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O Green World
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Abstract

As global environmental challenges intensify, monitoring terrestrial ecosystems has become crucial for ad-
dressing climate change. Spaceborne LiDAR missions, such as NASA’s Global Ecosystem Dynamics Inves-
tigation (GEDI), play a key role in quantifying Earth’s vegetation structure and land cover. GEDI provides
high-resolution measurements of forest structure and topography, but these readings are often affected by
geolocation errors caused by satellite platform instability and atmospheric interference, compromising the
accuracy of canopy height and terrain elevation estimates. Existing geolocation correction methods, such
as the GEDI Simulator, apply orbit-level corrections, which prove inadequate for heterogeneous landscapes.

This dissertation introduces GEDICorrect, a novel framework for footprint-level geolocation correction. By
integrating new criteria, including RH profile and terrain matching, and utilizing parallel processing meth-
ods, the framework overcomes the limitations of existing methods like the GEDI Simulator. GEDICorrect
demonstrates superior performance across all tests, positioning it as a more viable and essential tool for
accurate vegetation monitoring and ecosystem assessment.

Keywords: Parallel Programming, Geolocation Correction, Remote Sensing, Simulation, Data Processing
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Sumário

Melhoria da Precisão do GEDI Combinando
Diferentes Critérios de Correção de Geolocalização

e Programação Paralela
À medida que os desafios ambientais globais se intensificam, a monitorização dos ecossistemas tornou-se
crucial para enfrentar as alterações climáticas. As missões LiDAR espaciais, como o Global Ecosystem
Dynamics Investigation (GEDI) da NASA, desempenham um papel fundamental na quantificação e moni-
torização da estrutura tridimensional da vegetação. O GEDI fornece medições de alta resolução da estrutura
e topografia da floresta, mas essas leituras são frequentemente afetadas por erros de geolocalização causa-
dos pela instabilidade da plataforma e interferência atmosférica, comprometendo a precisão das estimativas
da altura da vegetação e do solo. Os métodos existentes de correção de geolocalização, como o GEDI
Simulator, calculam o erro médio (em metros) da geolocalização dos footprints por órbita, o que se tem
vindo a mostrar inadequado para paisagens heterogéneas.

Esta dissertação apresenta o GEDICorrect como uma nova abordagem para a correção de geolocalização à
escala do footprint. Ao integrar novos critérios, e utilizar métodos de programação paralela, a abordagem
proposta supera as limitações dos métodos existentes, como o GEDI Simulator. O GEDICorrect demonstrou
um desempenho superior em todos os testes, tornando-o como uma ferramenta robusta e essencial para a
monitorização da vegetação e avaliação dos ecossistemas.

Palavras chave: Programação Paralela, Correção Geolocalização, Deteção Remota, Simulação, Processa-
mento de Dados
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1
Introduction

As environmental concerns continue to intensify, the need for effective monitoring of terrestrial ecosystems
has become more urgent. Remote sensing technologies, particularly spaceborne LiDAR, have emerged as
essential tools for evaluating changes in forest structure and land cover. These technologies provide critical
insights that support conservation efforts and contribute to climate change mitigation strategies.

1.1 Context

Terrestrial ecosystems - such as forests, shrublands, grasslands, and wetlands - are essential components of
the Earth’s biosphere [Kyker-Snowman et al., 2021]. These ecosystems provide critical services, including
carbon sequestration, nutrient and water cycling, and biodiversity conservation, all of which are vital to
human well-being and the functioning of the planet’s natural systems [Chapin et al., 2011]. Despite their
importance, terrestrial ecosystems are increasingly threatened by human activities such as deforestation,
land-use change, and climate change. Understanding the impacts of rapid changes in the extent and
structure of these ecosystems on climate, habitats, and biodiversity is crucial for developing effective
conservation and mitigation policies.
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One key aspect of monitoring terrestrial ecosystems is quantifying three-dimensional (3D) vertical veg-
etation structure. Parameters such as vegetation height, canopy cover, density, and heterogeneity are
crucial for many ecosystem processes and modeling studies (e.g., [Guo et al., 2021]). For instance, veg-
etation height is a fundamental variable for: i) estimating aboveground biomass (AGB), which is es-
sential for assessing and modeling global carbon fluxes [Lefsky et al., 2005, Simard et al., 2011]; ii) as-
sessing and characterizing habitat structural heterogeneity, an important factor in explaining biodiver-
sity spatial patterns [Bergen et al., 2009, Carrasco et al., 2019]; iii) improving the accuracy of microcli-
mate condition estimates, such as temperature, humidity, and radiation regimes [Zellweger et al., 2019,
De Frenne et al., 2021]; and iv) supporting fire management activities, as vegetation height is a key in-
put for fire spread simulations [Saatchi et al., 2007]. Thus, accurately monitoring and understanding the
complexity of terrestrial ecosystem processes, dynamics, and vulnerabilities, as well as developing effective
management strategies, largely depends on the availability of timely, high-resolution data on 3D vegetation
structure parameters, such as vegetation height (e.g., [Hall et al., 2011]).

