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A B S T R A C T

This work presents a detailed theoretical analysis of the multiple-relaxation-time (MRT) lattice Boltzmann
method (LBM), formulated on central moment (CM) space, for the numerical modelling of the one-dimensional
advection-diffusion equation (ADE) with a constant velocity and diffusion coefficient, based on the D1Q3 lat-
tice. Other LBM collision operators, such as single-relaxation-time Bhatnagar–Gross–Krook (BGK), regularized
(REG) and MRT in raw moment (RM) space are also considered in this study. Without recurring to asymptotic
analyses, such as the Chapman–Enskog expansion, we investigate the approximation of the MRT-CM with
respect to the ADE by deriving its equivalent finite difference (EFD) scheme, which obeys an explicit four-
level finite difference scheme at discrete level. Its steady-state limit follows a standard central differencing
scheme for the steady ADE, yet with possible artefacts in the effective diffusion coefficient. Then, through the
Taylor expansion of the EFD scheme, a detailed accuracy analysis, based on the equivalent partial differential
(EPD) equation, reveals the leading order truncation errors associated with each collision model under study.
Although MRT-CM and MRT-RM models have similar error structures, the former has a much reduced and
simpler form, particularly in the dispersion error term, which might explain the improved Galilean invariance
of the CM model. Through a suitable combination of the MRT free parameters (either in RM or CM bases),
it is possible to improve its accuracy from second- to fourth-order. After that, we study the necessary and
sufficient stability conditions of the MRT-CM, and its relation with other collision operators, based on the
von Neumann stability analysis of the derived EFD schemes. Unexpectedly, the MRT-CM appears to support
a narrower stability domain than the MRT-RM model, particularly at higher advection velocities, which can
be tracked down to the inclusion of additional terms in the stability condition of the former that scale with
higher order polynomials of the advection velocity. Finally, some numerical tests for the ADE on 1D unbounded
domains are conducted, which confirm this work theoretical conclusions on the MRT-CM performance.

1. Introduction

In the last decades, the lattice Boltzmann method (LBM) [1–4] has gained wide popularity among Fluid Mechanics community as an alternative
technique within Computational Fluid Dynamics (CFD) field [5,6]. The method attractiveness is mainly credited to its ability to solve complex
physical problems through a simple and efficient algorithm [1–4]. In a nutshell, the LBM solves the fluid flow equations and/or related conservation
laws at macroscopic level through a simplified kinetic model where the time–space evolution of idealized entities, so-called LBM populations, is
described through a succession of streaming and collision steps. While the streaming step is standard and executes a simple shift of these populations,
the collision step has a much richer content, being responsible for the physics to be modelled. Consequently, many different approaches to realize the
LBM collision process have been proposed [7]. Popular LBM collision models span from the simplest single-relaxation-time Bhatnagar–Gross–Krook
(BGK) [8] to the most general multiple-relaxation-time (MRT) [9,10]. Despite differences in structure, these models have in common the adoption
of a static frame to realize the collisions. Adopting a distinct viewpoint, Geier [11] proposed the realization of collisions in a comoving reference
frame. The resulting model was originally coined as the cascaded LBM [11] to express its hierarchical way of dealing with moments in the collision
algorithm, in which higher-order moments are constructed from lower-order ones in a cascade-like fashion. Further developments on the idea led to
a more general formulation where collisions are performed in the central moment space [7,12–16], popularizing the name ‘‘central moment’’ LBM
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(CM-LBM). This terminology reflects the distinctive operation principle of the CM-LBM in that moments are shifted by the macroscopic velocity, in
ontrast to the raw moments approach where collisions take place in a frame at rest [7]. In fact, the premise behind the CM-LBM formulation has
 sound physical basis as it roots on the principle of frame-indifference. Transcribing from Woods [17] ‘‘frame-indifference is the essential property
istinguishing diffusion from convection’’. Putting this statement into LBM context, and bearing in mind that the relaxation of moments is what
etermines the rate of diffusion phenomena at macroscopic level, then satisfaction with the frame-indifference principle seems to imply that the
ollision step should be performed on a comoving frame in order to avoid the interference of convection over diffusion. Such an idea quickly
rained traction among LBM community, resulting in a series of works adopting the CM-LBM in the modelling of hydrodynamics [11,14,18–22]
nd scalar transport [21–26] problems.

In retrospect, soon after Geier’s original proposition of the CM-LBM [11], the same author refined his first work to improve the model Galilean-
invariance [27]. About the same time period, Asinari [28] showed how the cascaded model algorithm could be retrieved from the MRT static
scheme subject to shift matrices. Lycett-Brown [19] proposed a simplified derivation of the cascaded algorithm [11], and Dubois and Février [12,13]
eformulated the cascaded model to operate on the central moment space. Following these efforts, De Rosis [29,30] proposed further modifications
o the original cascaded scheme, such as the adoption of a nonorthogonal basis instead of the orthogonal basis of central moments and the relaxation
f moments towards discrete second-order truncated equilibrium populations instead of the equilibrium state of the continuous Maxwellian
istribution. In a very thorough and systematic assessment on the role of collision models in LBM, Coreixas et al. [7] presented a pure theoretical
nalysis of the CM-LBM scheme, identifying differences and similarities between dynamic and static frame collision models, considering several
oment space bases. Compared to the standard raw moment space formulation, the work [7] indicated that CM-LBM introduced the following

wo main modifications: (i) the collision is operated on the central moment space and (ii) the equilibrium state used in the relaxation process is
xpanded up to higher-order terms [16], which exceeds the second order truncation typically adopted in the equilibrium [8,31]. According to [7],

it is the extended equilibrium used by the CM-LBM, rather than the central moment space formulation, the main cause for the observed stability
enhancements; a result that appears common to other collision models as, in an earlier work [32], the use of an extended equilibrium was also
shown to enhance the numerical stability of the LBM formulated in the raw moment (RM) space. Based on an extensive linear stability analysis,
Wissocq and Sagaut [33] investigated the impact of the numerical hyperviscosity on different LBM collision models and confirmed the key role
played by extended equilibrium formulation on the CM-LBM stability characteristics. However, perhaps with the exception of Dubois and Février
works [12,13], a study dedicated to investigate the isolated impact of the central moment formulation on the model stability, putting aside the
role of the extended equilibrium, is still lacking. At the same time, the impact of the CM-LBM formulation on the model accuracy is also a subject
under scrutiny. While the CM-LBM is often credited to be a more accurate model (a claim typically supported on numerical outcomes [11,29,30]),

ore rigorous and insightful theoretical analyses to justify the observed accuracy gains remain scarce. In this context, it is worth highlighting
he exceptions due to Geier [27] and Dubois and Février [12], which performed a third-order asymptotic analyses on the CM-LBM in order to
isclose the structure of the leading-order dispersion terms, and also the work by Wissocq and Sagaut [33] that presented an extended asymptotic

analyses of the CM-LBM, up to the fourth order, to investigate the hyperviscosity corrections on the model dissipation. Finally, it is important to
refer the work by Straka and Sharma [25], which thoroughly derived the exact equivalent finite difference and the fourth order modified partial
differential equations of the CM-LBM for the advection-diffusion equation in a 1D setting with the purpose of assessing its accuracy and stability
characteristics. Unfortunately, the work [25] considered a single-relaxation-time formulation of the CM-LBM which, as will be shown in the present
work, makes the CM-LBM model to effectively reduce to the standard BGK [8] in a static reference frame. Therefore, the present work intends to
edo the analyses of [25], but in a MRT framework, so that the unique traits of the CM-LBM formulation can de facto be assessed.

With this contribution, one intends to study the stability and accuracy characteristics of the CM-LBM by rewriting it as an equivalent finite
ifference (EFD) scheme, which will then allow us to use the common tools of numerical analysis, such as the linear von Neumann stability
nalysis or the modified partial differential equations approach [5,34–36]. This methodology contrasts with the standard theoretical approaches

followed in LBM, where the relation between the LBM mesoscopic equations with respect to the intended macroscopic partial differential equations
is commonly established through asymptotic analyses such as the Chapman–Enskog expansion [1,17,37], the asymptotic expansion with diffusive
scaling [38], the Maxwell iteration [39,40], the direct Taylor expansion [41–43], or the recurrence equation [44,45] methodologies. Despite their
lgorithmic differences, these asymptotic analysis methods end up producing identical macroscopic equations, at least, up to second-order, as
hown by Chai and Shi [46]. However, they also have in common the fact that their extensions to higher orders, i.e. beyond the second order,
re considerably more hard-working, typically evolving lengthy algebraic manipulations, which explains why so few works based on higher order
symptotic analyses have been performed [45]. Nonetheless, to reach out a more complete picture of the LBM scheme, the assessment of those

higher order terms [12,27,33,41,45,47] is fundamental (e.g., to assess the leading truncation errors in the numerical approximation) or, in the limit,
it is even necessary to have the full knowledge of the LBM scheme at discrete level [48–52] (e.g., to construct adequate discretization strategies
for well-balanced LBM schemes).

To gain a deeper insight into the error structure of the LBM, many efforts have been devoted to rewriting LBM as a EFD scheme [44,53–
57]. However, until recently, those attempts have relied upon laborious and ingenious mathematical manipulations of the LBM equations, which
could only be worked out under particular and simplified cases [48–52,58]. To circumvent those limitations, Fǔcík and Straka [59] and Bellotti
t al. [60], in an independent manner, recently proposed two general methods to derive the EFD scheme of any LBM, with the work [59] following

a more algorithmic-based approach while the work [60] pursuing a more mathematical oriented framework. For its simplicity, transparency and
mathematical rigour, Bellotti’s approach [60] will be adopted in this work; a choice also preferred by others [61–63]. Based on [60], one will
derive the EFD scheme of the CM-LBM approximation of the 1D time-dependent ADE. This framework is typically employed in the modelling of
transport phenomena, finding application in many practical instances [64]. However, for our theoretical interest, we will consider the ADE model
essentially for the reason it is the simplest physical setting where both fluid advection and diffusion coexist. In this way, it will be possible to
ssess in a rigorous theoretical manner how the comoving frame formulation of the CM-LBM exactly handles these two phenomena and whether

the comoving frame modelling actually meets the promised benefits in terms of stability and accuracy compared to the static frame formulation
adopted by the LBM in the RM space [65,66]. In that sense, the present work can be considered as an extension of the analysis recently presented
by Chen et al. [61] for the RM-LBM towards the CM-LBM scheme. We note that Fǔcík and Straka [59] have already presented the equivalent finite
ifference and partial differential equations of the CM-LBM for this problem class in one of the appendices of their work, yet no discussion has been

given to the numerical characteristics of the scheme. To fill that gap, this work will rederive [59], based on the systematic methodology of [60],
and then provide a critical analysis on: (i) its discrete structure, (ii) the form of the leading order truncation errors, and (iii) the exact stability
properties of the CM-LBM scheme.
2 
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The remainder of the manuscript is organized as follows. Section 2 introduces the 1D time-dependent ADE and its CM-LBM modelling. Section 3
derives the EFD scheme of the CM-LBM by employing, for the first time, the methodology of [60] for the LBM in the CM space, followed by a
critical analysis on the differences between the resting and comoving reference frames. Then, Section 4 extends this study over the steady-state
ADE. Section 5 performs an accuracy analysis by inspecting the leading order truncation errors of the different LBM collision models considered
herein. Section 6 develops an exact von Neumann linear stability analysis of the CM-LBM scheme, checking the differences and similarities with
respect to the RM-LBM formulation. Section 7 displays some numerical experiments to confirm the theoretical analyses performed throughout this
work. Finally, Section 8 concludes the work with a summary of the main findings.

2. Lattice Boltzmann method for advection diffusion equation

2.1. Advection diffusion equation in 1D

Consider the 1D time-dependent advection diffusion equation (ADE), which governs the transport of the unknown scalar quantity 𝜙 that
is simultaneously carried by a uniform velocity field 𝑢 with a constant diffusion coefficient . Such a 1D time-dependent ADE is a textbook
problem [64] described by the following partial differential equation:

𝜕 𝜙
𝜕 𝑡 + 𝑢

𝜕 𝜙
𝜕 𝑥 =  𝜕2𝜙

𝜕 𝑥2 . (1)

Eq. (1) is the simplest physical setting where both fluid advection and diffusion play an important role. Therefore, we will consider it as a test model
o evaluate whether the central moment (CM) space formulation of lattice Boltzmann method (LBM) will bring any improvements for accuracy
nd stability.

2.2. Lattice Boltzmann method in central moment space

The LBM solves for the populations 𝑓𝑖(𝒙, 𝑡), defined on space 𝒙 and time 𝑡, along a discrete velocity set, called lattice, featuring one immobile
0 = 𝟎 and 𝑞 − 1 non-zero velocity vectors 𝒄𝑖 per grid node. The populations 𝑓𝑖(𝒙, 𝑡) evolve throughout space and time along a succession of
tream-and-collide steps. For generality, the multiple-relaxation-time (MRT) collision model is considered in this work. On this basis, the traditional
tream-and-collide algorithm of the LBM-MRT equation is written as a two step process as follows:

𝑓𝑖(𝒙 + 𝒄𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖(𝒙, 𝑡), (2a)

𝑓𝑖(𝒙, 𝑡) = 𝑓𝑖(𝒙, 𝑡) −
(

𝑴−1 𝑺 𝑴)

𝑖𝑘
[

𝑓𝑘(𝒙, 𝑡) − 𝑓 eq
𝑘 (𝒙, 𝑡)] . (2b)

where 𝑴 is a transformation matrix and 𝑺 is a diagonal relaxation matrix. This work considers the D1Q3 lattice model with the discrete velocity
et:

𝐜𝑖 =
⎧

⎪

⎨

⎪

⎩

−𝑐 , 𝑖 = −1,
0, 𝑖 = 0,
𝑐 , 𝑖 = 1,

(3)

where 𝑐 = 𝛥𝑥∕𝛥𝑡 is the lattice speed with 𝛥𝑥 the lattice spacing and 𝛥𝑡 the time step. In central moment (CM) space the transformation 𝑴 and
elaxation 𝑺 matrices are given by [7,12,13,25,33]:

𝑴 =
⎛

⎜

⎜

⎝

1 1 1
−𝑢 (𝑐 − 𝑢) (−𝑐 − 𝑢)
𝑢2 (𝑐 − 𝑢)2 (−𝑐 − 𝑢)2

⎞

⎟

⎟

⎠

, 𝑺 =
⎛

⎜

⎜

⎝

𝑠0 0 0
0 𝑠1 0
0 0 𝑠2

⎞

⎟

⎟

⎠

, 𝑴−1 =

⎛

⎜

⎜

⎜

⎜

⎝

(𝑐−𝑢)(𝑐+𝑢)
𝑐2

− 2𝑢
𝑐2

− 1
𝑐2

𝑢(𝑐+𝑢)
2𝑐2

𝑐+2𝑢
2𝑐2

1
2𝑐2

− 𝑢(𝑐−𝑢)
2 − 𝑐−2𝑢

2𝑐
1
2𝑐2

⎞

⎟

⎟

⎟

⎟

⎠

, (4)

where a comoving reference frame with respect to the uniform macroscopic fluid velocity 𝑢 is considered. The relaxation rates 𝑠𝑖 in matrix 𝑺 are
ounded to the (0, 2) interval to guarantee the positivity of the modelled macroscopic transport coefficient  in the LBM approximation of Eq. (1).
ote that, when 𝑴(𝑢 = 0) in Eq. (4), the standard MRT transformation matrix on a raw moment (RM) space is recovered [3,10,61].

