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Abstract. Fluid flows in microfluidic devices are often characterized by non-
Newtonian rheology with non-linear wall slip behavior also observed. This work
solves this problem class with the lattice Boltzmann method (LBM), proposing new
advanced boundary scheme formulations to model the joint contribution of non-linear
rheology and non-linear wall slip laws in application to microchannels of planar and
circular cross-section. The non-linear stress-strain-rate relationship of the microflow
is described by a generalized Newtonian model where the viscosity function follows
the Sisko model. To guarantee that LBM steady-state solutions are not contaminated
by numerical errors that depend on the viscosity local value, the two-relaxation-time
(TRT) collision is adopted. The fluid-wall accommodation model considers differ-
ent slip laws, such as the Navier linear, Navier non-linear, empirical asymptotic and
Hatzikiriakos slip laws. They are transcribed into the LBM framework by adapting the
local second-order boundary (LSOB) scheme strategy to this problem class. Theoretical
and numerical analyses developed for a steady and slow viscous fluid within 2D slit
and 3D circular pipe channels demonstrate the parabolic level of accuracy of the de-
veloped LSOB scheme throughout the considered non-linear slip and non-Newtonian
models.

AMS subject classifications: 76-04, 76P05, 65Z05
Key words: Lattice Boltzmann method, two-relaxation-time scheme, slip velocity boundary con-
ditions, non-Newtonian fluids.

1 Introduction

Boundary slip phenomenon has received growing attention in both gas [1–3, 7] and liq-
uid [4–7] flows in most part motivated by the development of micro- and nano-scale
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technologies [8]. With the scale reduction, the interaction between the fluid and the solid
wall starts to exhibit physical mechanisms that deviate from the well-established no-slip
velocity boundary condition [9] and that affects both gas and liquid flows.

Gas slip is typically promoted by fluid rarefaction. This property is quantified by the
flow Knudsen number Kn=λ/L, where λ is the gas mean-free-path (a microscopic length
scale) and L is a characteristic dimension of the flow domain (a macroscopic length scale).
Commonly, the slip flow regime is defined at 0.001≤Kn≤ 0.1, where the application of
conventional hydrodynamics equations remains valid, but the no-slip velocity condition
needs to be replaced by one that accounts for slip effects [10], e.g., as given by the wall
slip model proposed by Maxwell [11]. When gas rarefaction is increased over Kn> 0.1,
besides the wall slip effect, new flow features need to be considered, most notably the
Knudsen layers, which further modify the gas flow topology [10]. The macroscopic de-
scription of such Knudsen layers is often performed through a non-linear stress-strain-
rate relationship, whose mathematical formulation is similar to that of a non-Newtonian
fluid [2, 3, 12]. Moreover, in the presence of high shear rates, the fluid-solid interaction
model of the rarefied gas also needs to take into account the non-linear nature of the
underlying physics. This process is best described by non-linear slip velocity boundary
conditions [7]. The inclusion of the combined effects between non-Newtonian rheology
and non-linear slip laws is therefore crucial for the accurate macroscopic modelling of
gaseous flows at moderate Kn regimes. These phenomena are frequently encountered
in microfluidic gas flow applications, such as microfluidic gas sensors or actuators and
micro-propulsion devices [13].

Liquid slip can be found in a wide variety of physical instances. Applications range
from the transport of water in tight sandstones and of oil in shale matrices [14] to low
drag hydrophobic surfaces [15], or industrial appliances related to polymer processes [16].
For these latter, the interplay between fluid rheology and boundary accommodation
is even richer as it gives rise to different types and mechanisms of wall slip phenom-
ena [4, 16]. This work intends to advance the numerical modeling of such physical phe-
nomena, which in the case of liquids are characterized by the dimensionless slip length
ζ = b/L that quantifies the ratio between the slip length b and the flow characteristic
dimension L [7]. In fact, there is large experimental evidence suggesting that in the afore-
mentioned application fields the liquid substances flowing inside narrow pores or in tiny
capillaries are more accurately treated as “dense molecular fluids” [6]. At macroscopic
level, these are best described by continuum flow models that simultaneously consider
non-Newtonian rheological laws with non-linear slip boundary conditions [7, 16].

Unfortunately, analytical solutions to this slip flow problem class are scarce, even
at the simplest flow settings [16, 17]. As a result, studies in this field tend to become
only accessible through numerical simulations. For this purpose, most computational ef-
forts have been devoted to the finite element method (FEM) [18, 19] or the finite volume
method (FVM) [20, 21] as numerical techniques. However, considering the appealing
numerical characteristics of the lattice Boltzmann method (LBM) as alternative compu-
tational fluid dynamics (CFD) technique, particularly in the modeling of complex fluid
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flow phenomena [22–24], this work proposes exploring the application of the LBM for
the numerical modeling of Newtonian and non-Newtonian fluids subject to linear and
non-linear wall slip conditions in microchannel flow problems.

Historically, the development of LBM boundary schemes to implement the slip ve-
locity condition at walls has been the subject of extensive literature studies, e.g. [25–37],
which cover a broad range of physical settings, from gas [25, 27, 33, 34] to liquid [41,
42] flows, also including multi-phase/multi-component systems [38–40], applying along
both straight [25–29, 33] and curved [31, 34, 35, 37] surfaces. However, to the best of the
authors knowledge, all these studies share the common limitation that they only consider
linear slip models, either in the form of Maxwell [11] or Navier [43] slip laws. So far, the
formulation of LBM boundary schemes that account for non-linear slip laws has been
overlooked, although the non-linear slip boundary condition is oftentimes fundamental
in the correct modeling of flows under micro- or nano-scale confinement [6], even under
low to moderate shear conditions, as previously mentioned. To fill this gap, the first pur-
pose of this work is to develop LBM boundary schemes that model linear and non-linear
slip laws.

At the same time, it is also well-recognized that the behavior of fluid flows under
micro- or nano-scale confinement commonly deviates from that of a Newtonian fluid [45].
Rather, it is often necessary to include a non-linear stress-strain-rate relationship in the
fluid rheological model. This work will consider this relationship in the form of the gener-
alized Newtonian model with the viscosity function given by Sisko [46] model, which is a
generalization of the power law viscosity model [47]. Although these and other relatable
rheological models have been implemented and studied over a variety of LBM collision
models, such as single-relaxation-time [48–51], regularized-based [52], two-relaxation-
time [53], multiple-relaxation-time [54–57], central-moment-based [58, 59], and lattice ki-
netic schemes [60], to the best of our knowledge, a dedicated analysis on how the LBM
scheme accommodates the non-Newtonian fluid onto a solid boundary is still currently
missing from literature. This issue is not of small importance as it is well-known that
some LBM models are prone to viscosity-dependent numerical errors, which inevitably
propagate towards boundary sites leading to an unphysical viscosity-dependent numer-
ical slip on the wall boundary condition [61, 62]. In bulk, it has been proven [63] that the
use of the two-relaxation-time (TRT) [64, 65] or the multiple-relaxation-time (MRT) [66]
collision models permits fixing the LBM numerical errors independent from the assigned
viscosity magnitude. While the satisfaction of this property is obviously important for
general fluid flows, it is even more pressing for the LBM modeling of non-Newtonian
fluid flows where viscosity may vary several orders of magnitude throughout the fluid
domain, potentially causing variations of similar magnitude in the model numerical er-
ror. It turns out that, even when TRT or MRT models are used to ensure the proper
parametrization of the LBM bulk solution with respect to viscosity, this property does
not automatically extend to the boundary scheme closure relation [62,63]. Consequently,
the second purpose of this work is the LBM modeling of the non-Newtonian rheological
condition and how it is handled by the LBM slip boundary scheme, either set in linear or
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non-linear forms.
To model the slip velocity boundary condition, this work will make use of the local

second order boundary (LSOB) method [67, 68] that was recently revived in [37, 69]. Our
goal is to extend this boundary scheme to cope with a variety of wall slip laws, com-
prising the Navier linear [43], Navier non-linear [70], the empirical asymptotic [21] and
Hatzikiriakos [71] slip laws. In the end, the prescription of any of these slip conditions
will be approximated by our proposed LSOB scheme with a second-order accuracy on ei-
ther straight or curved wall surfaces, either of which not necessarily conforming with the
underlying LBM uniform mesh. On top of this requirement, the boundary scheme here
developed will also be able to accommodate both Newtonian and non-Newtonian (Sisko)
rheological fluid models, which brings in an additional modification of the original LSOB
method. The formulations of these models will be exemplified for a microchannel flow
as application case. For generality, they will be applied to both 2D and 3D microchannel
geometries, considering both planar and curved walls.

The remaining manuscript will be organized as follows. Section 2 presents the LBM
algorithm, with focus on the TRT collision model. Section 3 briefly revises the link be-
tween LBM and macroscopic variables in terms of Chapman-Enskog expansions [74].
Section 4 and Section 5 outline, respectively, the non-Newtonian rheological models and
the slip laws considered in this work. Section 6 introduces the local second order bound-
ary (LSOB) method and explains how the slip velocity condition and non-Newtonian
fluid models are incorporated into the boundary scheme formulation. Section 7 provides
the numerical evaluation of the proposed models by testing in Subsection 7.1 an hor-
izontal channel, in Subsection 7.2 an inclined diagonal channel, and in Subsection 7.3 a
circular tube geometry. Finally, Section 8 concludes the work with a summary of the main
results. The manuscript is complemented with four appendix sections, where details on
the derivation of key equations shown in the work are presented.

2 The lattice Boltzmann method

The LBM [22–24] solves for the populations fq(x,t) located at position x and time t
along the discrete velocity cq. The discrete velocity set {cq : q = 0,··· ,Q−1} consid-
ers one rest velocity c0 = 0, and Q−1 non-zero velocities linking to neighboring nodes,
which collectively form the lattice, where the streaming step takes place. The physical
model is embedded into the collision step. Here, the two-relaxation-time (TRT) collision
model [63–65] is adopted, which is formulated on the lattice symmetry argument that
any lattice quantity ψq may be decomposed into symmetric ψ+

q and anti-symmetric ψ−
q

modes based on ψ±
q = 1

2 (ψq±ψq̄), where c⃗q̄ =−c⃗q.
The algorithm of the LBM-TRT scheme is structured along a succession of the follow-

ing streaming and collision steps, where simulation units ∆x=∆t= 1 will be employed
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hereinafter:

fq(x+cq,t+1)= f̂q(x,t), q=0,1,··· ,Q−1, (2.1a)

f̂q(x,t)= [ fq+n̂+
q +n̂−

q +S+
q +S−

q ](x,t), q=0,1,··· , Q−1
2 , (2.1b)

f̂q̄(x,t)= [ fq̄+n̂+
q −n̂−

q +S+
q −S−

q ](x,t), q=1,··· , Q−1
2 . (2.1c)

In TRT terminology, the parameters f̂q denote the post-collision state of populations,
S±

q are (symmetric/antisymmetric) source terms, and the post-collision non-equilibrium
terms are defined as n̂±

q =−n±
q /τ±, where τ± are (symmetric/antisymmetric) relaxation

times, and n±
q = f±q −e±q are (symmetric/antisymmetric) non-equilibrium populations,

where e±q are (symmetric/antisymmetric) equilibrium populations.
This work considers the simulation of incompressible slow viscous flows, which can

be represented by the following linear (Stokes) equilibrium [62]:

e+q = tq P, (2.2a)

e−q = tq cqα

(
jα−

1
2

Fα

)
. (2.2b)

