 0.40 4.03  Eort 1.57-10%  1.57-10%°
SL, 0.50z = 2.01 4.03 Eept 7.02 - 104 7.02-104
Sty 0.75x = 3.02 4.03 Eort 734.86 800.66
St, E[X2P"] = 3.91 4.03 Eort 16.78 38.11

Sty 0.40 2.01  Eort 2.67-101°  2.67-10%°
SLg 0.10z = 0.40 4.03 1.10E°Pt 5.42 - 1013 5.42 - 1013
St, 0.10z = 0.40 4.03 1.50E°Pt 1.01 - 108 1.00 - 108
St 0.10z = 0.40 4.03 2.00E°Pt 1.95 - 102 1.72 - 102
Scenario U T E E[Ty] sd[Ty/]
Sty E[X%' =391 201  E°pt 8.78 4.07

cases are directly observed from Figure 1. Scenario S, shows the case where
the lower threshold is the value of the expected sustainable population size

E[X2P!], i.e., the value given by E[X,] = K (1 — £ _ g—j>when E = E°Pt,

T
Since this value is very close to K/2 = x, it is not a surprise to see that the
mean time to reach the sustainable average threshold is only about 17 years.

Scenario Sy, considers a low initial population size (z = 0.25K). Com-
paring this Scenario with Sy,, which has a higher initial population size
(z = 0.5K), we expect to have lower values for the mean and standard devia-
tion of the first passage time. Indeed that is what one can observe from Table
2.

Scenarios Sr,, S, and Sr, consider the cases where the effort is greater
than E°P!. In the first one, the applied effort is 10% greater than E°Pt. This
will produce a higher catching rate, resulting in a stronger population decrease
and, consequently, reducing the time required on average to reach L. Hence,
the mean time to reach L will be lower than in scenario Sp,. Scenario St is
very similar to scenario Sp, but with a higher effort, although still sustainable
in the sense that the population will have a stationary density. Scenario St is
a clear case of heavy over-fishing and the effort used almost reaches the value

g (1 — g—i) beyond which mathematical extinction occurs with probability one

and there is no stationary density, as referred at the beginning of Section 2.
In this case, reaching L will happen much faster.

Until now all the thresholds were smaller than the initial value. Scenario
Sy, considers the opposite case, i.e., we estimate the time that the population
takes, on average, to reach the steady-state expected size but starting with
an initial population of 0.25K . Since the population tends to become close to
E[X2P?], it seems natural that it took only about 9 years, on average, to reach
the steady-state average value. So, even if we, by over-fishing or other reasons,
have depleted the population to a low size of 0.25K, applying the optimal
effort E°Pt from then on, the recovery will take on average only a few years.
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4 Density probability functions of Ty, and Ty

The Laplace transforms of the first passage times Ty, and Ty, when the initial
population size is z, are given respectively by

E,[exp(—ATT)] and E,[exp(—X1v)]. (12)

In [14], for the stochastic logistic model (without harvesting and without Allee
effects),

X(t)
K

dX(t) = 11 X (1) (1 - >dt FoXMdW (), X(0) =z,  (13)

one can find the following expressions for (12):

2X <1/ +u? + u, 1+21/—+u2 ’U:L')
T 2+u +u
E,[exp(—M1L)] = <Z> . >
4 q/—2 +u+u,1+2 +u2 UL)
and

—+uz+u @< %+u2+u 1+21/—+u2 )
. fexp(—\T)] = (3) (

u 2/\
@ u, 142 + u?,v
1 2 2
where u = — ik v = n , and ¥ and & are the hypergeometric
2 = K02
confluent functions. Note that ¥ and @ are also denoted by U and M (as in
[20]).