While field-based measurements can provide accurate estimates of 3D vegetation metrics, these meth-
ods are time-consuming, labor-intensive, and limited in their ability to provide spatially continu-
ous information over large areas. Satellite remote sensing offers advanced technology with the po-
tential to deliver vegetation vertical metrics effectively, systematically, and consistently on a large
scale [Szpakowski and Jensen, 2019]. Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar
(SAR) have shown strong capabilities for estimating vegetation structure parameters due to their sen-
sitivity to surface structure [Pardini et al., 2019]. LiDAR, in particular, has emerged as a widely used
technology for acquiring three-dimensional information, providing high-accuracy data on vegetation struc-
ture [Dong and Chen, 2017].

LiDAR systems emit laser pulses (circular pulses, or footprints) that can penetrate vegetation canopies
through gaps between leaves and branches, enabling accurate estimation and reconstruction of verti-
cal information and the internal structure of vegetation canopies [Moudrý et al., 2022]. Spaceborne Li-
DAR sensors, mounted on satellites, extend these capabilities further by providing accurate measure-
ments of the Earth’s surface and vegetation structure on a global scale. In 2018, NASA launched
two significant spaceborne LiDAR missions: the Ice, Cloud, and Land Elevation Satellite (ICESat-
2) [Neumann et al., 2019], and the Global Ecosystem Dynamics Investigation (GEDI) instrument attached
to the International Space Station (ISS) [Dubayah et al., 2020]. Both missions have been collecting and
delivering extensive LiDAR datasets at a near-global scale, presenting an unprecedented opportunity to
assess and estimate key vertical vegetation metrics across large areas, free of cost, and with high temporal
frequency [Potapov et al., 2021, Malambo and Popescu, 2024].

However, spaceborne LiDAR data often require correction due to various sources of error, including in-
strument inaccuracies, atmospheric conditions (e.g., dense cloud cover), and spacecraft platform instabil-
ity [Xu et al., 2023]. One of the primary challenges in using spaceborne LiDAR data, particularly from GEDI,
is the geolocation errors associated with the measurements [Tang et al., 2023, Ruoqi Wang and Li, 2024].
The reported coordinates may not represent the exact location of the measurements but rather a nearby
location in the surrounding area (see Sections 2.2.2 and 5.2). Currently, GEDI’s horizontal geolocation
accuracy is approximately 10 meters for calibrated final products [Beck et al., 2021], which can introduce
errors when assessing the accuracy of canopy height and terrain elevation estimates.

Efforts to improve GEDI’s geolocation accuracy have been developed and implemented by the scientific com-
munity [Hancock et al., 2019, Quirós Rosado et al., 2021, Xu et al., 2023]. Notably, the GEDI Simulator
tool, developed by the GEDI Science Team [Hancock et al., 2019], which incorporates the collocateWaves
program, has been widely used to reduce geolocation errors in GEDI data. This approach assumes a sys-
tematic error across the orbit [Tang et al., 2023] and aims to find a coordinate offset to apply to the entire
orbit to correct horizontal deviations (see Section 3.1). However, the assumption of a uniform system-
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atic error across the orbit is likely too optimistic and may not hold true [Tang et al., 2023]. As a result,
footprint-level correction methods have been implemented, where the offset is calculated for each individual
footprint rather than for the entire orbit (e.g. [Quirós Rosado et al., 2021]).

1.2 Motivation

Despite being NASA’s official tool for addressing geolocation errors in GEDI data, the GEDI Simulator
presents several limitations that hinder its practicality and reliability. One significant barrier is the com-
plexity of running the program, which may be inaccessible to many remote sensing scientists due to a lack
of user-friendly documentation and interfaces. Additionally, the GEDI Simulator is inefficient, consuming
excessive memory and operating slowly, making it unsuitable for large-scale applications. Moreover, us-
ing an orbit-level correction method, it lacks the precision needed for individual footprints, reducing its
effectiveness in areas with high land cover heterogeneity. These limitations have motivated the creation of
GEDICorrect, a framework designed to enhance geolocation accuracy at the footprint-level, which repre-
sents the main contribution of this study. The development of this framework was driven by the need for a
more efficient, accurate, and scalable geolocation correction method that can handle large datasets while
leveraging parallel processing techniques, and introduces new methods, criteria, and metrics for improving
footprint geolocation accuracy. By enhancing geolocation precision, this framework enables a better assess-
ment of canopy structure, that can be applied to a wide range of fields, from advancing our understanding
of carbon sequestration to supporting more informed planning and conservation efforts.