Eq. (2.2a) introduces pressure P, which relates to fluid density ρ through the equation
of state P= c2

s ρ, with c2
s a free parameter subject to stability bounds [79], and Eq. (2.2b)

introduces the fluid momentum jα :=ρ0 uα, where ρ0 =const. [22–24] and uα the fluid ve-
locity. For notation simplicity, this work will consider ρ0 =1 (simulation units), meaning
the terms fluid momentum and velocity will be used interchangeably while sticking with
the jα notation. Eq. (2.2b) also includes one half of the external body force Fα. This work
reserves the use of Greek indices, such as index α, to denote the components of vector
quantities. The external body force is contained within the S±

q source term [75–77] given
by:

S+
q =0, (2.3a)

S−
q = tq cqα Fα. (2.3b)

Eqs. (2.2) and (2.3) adopt hydrodynamic weights tq, which obey the required isotropic
constraints ∑Q−1

q=1 tqcqαcqβ = δαβ and ∑Q−1
q=1 tq cqαcqβcqγcqξ =

1
3

(
δαβδγξ+δαγδβξ+δαξδβγ

)
; for

more details refer to [22–24]. The relation between the above denoted macroscopic fields
and the mesoscopic populations fq, solved by Eq. (2.1), are determined through the dis-
crete velocity moments:

ρ=
Q−1

∑
q=0

fq, jα =
Q−1

∑
q=1

fq cqα+
1
2

Fα, Fα =
Q−1

∑
q=1

S−
q cqα. (2.4)



66 F. Reis, G. Silva and V. Semiao / Commun. Comput. Phys., 37 (2025), pp. 61-103

The conservation laws satisfied by fq are expressed by the mass and momentum con-
straints on the non-equilibrium components:

Q−1

∑
q=0

n̂+
q =0,

Q−1

∑
q=1

n̂−
q cqα =0. (2.5)

By unfolding the content of the non-equilibrium n̂±
q , via the standard Chapman-Enskog

analysis – a task that will be detailed next in Section 3, see Eqs. (3.3) – it can be proven that,
within a second-order level of approximation [37, 64, 69], the conservation statements
provided by Eq. (2.5) lead to the Stokes flow equations in bulk:

∂α jα =0, ∂αP−Fα =∂β

[
ν
(
∂β jα+∂α jβ

)]
, ν=

Λ+

3
. (2.6)

Due to the neglect of fluid inertia, the unsteady term ∂t jα is also omitted from the mo-
mentum balance in Eq. (2.6). In fact, as discussed by Happel and Brenner [72], the time
variable is implicit in these equations. For the sake of application, this work will only con-
sider time-independent flows. Furthermore, the fluid kinematic viscosity ν is allowed to
vary in space, through a prescribed non-uniform Λ+ value, as explained in Section 4,
which covers the non-Newtonian models implementation. Note that Λ+ :=

(
τ+− 1

2

)
and

Λ− :=
(
τ−− 1

2

)
are the symmetric and anti-symmetric relaxation eigenfunctions of the

TRT collision process, and their product defines the key collision relaxation parameter
Λ := Λ+Λ−, which controls the stationary field of non-dimensional TRT solutions [63]
at all orders, i.e. beyond the second order hydrodynamic limit, given by Eq. (2.6). This
work considers the D2Q9 and D3Q19 lattices to model 2D and 3D flows, respectively.

3 Chapman-Enskog steady-state approximations

The content of the non-equilibrium populations can be expressed in terms macroscopic
quantities by using the Chapman-Enskog expansion [74]. This process unfolds the post-
collision non-equilibrium populations, n̂±

i through a perturbation parameter, ϵ, which
is related to the ratio of the lattice unit to a characteristic length scale, ϵ ∼ 1/h, where
h := N∆x is a grid scale measure. Here, this expansion is developed, up to O(ϵ3), as
follows: n̂±

q =ϵn̂(1)±
q +ϵ2n̂(2)±

q +O(ϵ3). Based on Eqs. (A.2) of work [64], where ∂α =ϵ∂
(1)
α

and S±
q =ϵS±(1)

q , together with the steady flow (∂t=0) assumption, the explicit content of

symmetric non-equilibrium populations n̂(1)+
q and n̂(2)+

q reads as follows:

n̂+(1)
q = cqβ ∂

(1)
β e−q −S+(1)

q , (3.1a)

n̂+(2)
q =−cqαcqβ ∂

(1)
α (Λ−∂

(1)
β e+q ). (3.1b)
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Conversely, the explicit content of anti-symmetric non-equilibrium populations n̂(1)−
q and

n̂(2)−
q reads as follows:

n̂−(1)
q = cqα ∂

(1)
α e+q −S−(1)

q , (3.2a)

n̂−(2)
q =−cqαcqβ ∂

(1)
α (Λ+∂

(1)
β e−q ). (3.2b)

Now, let us substitute the contents of Eq. (2.2) into e±q and of Eq. (2.3) into S±
q and subse-

quently gather the ϵ and ϵ2 terms back into n̂±
q . As a result, Eq. (3.1) and Eq. (3.2) reduce

to [37, 67–69]:

n̂+
q = tq cqαcqβ ∂β jα+O(ϵ3) (3.3a)

n̂−
q =−tq cqα

(
3c2

qβ−1
)

∂β(ν∂β jα)+O(ϵ4). (3.3b)

In the derivation of the above equations the following assumptions were undertaken.
First, when deriving Eq. (3.3a) the term n̂+(2)

q was discarded, based on the fact that
∂ααP=0, as dictated by the Stokes flow assumption and the fact that for channel flow con-
figurations the term ∂βΛ−∂αP reduces to ∂xΛ−∂xP, which owing to the fully-developed
flow assumption leads to ∂xΛ−=0; otherwise, for more general flow configurations, this
term can be transformed into ∂βΛ−(Fα−∂β

(
ν∂β jα

))
by invoking the bulk flow equation,

where ∂βΛ− and Fα are both known parameters, and ∂β

(
ν∂β jα

)
is the only unknown. Sec-

ond, when deriving Eq. (3.3b) the term n̂−(1)
q , which provides ∂αP−Fα, was replaced by

∂β

(
ν∂β jα

)
by invoking the bulk flow equation governing this problem, Eq. (2.6), similarly

to the procedure taken for the n̂+(2)
q simplification.

4 Non-Newtonian rheological models

Contrary to the Newtonian fluid framework, which by definition sets ν=const., the rheo-
logical model of a non-Newtonian fluid allows viscosity to vary [45]. The non-Newtonian
formulation considered in this work is the Sisko model [46], which is a generalization of
the power-law model [47]. The Sisko model establishes a non-linear relationship between
the kinematic viscosity and the local shear-rate as follows:

ν(γ̇)=ν∞+a|2γ̇|n−1, (4.1)

where γ̇= 1
2

(
∂α jβ+∂β jα

)
is the shear-rate, a> 0 is a consistency index, n≥ 0 is the non-

Newtonian exponent, and ν∞>0 is the viscosity at very large shear-rates; for more details
on these parameters, we refer to work [16]. As particular cases of Sisko model it can
be inferred that ν∞ = 0 recovers the power-law model, while setting n = 1 retrieves the
Newtonian rheological law.
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Figure 1: Geometrical con�gurations and related coordinate systems studied in this work. Panel (a): 2D planar
channel. Panel (b): 3D Circular tube.

When applied to a straight, fully-developed flow in a 2D slit geometry, with momen-
tum solution j= jx(y)ex, Eq. (4.1) reduces to:

ν(y)=ν∞+a|∂y jx(y)|n−1, (4.2)

whereas for a fully-developed flow in a 3D circular tube, with momentum solution j=
jx(r)ex, Eq. (4.1) leads to:

ν(r)=ν∞+a|∂r jx(r)|n−1. (4.3)

Fig. 1 depicts these geometries and the associated coordinate systems. The mapping
between the Cartesian and the cylindrical coordinates systems is summarized in Ap-
pendix A.

To determine the viscosity ν, the shear-rate components need to be computed. For this
task, finite-differences (FD) could be applied over the velocity solution (e.g. using the so-
lution from a previous iteration step). However, the use of FDs would break locality, an
important asset of the LBM algorithm. To get around this shortcoming, we consider the
well-known local relationship between the shear-rate and the LBM non-equilibrium pop-
ulations [78, 80] (here represented in the TRT framework), which according to Eq. (3.3a)
is explicitly given by:

γ̇αβ =
3
2

Q−1

∑
q=1

n̂+
q cqαcqβ

=
3
2

Q−1

∑
q=1

tq cqαcqβcqγcqδ ∂ξ jγ+O(ϵ3)

=
3
2

∂ξ jγ
1
3
(
δαβδγξ+δαγδβξ+δαξδβγ

)
+O(ϵ3)

=
1
2
(
∂α jβ+∂β jα

)
+O(ϵ3). (4.4)

For planar and circular channel flows sufficiently far from inlet and outlet regions,
the shear-rate tensor features one non-trivial component only, given by γ̇xy(x) =
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1
2

(
∂y jx(x)+����∂x jy(x)

)
and γ̇xr(x)= 1

2 (∂r jx(x)+����∂x jr(x)), respectively. After the determina-
tion of γ̇, through Eq. (4.4), the local assessment of the kinematic viscosity ν follows di-
rectly from Eq. (4.1). When it comes down to the numerical computation of ν in this way,
we note that the under-relaxation of the kinematic viscosity computation is sometimes
necessary to achieve converged steady-state solutions; this stability issue is particularly
stringent when n<1, rendering the LBM modeling of fluids with shear-thinning behavior
more challenging than those with shear-thickening characteristics.

Remark 4.1. In the LBM-TRT modelling of non-Newtonian fluids, the local variation of
Λ+ must be balanced by Λ−, as Λ−=Λ/Λ+, such that Λ holds constant throughout the
domain. The constancy of Λ is the necessary condition to ensure that the numerical error
of the LBM steady-state solution remains unaffected by the viscosity local value [63–65].
Otherwise, the implementation of non-Newtonian rheological models within a single
relaxation time framework, such as BGK [81], will inevitably violate this requirement,
since Λ = 9ν2 in the BGK model. Consequently, the non-linear ν-dependence on the
numerical errors renders the LBM-BGK scheme an inconsistent numerical model for non-
Newtonian fluid flows, since it does not guarantee that the solution parametrization is
exclusively controlled by the relevant dimensionless groups of the physical problem, as
presented in Section 7.

5 Slip velocity boundary condition models

Consider a time-independent fluid flow bounded by rigid, solid and resting walls. At the
wall location, xw, the wall-normal velocity component (j·n)

∣∣
xw
=0 is subject to the imper-

meability condition and the wall tangential velocity component (j·s)
∣∣

xw
= jws is subject

to a slip velocity boundary condition. As slip condition, this study considers the linear
slip model and three non-linear slip laws. They are all formulated on the wall-aligned
coordinate system, where n is the outward unitary wall normal vector and s is the uni-
tary wall tangential vector parallel to the main flow direction. For the planar and circular
channels, depicted in Fig. 1, this coordinate system takes the following form: (i) planar
channel (s,n) 7→ (x,±y) (where the +/− sign refers to bottom/top walls, respectively)
and (ii) circular tube (s,n) 7→ (x,−r).

The Navier linear (NL) slip velocity model [43] prescribes the fluid velocity at the
wall, jws, as follows:

jws =sgn(∂n js)kl (τns)
∣∣

xw
, (5.1)

where kl ≥0 is a prescribed slip coefficient.
The Navier non-linear (NNL) slip velocity model [70] generalizes NL slip model as

follows:

jws =sgn(∂n js)knl

(
|τns|m−1 τns

)∣∣
xw

, (5.2)
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where knl≥0 is a prescribed slip coefficient and m>0. For m=1 the classical Navier linear
slip model is recovered.