The stochastic logistic model with harvesting based on constant effort,
given by Equation (4), can be written as Equation (13) for ry = (r — ¢F) and
K=K (1 ) So, the Laplace transforms (14) and (15) are valid for the
model with harvestmg based on constant effort if one uses 1 = (r — ¢F) and
K=K (1- 2

The inversion of the Laplace transforms (14) and (15) returns the probabil-
ity density functions of Ty, and Ty. Due to the non-linearity of (14) and (15),
it is not possible to obtain explicitly those densities. However, in [16], one can
find an algorithm to implement numerically the Laplace transform inversion
for very simple functions. After some algorithm adaptations, we have applied
it to the logistic model with harvesting and without Allee effects with param-

eter values of r, K, ¢, o taken from Table 1, with £ = E°P* and considering
L =0.90z and U = 1.10z. The output returns the p.d.f. of Ty, for L = 0.90x
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and the p.d.f. of Ty for U = 1.10x, whose graphics are depicted in Figure 5.
In both graphics, the area under the thicker lines is approximately 1 (more
specifically, 0.99), which indicates that they are a very good approximation of
the p.d.f.. We also have computed the mean value of Ty for L = 0.90x and
of Ty for U = 1.10z from the graphics and from the exact expressions (6)
and (8). The differences are less than 0.1%, which reinforces the idea that the
algorithm is credible and, therefore, the approximations of the p.d.f. are very
accurate.

For visibility reasons, the densities are displayed on a log-log scale, as the
depicted lines are too close to the axes on a natural scale. Actually, in the
graphics on a natural scale, the depicted lines are too close to the axes. One
can observe that the mean and standard deviation of the first passage times
are very close, suggesting that the distribution of first passage times might be
approximately exponential. To examine that suggestion more closely, Figure 5
also depicts the lines (dashed lines) of the p.d.f. of the exponential distributions
with the same expected values as T}, (top panel) and Ty (bottom panel). Even
though the top image appears to support that idea, namely that the p.d.f. of
Ty, is close to the p.d.f. of the exponential distribution with the same mean,
the suggestion is invalid for small values of time . Furthermore, even when
the influence of the log scale is considered, the bottom graphic reveals a less
than satisfactory agreement between the p.d.f. of Ty and the p.d.f. of the
exponential distribution with the same mean.

5 Conclusions

In this work we have presented, for the logistic model and for the logistic-
like model with weak Allee effects, the expressions for the mean and standard
deviation of the first passage times by lower and by upper thresholds. For
several lower and upper threshold values, we have computed the mean and
standard deviation of the first passage time by such values. For both models,
the results are qualitatively similar but, in the case of the logistic model,
the population needs more time to reach lower thresholds and less time to
reach upper thresholds. We have also seen that the mean and the standard
deviation have the same order of magnitude, which might suggest first passage
times distributions not far from being exponential, but we saw that this is not
the case.

For the logistic model, we have set up 9 scenarios with parameter variations,
namely the lower and upper thresholds, the initial population, and the effort.
For these scenarios, the mean and standard deviation of the first passage time
by lower and by upper thresholds were computed. The conclusions were very
similar to the ones based on the Figures. The general idea is that there exists a
decrease of the mean and the standard deviation values of the first passage time
by the threshold when the threshold values approach the initial population
value.
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Fig. 5 P.d.f. of T;, and Ty for the logistic model when = 4.03 x 10* tonnes, obtained by
numerical inversion of their Laplace transforms. In log-log scale, one can see on the top the

p.d.f for L = 0.90x and on the bottom the p.d.f. for U = 1.10z. The dashed lines refer to
the p.d.f. of an exponential distribution with parameter E[T] (top) and E[Ty] (bottom).

For the logistic model without harvesting, we have found in the bibliogra-
phy the expressions of the Laplace transform of the first passage time by the
lower and by the upper thresholds. With some mild adaptations, we deduced
the expressions for the logistic model with harvesting. The inversion of the
Laplace transform gives the probability density functions of the first passage
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time by the lower and by the upper thresholds. Such densities cannot be ob-
tained explicitly, so we resort to numerical methods to compute them. Using
Matlab, we were able to plot an approximation of the probability densities
functions for first passage time by the lower and by the upper thresholds.

Acknowledgements The helpful comments from anonymous Referees and from the Editor
are gratefully acknowledged.

Nuno M. Brites was partially financed by Fundacao para a Ciéncia e a Tecnologia (FCT),
through national funds within the Project CEMAPRE/REM - UIDB/05069,/2020.

Carlos A. Braumann is member of Centro de Investigagdo em Matemadtica e Aplicagdes,
Universidade de E)]vom7 a research center supported by FCT, project UID/04674/2020.