1.3 Objectives

The main goal of this study is to develop and test a new footprint-level correction approach, to improve
GEDI geolocation accuracy. To achieve such goal, the following specific objectives were defined:

1. Assess the effectiveness of the standard geolocation correction process (collocateWaves) in improv-
ing the accuracy of the GEDI footprints (Baseline Assessment);

2. Introduce new criteria and assess how different combinations improve the accuracy of footprint
geolocation (Criteria Assessment);

3. Leverage parallel processing to optimize the GEDICorrect framework and evaluate its efficiency (Ef-
ficiency Assessment);

4. Evaluate the trade-offs between the number of simulated points and computational cost, and as-
sess the impact of randomness in point generation on geolocation accuracy (Points Distribution
Assessment).

Ultimately, the proposed framework will serve as a valuable tool for ecosystem monitoring, providing insights
into vegetation structure and land surface elevation, both of which are crucial for global environmental
assessments.

1.4 Contributions

This work makes several key contributions to the field of GEDI data processing and geolocation correc-
tion. The main contribution is the design and implementation of this dissertation’s proposed framework,
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GEDICorrect, which enhances the geolocation accuracy of GEDI data. The second main contribution
is the introduction of new methods, criteria, and metrics specifically designed to address limitations of
existing geolocation correction techniques, such as GEDI Simulator, by incorporating them in the newly
implemented solution. By focusing on correction at the footprint-level, rather than orbit-level, this study
offers a fine-grained alignment of GEDI data with actual ground readings. The flexibility of GEDICorrect
allows for multiple correction strategies, making it adaptable to different landscape types and measurement
requirements, supporting applications in vegetation structure analysis, biomass estimation, and canopy
height modeling.

Before developing GEDICorrect, a review of current GEDI geolocation correction methods and tools was
made. This review synthesizes the state-of-the-art approaches and provides the foundation for this study.
The analysis of existing methods reveals gaps in precision and adaptability, which GEDICorrect addresses.

Furthermore, this work contributes a merged dataset combining GEDI L1B and L2A data products, referred
to as GEDI_CorrectTest. This dataset was created for the experiments in this research, providing a
consistent testing environment for the proposed metrics, such as vegetation profile characteristics, terrain
elevation, and GEDI waveform properties. This dataset lays the groundwork for a new approach to GEDI
data analysis by integrating different data levels to improve geolocation correction.

Finally, a comparative analysis was conducted to assess the performance of existing correction methods
(e.g., GEDI Simulator) against GEDICorrect. This analysis proves the superiority of the new framework with
its improved accuracy and adaptability, highlighting its potential for broad applications in Earth observation
and remote sensing research.

1.5 Dissertation Structure

This dissertation consists of six main chapters, with their organization designed to highlight the value of the
newly proposed approach in improving GEDI geolocation accuracy. The chapters are organized as follows:

• Chapter 1 (this chapter) provides a general introduction, including the context for the research,
motivation, main objectives, and the overall structure of the document;

• Chapter 2 presents the background of the key topics relevant to this work. It includes a brief
overview of remote sensing technology, a description of the GEDI spaceborne LiDAR sensor, and an
introduction to the concept of parallelization;

• Chapter 3 delves into the design and functionality of the primary frameworks for GEDI geolocation
correction. First, the existing GEDI Simulator’s geolocation correction methods are analyzed to
establish a performance benchmark. Then, the newly proposed GEDICorrect framework is introduced,
offering footprint-level correction methods and leveraging parallel processing to enhance performance
and scalability;

• Chapter 4 outlines the methodology, detailing the integration of the frameworks with the dataset
and the experimental setup. It begins by presenting the study area and data collection methods,
followed by a description of the use of both frameworks. Finally, a series of experiments are defined
to evaluate the performance of GEDICorrect’s geolocation correction methods;

• Chapter 5 presents the main results from each experiment and discusses them in comparison with
existing literature on the subject;
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• Chapter 6 summarizes the main conclusions of the comparative analysis between GEDI Simulator and
the proposed GEDICorrect framework in terms of accuracy and efficiency. The chapter concludes
with suggestions for future research.





2
Background

This chapter presents the theoretical foundations and definitions used throughout the dissertation. The
content is structured to provide an overview to remote sensing technologies such as Airborne Laser Scan-
ning (ALS) and the GEDI spaceborne LiDAR mission. Additionally, it introduces the concepts of parallel
processing that were fundamental to the development and optimization of the proposed framework.