The asymptotic (ASP) slip velocity model [21] is described as follows:

jws = ka1 ln(1+ka2 sgn(∂n js)τns)
∣∣

xw
, (5.3)

where ka1 ≥0 and ka2 ≥0 are prescribed slip parameters.
The Hatzikiriakos (HZK) slip velocity model [71] is formulated as follows

jws =

{
kh1sinh(kh2 sgn(∂n js)(τns−τc))

∣∣
xw

, if τns ≥τc,

0, otherwise,
(5.4)

where τc is a positive critical stress which denotes the onset of slip, and kh1 ≥0 and kh2 ≥0
are prescribed slip parameters.

The wall shear stress τns(xw) in all above slip laws is determined by:

τns(xw)=ν(xw)∂n js(xw), (5.5)

where ν(xw) and ∂n js(xw) are computed locally, as was explained in Section 4.

6 Local second order boundary (LSOB) method

The physical slip boundary conditions, presented in Section 5, are prescribed in the LBM
model through the local second order boundary (LSOB) method [37, 67–69]. The idea
behind LSOB relies on the explicit reconstruction of the unknown boundary populations,
based on the exact decomposition of TRT populations:

fq(x,t)=
[
e+q +e−q −τ+ n̂+

q −τ− n̂−
q

]
(x,t). (6.1)

The equilibrium components e+q and e−q are set by Eqs. (2.2a) and (2.2b), respectively.
The non-equilibrium components n̂+

q and n̂−
q can be approximated by using Eqs. (3.3a)

and (3.3b), respectively. The relaxation rates τ+ and τ− vary locally, where τ+ is related to
the fluid viscosity ν, according to the Sisko model, given by Eq.(4.1), and τ−= 1

2+
Λ

(τ+− 1
2 )

.

The LSOB applies Eq. (6.1) to the unknown boundary populations only, i.e. those that
propagate from the boundary node xb towards inside the fluid domain. To proceed fur-
ther and unfold the explicit content of each term in Eq. (6.1) one requires the knowledge
of the flow and the bounding geometry. This task will be exemplified next for a 2D planar
channel and a 3D circular tube.
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6.1 LSOB for a 2D horizontal planar channel

Consider a 2D planar channel that contains a non-Newtonian fluid obeying Sisko model.
Starting from Eqs. (3.3a) and (3.3b), the n̂+

q and n̂−
q non-equilibrium populations in this

case can be explicitly written as:

n̂+
q = tq cqx cqy ∂y jx, (6.2a)

n̂−
q =−tq cqx

(
3c2

qy−1
)
[(n−1)(ν−ν∞)+ν]∂yy jx. (6.2b)

The derivation of Eq. (6.2b) is detailed in Appendix B. The consideration of the
non-Newtonian viscosity law only affects the n̂−

q formulation through the coefficient
[(n−1)(ν−ν∞)+ν].

Eq. (6.2) can be cast in matrix form to determine the momentum derivative terms.

[
n̂+

q (xb)

n̂−
q (xb)

]
︸ ︷︷ ︸

N

=

[
tq cqx cqy 0

0 −tq cqx

(
3c2

qy−1
)

ν

]
︸ ︷︷ ︸

[M]

[
∂y jx(xb)
∂yy jx(xb)

]
︸ ︷︷ ︸

X

, (6.3)

where ν= [(n−1)(ν−ν∞)+ν]. In the system above N is a vector formed by the known
populations, the matrix [M] is formed by the coefficients of the LSOB approximations,
and X is the vector formed by the unknown momentum derivatives at xb. Based on this
representation, the content of X is locally available through the solution of the following
linear algebra problem:

X =[M]−1N . (6.4)

Due to the shear-rate viscosity dependence, the solution of Eq. (6.4) must be computed
at each iteration step to update ν. Although it is straightforward to compute [M]−1, its
solution may become unstable when ν becomes too large (although, at this stage, our cri-
terion of “too large” is solely based on heuristic arguments owing to the current lack of
more rigorous stability analyses for LBM boundary schemes [89]). Nonetheless, numeri-
cal experiments run on a wide range of non-Newtonian viscosity parameters reveal that
stability can be guaranteed providing the coefficients in [M]−1 are kept bounded to small
values throughout consecutive iterations. In order to fulfill this requirement we employ
a typical under-relaxation procedure during the determination of the momentum deriva-
tives in X , which are then used to construct the ν term. By following this procedure, we
could always reach a stable and unique solution, although at the cost of increasing the
total number of iteration steps to reach the steady-state convergence. Alternatives to this
stabilization procedure will be explored in future studies; in this context, a strong candi-
date could be the use of LBM steady-state solvers [79], which bypass the transient stage
of the computation, where typically these numerical instabilities arise and get amplified.
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After finding the content of X , it is possible to explicitly reconstruct the incoming
boundary populations, at xb, as follows:

fq(xb)= tq P(xb)+tq cqx

[
jx(xb)−

1
2

Fx−τ+(xb)cqy ∂y jx(xb)

+τ−(xb)
(

3c2
qy−1

)
[(n−1)(ν−ν∞)+ν]∂yy jx(xb)

]
, (6.5)

where ν=ν(xb). To complete the reconstruction of fq(xb) in Eq. (6.5), two hydrodynamic
quantities must be determined: P(xb) and jx(xb).

First, the boundary pressure value P(xb) is obtained via the zeroth-order mass mo-
ment, which is split into known K and unknown U sets. The result is given by:
P
c2

s
=∑q∈K fq+∑q∈U fq, where the part of fq belonging to the U set is subject to the LSOB

approximation. On this basis, P(xb) is computed as follows:

P(xb)=
1

c−2
s −∑q∈U tq

[
∑

q∈K
fq(xb)+

(
jx(xb)− 1

2 Fx
)

∑
q∈U

tq cqx−τ+(xb) ∑
q∈U

n̂+
q (xb)

−τ−(xb) ∑
q∈U

n̂−
q (xb)

]
, (6.6)

where jx(xb) is computed as explained next.
Second, the boundary node momentum value jx(xb) is obtained by relating it with

respect to the prescribed wall boundary condition, considered in Section 5. The relation
between the fluid momentum at the wall jx(xw) and its boundary node value jx(xb) is
established via the second-order Taylor series approximation:

jx(xb)=jx(xw)+δy ∂y jx(xb)−
δ2

y

2
∂yy jx(xb), (6.7)

where the distance between wall and boundary node is:

δy =(xb−xw)·ey (6.8)

with ey the vertical unit vector (aligned with wall normal vector) of the (x,y,z) system,
see Fig. 1. In Eq. (6.7) the momentum derivatives ∂y jx(xb) and ∂yy jx(xb) are provided
by Eq. (6.4), applied to Eq. (6.3), whereas the fluid momentum at the wall, jx(xw), is
determined by the physical boundary condition of the problem. For the slip models
presented in Section 5, the jx(xw) may be given by Eq. (5.1) for NL, Eq. (5.2) for NNL,
Eq. (5.3) for ASP, or Eq. (5.4) for HZK slip models. Here, to account for the planar wall
geometry, the wall shear stress is mapped onto Cartesian coordinates, τns 7→τxy, so that:

τxy(xw)=ν(xw)∂y jx(xw). (6.9)
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As the derivative ∂y jx(xw) is also unknown, it is once again approximated as a second-
order Taylor series, where the relation between wall and boundary node derivatives is
expressed as:

∂y jx(xw)=∂y jx(xb)−δy ∂yy jx(xb). (6.10)

The viscosity ν(xw) in Eq. (6.9) is given by Eq. (4.2), and is again determined with the help
of Eq. (6.10) to determine ∂y jx(xw). This exposition concludes the reconstruction of fq(xb),
as given by Eq. (6.5), which incorporates the slip velocity model, given in Section 5, and
the non-Newtonian viscosity law, given in Section 4.

Similarly to the non-Newtonian fluid flow modeling, also the modeling of the slip
velocity condition within the LSOB framework may pose specific stability challenges in
the reconstruction of fq(xb), given by Eq. (6.5). During the LBM iterative process, the
boundary node momentum derivatives used in the reconstruction of fq(xb) may become
unwieldy sharp, particularly under large slip conditions. This issue is even more dam-
aging when dealing with non-linear slip laws as these sharp momentum derivatives get
non-linearly amplified. In order to prevent the solution blow-up, we followed the same
strategy used to stabilize the non-Newtonian rheology model and employed an under-
relaxation procedure in the determination of the momentum derivatives in X =[M]−1N .
While this procedure leads to a slight increase in the number of iterations, it guarantees
stable steady-state solutions over a wide range of slip regimes.

The workflow of the LSOB algorithm, described above, can be summarized as fol-
lows:

1. Construct and update the matrix [M] at each iteration.

2. Select relevant n̂±
q populations and assemble vector N after each collision step.

3. Compute X =
{

∂y jx(xb),∂yy jx(xb)
}

from the linear algebra problem X = [M]−1N ,
given by Eq. (6.3).

4. Determine ∂y jx(xw) based on Eq. (6.10).

5. Determine ν(xw) based on Eq. (4.2), using ∂y jx(xw) from Eq. (6.10).

6. Determine τxy(xw) based on Eq. (6.9).

7. Determine jx(xw) based on the selected slip boundary model, e.g., Eq. (5.2) for
NNL, Eq. (5.3) for ASP, or Eq. (5.4) for HZK slip models, with τxy(xw) then given
by Eq. (6.9).

8. Compute jx(xb) based on Eq. (6.7), using jx(xw) and X =
{

∂y jx(xb),∂yy jx(xb)
}

, to be
used in Eq. (6.5).

9. Compute P(xb) based on Eq. (6.6), to be used in Eq. (6.5).

10. Construct unknown fq(xb) populations according to Eq. (6.5) using jx(xb) and P(xb)
previously computed in steps 8 and 9.
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Remark 6.1. According to the terminology used in previous works on the LSOB
scheme [37, 69], the algorithm here presented may be referred to as the Lnode formu-
lation. The other formulation that may be followed in the LSOB framework is the Lwall,
which is easily derived from the Lnode case, by following the derivations displayed in
works [37, 69]; therefore, its presentation is omitted herein.

6.2 LSOB for a 2D inclined planar channel

In this section, the 2D planar channel considered in Section 6.1 is extended for an inclined
setup as sketched in Fig. 2. This geometry can be considered as a building block of more
general configurations such as zig-zag like channels.

Consider a non-Newtonian Sisko-law fluid, which flows inside a 2D inclined pla-
nar channel (the Newtonian fluid flow derivation of this case was originally proposed
in [67]). Starting from Eqs. (3.3a) and (3.3b), the n̂+

q and n̂−
q non-equilibrium populations
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Figure 2: Discretization of 2D planar channel on the LBM uniform mesh. The streamline-rotated coordinate
system (x′,y′) is aligned with the channel walls and rotated at an angle θ.
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can be projected onto the streamline-rotated coordinate system (x′,y′), rotated at an an-
gle θ, which locally aligns with the channel walls [67]. The n̂+

q and n̂−
q content is given as

follows:

n̂+
q =tq

(
1
2

sin2θ
(
−c2

qx+c2
qy

)
+cos2θcqxcqy

)
∂y′ jx′

=tq cqx′ cqy′ ∂y′ jx′ , (6.11a)

n̂−
q =−tq

[(
3c2

qy−1
)

cqx cosθ
(
cos2 θ−2sin2 θ

)
+
(

3c2
qx−1

)
cqy sinθ

(
sin2 θ−2cos2 θ

)]
[(n−1)(ν−ν∞)+ν]∂y′y′ jx′ , (6.11b)

where cqx′ = cqx cosθ+cqy sinθ and cqy′ =−cqx sinθ+cqy cosθ. Note that, unlike the second
order term where the equality cqx cqy ∂y jx = cqx′ cqy′ ∂y′ jx′ holds, the third order term is, in
general, not invariant under an arbitrary space isometry [67], meaning (3c2

qy−1)cx ∂yy jx ̸=
(3c2

qy′−1)cx′ ∂y′y′ jx′ , as shown in Eq. (6.11b). The derivation of Eq. (6.11b) is detailed in
Appendix C. The consideration of the non-Newtonian viscosity law only affects the n̂−

q
formulation through the coefficient [(n−1)(ν−ν∞)+ν]. In fact, the structure of the linear
algebra problem N =[M]X , which arises from this case, is quite similar to the horizontal
channel setup, displayed in Eq. (6.3), with the only difference being in the [M] matrix
elements.