References

1. Alvarez L. H. R., Sheep L.A., Optimal harvesting of stochastically fluctuating popula-
tions. J. Math. Biol. 37, 155-177 (1998).

2. Alvarez L. H. R., On the option interpretation of rational harvesting planning. J. Math.
Biol. 40, 383-405 (2000).

3. Alvarez L. H. R., Singular stochastic control in the presence of a state-dependent yield
structure. Stochastic Processes and their applications. 86, 323-343 (2000).

4. Brites N.M., Braumann C.A., Harvesting policies with stepwise effort and logistic growth
in a random environment. In: Ventorino E., Aguiar M.A.F., Stollenwek N., Brau-
mann C.A., Kooi B., Pugliese A. (eds). Dynamical Systems in Biology and Natural
Sciences. SEMA SIMAI Springer Series, Berlin (2020).

5. Brites N.M., Braumann C.A., Stochastic differential equations harvesting policies: Allee
effects, logistic-like growth and profit optimization. Appl. Stochastic. Models Bus. Ind.
36, 825-835 (2020).

6. Brites N.M., Braumann C.A., Harvesting in a random varying environment: optimal,
stepwise and sustainable policies for the Gompertz model. Statistics Opt. Inform. Com-
put. 7, 533-544 (2019).

7. Brites N.M., Braumann C.A., Fisheries management in randomly varying environments:
Comparison of constant, variable and penalized efforts policies for the Gompertz model.
Fisheries Research 216, 196-203 (2019).

8. Braumann C.A., Introduction to Stochastic Differential Equations with Applications to
Modelling in Biology and Finance. John Wiley & Sons, Inc., New York (2019).

9. Brites N.M., Braumann C.A., Fisheries management in random environments: Com-
parison of harvesting policies for the logistic model. Fisheries Research 195, 238-246
(2017).

10. Brites N.M., Stochastic differential equation harvesting models: sustainable policies and
profit optimization. PhD thesis, Universidade de Evora (2017).

11. Carlos C., Braumann C.A., General population growth models with Allee effects in a
random environment. Ecological Complexity 30, 26-33 (2017).

12. Alvarez L. H. R., Hening A., Optimal sustainable harvesting of populations
in random environments. Stochastic Processes and their Applications (2019).
https://doi.org/10.1016 /j.spa.2019.02.008.

13. Hening A., Tran K.Q, Harvesting and seeding of stochastic populations: analysis and
numerical approximation. J. Math. Biol. 81, 65-112. (2020).

14. Giet J.S., Vallois P., Wantz-Mézieres S., The logistic S.D.E.. Theory of Stochastic Pro-
cesses 20(36), 28-62 (2015).

15. Dennis B., Allee effects in stochastic populations. Oikos 96(3), 389—401 (2002).

16. Valsa J., Brancik L., Approximate formulae for numerical inversion of Laplace trans-
forms. Int. J. Numer. Model 11, 153-166 (1998).

17. Hanson F.B., Ryan D., Optimal harvesting with both population and price dynamics.
Math. Biosci. 148(2), 129-146 (1998).



O J oy U w N

OO UG UTGTUTUTOTOUTOTOT R B BB E DR DADAEDNWWWWWWWWWWNNNNNNNNNNR R R e e
GRWONRFRPOOVWOJdNTEWNROWOW®®JIANUTRERWNROOWOAJdNTEWNROWOW®O-JdJAURWNRLOW®OW-LUNWNEROW©

14

Nuno M. Brites, Carlos A. Braumann

18.

19.

20.

21.

Braumann C.A., Stochastic differential equation models of fisheries in an uncertain
world: extinction probabilities, optimal fishing effort, and parameter estimation. In: Ca-
passo V., Grosso E., Paveri-Fontana S.L. (eds.) Mathematics in Biology and Medicine.;
pp. 201-206. Springer, Berlin (1985).

Karlin S., Taylor H.M., A Second Course in Stochastic Processes. Academic Press, New
York (1981).

Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics
Series, volume 5. Washington DC (1964).

Allee W.C.: Principles of Animal Ecology, 837. Saunders Co., Philadelphia (1949).