2.1 Remote Sensing

Satellite-based Earth observation involves studying the Earth and its environment through remote sensing
techniques. Remote Sensing is a technique that allows identifying, measuring, and observing objects, areas,
or phenomena, without direct contact, typically through the analysis of data acquired by sensors located
remotely [Schott, 2007, Lillesand et al., 2015]. Earth-orbiting satellites equipped with electromagnetic sen-
sors collect data by detecting the electromagnetic radiation emitted or reflected by surface features. This
data is then analyzed to derive valuable information about the areas or phenomena being studied. While
field-based data collection and near-surface instrumentation can provide valuable insights into natural pro-
cesses, such as ecosystem structure, functions and dynamics, these methods are often time-consuming,

7
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labor-intensive, and limited in their ability to deliver spatially continuous information over large areas.
Remote sensing enables us to obtain a broad view of the Earth at varying spatial and temporal scales
for monitoring environmental changes, studying vegetation dynamics, and addressing challenges related to
climate change, land cover changes, and biodiversity conservation.

Sensors in remote sensing are capable of recording objects through Electromagnetic Radiation (ER) across
a wide range of wavelengths far beyond the visible spectrum (Figure 2.1). This capability is achieved by
measuring the ER reflected or emitted from an object. The interaction between this radiation and the
object - whether it is absorbed, transmitted, or reflected - provides crucial information about the object’s
properties [Lillesand et al., 2015]. The collection of these electromagnetic readings depends on the type of
sensor used, each with its unique method of acquiring information.

Figure 2.1: The Electromagnetic Spectrum [Samvedan, 2020]

There are two main types of sensors in remote sensing:

• Passive Sensors - which detect natural radiation emitted or reflected by objects, typically using
sunlight as the source of illumination.

• Active Sensors - which emit their own signals (such as laser pulses or radar waves) and measure
the reflection from the target, allowing precise measurements even in the absence of external light
sources.

Remote sensing sensors, whether passive or active, operate across different regions of the electromagnetic
spectrum. Passive sensors primarily capture energy within the visible, infrared, and thermal regions of the
spectrum, while active sensors often operate in the microwave and infrared regions. LiDAR systems, for
instance, normally uses laser pulses in the near-infrared range (typically around 1064 nm) and/or green
('532 nm) to generate highly accurate 3D models of terrain and vegetation [Cracknell, 2007]. Active sen-
sors such as airborne and spaceborne LiDAR systems, which excel in generating detailed 3D representations
of the Earth’s surface, will be the focus of this dissertation.

Remote sensing instruments can be mounted on a variety of platforms, from ground-based stations to
aircraft and satellites (Figure 2.2). Airborne Laser Scanning (ALS) systems, for example, are LiDAR
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Figure 2.2: Main remote sensing instrument platforms [Lechner et al., 2020]

sensors installed on aircraft that fly over specific terrestrial ecosystems to capture high-resolution 3D data.
On the other hand, spaceborne LiDAR technologies, such as GEDI [Dubayah et al., 2020] and ICESat-
2 [Abdalati et al., 2010], provide global-scale LiDAR data, albeit with lower resolution compared to airborne
systems. The choice of the platform involves a trade-off between coverage, resolution and cost. Airborne
LiDAR systems deliver highly detailed and accurate data but are limited to smaller geographic areas due
to high acquisition costs [Gwenzi et al., 2016], while spaceborne LiDAR offers near-global coverage in high
spatial resolutions.

Regardless of the platform, remote sensing data must be accurately georeferenced for analysis. This is
done using a Coordinate Reference System (CRS), which defines how spatial data is projected onto a
map [Chang, 2018]. The most widely used CRS is the World Geodetic System 1984 (WGS84)1, which
expresses its coordinates in latitude, longitude, and ellipsoidal height. Additionally, specific studies may
employ different systems for improved precision. For instance, certain geodetic applications rely on EPSG2

Geodetic Parameter Datasets, which is a public registry of spatial reference systems and related units of
measurement. Each entity is assigned an EPSG code between 1024 and 327673. For example, the CRS with
code EPSG:3041 is a map projection used for datasets covering regions like Portugal. Once georeferenced,
this data can be explored and analyzed using Geographic Information Systems (GIS) software, such as
QGIS4, which was used throughout this work for data visualization and processing during the geolocation
correction process.