In the end, after determining the content of X , one is able to explicitly reconstruct the
incoming boundary populations, at xb, for the inclined channel setup [67]:

fq(xb)=tq P(xb)+tq cqx′

[
jx′(xb)−

1
2

Fx′

]
−τ+(xb)cqx′ cqy′ ∂y′ jx′(xb)

+τ−(xb)
[(

3c2
qy−1

)
cqx cosθ

(
cos2 θ−2sin2 θ

)
+
(

3c2
qx−1

)
cqy sinθ

(
sin2 θ−2cos2 θ

)]
[(n−1)(ν−ν∞)+ν]∂y′y′ jx′(xb). (6.12)

The two hydrodynamic quantities left to determine in Eq. (6.12) are P(xb) and jx(xb). The
boundary node pressure P(xb) is also computed through Eq. (6.6), whereas the bound-
ary node fluid momentum jx′(xb) is related to the wall fluid momentum according to
Eq. (6.7), although the Taylor expansion is developed on the streamline-rotated coordi-
nate system (x′,y′), which reads:

jx′(xb)=jx′(xw)+δy′ ∂y′ jx′(xb)−
δ2

y′

2
∂y′y′ jx′(xb), (6.13)

where the distance between wall and boundary node on this rotated (x′,y′) reference
frame is given by:

δy′ =(xb−xw)·ey′ (6.14)
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with ey′ being the vertical unit vector (aligned with wall normal vector) of the rotated
system (x′,y′); more details about the relations between fixed and rotated frames are
presented in Appendix A.1.

The fluid momentum at the wall jx′(xw) in Eq. (6.13) is determined by the chosen
slip boundary model that, according to Section 5, may follow Eq. (5.1) for NL, Eq. (5.2)
for NNL, Eq. (5.3) for ASP, or Eq. (5.4) for HZK slip models. The main difference com-
pared with the horizontal channel case is that the closure relation of these models must
be expressed on the streamline-rotated coordinate system (x′,y′). It is important to bear
in mind that, in order to deal with any of the aforementioned wall slip models, we
only make use of the known quantities ∂y′ jx′(xb) and ∂y′y′ jx′(xb), and therefore employ
the inclined channel equivalents of Eq. (6.9) given by τx′y′(xw) = ν(xw)∂y′ jx′(xw) and of
Eq. (6.10) given by ∂y′ jx′(xw)= ∂y′ jx′(xb)−δy′ ∂y′y′ jx′(xb). Overall, the LSOB algorithm to
prescribe the velocity slip condition in this case follows the same steps presented in Sec-
tion 6.1.

6.3 LSOB for a 3D straight circular tube

For a 3D circular tube containing a non-Newtonian fluid obeying Sisko model, the n̂+
q

and n̂−
q non-equilibrium populations can be explicitly written as:

n̂+
q =tq cqx

(
cqy ∂y jx+cqz ∂z jx

)
, (6.15a)

n̂−
q =−tq cqx [(n−1)(ν−ν∞)+ν]

[(
3c2

qy−1
)

∂yy jx+
(

3c2
qz−1

)
∂zz jx

]
+tq cqx (n−1)(ν−ν∞)

[(
3c2

qy−1
)

sin2 θ+
(

3c2
qz−1

)
cos2 θ

] 1
r
(
cosθ∂y jx+sinθ∂z jx

)
,

(6.15b)

with r=
√
(yb−y0)2+(zb−z0)2 and (y0,z0) the origin of the coordinate axis. The deriva-

tion of Eq. (6.15b) is detailed in Appendix D.
Eq. (6.15) can be cast in matrix form to determine the momentum derivative terms as

follows:[
n̂+

q (xb)
n̂−

q (xb)

]
︸ ︷︷ ︸

N

=

[
tq cqx cqy tq cqx cqz 0 0

tq cqx Φq cosθ (ν−ν) tq cqx Φq sinθ (ν−ν) −tq cqx

(
3c2

qy−1
)

ν −tq cqx

(
3c2

qz−1
)

ν

]
︸ ︷︷ ︸

[M]


∂y jx(xb)
∂z jx(xb)
∂yy jx(xb)
∂zz jx(xb)


︸ ︷︷ ︸

X

,

(6.16)

where ν := [(n−1)(ν−ν∞)+ν] (recall ν = ν(xb)) and Φq :=
[
(3c2

qy−1)sin2 θ+(3c2
qz−

1)cos2 θ
] 1

r .
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Above, N is a vector formed by the known populations, the matrix [M] is formed
by the coefficients of the LSOB approximations, and X is the vector formed by the un-
known momentum derivatives at xb. As in the 2D planar case, the content of X in this
3D problem is locally determined through the solution of a linear algebra system given
by Eq. (6.4). However, unlike the 2D planar case previously presented, the 3D circular
tube geometry leads to a non-trivial discretization procedure. Here, we are required to
count the number of independent equations available, given by the number of linearly
independent known populations at each boundary node, i.e. rank[M], and compare this
number against the number of unknowns that must be determined inside X , i.e. dim(X ).
If rank[M]≥dim(X ) then the above linear algebra system is determined and Eq. (6.16)
can be used directly to extract X ; we call these sites as regular boundary nodes. Other-
wise, if rank[M]<dim(X ) the above linear algebra system is under-determined and we
call these sites as singular boundary nodes. To guarantee their determinacy, the system
must be augmented by additional conditions. Following previous works [37,69], we pro-
pose including the derivatives of the known wall tangent momentum condition along
the boundary as the required supplementary conditions. For a curved wall surface, they
read ∂θ (jx(xw)− jws)=0 and ∂θθ (jx(xw)− jws)=0, where jws is determined by the chosen
slip velocity model; explicitly, jws is given by Eq. (5.1) for NL, Eq. (5.2) for NNL, Eq. (5.3)
for ASP, or Eq. (5.4) for HZK slip models. Recall that, to account for the circular wall
geometry, in all these slip models the wall shear stress is mapped onto cylindrical coor-
dinates, τns 7→ τrx. The transcription of these conditions from xw to xb makes use of the
second-order Taylor series approximation on the jx(xw) term and leads to:

∂θ (jx(xw)− jws)=(r−δr)
(
−sinθ∂y jx(xb)+cosθ∂z jx(xb)

)
+δr r

(
1
2

sin2θ
(
∂yy jx(xb)−∂zz jx(xb)

)
−cos2θ∂yz jx(xb)

)
−∂θ jws=0,

∂θθ (jx(xw)− jws)=−r
(
cosθ∂y jx(xb)+sinθ∂z jx(xb)

)
+r2 (sin2 θ∂yy jx(xb)+cos2 θ∂zz jx(xb)−sin2θ∂yz jx(xb)

)
−∂θθ jws=0.

(6.17)

The last term in each equation, ∂θ jws and ∂θθ jws, does not contain unknowns that need to
be computed in the LSOB system. Rather, they are computed at each time step by using
the information from the previous time step. How these two terms are computed for the
various slip laws is presented in Appendix E.

We note that the distinction between regular and singular boundary nodes is only
relevant during the linear algebra formulation problem, Eq. (6.4), which provides the
boundary node momentum derivatives in X . After the content of X is found the proce-
dure is identical for all boundary nodes and the incoming boundary populations, at xb,
are explicitly reconstructed as follows:

fq(xb)=tqP(xb)+tqcqx

(
jx(xb)−

1
2

Fx

)
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−tqcqx

[
τ+(xb)cqy+τ−(xb)(ν̄−ν)

((
3c2

qy−1
)

sin2 θ+
(

3c2
qz−1

)
cos2 θ

) cosθ

r

]
∂y jx(xb)

−tqcqx

[
τ+(xb)cqz+τ−(xb)(ν̄−ν)

((
3c2

qy−1
)

sin2 θ+
(

3c2
qz−1

)
cos2 θ

) sinθ

r

]
∂z jx(xb)

+tqcqx

[
τ−(xb)

(
3c2

qy−1
)

ν̄
]

∂yy jx(xb)

+tqcqx

[
τ−(xb)

(
3c2

qz−1
)

ν̄
]

∂zz jx(xb). (6.18)

The complete reconstruction of fq(xb) in Eq. (6.18) still requires the determination of
P(xb) and jx(xb). The boundary node pressure P(xb) is calculated, as in the 2D planar
wall case, according to Eq. (6.6). Likewise, the boundary node momentum value jx(xb)
can also be computed by relating it to the prescribed boundary condition at xb through
the second-order Taylor series approximation:

jx(xb)=jx(xw)+δr ∂r jx(xb)−
δ2

r
2

∂rr jx(xb)

=jx(xw)+δr

(
1+

δr

2r

)(
cosθ∂y jx(xb)+sinθ∂z jx(xb)

)
− δ2

r
2

(
∂yy jx(xb)+∂zz jx(xb)−

1
r2�����∂θθ jx(xb)

)
, (6.19)

where the distance between the wall and the boundary node is:

δr =(xb−xw)·er (6.20)

with er the radial unit vector (aligned with wall normal vector) of the (x,r,θ) system, see
Fig. 1.

In Eq. (6.19) the momentum derivatives at xb follow from solving Eq. (6.4), applied
to Eq. (6.16) (regular node) or to Eq. (6.16) augmented by Eq. (6.17) (singular node). The
fluid momentum at the wall, jx(xw), is determined according to the physical boundary
condition, as given in Section 5. For the slip models described in Section 5, the jx(xw)
may be given by Eq. (5.1) for NL, Eq. (5.2) for NNL, Eq. (5.3) for ASP, or Eq. (5.4) for HZK
slip models. Once again, to account for the circular wall geometry, in all these slip models
the wall shear stress is mapped onto cylindrical coordinates, τns 7→τrx, so that:

τrx(xw)=ν(xw)∂r jx(xw). (6.21)

As the derivative ∂r jx(xw) is also unknown, this term is once again approximated as a
second-order Taylor series, where the relation between wall and boundary node deriva-



F. Reis, G. Silva and V. Semiao / Commun. Comput. Phys., 37 (2025), pp. 61-103 79

tives is expressed as:

∂r jx(xw)=∂r jx(xb)+δr ∂rr jx(xb)

=

(
1− δr

r

)(
cosθ∂y jx(xw)+sinθ∂z jx(xw)

)
+δr

(
∂yy jx(xw)+∂zz jx(xw)−

1
r2�����∂θθ jx(xb)

)
. (6.22)

The viscosity ν(xw) in Eq. (6.21) is given by Eq. (4.3), and is again determined with the
help of Eq. (6.22) to determine ∂r jx(xw). This exposition concludes the reconstruction
of fq(xb), as given by Eq. (6.18), which incorporates the slip velocity model, given in
Section 5, and the non-Newtonian viscosity law, given in Section 4.

The workflow of the LSOB algorithm, described above, can be summarized as fol-
lows:

1. Construct and update the matrix [M] at each iteration.

2. Select relevant n̂±
q populations and assemble vector N after each collision step.

3. Count dim(X ) and verify whether rank[M]≥dim(X ) or rank[M]<dim(X ).

4. If rank[M] ≥ dim(X ) (regular node) then compute X ={
∂y jx(xb),∂z jx(xb),∂yy jx(xb),∂zz jx(xb)

}
from the linear algebra problem

X =[M]−1N , given by Eq. (6.16).