To approximate the macroscopic ADE, Eq. (1), the LBM equilibrium presented in [61] is considered:

𝑓 eq
𝑖 = 𝜔𝑖 𝜙

[

1 + 𝑐𝑖 𝑢
𝑐2𝑠

+ 𝜂
𝑢2(𝑐2𝑖 − 𝑐2𝑠 )

2 𝑐4𝑠

]

, (5)

where

𝑐2𝑠 = (1 − 𝜔0) 𝑐2, (6a)

𝜂 =
2(1 − 𝜔0)

𝜔0
, (6b)

𝜔1 = 𝜔−1 =
1 − 𝜔0

2
, (6c)

and 0 < 𝜔0 < 1 to ensure that all weight coefficients are larger than zero.
In the D1Q3 model, the equilibrium, given by Eq. (5) with Eq. (6), is expressed in populations space as follows:

⎡

⎢

⎢

⎢

𝑓 eq
0

𝑓 eq
1
eq

⎤

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

𝜔0 𝜙 − 𝑢2

𝑐2
𝜙

(1−𝜔0)
2 𝜙 + 𝑢

2 𝑐 𝜙 + 𝑢2

2 𝑐2 𝜙
(1−𝜔0) 𝑢 𝑢2

⎤

⎥

⎥

⎥

⎥

. (7)
⎣
𝑓−1⎦

⎣ 2 𝜙 − 2 𝑐 𝜙 + 2 𝑐2 𝜙⎦

3 
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The equilibrium moments 𝒎 = 𝑴 𝒇 eq mapped onto raw moment (RM) space, i.e. 𝑴(𝑢 = 0) in Eq. (4), read:

⎡

⎢

⎢

⎢

⎣

𝑚eq
0

𝑚eq
1

𝑚eq
−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜙
𝑢 𝜙

⎛

⎜

⎜

⎜

⎜

⎝

(1 −𝑤0) 𝑐2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=𝑐2𝑠

+𝑢2

⎞

⎟

⎟

⎟

⎟

⎠

𝜙

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (8)

and mapped onto central moment (CM) space using 𝑴 in Eq. (4) read:

⎡

⎢

⎢

⎢

⎣

𝑚eq
0

𝑚eq
1

𝑚eq
−1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜙
0

(1 −𝑤0) 𝑐2
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=𝑐2𝑠

𝜙

⎤

⎥

⎥

⎥

⎥

⎦

. (9)

3. Equivalent Finite Difference (EFD) scheme of the CM-LBM

This section reviews the procedure, originally proposed by Bellotti et al. [60], to obtain the equivalent finite difference (EFD) scheme of the
BM [Eq. (2)] for the solution of the ADE [Eq. (1)]; more details can be found in [60,61].

First, let us explicitly write the collision step, Eq. (2b), in moment space, 𝒎̂ = 𝑴 𝒇 , as follows:

𝒎̂(𝒙, 𝑡) = (𝑰 − 𝑺)𝒎(𝒙, 𝑡) + 𝑺 𝒎eq(𝒙, 𝑡). (10)

Second, let us repeat this task for the streaming step, Eq. (2a). To this end, it is convenient to introduce the shift operator 𝑇 𝒄𝑘∕𝑐
𝛥𝑥 defined as

𝒄𝑘∕𝑐
𝛥𝑥

[

𝑓𝑖(𝒙, 𝑡)
]

= 𝑓𝑖(𝒙 − 𝒄𝑘𝛥𝑡, 𝑡), which allows us to write the streaming effect over populations as a shift matrix [60,61]. Based on this formalism,
the streaming step in the D1Q3 model can be explicitly written as:

𝑓𝑖(𝑥 + 𝑐𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = diag
(

𝑇 𝑐0∕𝑐
𝛥𝑥 , 𝑇 𝑐1∕𝑐

𝛥𝑥 , 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

𝑓𝑖(𝑥 + 𝑐𝑖𝛥𝑡, 𝑡), (11)

where 𝑓𝑖 = (𝑓0, 𝑓1, 𝑓−1)𝑇 and 𝑐𝑖 = (𝑐0, 𝑐1, 𝑐−1)𝑇 . Then, let us shift the analysis from 𝒙 + 𝒄𝑖𝛥𝑡 to the 𝒙 location and multiply both sides of Eq. (11)
by 𝑴 𝑖𝑘 so that:

𝑴 𝑖𝑘 𝑓𝑖(𝒙, 𝑡 + 𝛥𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝒎𝑛+1

=
(

𝑴 diag
(

𝑇 𝑐0∕𝑐
𝛥𝑥 , 𝑇 𝑐1∕𝑐

𝛥𝑥 , 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

𝑴−1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝑻

𝑴 𝑖𝑘 𝑓𝑖(𝒙, 𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=𝒎̂𝑛

. (12)

Now, introduce Eq. (10) into Eq. (12). To alleviate the notation, we will drop the (𝒙, 𝑡) dependency on Eq. (10) and rewrite it as follows
̂𝑛(𝒙) = (𝑰 − 𝑺)𝒎𝑛(𝒙) + 𝑺 𝒎eq|𝑛(𝒙). According to this notation, Eq. (12) can be written as 𝒎𝑛+1 = 𝑻 𝒎̂𝑛. Combining these two equations we can
rewrite the stream-and-collide algorithm of the LBM on moment space as follows:

𝒎𝑛+1(𝒙) = 𝑷 𝒎𝑛(𝒙) +𝑸 𝒎eq|𝑛(𝒙). (13)

where 𝒎𝑛(𝒙) = 𝒎(𝒙, 𝑡𝑛), 𝑻 ∶= 𝑴 diag
(

𝑇 𝑐0∕𝑐
𝛥𝑥 , 𝑇 𝑐1∕𝑐

𝛥𝑥 , 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

𝑴−1, 𝑷 ∶= 𝑻 (𝑰 − 𝑺), and 𝑸 ∶= 𝑻 𝑺.
Next, we apply Eq. (13) in itself recursively 𝑘 time steps, up to filling in the 𝑞 steps. In the end, we recover:

𝒎𝑛+1(𝒙) = 𝑷 𝑘 𝒎𝑛−𝑘+1(𝒙) +
𝑘−1
∑

𝑙=0
𝑷 𝑙𝑸 𝒎eq|𝑛−𝑙(𝒙), ∀ 𝑘 ∈ N. (14)

At this point, it is useful to consider the change of variables 𝑛̃ + 𝑘 = 𝑛 + 1 into Eq. (14), which leads to:

𝒎𝑛̃+𝑘(𝒙) = 𝑷 𝑘 𝒎𝑛̃(𝒙) +
𝑘−1
∑

𝑙=0
𝑷 𝑙𝑸 𝒎eq|𝑛̃+𝑘−1−𝑙(𝒙) (15)

Now, let us apply to each side of Eq. (15) the sum ∑𝑞
𝑘=0 𝛾𝑘, where 𝛾𝑘 are the coefficients of the characteristic polynomial 𝜒𝑷 =

∑𝑞
𝑘=0 𝛾𝑘 𝑿

𝑘 of the
matrix 𝑷 . Then, by invoking the Cayley–Hamilton theorem [60], expressed by ∑𝑞

𝑘=0 𝛾𝑘 𝑷
𝑘 = 𝟎, it is possible to rewrite Eq. (15) as follows:

𝑞
∑

𝑘=0
𝛾𝑘 𝒎𝑛̃+𝑘(𝒙) =

( 𝑞
∑

𝑘=0
𝛾𝑘 𝑷 𝑘

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
=0

𝒎𝑛̃(𝒙) +
𝑞
∑

𝑘=0
𝛾𝑘

(𝑘−1
∑

𝑙=0
𝑷 𝑙𝑸 𝒎eq|𝑛̃+𝑘−1−𝑙(𝒙)

)

. (16)

Developing the term on the left-hand-side and re-introducing the change of variables 𝑛̃ + 𝑞 = 𝑛 + 1 in Eq. (16) we obtain:

𝒎𝑛+1(𝒙) = −
𝑞−1
∑

𝑘=0
𝛾𝑘 𝒎𝑛+1−𝑞+𝑘(𝒙) +

𝑞
∑

𝑘=0
𝛾𝑘

(𝑘−1
∑

𝑙=0
𝑷 𝑙𝑸 𝒎eq|𝑛−𝑞+𝑘−𝑙(𝒙)

)

. (17)

Eq. (17) can be further simplified by recognizing that the last sum may start from 𝑘 = 1 and in the last double sum the indices can be interchanged
so that it can be explicitly rewritten as follows:

𝒎𝑛+1(𝒙) = −
𝑞−1
∑

𝑘=0
𝛾𝑘 𝒎𝑛+1−𝑞+𝑘(𝒙) +

𝑞−1
∑

𝑘=0

( 𝑘
∑

𝑙=0
𝛾𝑞+𝑙−𝑘 𝑷 𝑙

)

𝑸 𝒎eq|𝑛−𝑘(𝒙). (18)
4 
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Referring to the particular case of the D1Q3 model, 𝑞 = 3, and focusing on the evolution of the conserved moment 𝒎𝑛
0(𝑥𝑗 ) = 𝜙𝑛

𝑗 ∶= 𝜙(𝑗 𝛥𝑥, 𝑡𝑛),
then Eq. (18) leads to the equivalent finite difference (EFD) scheme representation of the LBM modelling of the 1D time-dependent ADE:

𝜙𝑛+1
𝑗 = −

2
∑

𝑘=0
𝛾𝑘 𝜙

𝑛+𝑘−2
𝑗 +

[ 2
∑

𝑘=0

( 𝑘
∑

𝑙=0
𝛾𝑙−𝑘+3 𝑷 𝑙

)

𝑸 𝒎eq|𝑛−𝑘
𝑗

]

0

. (19)

Up to this point, the derivation leading up to Eq. (19) was developed without details regarding the LBM collision operator. Now, let us consider
the collision in the central moment space [Eq. (4)] so that matrices 𝑻 , 𝑷 and 𝑸 are expressed as:

𝑻 = 𝑴 diag
(

𝑇 𝑐0∕𝑐
𝛥𝑥 , 𝑇 𝑐1∕𝑐

𝛥𝑥 , 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

𝑴−1

=

⎛

⎜

⎜

⎜

⎜

⎝

1
2

(

2 𝑇 𝑐0∕𝑐
𝛥𝑥 + 𝑢

𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐
2

(

𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢3

𝑐3

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐2

2

(

𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢3

𝑐3

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢4

𝑐4

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⋯

⋯

1
2𝑐

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

1
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

3 𝑇 𝑐1∕𝑐
𝛥𝑥 − 3 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢3

𝑐3

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⋯

⋯

1
2𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

1
2𝑐

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

1
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⎞

⎟

⎟

⎟

⎟

⎠

, (20)

𝑷 = 𝑻 (𝑰 − 𝑺)

=

⎛

⎜

⎜

⎜

⎜

⎝

(1−𝑠0)
2

(

2 𝑇 𝑐0∕𝑐
𝛥𝑥 + 𝑢

𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐(1−𝑠0)
2

(

𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢3

𝑐3

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐2(1−𝑠0)
2

(

𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢3

𝑐3

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢4

𝑐4

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⋯

⋯

(1−𝑠1)
2𝑐

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

(1−𝑠1)
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐(1−𝑠1)
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

3 𝑇 𝑐1∕𝑐
𝛥𝑥 − 3 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢3

𝑐3

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⋯

⋯

(1−𝑠2)
2𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

(1−𝑠2)
2𝑐

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

(1−𝑠2)
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⎞

⎟

⎟

⎟

⎟

⎠

, (21)

𝑸 = 𝑻 𝑺

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑠0
2

(

2 𝑇 𝑐0∕𝑐
𝛥𝑥 + 𝑢

𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐 𝑠0
2

(

𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢3

𝑐3

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐2 𝑠0
2

(

𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢3

𝑐3

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢4

𝑐4

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⋯

⋯

𝑠1
2𝑐

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑠1
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑐 𝑠1
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

3 𝑇 𝑐1∕𝑐
𝛥𝑥 − 3 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢3

𝑐3

(

2 𝑇 𝑐1∕𝑐
𝛥𝑥 − 4 𝑇 𝑐0∕𝑐

𝛥𝑥 + 2 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⋯

⋯

𝑠2
2𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

𝑠2
2𝑐

((

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

𝑠2
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

⎞

⎟

⎟

⎟

⎟

⎠

. (22)

The characteristic polynomial 𝑃 of the matrix 𝑷 is written as:

𝑃 = 𝛾3 𝑿3 + 𝛾2 𝑿2 + 𝛾1 𝑿 + 𝛾0 𝑰 , (23)

where the coefficients 𝛾𝑖 in Eq. (23) are given by:

𝛾3 = 𝑇 𝑐0∕𝑐
𝛥𝑥 , (24a)

𝛾2 =
𝑠0
2

(

2 𝑇 𝑐0∕𝑐
𝛥𝑥 + 𝑢

𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

+ 𝑠1
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 2 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

+ 𝑠2
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 2 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

−
(

𝑇 𝑐1∕𝑐 + 𝑇 𝑐0∕𝑐 + 𝑇 𝑐−1∕𝑐
)

,

(24b)
𝛥𝑥 𝛥𝑥 𝛥𝑥
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𝛾1 =
𝑠0
2

(

−2
(

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

+𝑠1
((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 2 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

+𝑠2
((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)))

+ 𝑠1 𝑠2
2

(

2 𝑇 𝑐0∕𝑐
𝛥𝑥 − 𝑢

𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

− 𝑠1
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

+ 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

+ 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

− 𝑠2
2

((

𝑇 𝑐1∕𝑐
𝛥𝑥 + 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

− 𝑢
𝑐

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 𝑇 𝑐−1∕𝑐

𝛥𝑥

)

− 𝑢2

𝑐2

(

𝑇 𝑐1∕𝑐
𝛥𝑥 − 2 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

))

+
(

𝑇 𝑐1∕𝑐
𝛥𝑥 + 𝑇 𝑐0∕𝑐

𝛥𝑥 + 𝑇 𝑐−1∕𝑐
𝛥𝑥

)

,

(24c)

𝛾0 = −(1 − 𝑠0)(1 − 𝑠1)(1 − 𝑠2) 𝑇
𝑐0∕𝑐
𝛥𝑥 . (24d)

Note, the coefficients 𝛾𝑖 in Eq. (24) are simplified based on the following identities: 𝑇 𝑐1∕𝑐
𝛥𝑥 𝑇 𝑐−1∕𝑐

𝛥𝑥 = 𝑇 𝑐0∕𝑐
𝛥𝑥 , 𝑇 𝑐1∕𝑐

𝛥𝑥 𝑇 𝑐0∕𝑐
𝛥𝑥 = 𝑇 𝑐1∕𝑐

𝛥𝑥 , 𝑇 𝑐−1∕𝑐
𝛥𝑥 𝑇 𝑐0∕𝑐

𝛥𝑥 = 𝑇 𝑐−1∕𝑐
𝛥𝑥 .