5. If rank[M]<dim(X ) (singular node) then compute
X =

{
∂y jx(xb),∂z jx(xb),∂yy jx(xb),∂zz jx(xb),∂yz jx(xb)

}
from the linear algebra prob-

lem X =[M]−1N , given by Eq. (6.16) augmented by Eq. (6.17).

6. Determine ∂r jx(xw) based on Eq. (6.22).

7. Determine ν(xw) based on Eq. (4.3), using ∂r jx(xw) from Eq. (6.22).

8. Determine τxr(xw) based on Eq. (6.21).

9. Determine jx(xw) based on the selected slip boundary model, e.g., Eq. (5.2) for
NNL, Eq. (5.3) for ASP, or Eq. (5.4) for HZK slip models, with τxy(xw) given by
Eq. (6.9).

10. Compute jx(xb) based on Eq. (6.19), using jx(xw) and X ={
∂y jx(xb),∂z jx(xb),∂yy jx(xb),∂zz jx(xb)

}
, to be used in Eq. (6.18).

11. Compute P(xb) based on Eq. (6.6), to be used in Eq. (6.18).

12. Construct unknown fq(xb) populations based on Eq. (6.18) using jx(xb) and P(xb)
previously computed in steps 10 and 11.
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Remark 6.2. As noted in Remark 6.1 the LSOB algorithm presented here for curved walls
also falls into the Lnode formulation. The extension to other LSOB frameworks, such as
the Lwall, is straightforward and not pursued here.

7 Numerical tests

To evaluate the accuracy of the LSOB slip boundary schemes, described in Section 6,
numerical solutions j(num)

x were compared against analytical one j(exact)
x in two reference

canonical problems: (i) 2D slip planar channel flow (in horizontal and diagonal setups),
and (ii) 3D circular pipe flow. Both problems are governed by the steady Stokes equation,
given by Eq. (2.6). The numerical accuracy is measured as:

∥L2(jx)∥=

√
∑
(

j(num)
x − j(exact)

x

)2

√
∑
(

j(exact)
x

)2
, (7.1)

where sums apply to all non-solid sites within the computational domain.
Numerical tests were implemented as follows. Wall boundary conditions were

mostly prescribed with the LSOB approach, although the so-called “kinetic” bound-
ary schemes [25–28, 33] were also tested for the sake of analysis. At the inlet and
outlet flow boundaries, periodic boundary conditions were established. The alterna-
tive, but equivalent situation of pressure inlet and outlet boundary conditions, with
Fx→−∂xP=(Pin−Pout)/ℓ, was also tested (using the Zou and He method [82]). Since the
obtained pressure- and force-driven channel flow solutions were confirmed to be equiv-
alent, only the latter will be presented in the manuscript. As for the LBM simulations, all
runs were started from an initial equilibrium state, considering a uniform pressure and
zero velocity fields. The LBM solution was converged towards steady-state, defined by
the criterion: |∑ jx(t)/∑ jx(t−ta)−1|<10−12, with ta =100 time steps.

For the problem physical parametrization, we identify the following two Reynolds
number definitions: (i) the standard Re= jmax h

ρ0 ν∞
and (ii) the modified Remod=

j2−n
max hn

aρ0
, see [84,

85]. However, instead of considering them separately, we work with their ratio β= Remod
Re ∈

[0,1), which permits blending into a single parameter the dynamical behavior ranging
between a pure power-law non-Newtonian fluid (β=0 and n ̸=1) and an asymptotically-
pure Newtonian fluid (β → 1). As for the slip condition, the non-dimensional group
governing the slippage phenomenon can be determined by the dimensionless slip length
parameter ζ = b/L for the case of liquids or the Knudsen number Kn= λ

h for the case of
gases. Irrespective of the case, the liquid slip length b or the gas mean free path λ are
taken as proportional to the slip measure Lslip, in turn defined as Lslip =

jws
∂y jx(xw)

. Fig. 3
illustrates how the imposed slip length must scale with the selected channel resolution
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Figure 3: Self similar solutions illustrated across three cases. An increase in the domain resolution (here
represented by h) should not result in a change in slip velocity, for a �xed dimensionless slip length (liquids) or
the Knudsen number (gases). The slip length (Lslip) scales with h to accommodate self-similarity.

in order to guarantee the independence of the slip velocity condition at wall. From self-
similarity, one can cast the aforementioned proportionality relation as follows:

jws

jmax
∝

Lslip

h+Lslip
∝


ζ

ζ+1 for liquids,

Kn
Kn+1 for gases.

(7.2)

On this basis, the scaling of the imposed external body force term is given as follows:

Fx =
1

Remod

j2max
ρ0h

×


[

2β
ζ+1 +

1−β
(ζ+1)n

( n+1
n

)n
]

for liquids,[
2β

Kn+1 +
1−β

(Kn+1)n

( n+1
n

)n
]

for gases.
(7.3)

The transcription of the above results to a 3D pipe geometry is direct and only requires
replacing the length scale h by R/2.

7.1 2D horizontal channel

This section concerns with the application of the LSOB formulas, which were derived in
Section 6.1, for a 2D horizontal channel flow subject to linear and non-linear slip laws at
walls and obeying Newtonian or non-Newtonian fluid rheology. First, Subsection 7.1.1
presents the analytical solutions of the problem used to benchmark the developed nu-
merical schemes. Then, the accuracy performance of those schemes is discussed in Sub-
section 7.1.2.
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7.1.1 Analytical solutions

Consider a flow moving between two infinite parallel plane walls as sketched in Fig. 1(a).
The top and bottom walls are stationary, and feature the same slip coefficients and choice
of slip models. This makes the velocity profile symmetric about the channel centerline
∂y jx(0)=0. For a Newtonian fluid, the analytical solution of the velocity profile is

jx(y)=− Fx

2ν

(
y2−h2)+ jx(h), (7.4)

where the content of jx(h) is dictated by the slip law and its explicit value is summarized
in Table 1.

When the fluid is non-Newtonian, the derivation of analytical solutions becomes a
much more challenging task. Skipping details and referring to the work [16] for more
information, the analytical solutions of a Sisko law fluid for β∈ [0,1) are given bellow for
two particular exponents; namely, for the non-Newtonian exponent n=1/2:

jx(y)=−
Fx
(
y2−h2)
2ν∞

+
a2(−|y|+h)

2ν2
∞

−
a
((

a2+4ν∞Fxh
) 3

2 −
(
a2+4ν∞Fx |y|

) 3
2
)

12ν3
∞Fx

+ jx(h)

(7.5)

and for the non-Newtonian exponent n=2:

jx(y)=
ν∞

2a
(|y|−h)−

(
ν2

∞+4aFx|y|
) 3

2 −
(
ν2

∞+4aFxh
) 3

2

12a2Fx
+ jx(h). (7.6)

For the particular case of a power-law viscosity fluid (β= 0), general solutions ∀n∈R+

are given as follows [16]:

jx(y)=
(

Fx

a

) 1
n n

n+1
(h1+ 1

n −|y|1+ 1
n )+ jx(h). (7.7)

The content of jx(h) in Eq. (7.7) is established by the chosen slip law and is again given
in Table 1.

Table 1: Slip momentum for the di�erent slip laws given in Section 5, considering a resting wall jwall =0 and

Fx > 0, with jx(h) the momentum value at the wall taken as jx(h)= jws =
ζ

ζ+1 jmax (liquids) or jx(h)= jws =
Kn

Kn+1 jmax (gases).

Navier Non-linear Navier Asymptotic Hatzikiriakos

jx(h) kl Fx h knl |Fxh|m−1 Fx h ka1 ln(1+ka2 Fx h) kh1sinh(kh2 Fx h−τc)
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7.1.2 Numerical solutions

In LBM, the 2D geometry is discretized on the D2Q9 lattice, featuring the following spa-
tial domain parameters: Nx = 3 computational cells along the channel flow horizontal
direction and a varying number of Ny computational cells along the wall normal vertical
direction, which will be specified ahead.

First, the LBM simulation of a Newtonian fluid is studied. Here, focus is put on the
accuracy of the LSOB boundary scheme described in Section 6.1 to prescribe the no-slip,
linear slip and non-linear slip boundary laws. In all cases it is confirmed that LBM nu-
merical solutions reproduce exactly (up to the machine accuracy) the analytical velocity
profiles, regardless the wall boundary node distance δy ∈ [0,1], the values of the mesh
resolution Ny or the TRT relaxation parameter Λ. Note that, as the analytical profiles
remain given by a parabola with a constant shift at walls, even with non-linear slip laws,
the results of this test provide a numerical proof of the parabolic accuracy of the LSOB
scheme on plane walls.

Next, the study is repeated for a non-Newtonian fluid, considering as boundary con-
ditions the no-slip, Navier linear slip and Navier non-linear slip laws. Fig. 4 shows the
obtained mesh convergence results; as illustrative values we take Λ=3/16 and the wall
boundary node distance of δy=1/4 (other δy distances will be discussed ahead). Numer-
ical results indicate that the LSOB scheme is able to accommodate the different physical
wall boundary conditions, no-slip or slip (with either linear or non-linear laws), under
roughly identical accuracies. Since the asymptotic and Hatzikiriakos non-linear slip laws
produce very similar results compared to the Navier non-linear slip solutions, our pre-
sentation is limited to the Navier non-linear slip model, setting the exponent m= 2 for
concreteness. As for the non-Newtonian model, the power-law exponent n noticeably
affects the error magnitude. Yet, the error still decreases with second-order rate in mesh
resolution. The fact that the magnitude of the numerical error is essentially controlled
by the non-Newtonian model and not by the boundary law is a sign that, with the LSOB
scheme, the main error source is coming from bulk, i.e. it comes from the approximation
of the non-Newtonian profile. On the contrary, the reproduction of the very same nu-
merical tests, but employing the so-called “kinetic” LBM boundary schemes [25–28, 33],
indicates that the main error source is determined by the boundary model. In this case,
the numerical accuracy of the LBM solution becomes severely degraded, reducing its con-
vergence rate to first-order in the no-slip case and further diminishing to the zeroth-order
(i.e. lack of convergence) in the slip regime (with either linear or non-linear laws). Al-
though not shown here, these outcomes follow the trends showed in previous published
works [33, 34, 37] concerning the lack of convergence of LBM with “kinetic” boundary
schemes when modeling channel flows subject to the standard Navier linear slip velocity
boundary condition.

Figs. 5 and 6 display the effect of the TRT relaxation parameter Λ on the numerical
error, respectively, considering a coarse mesh Ny = 12 and a fine mesh Ny = 96 resolu-
tion, respectively. As previously denoted, for a Newtonian fluid, n=1, the jx(y) solution
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Figure 4: Mesh convergence plots in a 2D channel using the LSOB scheme, with δy =1/4 wall boundary node
distance, �xing Λ = 3/16, for a non-Newtonian power-law �uid with exponents n = 1/2 (triangle), n = 3/4
(square) and n=2 (circle), where continuous straight line indicates a slope -2. Panel (a): No-slip BC (ζ=0 or
Kn=0). Panel (b): Navier linear slip BC (ζ=0.1 or Kn=0.1). Panel (c): Navier non-linear slip BC (ζ=0.1 or
Kn=0.1 and m=2).