As the final step in the derivation, we expand the indices in Eq. (19) and substitute the 𝛾𝑖 coefficients given in Eq. (24), the 𝑻 , 𝑷 and 𝑸 matrices
iven in Eqs. (20), (21) and (22), respectively, and the {𝑚eq} equilibrium moments in the CM space given by Eq. (9). Lastly, we make use of the

definition 𝑇 𝑐𝑘∕𝑐
𝛥𝑥

[

𝜙𝑗
]

= 𝜙𝑗−𝑐𝑘∕𝑐 to arrive at the equivalent finite difference (EFD) scheme satisfied by the LBM with the MRT-CM collision operator
for the 1D time-dependent ADE. This EFD is expressed by a four-level finite-difference (FLFD) equation on the conservative variable 𝜙 as follows:

𝜙𝑛+1
𝑗 =𝛼1 𝜙𝑛

𝑗 + 𝛼2 𝜙
𝑛
𝑗−1 + 𝛼3 𝜙

𝑛
𝑗+1 + 𝛽1 𝜙

𝑛−1
𝑗 + 𝛽2 𝜙

𝑛−1
𝑗−1 + 𝛽3 𝜙

𝑛−1
𝑗+1 + 𝛾 𝜙𝑛−2

𝑗 , (25)

with coefficients:

𝛼1 =1 − 𝑠2

(

1 −𝑤0 +
𝑢2

𝑐2

)

−2(𝑠1 − 𝑠2)
𝑢2

𝑐2
, (26a)

𝛼2 =1 −
𝑠1
2

(

1 − 𝑢
𝑐

)

−
𝑠2
2

+
𝑠2
2

(

1 −𝑤0 +
𝑢2

𝑐2

)

−(𝑠1 − 𝑠2)
(

𝑢
𝑐
− 𝑢2

𝑐2

)

, (26b)

𝛼3 =1 −
𝑠1
2

(

1 + 𝑢
𝑐

)

−
𝑠2
2

+
𝑠2
2

(

1 −𝑤0 +
𝑢2

𝑐2

)

−(𝑠1 − 𝑠2)
(

− 𝑢
𝑐
− 𝑢2

𝑐2

)

, (26c)

𝛽1 =
(

1 − 𝑠1
)

(

−1 + 𝑠2 − 𝑠2

(

1 −𝑤0 +
𝑢2

𝑐2

))

−2 (𝑠1 − 𝑠2)
𝑢2

𝑐2
, (26d)

𝛽2 =
(

1 − 𝑠2
)

( 𝑠1
2

(

1 − 𝑢
𝑐

)

− 1
)

−
𝑠2
2

(

1 − 𝑠1
)

+
𝑠2
2

(

1 − 𝑠1
)

(

1 −𝑤0 +
𝑢2

𝑐2

)

+(𝑠1 − 𝑠2)
(

𝑢
𝑐
+ 𝑢2

𝑐2

)

, (26e)

𝛽3 =
(

1 − 𝑠2
)

( 𝑠1
2

(

1 + 𝑢
𝑐

)

− 1
)

−
𝑠2
2

(

1 − 𝑠1
)

+
𝑠2
2

(

1 − 𝑠1
)

(

1 −𝑤0 +
𝑢2

𝑐2

)

+(𝑠1 − 𝑠2)
(

− 𝑢
𝑐
+ 𝑢2

𝑐2

)

, (26f)

𝛾 =
(

1 − 𝑠1
) (

1 − 𝑠2
)

. (26g)

Remark 1. The underlined terms in Eq. (26) denote the terms specific to the central moment (CM) collision model. Without the underlined terms,
the FLFD coefficients given by Eq. (26) coincide with those of the MRT-RM scheme, i.e. formulated on the resting frame, for the 1D time-dependent

DE derived in [61]; this can be confirmed by comparing our Eq. (26) against Eq. (23) of Chen et al. work [61].
According to the FLFD representation of the CM-LBM scheme, it is possible to point out the following observations.
First, when the single-relaxation-time BGK collision model is adopted, i.e. 𝑠1 = 𝑠2 = 𝑠, the LBM formulated on RM or CM spaces becomes

xactly equivalent. This theoretical conclusion is in agreement with previous works [29,30], which pointed out this equivalency based on numerical
evidence. At the same time, it also questions other works [25,67] that considered the BGK formulated on the CM space as a distinct collision model,
which as shown here ends up recovering the LBM-BGK in its traditional form [8].

Second, it is evident that, when 𝑢 = 0, the RM and CM discretizations are the same and reduce to the FLFD scheme for the diffusion equation.
In fact, the coefficients of FLFD scheme in Eq. (26) with 𝑢 = 0 recover those previously published in [54,57,58]. This observation proves that it is
enseless to apply the CM space formulation in the modelling of pure diffusive problems.

Third, as expected, the relaxation rate 𝑠0 associated with the relaxation of the zeroth-order moment, i.e. the conserved mode 𝒎0 = 𝜙, does not
impact the FLFD equation as shown by the coefficients in Eq. (26). Conversely, besides the relaxation parameter 𝑠1 associated with the relaxation
of the first-order moment, which controls the diffusion coefficient , see Eq. (36), also the relaxation parameter 𝑠2 associated with the relaxation
of the second-order moment, which does not have any direct relation with physics, impacts the coefficients of the FLFD equation in Eq. (26) for
the ADE, Eq. (1).

4. Steady-state difference scheme

For the time-independent regime, we drop the index 𝑛 from the 𝜙 variable in Eq. (25), multiply each term by 1∕(𝛥𝑡 𝑠1 𝑠2), and group the results
nto common terms. After a few manipulations, we obtain the EFD scheme of the CM-LBM for the steady-state ADE:

𝑢
(𝜙𝑗+1 − 𝜙𝑗−1

2𝛥𝑥

)

= eff

(𝜙𝑗+1 − 2𝜙𝑗 + 𝜙𝑗−1

𝛥𝑥2

)

. (27)

The effective diffusion coefficient eff in Eq. (27) depends on the LBM model details, namely: (i) the collision model adopted, and (ii) whether
equilibrium is expanded to first-order (i.e. 𝜂 = 0 in Eq. (5)) or to second-order (i.e. 𝜂 = 2(1 − 𝜔 )∕𝜔 in Eq. (5)). According to each modelling
0 0
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scenario, the eff coefficient reads:

eff =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

1 − 𝜔0 +
𝑢2

𝑐2

)

𝑐2𝛬1𝛥𝑡, MRT-RM with quadratic equilibrium
(

1 − 𝜔0 +
𝑢2

𝑐2
+ 2

(

𝛬2
𝛬1

− 1
)

𝑢2

𝑐2

)

𝑐2𝛬1𝛥𝑡, MRT-CM with quadratic equilibrium

(

1 − 𝜔0
)

𝑐2𝛬1𝛥𝑡, MRT-RM with linear equilibrium
(

1 − 𝜔0 + 2
(

𝛬2
𝛬1

− 1
)

𝑢2

𝑐2

)

𝑐2𝛬1𝛥𝑡, MRT-CM with linear equilibrium

(28)

where 𝛬1 =
(

1
𝑠1

− 1
2

)

and 𝛬2 =
(

1
𝑠2

− 1
2

)

. A closer inspection of Eq. (27) with diffusion coefficient eff based on Eq. (28) permits extracting the
following observations.

First, in consistency with the notation introduced in Section 3 the underlined terms in Eq. (28) denote the specific terms introduced by the
central moment (CM) space collision model. Without the underlined terms, the effective diffusion coefficient in Eq. (28) recovers the same eff
tructure of the MRT-RM model, also shown in previous works [52,68,69].

Second, except for the MRT-RM model running with the linear equilibrium, all other combinations in Eq. (28) introduce a 𝑢2-dependent error
term in the modelled diffusion coefficient eff. Such an 𝑢2 dependency on eff is a well-known numerical artefact in the LBM modelling of the
steady ADE [68,69] and typically can be avoided with the use of the linear equilibrium. It turns out that the MRT-CM with quadratic equilibrium
can also eliminate this 𝑢2 artefact with the relaxation combination 𝑠2 =

4 𝑠1
2+𝑠1

. On the other hand, to achieve the same goal, the MRT-CM with linear
quilibrium requires 𝑠2 = 𝑠1, a case where the MRT-CM model reduces to the standard BGK model (recall Section 3).

Finally, let us analyse the LBM models presented above and solve the steady discrete ADE, Eq. (27), subject to boundary conditions 𝜙(−𝐿∕2) = 𝜙0
and 𝜙(𝐿∕2) = 𝜙𝐿, so that the exact discrete solution, 𝜙𝑗 ∶= 𝜙(𝑥𝑗 ), is obtained as follows:

𝜙𝑗 = 𝜙0 +
(

𝜙𝐿 − 𝜙0
) 1 −

𝐿
2 +𝑥𝑗

1 −𝐿 with  =
2 + Pe𝛥𝑥
2 − Pe𝛥𝑥

and Pe𝛥𝑥 = 𝑢 𝛥𝑥
eff

. (29)

Note that, for grid Péclet numbers |Pe𝛥𝑥| > 2 the discrete solution 𝜙𝑗 becomes complex, except at grid nodes 𝑥𝑗 , which leads to a solution with
wiggles. For comparison purposes, the continuum analytical solution of this problem is given by:

𝜙(𝑥) = 𝜙0 +
(

𝜙𝐿 − 𝜙0
) 1 − 𝑒Pe

(

1
2+

𝑥
𝐿

)

1 − 𝑒Pe with Pe = 𝑢 𝐿


. (30)

Fig. 1 displays analytical versus numerical 𝜙 solutions at small, moderate and large Péclet regimes, respectively given by Pe = {1, 10, 100}. For the
ost critical case Pe = 100, where the right boundary layer is under-resolved, the parameter combination 𝑠1 = 1.2, 𝑠2 = 0.9 and 𝜔0 = 2∕3 seems

o indicate that the MRT-CM model with linear equilibrium reaches the best accuracy. However, this conclusion is not universal. For example,
ther combinations of 𝑠1, 𝑠2 and 𝜔0 will alter the eff value in Eq. (27) and potentially suggest that a different collision model and equilibrium

combination may reach a better accuracy. This lack of universality hints for the adoption of a different criterion to guide in the best choice for
collision/equilibrium model, rather than accuracy alone. To this end, we note that, at steady-state, the dimensionless ADE is solely governed by
the Péclet number, see Eq. (30). So, to be consistent with this physical scaling requirement, the corresponding discrete approximation, Eq. (27),
hould reproduce this same Pe number parameterization. It turns out that such a parameterization property fails to be satisfied whenever the eff
oefficient in Eq. (27) features 𝑢2 dependencies. In light of this criterion, the suitable combination for this problem class is the MRT-RM collision

model with the linear equilibrium since this is the only model guaranteeing that the LBM steady solution is solely controlled by Pe, regardless the
ndividual  and 𝑢 values adopted [44]. Moreover, the CM space formulation, regardless the equilibrium used, does not seem suitable to model
he steady ADE.

5. Accuracy analysis of the EFD scheme

This section presents the accuracy analysis for the four-level finite difference (FLFD) scheme derived in Eqs. (25) and (26). The goal of our
accuracy analysis is twofold. First, we intend to reveal the structure of the leading order truncation errors of the LBM with different collision
operators (MRT-CM, MRT-RM, REG and BGK models) in the approximation of the time-dependent 1D ADE. Second, we search for the suitable
combinations in the model parameters of each collision scheme that lead to an enhanced accuracy. Below, the main steps of the accuracy analysis
are summarized, which follow the presentation style of the works [57–59,61–63].

First, consider the Taylor series of 𝜙 about the position 𝑥𝑗 = 𝑗 𝛥𝑥 and time 𝑡𝑛 = 𝑛 𝛥𝑡, defined as follows:

𝜙(𝑥𝑗 + 𝑘 𝛥𝑥, 𝑡𝑛 + 𝑚 𝛥𝑡) = 𝜙(𝑥𝑗 , 𝑡𝑛) +
𝑜
∑

𝑟=1

1
𝑟!

𝑟
∑

𝑠=0

(

𝑟
𝑠

)

(𝑘 𝛥𝑥)𝑠 (𝑚 𝛥𝑡)𝑠−𝑟 𝜕
𝑟 𝜙
𝜕 𝑥𝑟

|

|

|

|

|(𝑥𝑗 , 𝑡𝑛)
(31)

where
(𝑟
𝑠

)

= 𝑟!
(𝑟−𝑠)! 𝑠! is the binomial coefficient.