Figure 5: E�ect of TRT relaxation parameter Λ in a 2D channel on the numerical error with LSOB scheme,
on a coarse mesh (Ny = 12), for a Newtonian �uid n= 1 (diamond) and non-Newtonian power-law �uid with
exponents n= 1/2 (triangle), n= 3/4 (square) and n= 2 (circle). Panel (a): No-slip BC (ζ = 0 or Kn= 0).
Panel (b): Navier linear slip BC (ζ=0.1 or Kn=0.1). Panel (c): Navier non-linear slip BC (ζ=0.1 or Kn=0.1
and m=2). All cases consider the arbitrary δy =1/4 wall boundary node distance.

is parabolic. Therefore, the LSOB scheme is able to accommodate this parabolic profile
exactly on boundaries, regardless a no-slip or a slip model is being considered. In other
words, for n=1, the LBM solution with the LSOB scheme agrees exactly with the analyt-
ical velocity profile ∀Λ. Note that the slight increase of the numerical error at Λ=1/100
for the fine mesh case, Fig. 6, is due to the accumulation of round-off errors. For a non-
Newtonian fluid, n ̸=1, the flow profile is no longer parabolic. Therefore, deviations from
the analytical solution become unavoidable. Numerical experiments on the error in this
case indicate that the accuracy reaches a minimum at a particular Λ value, which we will
designate as Λopt. This Λopt value tends to hold with the mesh refinement, although the
overall magnitude of the error observed at Λopt decreases in accordance to the scheme
numerical convergence. Fixing the power-law exponent n, the value of Λopt is also found
to be roughly insensitive to the wall law or the mesh resolution. However, when varying
the power-law exponent n the Λopt value gets strongly affected. This again confirms that,
with the usage of the LSOB scheme, the dominant error comes from the bulk approxima-
tion, whose solution is determined by n.
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Figure 6: Similar to Fig. 5, but on a �ne mesh (Ny =96).

Table 2: Order of convergence of the L2 Error given by the slope of the least-squared line computed over
Ny ={12,24,32,48,96} for the Navier non-linear law with ζ =0.1 or Kn=0.1 and m=2 (but shared by all slip
models). Label �Exact� indicates that numerical and analytical solutions match (up to the machine precision
accuracy) for the {Λ, n}-pair and δy =0, independently of mesh resolution.

δy =0 δy =1/4 δy =1/2 δy =3/4

Λ n=1/2 n=3/4 n=2 n=1/2 n=3/4 n=2 n=1/2 n=3/4 n=2 n=1/2 n=3/4 n=2

1/100 −2.07 −2.05 −1.84 −2.00 −1.99 1.79 1.91 −1.93 −1.73 −1.77 −1.83 −1.66

1/16 −2.07 −2.05 −2.07 −2.00 −1.99 −2.12 1.90 −1.91 −2.12 −1.75 −1.81 −2.08

1/12 −2.07 −2.05 −1.88 −2.00 −1.99 −1.85 −1.90 −1.90 −1.87 −1.74 −1.81 −1.92

1/6 −2.07 −2.92 −1.86 −1.99 −2.19 −1.82 −1.85 −2.19 −1.80 −1.94 −2.18 −1.79

3/16 −2.07 −2.08 −1.85 −1.99 −2.04 −1.82 −1.83 −2.07 −1.80 −2.18 −2.14 −1.78

1/4 Exact −2.06 −1.85 −2.19 −2.01 −1.82 −2.29 −1.99 −1.79 −2.27 −2.01 −1.77

1/2 −2.07 −2.05 −1.85 −2.01 −2.00 −1.82 −1.97 −1.96 −1.78 −1.97 −1.93 −1.76

1 −2.07 −2.05 −1.85 −2.01 −2.00 −1.81 −1.95 −1.95 −1.78 −1.92 −1.92 −1.75

Table 2 lists the order of mesh convergence for the Navier non-linear law, modelled
with the LSOB model, as function of (i) the TRT relaxation parameter Λ, (ii) the power-
law exponent n, and (iii) the wall-boundary node distance δy. From this table the fol-
lowing conclusions can be drawn. First, despite second-order convergence being fairly
persistent throughout all n power-law exponents, the order of convergence has a slight
tendency to decrease as n increases. Second, for lower values of δy, namely δy ≤1/2, the
choice of Λ ̸=Λopt shows little effect on the global convergence value. Third, gains in con-
vergence are marginal when Λ approaches Λopt, suggesting the rather localized effect of
Λopt.

Table 2 also indicates that, when δy = 0, the LBM-TRT with the LSOB scheme man-
ages to exactly reproduce the analytical solution for very specific {n,Λopt} combinations.
Namely, the pair {n = 1/2,Λopt = 1/4} (and also {n = 1/3,Λopt = 3/8}, although not
shown here) makes the LBM solutions machine-accurate with respect to the analytical
ones, which are given by cubic polynomials when n=1/2 (or quartic polynomials when
n = 1/3). Inspired by these findings, we proceed to assess in more detail the interplay
between Λopt and the power-law exponent n. The results of this study are collected in
Table 3. This table reveals that Λopt decreases with the power-law exponent n increase,
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Table 3: Pairs {n,Λopt} that minimize the L2 Error for the Navier non-linear law with ζ=0.1 or Kn=0.1 and
m=2 (but shared by all slip models), and using the LSOB model δy ∈ [0,1].

n Λopt

1/2 1/4

2/3 3/16

3/4 1/6

3/2 1/12

Figure 7: Order of convergence of L2 Error computed over Ny = {12,24,32,48,96} for the Navier non-linear
law with ζ = 0.1 or Kn= 0.1 and m = 2 (but shared by all slip models), and using Λ =Λopt, as function of
the power-law exponent n using the LSOB scheme. Panel (a): Setting δy = 1/4 and δy = 3/4. Panel (b):
Setting δy =0. In panel (b), the hollow markers in both panels denote singularities in the continuous line; they
correspond to the cases n=1/2 and n=1/3 where the rate of convergence is not de�ned since numerical and
analytical solutions exactly match at Λ=Λopt.

permitting to establish the following relationship Λopt =
1

8n . Note that, with the excep-
tion of the aforementioned two pairs (and obviously the Newtonian case {n = 1,∀Λ}),
the majority of {n,Λopt} combinations does not lead to exact LBM solutions. Fig. 7 plots
the evolution of the order of convergence of the L2 Error as function of the power-law
exponent n, with Λopt chosen accordingly. For δy ̸= 0, the calibration of Λ may push
the order of convergence below −2, but it does not completely eliminate the O(δ2

y) error
terms. Consequently, the scheme does never effectively become higher-order accurate,
see Fig. 7(a). For δy = 0, the LSOB scheme is not limited by the intrinsic O(δ2

y) accuracy
of the second-order Taylor expansion to approximate the physical boundary condition.
Therefore, in this case, the LBM solution may support higher-order accuracy, providing
the bulk error can be cancelled by a proper Λ calibration. Fig. 7(b) illustrates this study
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and it shows that the possibility of improving the scheme convergence rate through Λopt
is particularly noticeable when modeling shear thinning fluids, n<1, where global third-
order accuracy is met at 1/3<n<2/3 while fourth-order accuracy is reached for n≤1/3,
see Fig. 7(b). These results shed light on the structure of the LBM numerical errors and
provide guidelines for future theoretical analyses on the LBM modeling of power-law
non-Newtonian fluids.

7.2 2D diagonal inclined channel

This section extends the horizontal channel flow simulations, presented in Section 7.1, to
an inclined setup, considering the case where the channel aligns with the lattice diago-
nal links. The analytical solutions presented in Section 7.1.1 hold, but are subject to the
reference frame transformation (x,y) 7→ (x′,y′), featuring θ=π/4. The diagonal channel
is discretized on the D2Q9 uniform mesh. A sketch of the discretization is illustrated in
Fig. 2. The LSOB formulation presented in Section 6.2 is used to prescribe the wall bound-
ary condition. As theoretically demonstrated, this LSOB scheme is able to prescribe the
intended slip law at the desired location, within a parabolic level of accuracy. The goal
of this section is to demonstrate, based on numerical tests, that the designed parabolic
accuracy is also verified when the walls are rotated on the mesh.

7.2.1 Analytical solutions

The analytical solutions for the 2D inclined channel flow problem considered here can be
obtained from those presented in Subsection 7.1.1, by considering the mapping (x,y) 7→
(x′,y′) with θ=π/4. For example, the analytical solution of a velocity profile for a non-
Newtonian (power-law) fluid, which for a 2D horizontal channel is given by Eq. (7.7),
now reads:

jx′(y′)=
(

Fx′

a

) 1
n n

n+1

(
h′1+

1
n −|y′|1+ 1

n

)
+ jx′(h′), (7.8)

where h′= hcosθ and the mapping of vectorial quantities to the (x′,y′) frame is given as
y′=−x sinθ+ycosθ, jx′ =−jx sinθ+ jy cosθ, etc. By following these transformation rules,
all other solutions presented in Subsection 7.1.1 can be easily transposed to the inclined
channel geometry. Likewise, the content of jx′(h′) in Eq. (7.8) is dictated by the wall slip
law, given by Table 1, but subject to the frame transformations above indicated.

7.2.2 Numerical solutions

In LBM, the 2D geometry is discretized on the D2Q9 lattice, considering a spatial domain
with Nx = Ny computational cells (their values will be specified ahead). The numerical
tests presented in Subsection 7.1.2 are now repeated for the 2D diagonal inclined channel.

First, the simulation of a Newtonian fluid is considered. The analytical solution of this
case is given by Eq. (7.8) with the power-law exponent n=1. The focus of the analysis is
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Figure 8: Mesh convergence plots in a 2D diagonal inclined channel using the LSOB scheme, with δy′=δy cosθ=
1
4

√
2

2 wall boundary node distance, �xing Λ=3/16, for a non-Newtonian power-law �uid with exponents n=1/2
(triangle), n=3/4 (square) and n=2 (circle), where continuous straight line indicates a slope -2. Panel (a):
No-slip BC (ζ=0 or Kn=0). Panel (b): Navier linear slip BC (ζ=0.1 or Kn=0.1). Panel (c): Navier non-linear
slip BC (ζ=0.1 or Kn=0.1 and m=2).

on the accuracy of the LSOB scheme described in Section 6.2 and how they prescribe the
no-slip, linear slip or non-linear slip boundary laws over inclined flat walls. It is numer-
ically confirmed that the proposed LSOB scheme leads to LBM numerical solutions that
exactly reproduce (up to the machine accuracy) the analytical velocity profiles, regardless
of the wall boundary node distance δy′ , the values of the mesh resolution Ny or the TRT
relaxation parameter Λ, in all cases of boundary conditions studied herein.

Next, the study is extended for a non-Newtonian fluid, once again considering the
no-slip, linear slip or non-linear slip laws as boundary conditions for the diagonal in-
clined channel. Fig. 8 shows the obtained mesh convergence results, obtained for the
arbitrary values Λ=3/16 and δy′ = δy cosθ= 1

4

√
2

2 . Numerical simulations reveal that the
LSOB scheme is able to accommodate the different physical wall boundary conditions,
no-slip or slip (with either linear or non-linear laws), under roughly identical accuracies
following a second-order rate of convergence. Note that since asymptotic and Hatzikiri-
akos non-linear slip laws produce very similar results compared to the Navier non-linear
slip solutions, the results here presented are limited to the Navier non-linear slip model,
setting the exponent m=2 for concreteness. Contrary to the wall slip law model, the non-
Newtonian power-law exponent n seems to play a more meaningful role on the accuracy
of solutions. These trends are in line with the horizontal channel simulations presented
in Subsection 7.1.2.

Figs. 9 and 10 display the effect of the TRT relaxation parameter Λ on the numerical
accuracy, considering coarse Ny =12 and fine Ny =96 meshes, respectively. As expected,
the Newtonian fluid n=1 is exactly reproduced by the LBM solution, which provides a
numerical demonstration for the parabolic accuracy of the LSOB scheme, also on inclined
straight walls. In the non-Newtonian n ̸=1 case, the LSOB solutions are barely unaffected
by Λ on both mesh refinement scenarios. The exploration of an optimal Λ value, which
guarantees the lower error, is not so evident in this case as compared to the horizontal
channel setup. Nonetheless, it is confirmed that, with the LSOB scheme modeling the
boundary condition, the dominant error source comes from the bulk approximation of
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Figure 9: E�ect of TRT relaxation parameter Λ in a 2D diagonal inclined channel on the numerical error with
LSOB scheme, on a coarse mesh (Ny=12), for a Newtonian �uid n=1 (diamond) and non-Newtonian power-law
�uid with exponents n= 1/2 (triangle), n= 3/4 (square) and n= 2 (circle). Panel (a): No-slip BC (ζ = 0 or
Kn=0). Panel (b): Navier linear slip BC (ζ =0.1 or Kn=0.1). Panel (c): Navier non-linear slip BC (ζ =0.1
or Kn= 0.1 and m= 2). All cases consider the generic value δy′ = δy cosθ = 1

4

√
2

2 for the wall boundary node

distance.

Figure 10: Similar to Fig. 5, but on a �ne mesh (Ny =96).

the non-Newtonian velocity profiles. This observation attests the high level of accuracy
of the proposed LSOB schemes so that its usage typically guarantees the boundary error
to be smaller than the bulk error.

7.3 3D circular tube

This section concerns with the application of the LSOB formulae, which were derived
in Section 6.3, for a flow inside a 3D circular tube with walls subject to linear and non-
linear slip laws, where the fluid may display Newtonian or non-Newtonian behavior.
Subsection 7.3.1 presents the analytical solutions of this problem. Then, Subsection 7.3.2
discusses the accuracy of the developed numerical schemes in this setup. Compared
to the 2D test case addressed in Section 7.1, the new specific challenge here lies in the
modeling of the slip velocity boundary condition on a 3D geometry with curved shaped
walls.
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7.3.1 Analytical solutions

Consider the flow through a circular tube of constant cross-section as sketched in
Fig. 1(b). Solutions to this problem can be obtained from the 2D channel case, previ-
ously presented in Subsection 7.3.1, by employing the substitutions y→ r and h→R. For
example, the analytical solution of the velocity profile for a non-Newtonian (power-law)
fluid, which for a 2D horizontal channel is given by Eq. (7.7), now reads:

jx(r)=
(

Fx

2a

) 1
n n

n+1

(
R1+ 1

n −r1+ 1
n

)
+ jx(R). (7.9)

Similarly to Eq. (7.7), the content of jx(R) is dictated by the wall slip law, given by Table 1
with the substitution h→R/2. All other solutions presented in Subsection 7.1.1, including
the slip laws jx(R) given by Table 1, are easily transposed to the 3D pipe geometry by
performing the same transformations.

7.3.2 Numerical solutions

In LBM, the 3D geometry is discretized on the D3Q19 lattice, with the following spa-
tial domain discretization parameters considered: Nx = 3 computational cells along the
channel flow direction and a varying number of Ny = Nz =R computational cells in the
cross-sectional plane, which will be specified ahead.

The LBM simulation of a Newtonian fluid inside a 3D pipe, like in the 2D channel
case, yields solutions that exactly coincide (up to the machine accuracy) with the analyti-
cal parabolic solutions when the LSOB scheme is used for no-slip, linear slip or non-linear
slip velocity boundary conditions, regardless of the value of numerical parameters em-
ployed, such as the mesh resolution Ny or the TRT relaxation function Λ. In contrast, the
use of the “kinetic” boundary schemes [25–28,33] to model this 3D geometry deteriorates
the accuracy of LBM solutions to first-order in the no-slip case or zeroth-order in the slip
case; while not shown in the manuscript this result agrees with previously published
studies [37].

Fig. 11 shows the mesh convergence behavior, in the range Ny =Nz =R∈ [12,96], ob-
tained for a non-Newtonian fluid inside the 3D pipe subject to several boundary condi-
tions, such as the no-slip, Navier linear slip and Navier non-linear slip laws (with m=2),
modeled with the LSOB scheme, fixing Λ = 3/16 as illustrative value; asymptotic and
Hatzikiriakos non-linear slip laws are not shown as they produce similar solutions to
Navier non-linear slip law. This test shows a quantitative dependence between the type
of non-Newtonian model, as determined by the exponent n, and the type of wall condi-
tion, on the accuracy of the LBM solution. For small n the solution accuracy is roughly
insensitive to the type of wall condition, whereas the accuracy of large n solutions tends
to deteriorate when shifting the wall condition from no-slip to the non-linear slip case.
Still, close to second-order mesh convergence is maintained for all cases.

Figs. 12 and 13 display the effect of the TRT relaxation parameter Λ on the numerical
error, respectively, considering a coarse mesh R= 12 and a fine mesh R= 96 resolution.
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Figure 11: Mesh convergence plots in a 3D pipe using the LSOB scheme, �xing Λ=3/16, for a non-Newtonian
power-law �uid with exponents n=1/2 (triangle), n=3/4 (square) and n=2 (circle), where continuous straight
line indicates a slope -2. Panel (a): No-slip BC (ζ =0 or Kn=0). Panel (b): Navier linear slip BC (ζ =0.1 or
Kn=0.1). Panel (c): Navier non-linear slip BC (ζ=0.1 or Kn=0.1 and m=2).

Figure 12: E�ect of TRT relaxation parameter Λ in a 3D pipe on the numerical error with LSOB scheme, on
a coarse mesh (R=Ny =Nz =12), for a Newtonian �uid n=1 (diamond) and non-Newtonian power-law �uid
with exponents n=1/2 (triangle), n=3/4 (square) and n=2 (circle). Panel (a): No-slip BC (ζ=0 or Kn=0).
Panel (b): Navier linear slip BC (ζ=0.1 or Kn=0.1). Panel (c): Navier non-linear slip BC (ζ=0.1 or Kn=0.1
and m=2).

Figure 13: Similar to Fig. 12, but on a �ne mesh (R=Ny =Nz =96).

Once again, for a Newtonian fluid, n = 1, the jx(y) parabolic solution is exactly recov-
ered by LBM with the LSOB scheme, regardless of considering a no-slip or a slip model.
This attests the parabolic accuracy of the developed LSOB scheme. For a non-Newtonian
fluid, n ̸= 1, the flow profile is no longer exactly captured. Regardless of the mesh res-
olution, the effect of Λ on the numerical solution accuracy is now markedly affected by
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the wall law. The LSOB modeling of the no-slip condition shows an order of magnitude
reduction in error between Λ = 3/16 and Λ = 1/4, whereas the LSOB modeling of the
slip condition (either linear or non-linear) becomes almost Λ independent. Comparisons
between coarse and fine grid cases suggest that the main error source is principally due
to the spatial discretization of the boundary condition. Moreover, the fact that the quali-
tative behavior of the L2 Error vs Λ curves is roughly insensitive to the fluid rheology, as
given by the n exponent value (providing n ̸=1), also suggests the main error source com-
ing from the boundary discretization, rather than the bulk. Hence, contrary to the lattice
aligned 2D planar flow simulation, in this 3D curved boundary geometry there is very
little room to improvement through the Λ tuning. Nonetheless, even without the help
of the TRT relaxation parameter, the developed boundary scheme is still able to reach a
parabolic level of accuracy at all cases.

8 Conclusions

This work was developed with the purpose of advancing the LBM modeling of the steady
state and slow viscous flow of both Newtonian and non-Newtonian fluids (described by
Sisko model) inside microchannels of planar and circular cross-section when subject to
different kinds of wall boundary conditions, potentially described by no-slip, linear slip
and non-linear slip laws.

As an accurate and robust strategy to model this problem class, we proposed the
use of the two-relaxation-time (TRT) collision model together with the local second or-
der boundary (LSOB) scheme. In this regard, the LSOB scheme had to be reformulated
to deal with the specificities of the physical model at hands, namely: (i) the parame-
ters of the non-Newtonian rheological model had to be incorporated into the reconstruc-
tion of the LSOB boundary populations, and (ii) to incorporate the non-linear wall slip
laws (given by non-linear Navier, empirical asymptotic and Hatzikiriakos laws), the nor-
mal Taylor-type condition used to approximate the physical boundary condition onto
the LSOB boundary condition had to be subject to specific changes. The application
of the proposed LBM boundary scheme was here developed in a step-by-step fashion
for both planar and curved walls taking into account 2D and 3D domains, respectively.
The generalization to other geometrical cases is easily extendable by following the the-
ory presented in the manuscript. In terms of numerical characteristics, the developed
LSOB schemes offer numerous advantages. Among the most important, they preserve
the viscosity-independent property of the TRT model with respect to the numerical er-
rors and are able to prescribe the non-linear wall slip laws with parabolic accuracy, which
can be considered as state-of-the-art level of accuracy within the second-order accuracy
of the standard LBM. Numerical tests, presented at the end of the work, confirmed the
superior characteristics of the developed LSOB schemes when applied to the modeling
of complex fluid flows inside microchannels.

The extension of the present work to other problem classes is planned for future stud-
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ies. To this end, the next logical step will be equipping the current LSOB scheme with the
ability to support (i) time-dependent effects and (ii) non-linear fluid convection phenom-
ena. As for the first issue, this task will require the consideration of the time variable in
the Taylor series approximation of the boundary node fluid momentum towards the fluid
momentum at the wall together with the inclusion of the unsteady contributions into the
reconstruction of the boundary populations fq(xb,t). As for the second point, the recon-
struction of fq(xb,t) will also need to incorporate the momentum non-linear terms. We
note that the inclusion of both these contributions in the LSOB formulation has been at-
tempted in previous works [86–88], but they relied on a less precise linear approximation.
The upgrading of these ideas to parabolic accuracy could explore the developments re-
cently reported in the work [89] (in particular the guidelines given in Section III.A of [89]).
It is also worth pointing out that the applicability of the LSOB technique is not limited to
Navier-Stokes based problems, but it has also been used in the modeling of Dirichlet and
Neumann normal boundary conditions for advection-diffusion equations [90]. Finally,
as a last important step in this research topic, it is also proposed the reformulation of
the present LSOB algorithm in order to extend it from the Cartesian or cylindrical coor-
dinate frameworks considered here towards a generalized curvilinear coordinate system
capable of describing boundaries of arbitrary shape in line with the body-fitted CFD phi-
losophy but focused on the boundary contour [88].
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Appendices

A Mathematical background: Change of coordinates

A.1 Rotated Cartesian coordinate system

For the sake of completeness, this section summarizes the mathematical apparatus un-
derpinning the mapping between fixed and rotated Cartesian systems (x,y) 7→ (x′,y′) given
by: {

x= x′ cosθ−y′ sinθ,
y= x′ sinθ+y′ cosθ,

{
jx = jx′ cosθ− jy′ sinθ,
jy = jx′ sinθ+ jy′ cosθ.