Next, let us apply this Taylor series expansion up to fourth order (𝑜 = 4) [Eq. (31)] over each term in Eq. (25), and subsequently group the
esulting terms into common coefficients. After some algebraic manipulations, we obtain:

(

1 + 𝛽 + 𝛽 + 𝛽 + 2𝛾)
[

𝜕 𝜙]𝑛
+
(

𝛼 − 𝛼 + 𝛽 − 𝛽
) 𝛥𝑥

[

𝜕 𝜙]𝑛
= 1 (

𝛼 + 𝛼 + 𝛽 + 𝛽
) 𝛥𝑥2

[

𝜕2𝜙
]𝑛

+ TE (32)
1 2 3 𝜕 𝑡 𝑗
2 3 2 3 𝛥𝑡 𝜕 𝑥 𝑗 2 2 3 2 3 𝛥𝑡 𝜕 𝑥2 𝑗
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Fig. 1. Steady state ADE solution as function of the Péclet number Pe = 𝑢 𝐿


with the following numerical parameters: 𝐿 = 𝑁𝑥 𝛥𝑥 = 20, 𝑠1 = 1.2, 𝑠2 = 0.9, 𝜔0 = 2∕3. Continuous
ines: PDE analytical solutions. Markers: LBM discrete solutions. Accuracies for the most critical case, Pe = 100: Panel (a) 𝐿2 = 0.0312727; Panel (b) 𝐿2 = 0.0392397; Panel (c)
2 = 0.116462; Panel (d) 𝐿2 = 0.00217795. The 𝐿2 measure is defined in Eq. (67).

Fig. 2. 4th order accurate solution {𝜔0 , 𝑠1 , 𝑠2} for 𝑢∕𝑐 = 0.1. Although multiple solutions exist, the curves/points here depicted represent one of them. Recall, 𝜖 = (1 − 𝜔0)𝛬1,
1 = 2∕(1 + 2𝛬1) and 𝑠2 = 2∕(1 + 2𝛬2).

with the truncation error TE given by:

TE = (

𝛽2 − 𝛽3
)

𝛥𝑥
[

𝜕2𝜙
𝜕 𝑥𝜕 𝑡

]𝑛

𝑗
+ 1

2
(

−1 + 𝛽1 + 𝛽2 + 𝛽3 + 4𝛾)𝛥𝑡
[

𝜕2𝜙
𝜕 𝑡2

]𝑛

𝑗
+ 1

6
(

−𝛼2 + 𝛼3 − 𝛽2 + 𝛽3
) 𝛥𝑥3

𝛥𝑡

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗

− 1
2
(

𝛽2 − 𝛽3
)

𝛥𝑥𝛥𝑡
[

𝜕3𝜙
𝜕 𝑥𝜕 𝑡2

]𝑛

𝑗
− 1

2
(

𝛽2 + 𝛽3
)

𝛥𝑥2
[

𝜕3𝜙
𝜕 𝑥2𝜕 𝑡

]𝑛

𝑗
− 1

6
(

1 + 𝛽1 + 𝛽2 + 𝛽3 + 8𝛾)𝛥𝑡2
[

𝜕3𝜙
𝜕 𝑡3

]𝑛

𝑗

+ 1
24

(

𝛼2 + 𝛼3 + 𝛽2 + 𝛽3
) 𝛥𝑥4

𝛥𝑡

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+ 1

6
(

𝛽2 − 𝛽3
)

𝛥𝑥𝛥𝑡2
[

𝜕4𝜙
𝜕 𝑥𝜕 𝑡3

]𝑛

𝑗
+ 1

4
(

𝛽2 + 𝛽3
)

𝛥𝑥2𝛥𝑡
[

𝜕4𝜙
𝜕 𝑥2𝜕 𝑡2

]𝑛

𝑗

+ 1
6
(

𝛽2 − 𝛽3
)

𝛥𝑥3
[

𝜕4𝜙
𝜕 𝑥3𝜕 𝑡

]𝑛

𝑗
+ 1

24
(

−1 + 𝛽1 + 𝛽2 + 𝛽3 + 16𝛾)𝛥𝑡3
[

𝜕4𝜙
𝜕 𝑡4

]𝑛

𝑗
+⋯

(33)
8 
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Now, let us introduce the target differential equation,
[

𝜕 𝜙
𝜕 𝑡
]𝑛

𝑗
+ 𝑢

[

𝜕 𝜙
𝜕 𝑥
]𝑛

𝑗
= 

[

𝜕2𝜙
𝜕 𝑥2

]𝑛

𝑗
, and derive the following relations:

[

𝜕2𝜙
𝜕 𝑥𝜕 𝑡

]𝑛

𝑗
= 

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗
− 𝑢

[

𝜕2𝜙
𝜕 𝑥2

]𝑛

𝑗
+ (𝛥𝑥3, 𝛥𝑡 𝛥𝑥)

[

𝜕2𝜙
𝜕 𝑡2

]𝑛

𝑗
= 2

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
− 2 𝑢

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗
+ 𝑢2

[

𝜕2𝜙
𝜕 𝑥2

]𝑛

𝑗
+ (𝛥𝑡)

[

𝜕3𝜙
𝜕 𝑥𝜕 𝑡2

]𝑛

𝑗
= −2 𝑢

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+ 𝑢2

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗
+ (𝛥𝑥)

[

𝜕3𝜙
𝜕 𝑥2𝜕 𝑡

]𝑛

𝑗
= 

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
− 𝑢

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗
+ 

(

𝛥𝑥4

𝛥𝑡
, 𝛥𝑥2

)

[

𝜕3𝜙
𝜕 𝑡3

]𝑛

𝑗
= 3 𝑢2

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
− 𝑢3

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗
+ 

(

𝛥𝑥2

𝛥𝑡

)

[

𝜕4𝜙
𝜕 𝑥𝜕 𝑡3

]𝑛

𝑗
= −𝑢3

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+ 

( 1
𝛥𝑥

)

[

𝜕4𝜙
𝜕 𝑥3𝜕 𝑡

]𝑛

𝑗
= −𝑢

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+  (𝛥𝑥)

[

𝜕4𝜙
𝜕 𝑥2𝜕 𝑡2

]𝑛

𝑗
= 𝑢2

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+ 

(

𝛥𝑥2

𝛥𝑡

)

[

𝜕4𝜙
𝜕 𝑡4

]𝑛

𝑗
= 𝑢4

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+ 

( 1
𝛥𝑡

)

(34)

Eqs. (34) enable us to replace both the time derivative terms and the mixed time and space derivative terms appearing on the right-hand side of
Eq. (33) by equivalent terms only involving spatial derivatives. By doing so, we obtain:

(

1 + 𝛽1 + 𝛽2 + 𝛽3 + 2𝛾)
[

𝜕 𝜙
𝜕 𝑡

]𝑛

𝑗
+
(

𝛼2 − 𝛼3 + 𝛽2 − 𝛽3
) 𝛥𝑥
𝛥𝑡

[

𝜕 𝜙
𝜕 𝑥

]𝑛

𝑗
=

[

1
2
(

𝛼2 + 𝛼3 + 𝛽2 + 𝛽3
) 𝛥𝑥2

𝛥𝑡
− 𝑢

(

𝛽2 − 𝛽3
)

𝛥𝑥 + 1
2
𝑢2

(

−1 + 𝛽1 + 𝛽2 + 𝛽3 + 4𝛾)𝛥𝑡
] [

𝜕2𝜙
𝜕 𝑥2

]𝑛

𝑗

+
[

1
6
(

−𝛼2 + 𝛼3 − 𝛽2 + 𝛽3
) 𝛥𝑥3

𝛥𝑡
+

(

𝛽2 − 𝛽3
)

𝛥𝑥 − 𝑢
(

−1 + 𝛽1 + 𝛽2 + 𝛽3 + 4𝛾)𝛥𝑡

−1
2
𝑢2

(

𝛽2 − 𝛽3
)

𝛥𝑥𝛥𝑡 + 1
2
𝑢
(

𝛽2 + 𝛽3
)

𝛥𝑥2 + 1
6
𝑢3

(

1 + 𝛽1 + 𝛽2 + 𝛽3 + 8𝛾)𝛥𝑡2
]

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗

+
[

1
24

(

𝛼2 + 𝛼3 + 𝛽2 + 𝛽3
) 𝛥𝑥4

𝛥𝑡
+ 1

2
2 (−1 + 𝛽1 + 𝛽2 + 𝛽3 + 4𝛾)𝛥𝑡 + 𝑢

(

𝛽2 − 𝛽3
)

𝛥𝑥𝛥𝑡

−1
2

(

𝛽2 + 𝛽3
)

𝛥𝑥2 − 1
2
 𝑢2

(

1 + 𝛽1 + 𝛽2 + 𝛽3 + 8𝛾)𝛥𝑡2 − 1
6
𝑢3

(

𝛽2 − 𝛽3
)

𝛥𝑥𝛥𝑡2

+1
4
𝑢2

(

𝛽2 + 𝛽3
)

𝛥𝑥2𝛥𝑡 − 1
6
𝑢
(

𝛽2 − 𝛽3
)

𝛥𝑥3 + 1
24

𝑢4
(

−1 + 𝛽1 + 𝛽2 + 𝛽3 + 16𝛾)𝛥𝑡3
]

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+⋯

(35)

where the diffusion coefficient is
 = (1 − 𝜔0) 𝑐2

(

1
𝑠1

− 1
2

)

𝛥𝑡. (36)

In what follows, it is instructive to introduce the relaxation functions 𝛬1 =
(

1
𝑠1

− 1
2

)

, 𝛬2 =
(

1
𝑠2

− 1
2

)

and 𝛬 = 𝛬1 𝛬2. Then, after some algebraic

manipulations, we arrive at the equivalent partial differential equation (EPDE) reproduced by the LBM model for the 1D ADE:
[

𝜕 𝜙
𝜕 𝑡

]𝑛

𝑗
+ 𝑢

[

𝜕 𝜙
𝜕 𝑥

]𝑛

𝑗
=

[

𝜕2𝜙
𝜕 𝑥2

]𝑛

𝑗
+ 𝑢 𝛥𝑥2 TE3

[

𝜕3𝜙
𝜕 𝑥3

]𝑛

𝑗
+ 𝛥𝑥4

𝛥𝑡
TE4

[

𝜕4𝜙
𝜕 𝑥4

]𝑛

𝑗
+⋯ (37)

where the leading-order truncation errors for advection TE3 and diffusion TE4 have distinct structures according to the LBM collision model.

1. Truncation errors in the MRT-CM model:

TEMRT−CM
3 =

(

2 − 3𝜔0 +
𝑢2

𝑐2

)

(

𝛬 − 1
12

)

, (38a)
TEMRT−CM

4 =(1 − 𝜔0)𝛬1

(

𝜔0

(

𝛬 − 1
6

)

− (1 − 𝜔0)
(

𝛬2
1 −

1
12

))

+ 𝑢2

𝑐2
( 1
2
(2 − 3𝜔0)

(

𝛬 − 1
2
𝛬1 −

1
12

)

− 3(1 − 𝜔0)𝛬1

(

𝛬 − 1
6

))

+ 𝑢4

𝑐4
( 1
2

(

𝛬 − 1
2
𝛬1 −

1
12

))

.

(38b)

2. Truncation errors in the MRT-RM model (determined by repeating the above analysis, but omitting the underlined terms in Eq. (26)):

TEMRT−RM
3 =2 (1 − 𝜔0)

(

𝛬2
1 −

1
12

)

−
(

𝜔0 −
𝑢2

𝑐2

)

(

𝛬 − 1
12

)

, (39a)
9 
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TEMRT−RM
4 =(1 − 𝜔0)𝛬1

(

𝜔0

(

𝛬 − 1
6

)

− (1 − 𝜔0)
(

𝛬2
1 −

1
12

))

+ 𝑢2

𝑐2

(

1
2
(2 − 3𝜔0)

(

𝛬 − 1
2
𝛬1 −

1
12

)

− 3(1 − 𝜔0)𝛬1

(

𝛬 − 1
6

)

− (1 − 𝜔0)
(

𝛬 − 𝛬2
1
)

+ 1
6𝛬1

(

𝛬 − 𝛬2
1
)

)

+ 𝑢4

𝑐4

(

1
2

(

𝛬 − 1
12

)

− 1
6𝛬1

(

𝛬 + 1
2
𝛬2
1

)

)

.

(39b)

3. Truncation errors in the REG model (determined by setting 𝛬 = 1
2 𝛬1 and 𝛬2 =

1
2 in Eqs. (39a) and (39b)):

TEREG
3 =2 (1 − 𝜔0)

(

𝛬2
1 −

1
12

)

−
(

𝜔0 −
𝑢2

𝑐2

)

(1
2
𝛬1 −

1
12

)

, (40a)
TEREG

4 =(1 − 𝜔0)𝛬1

( 1
2
𝜔0

(

𝛬1 −
1
3

)

− (1 − 𝜔0)
(

𝛬2
1 −

1
12

))

+ 𝑢2

𝑐2
(1
2
(𝜔0 − 1)

(

𝛬2
1 +

1
4

)

− 1
6

(

𝛬1 −
3
4

))

+ 𝑢4

𝑐4
(1
6

(

𝛬1 −
3
4

))

.

(40b)

4. Truncation errors in the BGK model (determined by setting 𝛬 = 𝛬2
1 and 𝛬2 = 𝛬1 in Eqs. (39a) and (39b)):

TEBGK
3 =

(

2 − 3𝜔0 +
𝑢2

𝑐2

)

(

𝛬2
1 −

1
12

)

, (41a)
TEBGK

4 =(1 − 𝜔0)𝛬1

(

2𝜔0

(

𝛬2
1 −

1
8

)

−
(

𝛬2
1 −

1
12

))

+ 𝑢2

𝑐2
(

3𝜔0

(

𝛬3
1 −

1
2
𝛬2
1 +

1
4
𝛬1 +

1
24

)

− 3𝛬3
1 + 𝛬2

1 −
1
12

)

+ 𝑢4

𝑐4
( 1
2

(

𝛬2
1 −

1
2
𝛬1 −

1
12

))

.