(A.1)
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This mapping (x,y) 7→ (x′,y′) applied to first-order momentum derivatives reads:
∂x jx =cos2 θ∂x′ jx′−cosθ sinθ

(
∂x′ jy′+∂y′ jx′

)
+sin2 θ∂y′ jy′ ,

∂y jx =cosθ sinθ
(
∂x′ jx′−∂y′ jy′

)
+cos2 θ∂y′ jx′−sin2 θ∂x′ jy′ ,

∂x jy =cosθ sinθ
(
∂x′ jx′−∂y′ jy′

)
−sin2 θ∂y′ jx′+cos2 θ∂x′ jy′ ,

∂y jy =sin2 θ∂x′ jx′+cosθ sinθ
(
∂x′ jy′+∂y′ jx′

)
+cos2 θ∂y′ jy′ ,

(A.2)

and to second-order momentum derivatives is given by:

∂xy jx =cosθ(cos2 θ−2sin2 θ)∂x′y′ jx′−sinθ cos2 θ∂y′y′ jx′
−sin2 θ cosθ∂x′x′ jy′+sinθ(sin2 θ−2cos2 θ)∂x′y′ jy′ ,

∂yy jx =3cos2 θ sinθ∂x′y′ jx′+cos3 θ∂y′y′ jx′
−sin3 θ∂x′x′ jy′−3sin2 θ cosθ∂x′y′ jy′ ,

∂xx jy =−3cosθ sin2 θ∂x′y′ jx′+sin3 θ∂y′y′ jx′
+cos3 θ∂x′x′ jy′−3cos2 θ sinθ∂x′y′ jy′ ,

∂xy jy =−sinθ(sin2 θ−2cos2 θ)∂x′y′ jx′−cosθ sin2 θ∂y′y′ jx′
+cos2 θ sinθ∂x′x′ jy′+cosθ(cos2 θ−2sin2 θ)∂x′y′ jy′ .

(A.3)

A.2 Cylindrical coordinate system

For the sake of completeness, this section summarizes the mathematical apparatus
underpinning the mapping between Cartesian to cylindrical systems (y,z) 7→ (r,θ), and
vice-versa (r,θ) 7→ (y,z), given by:{

y= r cosθ,
z= r sinθ,

{
r=

√
y2+z2,

θ=arctan(z/y).
(A.4)

Considering the mapping (y,z) 7→ (r,θ), the relations between first- and second-order
momentum derivatives are expressed as follows:{

∂y jx =cosθ∂r jx− 1
r sinθ∂θ jx,

∂z jx =sinθ∂r jx+ 1
r cosθ∂θ jx,

(A.5a)


∂xx jx =cos2 θ∂rr jx+ 1

r sin2 θ∂r jx− 1
r sin2θ∂rθ jx+ 1

r2 sin2θ∂θ jx+ 1
r2 sin2 θ∂θθ jx,

∂yy jx =sin2 θ∂rr jx+ 1
r cos2 θ∂r jx+ 1

r sin2θ∂rθ jx− 1
r2 sin2θ∂θ jx+ 1

r2 cos2 θ∂θθ jx,
∂yz jx = 1

2 sin2θ∂rr jx− 1
2r sin2θ∂r jx+ 1

r cos2θ∂rθ jx− 1
r2 cos2θ∂θ jx− 1

2r2 sin2θ∂θθ jx.
(A.5b)
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Conversely, the mapping between cylindrical to Cartesian systems (r,θ) 7→ (y,z) reads as
follows: 

∂r jx =cosθ∂y jx+sinθ∂z jx,
∂rr jx =− 1

r2 ∂θθ jx− 1
r ∂r jx+

(
∂yy jx+∂zz jx

)
=cos2 θ∂yy jx+sin2 θ∂zz jx+sin2θ∂yz jx,

∂θ jx =−r sinθ∂y jx+r cosθ∂z jx,
∂θθ jx =−r∂r jx+r2 (sin2 θ∂yy jx+cos2 θ∂zz jx−sin2θ∂yz jx

)
,

∂rθ jx = 1
r ∂θ jx+r

( 1
2 sin2θ

(
−∂yy jx+∂zz jx

)
+cos2θ∂yz jx

)
.

(A.6)

B Derivation of Eq. (6.2b)

The derivation of Eq. (6.2b) proceeds along the following steps. We start by expanding
Eq. (3.3b), taking into account that we are dealing with a 2D planar channel geometry;
the result reads:

n̂−
q =−tq cqx

(
3c2

qy−1
)

∂y
(
ν∂y jx

)
=−tq cqx

(
3c2

qy−1
)[

∂yν∂y jx+ν∂yy jx
]
. (B.1)

Next, we need to assess the term ∂yν. For that, we use Eq. (4.2) as rheological model,
which produces the following result:

∂yν=∂y

(
ν∞+a|∂y jx|n−1

)
=a(n−1)(∂y jx)|∂y jx|n−3 ∂yy jx

=(ν−ν∞)(n−1)
1

∂y jx
∂yy jx. (B.2)

Finally, we introduce Eq. (B.2) into Eq. (B.1), which leads to Eq. (6.2b).

C Derivation of Eq. (6.11b)

The derivation of Eq. (6.11b) proceeds along the following steps. We start by expanding
Eq. (3.3b), restricted to a 2D domain; the result reads:

n̂−
q =−tq cqx

(
3c2

qy−1
)[

∂x
(
ν∂y jy

)
+∂y

(
ν∂x jy+ν∂y jx

)]
−tq cqy

(
3c2

qx−1
)[

∂y (ν∂x jx)+∂x
(
ν∂x jy+ν∂y jx

)]
. (C.1)

Like in Eq. (B.1), the spatial derivatives in Eq. (C.1) are expanded as follows:

n̂−
q =−tq cqx

(
3c2

qy−1
)[

∂xν∂y jy+∂yν
(
∂x jy+ν∂y jx

)
+ν

(
∂yy jx+2∂xy jy

)]
−tq cqy

(
3c2

qx−1
)[

∂yν∂x jx+∂xν
(
∂x jy+ν∂y jx

)
+ν

(
∂xx jy+2∂xy jx

)]
. (C.2)
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To proceed forward it is useful to introduce the mapping between fixed and rotated
Cartesian systems (x,y) 7→ (x′,y′), which is detailed in Appendix A.1. Then, we take
into consideration that (x′,y′) locally aligns with the wall tangential and normal direc-
tions, respectively, as sketched in Fig. 2. Developing Eq. (C.2) on this (x′,y′) coordinate
system and recognizing that we are dealing with a 2D channel geometry, we can assume
the flow streamwise invariance, which translates to ∂x′ =0 (note that a similar condition
was invoked in Appendix B). Operating this set of changes into Eq. (C.2) we obtain:

n̂−
q =−tq

[(
3c2

qy−1
)

cqx cosθ
(
cos2 θ−2sin2 θ

)
+
(

3c2
qx−1

)
cqy sinθ

(
sin2 θ−2cos2 θ

)] [
∂y′ν∂y′ jx′+ν∂y′y′ jx′

]
. (C.3)

Following Appendix B, we can map Eq. (B.2) onto the (x′,y′) frame, which leads to
∂y′ν∂y′ jx′ = (ν−ν∞)(n−1)∂y′y′ jx′ . This result is finally substituted into Eq. (C.3). In the
end, Eq. (C.3) boils down to Eq. (6.11b).

D Derivation of Eq. (6.15b)

The derivation of Eq. (6.2b) proceeds along the following steps. We start by expanding
Eq. (6.15b), taking into account that we are dealing with a 3D circular tube geometry; the
result reads:

n̂−
q =−tq cqx

[(
3c2

qy−1
)

∂y
(
ν∂y jx

)
+
(

3c2
qz−1

)
∂z (ν∂z jx)

]
=−tq cqx

[(
3c2

qy−1
)(

∂yν∂y jx+ν∂yy jx
)
+
(

3c2
qz−1

)
(∂zν∂z jx+ν∂zz jx)

]
=−tq cqx

[(
3c2

qy−1
)([

cos2 θ∂rν+ν
1
r

sin2 θ

]
∂r jx+νcos2 θ∂rr jx

)
+
(

3c2
qz−1

)([
sin2 θ∂rν+ν

1
r

cos2 θ

]
∂r jx+νsin2 θ∂rr jx

)]
. (D.1)

The last equality is obtained based on the following identities: ∂y jx = cosθ∂r jx, ∂z jx =
sinθ∂r jx, ∂yy jx = cos2 θ∂rr jx+ 1

r sin2 θ∂r jx, and ∂zz jx = sin2 θ∂rr jx+ 1
r cos2 θ∂r jx, with ∂θ jx = 0

implied based on circumferential invariance; recall the general relationships in Ap-
pendix A.

Next, we assess the term ∂rν. Similarly to Eq. (B.2), the ∂rν term can be expressed as
follows:

∂rν=∂r

(
ν∞+a|∂r jx|n−1

)
=a(n−1)(∂r jx)|∂r jx|n−3 ∂rr jx

=(ν−ν∞)(n−1)
1

∂r jx
∂rr jx. (D.2)
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Then, we introduce Eq. (D.2) into Eq. (D.1), which leads to:

n̂−
q =−tq cqx

[(
3c2

qy−1
)(

[(n−1)(ν−ν∞)+ν]

(
cos2 θ∂rr jx+

1
r

sin2 θ∂r jx

)
−(n−1)(ν−ν∞)

1
r

sin2 θ∂r jx

)
+
(

3c2
qz−1

)(
[(n−1)(ν−ν∞)+ν]

(
sin2 θ∂rr jx+

1
r

cos2 θ∂r jx

)
−(n−1)(ν−ν∞)

1
r

cos2 θ∂r jx

)]
. (D.3)

Finally, we re-express the momentum derivatives in Eq. (D.3) in cartesian coordinates, us-
ing the relations ∂r jx=cosθ∂y jx+sinθ∂z jx and ∂rr jx=− 1

r ∂r jx+
(
∂yy jx+∂zz jx

)
, subject to the

assumption of circumferential invariance; recall the general relationships in Appendix A.
The end result produces Eq. (6.15b).

E Derivation of ∂θ jws and ∂θθ jws in Eq. (6.17)

This section presents the explicit content of ∂θ jws and ∂θθ jws, which can be found in
the kinematic constraint conditions of the slip velocity boundary schemes presented in
Eq. (6.17) of Section 5. From the computational implementation standpoint, all variables
shown here are obtainable by the previous time step solution. Numerically, it was con-
firmed that stable and unique steady-state solutions can be obtained through this proce-
dure.

Navier non-linear (NNL) slip velocity model:

∂θ jws= knl |ν∂r jx|m−2 [|ν∂r jx|+(m−1)νsgn(ν∂r jx)∂r jx](∂θν∂r jx+ν∂rθ jx)
∣∣∣∣

xw

. (E.1)

Asymptotic (ASP) slip velocity model:

∂θ jws=
ka1 ka2

1+ka2 ν∂r jx
(∂θν∂r jx+ν∂rθ jx)

∣∣∣∣
xw

. (E.2)

Hatzikiriakos (HZK) slip velocity model:

∂θ jws= kh1 kh2 cosh(kh2 ν∂r jx)(∂θν∂r jx+ν∂rθ jx)
∣∣∣∣

xw

. (E.3)

In the above equations, the term ∂θν at xw, when viscosity ν obeys the Sisko model,
Eq. (4.3), is given by:

∂θν(xw)= a(n−1)|∂r jx|n−2sgn(∂r jx)∂rθ jx

∣∣∣∣
xw

. (E.4)
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The derivation procedure finishes with the replacement of the momentum derivatives
from cylindrical to cartesian coordinate systems. To this end, we employ the rela-
tionships shown in Appendix A, namely: ∂r jx = cosθ∂y jx+sinθ∂z jx and ∂rθ jx = 1

r ∂θ jx+
r
( 1

2 sin2θ
(
−∂yy jx+∂zz jx

)
+cos2θ∂yz jx

)
. These momentum derivatives are readily avail-

able from the previous time step solution(s).
As for the term ∂θθ jws, this term may be neglected, regardless the slip velocity bound-

ary model, as it features higher-order derivatives or products of higher-order derivative
terms. Hence, in general, we may consider ∂θθ jws=0.
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