(41b)

Based on the structure of the TE3 and TE4 errors in each collision model, the following conclusions can be outlined.
First, it is confirmed that the leading-order truncation errors of the MRT-RM model, given by Eqs. (39a) and (39b), coincide with Eq. (28) by

hen et al. [61] (although last term in Eq. (28c) of [61] has a typo and it should read as 𝑠21(6 − 5 𝑠1 − 4 𝑠2 + 5 𝑠1 𝑠2
2 )). Our Eqs. (39) also agree with

Eqs. (2.9) and (2.10) by Ginzburg [45], which followed a different theoretical framework based on the recurrence equations method [44].
Second, looking at the dependence of truncation errors on the relaxation parameters, it is found that MRT models depend on both 𝛬 and 𝛬1

and their products). On the other hand, since the REG and BGK models are subsets of the MRT-RM, their truncation errors dependency is on 𝛬1
nly. Bearing in mind that 𝛬1 determines the  diffusion coefficient, see Eq. (36), and considering the presence of 𝛬1 on each model, it can be

concluded that the undesirable non-linear impact of  on numerical errors will be worse on BGK, followed by REG, and less impactful on MRT
models. It is important to note that, unlike the steady-state case, the time-dependent solutions in LBM inevitably have part of the numerical errors
depending on the transport coefficients. Such a -dependence on numerical errors happens regardless of the collision model [44,45,70].

Third, within the MRT models, the CM space formulation recovers much more compact truncation error terms, which exhibit a weaker
dependence on the undesirable contribution 𝛬1 when compared to the RM space formulation. In fact, the third-order numerical error TEMRT−CM

3
is vanished for 𝛬 = 1

12 , which is exactly the ‘‘optimal advection’’ condition satisfied by the steady-state settings of the MRT-RM and TRT models.
Due to this equivalence, it can be inferred that the CM space formulation is able to eliminate the leading order error terms with a time-dependent
rigin, which act as the leading advection corrections in the truncation terms. This fact justifies why the MRT-CM model is able to improve the

Galilean invariance of this numerical scheme, at least, on the leading-order error [27].
Fourth, according to Eq. (37), the LBM approximates the time-dependent ADE, Eq. (1), with second-order accuracy under the diffusive scaling

𝛥𝑡 ∝ 𝛥𝑥2. Fourth-order accuracy may be achieved when the following two conditions are simultaneously met: TE3 = 0 and TE4 = 0. Such an
‘optimal advection-diffusion’’ condition can be satisfied with a proper choice of the free parameters 𝜔0, 𝑠1 and 𝑠2, giving the fixed conditions 𝑢∕𝑐
nd 𝜖 (where 𝜖 = 𝛥𝑡∕𝛥𝑥2); note that their ratio defines the grid Péclet number Pe𝛥𝑥 = 𝑢∕𝑐

𝜖 = 𝑢 𝛥𝑥
 . Finding the values of 𝜔0, 𝑠1 and 𝑠2 that set

TE3 = 0 and TE4 = 0 typically requires solving a non-linear problem and the obtained solution may not be unique. Fig. 2 illustrates one possible
solution for the 𝜔0, 𝑠1 and 𝑠2 that set TE3 = 0 and TE4 = 0 as function of 𝜖 when 𝑢∕𝑐 = 0.1, i.e. Pe𝛥𝑥 = 0.1∕𝜖. The behaviour of the obtained
curves is much smoother for the MRT-CM, see Fig. 2(a), than it is for the MRT-RM model, see Fig. 2(b). This may be attributed to the fact that,
in the former, the structure of the TE3 and TE4 terms is much simpler. We note that a similar plotting analysis was presented for the MRT-RM
model in [61]; check Fig. 1 of the Ref. [61]. Although the plot in [61] differs slightly from our Fig. 2(b), we believe that differences are due to the
olution of Eqs. (39a) and (39b) having multiple roots. Concerning the subsets of the MRT model, i.e. the REG and BGK models, it is found that the

BGK model requires fixating 𝜖 to reach the fourth-order accuracy, which reduces the curves to point solutions in Fig. 2(c). In practice, this means
hat it is not possible to improve the BGK accuracy and, at the same time, guarantee the physical regime to the desired Péclet number. Much more
imited in this sense is the REG model that can never satisfy the condition leading to TE3 = 0 and TE4 = 0 and, consequently, can never reach

fourth-order accuracy.
Fifth and last, after determining the 𝜔0, 𝑠1 and 𝑠2 values that yield TE3 = 0 and TE4 = 0, for 𝑢∕𝑐 and 𝜖 fixed, it is still required a stability

roof [5] to guarantee that the LBM solutions are indeed fourth-order convergent. Section 6 presents the stability analysis of the LBM for the 1D
ADE. Based on the analysis, which will be detailed in Section 6, we plot in Fig. 3 the stability domains over 𝑢∕𝑐 and 𝜖 spaces, considering the
𝜔0, 𝑠1 and 𝑠2 values that yield fourth-order accuracy, i.e. TE3 = 0 and TE4 = 0, for the MRT-CM, MRT-RM and BGK collision models. As expected
he stability region narrows when 𝑢∕𝑐 gets larger.1 Contrary to expectations, for 𝑢∕𝑐 > 0.5, the stability region supported by the MRT-CM model
ends to be slightly smaller than that of the MRT-RM model. This narrowing in the stability domain of the MRT-CM model will become even more
oticeable when repeating these tests for other 𝜔0, 𝑠1 and 𝑠2 values, which do not set TE3 = 0 and TE4 = 0, like in the present case. Section 6 will

provide more details on those stability maps.

1 Stability also gets compromised in a thin strip around 𝜖 = 0. Although it is hard to visualize in Fig. 3, this is the other situation where Pe ≫ 1.
𝛥𝑥
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Fig. 3. Stability domain of the 4th order accurate solution. Note, grid Péclet number is defined by the ratio of the two axes, i.e. Pe𝛥𝑥 = 𝑢∕𝑐
𝜖

= 𝑢 𝛥𝑥


. Recall, 𝜖 = (1 − 𝜔0)𝛬1 and
= 𝜖 𝛥𝑥2∕𝛥𝑡.

6. Stability analysis of the EFD scheme

6.1. Stability of the MRT-CM model

This section derives the necessary and sufficient condition for the stability of the MRT-CM model for the 1D ADE, by studying its equivalent
representation given by the FLFD scheme. As proven by Bellotti et al. [60], any LBM scheme may be rewritten as a corresponding multi-step
D scheme. In this way, the linearly stability of the MRT-CM model, Eq. (2), can be proven by demonstrating the corresponding FLFD scheme,

Eq. (25), is stable in the von Neumann sense. Such an equivalence permits focusing on the stability analysis of the FLFD scheme. Along these
lines, we directly take the Fourier transform of the FLFD scheme described by Eq. (25), with coefficients represented by Eq. (26), so that the
transformation 𝑈𝑛+1

𝑗 = 𝐇 𝑈𝑛
𝑗 takes the following amplification matrix [61]:

𝐇 =
⎡

⎢

⎢

⎣

𝛼1 + 𝛼2 𝑒−𝑖 𝜃 + 𝛼3 𝑒𝑖 𝜃 𝛽1 + 𝛽2 𝑒−𝑖 𝜃 + 𝛽3 𝑒𝑖 𝜃 𝛾
1 0 0
0 1 0

⎤

⎥

⎥

⎦

and the characteristic polynomial of 𝐇 can be written as:

𝑝3(𝜆) = 𝜆3 + 𝑎2 𝜆
2 + 𝑎1 𝜆 + 𝑎0 (42)

with coefficients

𝑎2 =
[

−1 + 𝑠2
(

1 − 𝜔0 +
𝑢2

𝑐2

)

(1 − cos 𝜃) − (

2 − 𝑠1 − 𝑠2
)

cos 𝜃 + 2 𝑢2

𝑐2
(

𝑠1 − 𝑠2
)

(1 − cos 𝜃)
]

+ 𝑖
[

𝑢
𝑐 𝑠1 sin 𝜃 − 2 𝑢

𝑐

(

𝑠1 − 𝑠2
)

sin 𝜃
] (43a)

𝑎1 =
[

(

1 − 𝑠1
)

(

1 − 𝑠2 + 𝑠2
(

1 − 𝜔0 +
𝑢2

𝑐2

)

(1 − cos 𝜃)
)

+
(

2 − 𝑠1 − 𝑠2
)

cos 𝜃 + 2 𝑢2

𝑐2
(

𝑠1 − 𝑠2
)

(1 − cos 𝜃)
]

+ 𝑖
[

− 𝑢
𝑐 𝑠1

(

1 − 𝑠2
)

sin 𝜃 + 2 𝑢
𝑐

(

𝑠1 − 𝑠2
)

sin 𝜃
] (43b)

𝑎0 =
(

1 − 𝑠1
) (

𝑠2 − 1) (43c)

Remark 2. Once again, the underlined terms in this section represent the extra terms specific to the MRT-CM model, i.e. they signify the only
ifference between the MRT-CM and the MRT-RM discrete models.

It is noted that the linear stability of the MRT-RM model for the 1D ADE was already studied in [61,71] (although we note that in [61] the
imaginary part of their 𝑎2 and 𝑎1 coefficients features opposite signs to ours, which however does not impact the end result as it is based on the
bsolute value of these coefficients). The purpose of this section is twofold: (i) to extend the stability analysis for the MRT-CM model and (ii) to

compare the stability characteristics between the MRT-CM, MRT-RM, REG and BGK collision schemes for the 1D ADE problem considered in this
work.

The procedure adopted to determine the stability criteria of the FLFD scheme is based on Miller’s theorem [35]. This theorem provides the
ecessary and sufficient conditions to ensure that all roots of the characteristic polynomial in Eq. (42), denoted by 𝜆𝑘 (𝑘 = 1, 2, 3), fall inside or
n the unit circle so that Eq. (42) is a von Neumann polynomial. According to Miller’s theorem [35] if |𝑝⋆𝑛 (0)|− |𝑝𝑛(0)| ≥ 0 (where 𝑝⋆𝑛 (0) is defined

ahead) then 𝑝𝑛(𝜆) is a von Neumann polynomial when 𝑝𝑛−1(𝜆) is a von Neumann polynomial. The determination of the conditions that ensure
Eq. (42) is a von Neumann polynomial proceeds along the three steps detailed next [61].

Step 1.
Define the polynomials:

𝑝⋆3 (𝜆) = 𝑎0 𝜆
3 + 𝑎̄1 𝜆

2 + 𝑎̄2 𝜆 + 1 (44a)

𝑝2(𝜆) =
𝑝⋆3 (0)𝑝3(𝜆)−𝑝3(0)𝑝

⋆
3 (𝜆)

𝜆
2 2 ( ) ( )

(44b)

= (1 − 𝑎0)𝜆 + 𝑎2 − 𝑎0𝑎̄1 𝜆 + 𝑎1 − 𝑎0𝑎̄2

11 
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where 𝑎̄𝑖 denotes the complex conjugate of 𝑎𝑖, and each coefficient above is expressed as follows:
1 − |𝑎0|

2 =1 − (1 − 𝑠1)2(1 − 𝑠2)2

𝑎2 − 𝑎0𝑎̄1 =
(

1 − 𝜔0 +
𝑢2

𝑐2

)

𝑠2
(

1 + (1 − 𝑠1)2(1 − 𝑠2)
)

(1 − cos 𝜃)

− (2 − 𝑠1 − 𝑠2)
(

1 − (1 − 𝑠1)(1 − 𝑠2)
)

cos 𝜃

−
(

1 − (1 − 𝑠1)2(1 − 𝑠2)2
)

+ 2 (𝑠1 − 𝑠2)
(

1 + (1 − 𝑠1)(1 − 𝑠2)
)

[

𝑢2

𝑐2
(1 − cos 𝜃) − 𝑖 𝑢

𝑐
sin 𝜃

]

+ 𝑖 𝑢
𝑐
𝑠1

(

1 + (1 − 𝑠1)(1 − 𝑠2)2
)

sin 𝜃

𝑎1 − 𝑎0𝑎̄2 =
(

1 − 𝜔0 +
𝑢2

𝑐2

)

𝑠2(1 − 𝑠1)(2 − 𝑠2)(1 − cos 𝜃)

+ (2 − 𝑠1 − 𝑠2)
(

1 − (1 − 𝑠1)(1 − 𝑠2)
)

cos 𝜃

+ 2 (𝑠1 − 𝑠2)
(

1 + (1 − 𝑠1)(1 − 𝑠2)
)

[

𝑢2

𝑐2
(1 − cos 𝜃) + 𝑖 𝑢

𝑐
sin 𝜃

]

− 𝑖 𝑢
𝑐
𝑠1(2 − 𝑠1)(1 − 𝑠2) sin 𝜃

(45)

To test if 𝑝3(𝜆) is a von Neumann polynomial, the following condition needs to be satisfied:

|𝑝⋆3 (0)| − |𝑝3(0)| ≥ 0 ⇒ |1| − |𝑎0| ≥ 0 ⇔ 1 − (1 − 𝑠1)2(𝑠2 − 1)2 ≥ 0 (46)

which is always true for 0 < 𝑠1, 𝑠2 < 2. According to Theorem 6.1 in [60], the characteristic polynomial 𝑝3(𝜆), Eq. (42), is a von Neumann polynomial
iff 𝑝2(𝜆), defined in Eq. (44b), is a von Neumann polynomial. The proof of this condition motivates the continuation of the recursive testing towards
tep 2.

Step 2.
Define the polynomials:

𝑝⋆2 (𝜆) =
(

𝑎̄1 − 𝑎0𝑎2
)

𝜆2 +
(

𝑎̄2 − 𝑎0𝑎1
)

𝜆 + (1 − |𝑎0|
2) (47a)

𝑝1(𝜆) =
𝑝⋆2 (0)𝑝2(𝜆)−𝑝2(0)𝑝

⋆
2 (𝜆)

𝜆
=
[

(1 − |𝑎0|2)2 − (𝑎1 − 𝑎0𝑎̄2)2
]

𝜆 +
[

(1 − |𝑎0|
2)
(

𝑎2 − 𝑎0𝑎̄1
)

−
(

𝑎1 − 𝑎0𝑎̄2
) (

𝑎̄2 − 𝑎0𝑎1
)]

(47b)

To test if 𝑝2(𝜆) is a von Neumann polynomial, the following condition needs to be satisfied:

|𝑝⋆2 (0)| − |𝑝2(0)| ≥ 0 ⇒ |1 − |𝑎0|
2
| − |𝑎1 − 𝑎0𝑎̄2| ≥ 0 (48)

Expanding Eq. (48), we obtain:

|1 − |𝑎0|
2
| − |𝑎1 − 𝑎0𝑎̄2| =

|

|

|

1 − (1 − 𝑠1)2(1 − 𝑠2)2
|

|

|

−
|

|

|

|

|

[(

1 − 𝜔0 +
𝑢2

𝑐2

)

(1 − cos 𝜃) + cos 𝜃
]

𝑠2(1 − 𝑠1)(2 − 𝑠2)

+𝑠1(1 − 𝑠2)(2 − 𝑠1)
[

cos 𝜃 − 𝑖 𝑢
𝑐
sin 𝜃

]

+2 𝑢
𝑐
(𝑠1 − 𝑠2)

(

1 + (1 − 𝑠1)(1 − 𝑠2)
)

[ 𝑢
𝑐
(1 − cos 𝜃) + 𝑖 sin 𝜃

]|

|

|

|

|

≥ 0

(49)

Eq. (49) can be further developed with respect to the absolute values (× − 1) and written in compact form as follows:

max
𝜃∈[−𝜋 , 𝜋]

{

𝑢2

𝑐2
(1 − cos2 𝜃)𝛺2

𝑠1
+
(

 (1 − cos 𝜃)𝛺𝑠2 + 𝛤 cos 𝜃
)2

−𝛺2

+4 𝑢2

𝑐2
𝛩 (1 − cos 𝜃)

[

2 𝑢2

𝑐2
𝛩 − 𝑢

𝑐
(1 + cos 𝜃)𝛺𝑠1 +

(

 (1 − cos 𝜃)𝛺𝑠2 + 𝛤 cos 𝜃
)

]}

≤ 0
(50)

where the parameters , 𝛺, 𝛺𝑠1 , 𝛺𝑠2 and 𝛩 are defined ahead in Eq. (60).
While Eq. (50) may undergo variations within the 𝜃 ∈ [−𝜋 , 𝜋] interval, it is interesting to investigate the limit 𝜃 = 𝜋, which corresponds to the

ecessary diffusion dominant condition [71]. We recall that, for the MRT-RM model to satisfy this condition, one must have 0 ≤  ≤ 1, which
translates to 𝜔0 ≥

𝑢2

𝑐2
. At the same time, recall that the CFL condition enforces 0 ≤ 𝑢

𝑐 ≤ 1. Then, the simultaneous fulfilment of these two conditions
allows us to estimate the majorant of Eq. (49) given as follows:

𝛺2 −
[(

𝛺𝑠1 −𝛺𝑠2

)

− 4𝛩
]2

≥ 0 ⇒

(

1 + (1 − 𝑠1)(1 − 𝑠2)
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

(

(

1 − (1 − 𝑠1)(1 − 𝑠2)
)2 − 9 (𝑠1 − 𝑠2)2

)

≥ 0 ⇒

(

1 − (1 − 𝑠1)(1 − 𝑠2)
)2 − 9 (𝑠1 − 𝑠2)2 ≥ 0

(51)

The solution of the inequality in Eq. (51), under 0 < 𝑠1, 𝑠2 < 2, is given by:

0 < 𝑠1 < 2 and
2 𝑠1
4 − 𝑠1

≤ 𝑠2 ≤
4 𝑠1
2 + 𝑠1

. (52)

Fig. 4 plots the (𝑠2, 𝑠1) stability domain determined by Eq. (52). As shown in this plot, the MRT-CM model is only stable inside the narrow strip
around the 𝑠2 = 𝑠1 line with boundaries dictated by Eq. (52). It is worthwhile noticing that the upper limit, 𝑠2 =

4 𝑠1
2+𝑠1

, is the relaxation combination
hat cancels the 𝑢2-artefact on the coefficient  of the MRT-CM model for the steady-state ADE, derived in Section 4.
eff
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Fig. 4. Shaded area denotes the stability region in the (𝑠2 , 𝑠1) domain according to Eq. (52), which is a prediction for the majorant of Eq. (50).

Finally, the polynomial 𝑝2(𝜆), Eq. (44b), is a von Neumann polynomial iff 𝑝1(𝜆), defined in Eq. (53b), is a von Neumann polynomial, which will
be evaluated on Step 3.

Step 3.
Define the polynomials:

𝑝1(𝜆) =
[

(1 − |𝑎0|
2)2 − (𝑎1 − 𝑎0𝑎̄2)2

]

𝜆 +
[

(1 − |𝑎0|
2)
(

𝑎2 − 𝑎0𝑎̄1
)

−
(

𝑎1 − 𝑎0𝑎̄2
) (

𝑎̄2 − 𝑎0𝑎1
)]

(53a)

𝑝⋆1 (𝜆) =
[

(1 − |𝑎0|
2)
(

𝑎2 − 𝑎0𝑎̄1
)

−
(

𝑎1 − 𝑎0𝑎̄2
) (

𝑎̄2 − 𝑎0𝑎1
)]

𝜆 +
[

(1 − |𝑎0|
2)2 − (𝑎1 − 𝑎0𝑎̄2)2

]

(53b)

To test if 𝑝1(𝜆) is a von Neumann polynomial, the following condition needs to be satisfied:

|𝑝⋆1 (0)|
2 − |𝑝1(0)|

2 ≥ 0 ⇒ |

|

|

(1 − |𝑎0|
2)2 − (𝑎1 − 𝑎0𝑎̄2)2

|

|

|

2
− |

|

|

(1 − |𝑎0|
2)
(

𝑎2 − 𝑎0𝑎̄1
)

−
(

𝑎1 − 𝑎0𝑎̄2
) (

𝑎̄2 − 𝑎0𝑎1
)

|

|

|

2
≥ 0 (54)

To facilitate the analysis, we follow [61] and split the real and imaginary parts of those complex numbers as follows:

1 − |𝑎0|
2 = 𝑎𝑟

𝑎2 − 𝑎0𝑎̄1 = 𝑎𝑟11 + 𝑖 𝑎𝑟12
𝑎1 − 𝑎0𝑎̄2 = 𝑎𝑟21 + 𝑖 𝑎𝑟22
𝑎̄2 − 𝑎0𝑎1 = 𝑎𝑟11 − 𝑖 𝑎𝑟12

(55)

where

𝑎𝑟 = 𝛺

𝑎𝑟11 =  (1 − cos 𝜃)𝛤𝑠1 − 𝛤 cos 𝜃 −𝛺 + 2 𝑢2

𝑐2
𝛩 (1 − cos 𝜃)

𝑎𝑟12 =
𝑢
𝑐
𝛤𝑠2 sin 𝜃 − 2 𝑢

𝑐
𝛩 sin 𝜃

𝑎𝑟21 =  (1 − cos 𝜃)𝛺𝑠2 + 𝛤 cos 𝜃 + 2 𝑢2

𝑐2
𝛩 (1 − cos 𝜃)

𝑎𝑟22 = − 𝑢
𝑐
𝛺𝑠1 sin 𝜃 + 2 𝑢

𝑐
𝛩 sin 𝜃.

(56)

The parameters introduced above, i.e. , 𝛺, 𝛺𝑠1 , 𝛺𝑠2 , 𝛤𝑠1 , 𝛤𝑠2 and 𝛩, are defined in Eq. (60). The inclusion of Eq. (55) into Eq. (54) (× − 1) yields:

|

|

𝑎𝑟(𝑎𝑟11 + 𝑖 𝑎𝑟12) − (𝑎𝑟21 + 𝑖 𝑎𝑟22)(𝑎𝑟11 − 𝑖 𝑎𝑟12)|| + |

|

𝑎𝑟21 + 𝑖 𝑎𝑟22||2 − |

|

𝑎𝑟||
2 ≤ 0 (57)

The simplification of Eq. (57) reads:
(𝑎𝑟 𝑎𝑟11 − 𝑎𝑟21 𝑎𝑟11 − 𝑎𝑟22 𝑎𝑟12)2 + (𝑎𝑟 𝑎𝑟12 + 𝑎𝑟21 𝑎𝑟12 − 𝑎𝑟22 𝑎𝑟11)2 − (𝑎2𝑟 − 𝑎2𝑟21 − 𝑎2𝑟22)
2 ≤ 0 (58)
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After a few algebraic manipulations, Eq. (58) can be recast as follows:

max
𝜃∈[−𝜋 , 𝜋]

{

𝑢4

𝑐4
(1 − cos2 𝜃)2 𝛺2

𝑠1
(𝛺 − 𝛤 )

(

𝛤𝑠2 +𝛺𝑠1

)

+ 𝑢2

𝑐2
(1 − cos2 𝜃)

[

2 (1 − cos 𝜃)2 (𝛺 − 𝛤 )
[

𝛺2
𝑠1

(

𝛤𝑠1 +𝛺𝑠2

)

+𝛺2
𝑠2

(

𝛤𝑠2 +𝛺𝑠1

)]

+ (1 − cos 𝜃) 2𝛺
[

𝛤𝑠1 𝛺𝑠1 (𝛺 − 𝛤 ) + 𝛤𝑠2

(

𝛤𝑠1 𝛺𝑠1 + 𝛤𝑠2 𝛺𝑠2

)]

+𝛺2 (𝛺 − 𝛤 )
(

𝛤𝑠2 − 3𝛺𝑠1

)]

+ (1 − cos 𝜃)
(

𝛤𝑠1 +𝛺𝑠2

) [(
−2 (1 − cos 𝜃)2 2𝛤𝑠1 𝛺𝑠2 + (1 − cos 𝜃)𝛺

(

𝛤𝑠1 + 3𝛺𝑠2

)

− 2𝛺2
)

𝛺

+
(

2 (1 − cos 𝜃)2 𝛺2

(

𝛤𝑠1 − 2𝛺𝑠2

)

− (1 − cos 𝜃)𝛺 (𝛺 − 𝛤 ) +𝛺2
)

2𝛤 cos 𝜃

+
(

 (1 − cos 𝜃)
(

𝛤𝑠1 − 5𝛺𝑠2

)

+ 2𝛺
)

𝛤 2 cos2 𝜃

−2 (1 − cos 𝜃)2 2𝛤 3 cos3 𝜃
]

+ 𝑢6

𝑐6
𝛷6 +

𝑢4

𝑐4
𝛷4 +

𝑢2

𝑐2
𝛷2

}

≤ 0

(59)

with

 = 1 − 𝜔0 +
𝑢2

𝑐2
𝛺 = 1 − (1 − 𝑠1)2(1 − 𝑠2)2

𝛺𝑠1 = 𝑠1(2 − 𝑠1)(1 − 𝑠2) 𝛺𝑠2 = 𝑠2(2 − 𝑠2)(1 − 𝑠1)

𝛤 = 𝛺𝑠1 +𝛺𝑠2

𝛤𝑠1 = 𝛺 −𝛺𝑠1 𝛤𝑠2 = 𝛺 −𝛺𝑠2

𝛩 = (𝑠1 − 𝑠2)
(

1 + (1 − 𝑠1)(1 − 𝑠2)
)

(60)

where in detail we have

𝛤 = 𝛺𝑠1 +𝛺𝑠2 = (2 − 𝑠1 − 𝑠2)
(

1 − (1 − 𝑠1)(1 − 𝑠2)
)

= 𝑠1(2 − 𝑠1)(1 − 𝑠2) + 𝑠2(1 − 𝑠1)(2 − 𝑠2)

𝛤𝑠1 = 𝛺 −𝛺𝑠1 = 𝑠2
(

1 + (1 − 𝑠1)2(1 − 𝑠2)
)

=
(

1 − (1 − 𝑠1)2(1 − 𝑠2)2
)

− 𝑠1(2 − 𝑠1)(1 − 𝑠2)

𝛤𝑠2 = 𝛺 −𝛺𝑠2 = 𝑠1
(

1 + (1 − 𝑠1)(1 − 𝑠2)2
)

=
(

1 − (1 − 𝑠1)2(1 − 𝑠2)2
)

− 𝑠2(1 − 𝑠1)(2 − 𝑠2)

and the terms specific to the MRT-CM model, 𝛷6, 𝛷4 and 𝛷2, are explicitly given as follows:

𝛷6 = − 16𝛩3 (1 − cos 𝜃)3 [ (1 − cos 𝜃) (𝛤 −𝛺) − 2 (𝛤 −𝛺) + (𝛤 +𝛺) (1 + cos 𝜃)]
− 4𝛩2 (1 − cos 𝜃)2 (𝛤 −𝛺)

(

𝛤𝑠2 +𝛺𝑠1

)

(1 − cos2 𝜃) (61)

𝛷4 = − 16𝛩3 (1 − cos 𝜃)3 (1 + cos 𝜃) [ (𝛤 −𝛺) − (𝛤 +𝛺)]

+ 𝛩2 (1 − cos 𝜃)2
[

42 (1 − cos 𝜃)2 (𝛺 − 𝛤 )
(

𝛺 − 𝛤 + 6𝛺𝑠2

)

−8 (1 − cos 𝜃)
(

(𝛺 − 𝛤 ) (3𝛺 + 2𝛤 ) + 6𝛺 𝛺𝑠2

)

+2
(

𝛤 + 3𝛺 + 10𝛺𝑠1

)

(𝛺 − 𝛤 ) + 16𝛺 𝛺𝑠2

−8
[

 (1 − cos 𝜃) 𝛤
(

𝛺 − 𝛤 + 6𝛺𝑠2

)

+ (3𝛺 − 𝛤 ) (𝛺 + 𝛤 ) − 2
(

𝛺 𝛤 +𝛺 𝛺𝑠1 + 𝛤 𝛺𝑠2

)]

cos 𝜃

+2
[

(

𝛺2 − 𝛤 2) − 2𝛺𝑠2 (3𝛺 + 𝛤 )
]

cos(2𝜃)
]

+ 4𝛩 (1 − cos 𝜃) (1 − cos2 𝜃)
[

 (1 − cos 𝜃)
[

(𝛺 − 𝛤 ) 𝛺2
𝑠1
−𝛺𝑠2

(

𝛺2
𝑠1
−
(

𝛺 −𝛺𝑠2

)2
)]

−
(

𝛺 −𝛺𝑠1

)

[

(𝛺 − 𝛤 )2 − 2
(

𝛺 −𝛺𝑠2

)2
]

−𝛺2
𝑠1

(

𝛺 +𝛺𝑠1 −𝛺𝑠2

)

−
[

𝛺𝑠1 (𝛺 − 𝛤 )
(

𝛺 − 𝛤 + 3𝛺𝑠1

)

(62)
−𝛤
(

𝛤 2 +𝛺2 −𝛺𝑠2

(

2𝛺 +𝛺𝑠1

)

−𝛺𝑠1

(

𝛤 + 3𝛺𝑠1

))]

cos 𝜃
]
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𝛷2 = 4𝛩2 (1 − cos 𝜃)2
[

2 (

1 − cos2 𝜃) (𝛺 − 𝛤 )
(

𝛤𝑠1 +𝛺𝑠2

)

+2 (1 + cos 𝜃) (𝛺 − 𝛤 cos 𝜃)
(

𝛤𝑠1 +𝛺𝑠2

)]

+𝛩 (1 − cos 𝜃)
[

43 (1 − cos 𝜃)3 𝛺𝑠2 (𝛺 − 𝛤 )
(

2𝛺𝑠2 + 𝛤𝑠1

)

−42 (1 − cos 𝜃)2
[(

𝛤 2
𝑠1
+𝛺2

𝑠2

) (
𝛺 +𝛺𝑠1

)

+ 4𝛤𝑠1 𝛺𝑠2 𝛺 +𝛺2
𝑠2

(

𝛺 − 𝛤 − 2𝛺𝑠1

)

+
((

𝛤 2
𝑠1
−𝛺2

𝑠2

) (
𝛺𝑠1 − 𝛤

)

+𝛺2
𝑠2
(𝛺 + 5𝛤 )

)

cos 𝜃
]

+2 (1 − cos 𝜃)
[(

𝛺 −𝛺𝑠1

) (
2𝛺2 + 2𝛤 𝛺𝑠1 − 𝛤 2

)

−𝛺𝑠2

(

7𝛤 2 + 2𝛤
(

𝛺 − 2𝛺𝑠1

)

+ 2𝛺
(

2𝛺𝑠1 − 5𝛺
))

+ 2𝛺2
𝑠2
(𝛤 + 2𝛺)

−4
(

𝛤𝑠2 𝛺
(

𝛤𝑠1 +𝛺𝑠2

)

+ 𝛤 𝛤𝑠1

(

𝛺 −𝛺𝑠1

)

− 𝛤 𝛺𝑠2

(

𝛤 +𝛺𝑠1

))

cos 𝜃

−𝛤
(

2𝛺𝑠2

(

𝛤𝑠2 − 2𝛺𝑠1

)

+ 𝛤
(

𝛤𝑠1 + 7𝛺𝑠2

)

− 2𝛤𝑠1 𝛺𝑠1

)

cos(2𝜃)
]

+ (𝛺 + 𝛤 )
(

2
(

𝛤 2 − 2𝛺2) −
(

3𝛤 2 − 4𝛺2) cos 𝜃 + 2𝛤 2 cos(2𝜃) + 𝛤 2 cos(3𝜃)
)]

(63)

Conclusion. The MRT-CM as a numerical model for the 1D ADE is stable in the von Neumann sense iff it simultaneously satisfies the following
five stability conditions: (i) 0 ≤ 𝜔0 ≤ 1, (ii) 0 ≤ 𝑢∕𝑐 ≤ 1, (iii) 𝜔0 ≥

𝑢2

𝑐2
, (iv) Eq. (50), and (v) Eq. (59).

Among the five stability conditions, Eq. (59) is the more restrictive one. Focusing on Eq. (59), the only difference between the MRT-CM and
MRT-RM comes from the extra terms 𝛷6, 𝛷4 and 𝛷2, which scale with 𝑢6∕𝑐6, 𝑢4∕𝑐4 and 𝑢2∕𝑐2, respectively. Consequently, the larger is the 𝑢∕𝑐
ratio, the more significant the impact of these terms becomes and, consequently, the larger the differences between MRT-CM and MRT-RM will
be. This explains the differences between MRT-CM and MRT-RM stability plots shown in Fig. 3, which only become noticeable for 𝑢∕𝑐 > 0.5 (a
result that will be made more evident below). Since the ensemble of stability conditions obtained in this analysis leads to an highly non-linear
roblem, its analytical study poses a rather challenging endeavour. In alternative, our stability study will be based on the numerical solution of
he aforementioned set of inequalities.

Figs. 5, 6, 7 and 8 display the stability maps obtained numerically, over the parameter space of 𝑢∕𝑐 and 𝜔0 equilibrium terms, for the MRT-CM
and MRT-RM models, where for each panel it is illustrated the effect of increasing 𝛬1 holding 𝛬, with 𝛬 = 1∕20, 𝛬 = 1∕12, 𝛬 = 1∕4 and 𝛬 = 1∕2
fixed, respectively. Overall, these plots provide a general picture on the stability domains of MRT-CM and MRT-RM models, and allows us to
withdraw the following conclusions.

On the one hand, below 𝑢∕𝑐 = 0.5, the stability domain of the MRT-CM model is typically broader than the MRT-RM. Particularly, MRT-CM
remains stable at smaller 1 −𝜔0 values. That is, in the 𝑢∕𝑐 ≤ 0.5 range, the MRT-CM is able to reach higher grid Péclet values, Pe𝛥𝑥 = 𝑢∕𝑐

𝜖 , because it
s able to support smaller 1 −𝜔0 values or, equivalently, it is able to support smaller viscosities 𝜖 = (1 −𝜔0)𝛬1 for a given 𝛬1 relaxation coefficient.
et, this trend changes for relatively high values of 𝛬1 or 𝛬, where MRT-RM becomes the stabler scheme in the subinterval 𝑢∕𝑐 ≤ 0.5.

On the other hand, above 𝑢∕𝑐 = 0.5, the stability domain of the MRT-CM model falls rapidly towards an empty set. This behaviour is only
avoided for 𝛬1 (hence, viscosity) being made large. In this case, reaching high grid Péclet number in the 𝑢∕𝑐 ≥ 0.5 subinterval is very challenging
as it demands the use of large viscosities (hence, bringing Pe𝛥𝑥 = 𝑢∕𝑐

𝜖 down). Consequently, when operating at 𝑢∕𝑐 ≥ 0.5 over the typical range of
elaxation parameters, it is safer to use the MRT-RM scheme.

From a practical perspective, the stability study here presented provides three main messages. First, the unique adoption of the comoving frame
in the LBM collision model may deteriorate the stability support of the LBM solution; an observation in line with the numerical study of Dubois
nd Février [13], which indicated that the inclusion of an extended equilibrium2 is crucial for the stability of the MRT-CM model. Second, the 𝛷6,
4 and 𝛷2 extra terms, which are specific to the MRT-CM model, and scale with 𝑢6∕𝑐6, 𝑢4∕𝑐4 and 𝑢2∕𝑐2, respectively, may lead to opposing effects.
hen 𝑢∕𝑐 is moderately small (providing 𝜖 is small too), those terms may help stabilizing the MRT-CM solution. When 𝑢∕𝑐 increases, they quickly

end to dominate the stability condition and cause the MRT-CM solution to abruptly blow up. Third, the MRT-CM is also far more susceptible to
he individual values of the relaxation rates, 𝑠1 and 𝑠2, particularly, when they become too dissimilar, as illustrated in Fig. 4. For example, the
ttempt to enhance stability by reducing the grid Péclet, Pe𝛥𝑥, through the increase of 𝑠1 is only effective if the other relaxation rate 𝑠2 is varied

accordingly. Another example on the sensitivity of the MRT-CM stability towards the individual relaxation rates is the lack of an optimal stability
condition for this collision operator. This point will be discussed in the next section.

6.2. Revisiting the optimal stability condition of the MRT-RM model [45,71,73]

Looking at Figs. 7 and 8 that refer to 𝛬 = 1∕4 and 𝛬 = 1∕2, respectively, it is noted that the stability maps of the MRT-RM are almost identical.
Taking into account that the choice 𝛬 = 1∕4 has been coined as the ‘‘optimal stability condition’’ [45,71,73] for the TRT scheme (which is identical
o the MRT-RM in the D1Q3 lattice), this observation might be surprising as the 𝛬 = 1∕4 case is often (erroneously) expected to support the larger

stability domain among all 𝛬 values. Here, we would like to take the opportunity to clarify this misunderstanding (which we note that it has been
originally explained in the papers of Ginzburg and coworkers [45,71,73], but it continues being misinterpreted).

Following [45,71,73], the optimal stability condition is set by 𝛬 =
(

1
𝑠1

− 1
2

) (
1
𝑠2

− 1
2

)

= 1
4 or equivalently by 𝑠2 = 2 − 𝑠1. Dropping the

nderlined terms in Eq. (42), so that we retrieve the MRT-RM formulation, then the characteristic polynomial given by Eq. (42), with 𝑠2 = 2 − 𝑠1,
an be expressed in factorized form as follows:

𝑝3(𝜆) =
(

1 − 𝑠1 + 𝜆
)

[

𝜆2 + 𝜆
[

(

𝑠1 − 2)
(

1 −
(

1 − 𝜔0 +
𝑢2

𝑐2

)

(1 − cos 𝜃)
)

+ 𝑖 𝑠1 𝑢
𝑐
sin 𝜃

]

+
(

1 − 𝑠1
)

]

. (64)

2 In the D1Q3 lattice model, no expansion beyond the second order is possible for the equilibrium, meaning that an extended equilibrium is unavailable [7].
The support of an extended equilibrium in 1D is only possible with higher order velocity discretizations, such as D1Q5 or D1Q7 [72].
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Fig. 5. Stability domains of MRT-RM and MRT-CM schemes fixing 𝛬 = 1∕20. Recall, (1 − 𝜔0) = 𝜖∕𝛬1.

Fig. 6. Stability domains of MRT-RM and MRT-CM schemes fixing 𝛬 = 1∕12. Recall, (1 − 𝜔0) = 𝜖∕𝛬1.
16 
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Fig. 7. Stability domains of MRT-RM and MRT-CM schemes fixing 𝛬 = 1∕4. Recall, (1 − 𝜔0) = 𝜖∕𝛬1.

Fig. 8. Stability domains of MRT-RM and MRT-CM schemes fixing 𝛬 = 1∕2. Recall, (1 − 𝜔0) = 𝜖∕𝛬1.
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According to Eq. (64), the roots of 𝑝3(𝜆) may be given by the very restrictive condition 𝑠1 = 1, a case that boils down to the BGK setting
1 = 𝑠2 = 𝑠 = 1, or otherwise by the more general condition set by the solution of the quadratic equation:

𝑝2(𝜆) = 𝜆2 + 𝜆
[

(

𝑠1 − 2)
(

1 −
(

1 − 𝜔0 +
𝑢2

𝑐2

)

(1 − cos 𝜃)
)

+ 𝑖 𝑠1 𝑢
𝑐
sin 𝜃

]

+
(

1 − 𝑠1
)

. (65)

The necessary and sufficient stability conditions of the MRT-RM model with 𝛬 = 1∕4 can be determined by the roots of 𝑝2(𝜆), which will be analysed
next by applying Miller’s theorem [35].

Step 1.
To test if 𝑝2(𝜆) is a von Neumann polynomial it needs to verify |𝑝2(0)| < |𝑝⋆2 (0)|, which is equivalent to |1 − 𝑠1| < 1 and is always valid for

0 < 𝑠1 < 2.

Step 2.
Define the polynomial 𝑝1(𝜆) =

𝑝⋆2 (0) 𝑝2(𝜆)−𝑝2(0) 𝑝
⋆
2 (𝜆)

𝜆 , which after a few manipulations can be factorized as follows:

𝑝1(𝜆) =
(

1 − (1 − 𝑠1)2
)

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜆 −
(

1 −
(

1 − 𝜔0 +
𝑢2

𝑐2

)

(1 − cos 𝜃)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

+𝑖 𝑢
𝑐
sin 𝜃

⏟⏟⏟
=2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
(

1 − (1 − 𝑠1)2
)

[

𝜆 −
(

1 − 𝑖2
)

]

. (66)

Considering that the prefactor
(

1 − (1 − 𝑠1)2
)

< 1 for 0 < 𝑠1 < 2, then it follows that the stability of 𝑝1(𝜆) under |𝜆|2 ≤ 1 is determined by the
condition 2

1 + 2
2 ≤ 1. That is, the distinctive feature of the ‘‘optimal stability condition’’ is not that it offers a ‘‘better stability’’, but the fact that,

with the specific relaxation combination 𝛬 = 1∕4, the stability behaviour of the LBM time-dependent solution becomes completely independent
from the individual relaxation rates values, 𝑠1 and 𝑠2, and only determined by the equilibrium parameters 𝜔0 and 𝑢∕𝑐, as shown in Eq. (66) and
visible in Fig. 7(a), (b) and (c).

Remark 3. To finalize this section, we note that the extension of the above analysis to the MRT-CM model reveals that the formulation of MRT
n the comoving frame does not support a similar kind of ‘‘optimal stability condition’’, meaning that there is no specific relaxation combination
𝛬 that guarantees the model stability characteristics to be independent of the individual relaxation rates 𝑠1 and 𝑠2, and only be controlled by the
quilibrium parameters 𝜔0 and 𝑢∕𝑐.

7. Numerical tests

This section presents the numerical verification of the theoretical results previously reported. To this end, we will consider 1D time-dependent
ADE problems governed by the two non-dimensional physical groups:

(1) Péclet number: Pe = 𝑢 𝐿
 ,

(2) Fourier number: Fo = 𝑡
𝐿2 = 𝑡.

The FLFD scheme implementation of the different LBM collision operators is employed. In this framework, the initial condition employs the known
analytical solution at the first three time levels. Then, the time-dependent solution is let evolve until the desired 𝑡 value is reached. In terms of the
omputational performance, among tested collision schemes, the following relationship MRT-CM > MRT-RM > BGK is noted. That is, compared to
he BGK model, the MRT-RM employs more operations every time step, due to the shift between moments and populations spaces, and this number
ets augmented with the inclusion of the velocities in the transformation matrices, which makes the MRT-CM model the most computationally
emanding. The REG model was not tested here as it does not support the intended 4th order accuracy.

In what follows, the accuracy of numerical solutions will be determined by the 𝐿2 measure, which is defined as:

𝐿2(𝜙) =
√

∑

𝑗

(

𝜙𝑛
𝑗 − 𝜙𝑛 (analy )

𝑗

)2
∕
∑

𝑗
(𝜙𝑛 (analy )

𝑗 )2 (67)

where sums are taken over the full computational domain at time level 𝑛, determined as 𝑛 = 𝑡 × 𝐿2∕(𝛥𝑡) = 𝑡 ×𝑁2
𝑥∕𝜖 where 𝐿 = 𝑁𝑥 𝛥𝑥.

7.1. Advection-diffusion evolution of a Gaussian hill

Consider the transport of a Gaussian hill pulse, which is described by the following analytical solution [3,68]:

𝜙(𝑥, 𝑡) = (2𝜋 𝜎20)
𝑑∕2

(2𝜋 (𝜎20 + 2 𝑡))𝑑∕2
exp

[

−
(𝑥 − 𝑥0 − Pe 𝑡)2

2(𝜎20 + 2 𝑡)

]

, (68)

where 𝑑 refers to the space dimension (here 𝑑 = 1). The pulse non-dimensional solution is 𝜙 = 𝜙∕𝜙0. In this work, we consider the initial pulse
agnitude 𝜙0 = 1 (simulation units), the initial pulse location 𝑥0 = 𝑥0∕𝐿 = 1

2 and the initial pulse width 𝜎0 = 𝜎0∕𝐿 = 0.05 (both in non-dimensional
scales). The non-dimensional spatial domain coordinate is 𝑥 = 𝑥∕𝐿 ∈ [0, 1], with domain length 𝐿 discretized as follows 𝐿 = 𝑁𝑥 𝛥𝑥. Periodic
oundary conditions are applied at both ends of the domain and the problem initial condition is given by Eq. (68) with 𝑡 = 0. Note that, for a given

time evolution 𝑡, the solution 𝜙 is uniquely governed by Pe, which is set as follows Pe = 𝑢∕𝑐
𝜖 𝑁𝑥 = 𝑢 𝛥𝑥 𝑁𝑥

(1−𝜔0) 𝑐2 𝛬1 𝛥𝑡
= 𝑢 𝐿

 .
Fig. 9 illustrates the LBM solutions, over the different collision operators, employing the free parameters {𝜔0, 𝛬1, 𝛬} that lead to the 4th order

accurate solution,3 against the analytical profile, given by Eq. (68), for 𝑡 = 0.001, Pe = 1 and 𝜖 = 0.1. Other Pe numbers were tested revealing

3 For example, for Pe = 1 and 𝜖 = 0.1 (with 𝑁𝑥 = 81 grid points), the free parameters in the MRT-RM are set as 𝜔0 = 0.879999207439141, 𝑠1 = 0.750003095933185,
and 𝑠2 = 1.24999870822213, and in the MRT-CM are set as 𝜔0 = 0.399999330375504, 𝑠1 = 1.50000041851495, and 𝑠2 = 0.999999441979898. The value of these
parameters varies slightly with grid resolution 𝑁 , when 𝜖 and Pe are fixed, but highly depends on Pe.
𝑥
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Fig. 9. Gaussian hill pulse solution profile for Pe = 1 and 𝜖 = 0.1 at 𝑡 = 0.001 using 𝑁𝑥 = 41, with free parameters {𝜔0 , 𝛬1 , 𝛬} leading to TE3 = 0 and TE4 = 0 according to Section 5.
lack continuous line denotes the analytical solution [Eq. (68)]. Circles denote the numerical solution. Panel (a): MRT-CM (𝐿2 = 6.08 × 10−5). Panel (b): MRT-RM (𝐿2 = 6.28 × 10−5).
anel (c): BGK (𝐿2 = 4.11 × 10−3 and Pe = 1.03984 ≠ 1 in this case).

Fig. 10. Mesh convergence solutions of the Gaussian hill pulse problem for 𝑡 = 0.001. Symbols: circles (black) use the free parameters {𝜔0 , 𝛬1 , 𝛬} that lead to TE3 = 0 and TE4 = 0,
iamonds (blue) use 𝜔0 = 2∕3 and 𝛬 = 1∕6, and squares (red) use 𝜔0 = 2∕3 and 𝛬 = 1∕12. Incepts quantify the converge rates given by the slopes of fitting lines obtained from
inear regression. Panel (a): MRT-CM for Pe = 1 and 𝜖 = 0.1. Panel (b): MRT-RM for Pe = 1 and 𝜖 = 0.1. Panel (c): MRT-CM for Pe = 100 and 𝜖 = 0.01. Panel (d): MRT-RM for
e = 100 and 𝜖 = 0.01.

that the higher is Pe the larger will be the shift in the pulse peak from its origin 𝑥0 = 1
2 . We note that, for a fixed Pe number, both MRT-CM and

MRT-RM collision models are able to adjust the free parameters {𝜔0, 𝛬1, 𝛬} so that 4th order accurate solutions can be retrieved. This contrasts
ith the BGK collision model, which only offers {𝜔0, 𝛬1} as free parameters, which precludes the simultaneous fulfilment of the 4th order accurate

ondition and the intended Pe number. In other words, given the grid resolution 𝑁𝑥 and the Pe number, determined by Pe = 𝑢∕𝑐
𝜖 𝑁𝑥 = 𝑢 𝛥𝑥 𝑁𝑥

(1−𝜔0) 𝑐2 𝛬1 𝛥𝑡
,

t is generally not possible for the LBM-BGK model to meet the 4th order accurate condition for {𝜔0, 𝛬1} that guarantees TEBGK
3 = 0 and TEBGK

4 = 0
ccording to Eqs. (41a) and (41b), respectively.

Fig. 10 depicts the evolution of the LBM numerical error for the MRT-CM and MRT-RM models at a given Pe as function of the 𝑁𝑥 mesh
esolution. The BGK model is not considered in this analysis as it cannot simultaneously fulfil the 4th order accurate condition and the intended Pe
umber while varying 𝑁𝑥. The numerical solutions in Fig. 10 confirm the theoretical results presented in Section 5. That is, the proper choice of the

free parameters {𝜔0, 𝛬1, 𝛬} that yield TE3 = 0 and TE4 = 0 leads to approximately a 4th order mesh convergence rate. Although, at large Pe values,
the convergence rate is slightly deteriorated, it gets more affected in the MRT-RM model than in the MRT-CM model. For comparison purposes,
other free parameter choices were also tested, by using 𝜔0 = 2∕3 and either 𝛬 = 1∕12 (optimal advection condition for steady-state equations)
r 𝛬 = 1∕6 (optimal diffusion condition for steady-state equations). As expected, based on the LBM accuracy analysis developed in Section 5, the

obtained LBM solutions follow a second order convergence rate towards the 1D time-dependent ADE solution, except when TE3 = 0 and TE4 = 0
are verified.

7.2. Advection–diffusion evolution of a time-decaying wave

Consider the transport of the exponentially decaying wave, which is described by the following analytical solution [61]:
[ ] [ 2 ]
𝜙(𝑥, 𝑡) = sin 𝑘𝑥 (𝑥 − 𝑥0 − Pe 𝑡) exp −𝑘𝑥 𝑡 (69)
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Fig. 11. Time-decaying wave solution profile for Pe = 1 and 𝜖 = 0.1 at 𝑡 = 0.01 using 𝑁𝑥 = 41, with free parameters {𝜔0 , 𝛬1 , 𝛬} leading to TE3 = 0 and TE4 = 0 according
to Section 5. Black continuous line denotes the analytical solution [Eq. (69)]. Circles denote the numerical solution. Panel (a): MRT-CM (𝐿2 = 2.66 × 10−7). Panel (b): MRT-RM
(𝐿2 = 2.66 × 10−7). Panel (c): BGK (𝐿2 = 5.13 × 10−4 and Pe = 1.03923 ≠ 1 in this case).

Fig. 12. Mesh convergence solutions of the time-decaying wave problem for 𝑡 = 0.01. Symbols: circles (black) use the free parameters {𝜔0 , 𝛬1 , 𝛬} that lead to TE3 = 0 and TE4 = 0,
iamonds (blue) use 𝜔0 = 2∕3 and 𝛬 = 1∕6, and squares (red) use 𝜔0 = 2∕3 and 𝛬 = 1∕12. Incepts quantify the converge rates given by the slopes of fitting lines obtained from
inear regression. Panel (a): MRT-CM for Pe = 1 and 𝜖 = 0.1. Panel (b): MRT-RM for Pe = 1 and 𝜖 = 0.1. Panel (c): MRT-CM for Pe = 100 and 𝜖 = 0.01. Panel (d): MRT-RM for
e = 100 and 𝜖 = 0.01.

The wave non-dimensional solution is 𝜙 = 𝜙∕𝜙0. In this work, we consider the solution wavenumber 𝑘𝑥 = 2𝜋, the initial wave magnitude 𝜙0 = 1
(simulation units), and the reference initial location 𝑥0 = 𝑥0∕𝐿 = 1

2 (in non-dimensional units). The non-dimensional spatial domain coordinate is
𝑥 = 𝑥∕𝐿 ∈ [0, 1], with domain length 𝐿 discretized as follows 𝐿 = 𝑁𝑥 𝛥𝑥. Periodic boundary conditions are applied at both ends of the domain
and the problem initial condition is given by Eq. (69) with 𝑡 = 0. Note that, for a given time evolution 𝑡, the solution 𝜙 is uniquely governed by
Pe, which is set as follows Pe = 𝑢∕𝑐

𝜖 𝑁𝑥 = 𝑢 𝛥𝑥 𝑁𝑥
(1−𝜔0) 𝑐2 𝛬1 𝛥𝑡

= 𝑢 𝐿
 . The other numerical parameters considered in this test are similar to those indicated

before in Section 7.1.
Fig. 11 illustrates the LBM solutions, over the different collision operators, employing the free parameters {𝜔0, 𝛬1, 𝛬} that lead to the 4th order

ccurate solution, against the analytical profile, given by Eq. (69), for Pe = 1 and 𝜖 = 0.1. The inability of the BGK collision operator to simultaneous
ulfil the 4th order accurate condition and to exactly satisfy the intended Pe number is once again verified.

Fig. 12 depicts the evolution of the LBM numerical error for the MRT-CM and MRT-RM models at a given Pe as function of the 𝑁𝑥 mesh
esolution. The BGK model is not considered in this analysis for its inability to keep solutions parametrized by Pe as explained in Section 7.1. The

numerical solutions in Fig. 12 share the trends displayed in Fig. 10 of Section 7.1. Both benchmark tests confirm the theoretical results presented
in Section 5 in that the proper tuning of the free parameters {𝜔0, 𝛬1, 𝛬} that lead to TE3 = 0 and TE4 = 0 will recover 4th order accurate solutions;
otherwise, the LBM solutions support a 2nd order accuracy. Numerical simulations appear to suggest that the MRT-CM model is less sensitive to the
e number effect than the MRT-RM collision model. Yet, at the same time, the MRT-CM model is the more sensitive from a stability perspective,

particularly when operating at larger advection velocities, as discussed in Section 6.1.

8. Conclusions

This paper performed a detailed theoretical analysis on the central moment (CM) space formulation of the LBM to model the 1D ADE, with a
onstant velocity and diffusion coefficient, based on the D1Q3 model. The research goal was threefold.
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First, the discrete approximation of the CM-LBM towards the macroscopic ADE was clarified, without recurring to asymptotic analysis
approaches, such as the Chapman–Enskog expansion. To this end, we derived the equivalent finite difference (EFD) scheme of the CM-LBM model.

he developed consistency analysis allowed us to arrive at the following conclusions:

• In the D1Q3 setting, the CM-LBM satisfies an explicit four-level finite different (FLFD) scheme at discrete level, which is identical to the
discrete structure of its raw moment (RM) space counterpart. The difference is that CM-LBM includes some extra velocity-dependent terms
in the coefficients of the FLFD scheme.

• When the single-relaxation-time BGK collision is employed, these extra terms in CM-LBM formulation vanish. As a result, either CM or RM
space formulations of the BGK scheme lead to exactly identical results (as they are governed by the exact same discrete schemes).

• The steady-state limit of this EFD scheme provides the modelled steady ADE of the considered LBM schemes. The CM-LBM recovers a steady
ADE with an effective diffusion coefficient featuring an unphysical velocity dependency. This artefact can be made absent from the RM space
formulation with a linear velocity equilibrium. Such a result discourages the use of the CM-LBM for steady-state ADE problems.

Second, the accuracy of the CM-LBM (and other collision models) with respect to the time-dependent ADE was investigated. To this end, we
derived the equivalent partial differential (EPD) equations satisfied by these numerical schemes and examined the leading order truncation errors
associated with each LBM collision model. The developed accuracy analysis provided the following conclusions:

• Among the studied models, the error structure of the CM-LBM displays the simpler and more compact form. This is particularly evident in
the dispersion error term, which seems to justify the, often reported, improved Galilean invariance of the CM model.

• Through a suitable combination of the MRT free parameters, i.e. the weight coefficient and the two relaxation parameters, the CM-LBM
accuracy can be improved from second- to fourth-order. The MRT-RM scheme also manages to improve its accuracy through this procedure.
This contrasts with the REG and BGK collision models, which are unable to reach fourth-order accuracy by tuning its free parameters.

Third and final, the necessary and sufficient stability conditions of the CM-LBM, alongside with other collision models, were studied based on
the von Neumann stability analysis of the EFD schemes previously derived. The stability analysis developed herein led to the following conclusions:

• Compared to the MRT-RM, the MRT-CM features extra terms that scale as 𝑢6∕𝑐6, 𝑢4∕𝑐4 and 𝑢2∕𝑐2. These terms may help stabilizing the solution,
for 𝑢∕𝑐 ≤ 0.5, when the transport coefficient 𝜖 is small. However, for 𝑢∕𝑐 > 0.5, they tend to dominate the overall stability condition, without
a proper balance, causing the quick blow up of the solution (regardless the 𝜖 coefficient).

• Unlike the MRT-RM, the MRT-CM does not have an ‘‘optimal stability condition’’, meaning it does not support a specific relaxation combination
where its stability condition becomes unaffected by the individual relaxation rates values, and only controlled by the equilibrium parameters
alone.

The aforementioned theoretical conclusions were all confirmed by numerical tests presented at the end of the manuscript. The benchmarks
considered herein consisted of a Gaussian pulse and a sinusoidal wave, both cases defined over unbounded and infinite spatial domains. This way
theoretical and numerical conclusions could be directly connected.

As next step in this study, we plan to extend the present work to 2D and 3D domains [60,62]. Nonetheless, as shown by Ginzburg and
co-workers [45,71,73], the D1Q3 stability curves are able to provide reliable pictures (of the advection properties) of the multi-dimensional
models, which underlines the value of the conclusion of the present study. Along the same lines, we also plan to extend this investigation to
the approximation of other kinds of physical equations, such as the Navier–Stokes equations [59,60]. In this context, we note that for problems

here the advection velocity is unknown, not only the analysis of the LBM-CM will become significantly more complex [59] but, more importantly,
also its operation will become computationally more demanding due to the need to recompute the velocity matrix over each grid node at each
ime step. Hence, we foresee that future studies in this field should also focus on efficient ways to handle the LBM-CM implementation, where
pplications with the ADE are again a favourable starting point [74].
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