1https://svenruppert.com/2023/12/18/what-is-wgs84-an-overview/
2European Petroleum Survey Group
3https://proceedings.esri.com/library/userconf/petrol13/papers/petrol_10.pdf
4https://www.qgis.org/

https://svenruppert.com/2023/12/18/what-is-wgs84-an-overview/
https://proceedings.esri.com/library/userconf/petrol13/papers/petrol_10.pdf
https://www.qgis.org/
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2.1.1 Lidar Principles and Applications

Given the strong focus of this dissertation on remote sensing LiDAR technology, this section provides
a brief introduction to the topic. However, it does not aim to offer the comprehensive and exhaustive
characterization that such technology warrants. For a more in-depth analysis, key publications in the field
(e.g., [Dong and Chen, 2017]) should be consulted. In general, LiDAR instruments measure the distance
between the sensor and a target surface by calculating the time interval between the emission of a laser pulse
and the detection of its reflection, known as the return signal, at the sensor’s receiver [Bachman, 1979].
This time interval is used to compute the round-trip distance, which, when halved, gives the actual distance
to the target. The distance is derived using the speed of light, as shown in Equation 2.1:

d =
(c× telapsed)

2
(2.1)

where c is the speed of light (c = 299 792 458 m/s) and telapsed is the time interval between emission
of laser pulse and return signal. The laser pulse is assumed to be circular, which is also called the laser
footprint [Wehr and Lohr, 1999].

The key characteristics among LiDAR instruments [Lefsky et al., 2002] are related to:

• Laser’s Wavelength - measured in nanometers, usually emitted between 900–1064 nanometers for
terrestrial applications, which is part of the near-infrared spectrum. One of the major drawbacks of
using these wavelengths is that clouds absorb the signals, making it difficult to use the devices in
cloudy conditions [Lefsky et al., 2002]. For bathymetric sensors, the emitted wavelength ranges near
532 nm for better penetration of water [Irish and White, 1998];

• Power - determines how far the pulse can travel and still return a detectable signal, affecting the
range and ability to penetrate dense vegetation [Wehr and Lohr, 1999];

• Pulse Duration - refers to the length of time the laser emits a single pulse (measured in ns);

• Repetition Rate - explains how frequently the laser emits pulses, with higher repetition rates resulting
in denser point clouds (measured in Hz);

• Beam Size - measured in meters, defines the area covered by each laser pulse on the ground (footprint
size). The higher in altitude the instrument is, the larger the footprint [Lim et al., 2003];

• Divergence Angle - is the spread of the laser beam as it travels on the instrument’s platform.

Among these, the beam size is especially significant when differentiating between small-footprint and
large-footprint LiDAR systems. Small-footprint LiDAR measurements typically cover an area of less than 1
meter in diameter and is commonly used in Drone-mounted and ALS systems, resulting in highly detailed
point clouds. In contrast, large-footprint LiDAR, which can be mounted on aircraft at higher altitudes or
used in spaceborne missions, cover footprint areas ranging from 10 to 100 meters in diameter. This wider
beam size allows large-footprint systems to capture broader patterns over extensive areas, making them
suitable for vegetation structure analysis at a large scale.

When mounted on an aircraft, ALS systems rely on precise navigation and positioning technology to ensure
that each laser pulse is accurately geolocated, which is achieved through a combination of GPS (Global
Positioning System) and an IMU (Inertial Measurement Unit). The GPS provides spatial coordinates, while
the IMU accounts for the aircraft’s roll, pitch, and yaw during flight. Together, these systems allow for the
precise geolocation of each LiDAR point [Lefsky et al., 2002], as demonstrated in Figure 2.3.
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Figure 2.3: Typical Airborne Laser Scanning system [Roman and Ursu, 2016]

In addition to the differences in footprint size, LiDAR systems can also be categorized based on how
they capture and process the reflected laser energy: i) Discrete-return; ii) Full Waveform; and iii) Photon
Counting [Sumnall et al., 2016, Mandlburger et al., 2019] (Figure 2.4).

In discrete-return LiDAR, the instrument records a limited number of reflection points per laser pulse
(typically 1 to 5), corresponding to high-intensity reflections from different surfaces across the vertical
vegetation axis. Each return is typically categorized into classes such as canopy top, intermediate veg-
etation layers, or the ground. This method is the most widely used in ALS systems, which commonly
produce small-footprint data [Sumnall et al., 2016]. In contrast, full waveform-return LiDAR captures the
full energy profile of the laser pulse as it reflects back to the sensor. Instead of recording discrete points,
it digitizes the entire returning waveform at regular intervals, providing continuous vertical information
across the footprint. This technique allows for a more detailed characterization of the vertical struc-
tures [W. Wagner and Ducic, 2008]. Finally, photon-counting LiDAR systems detects individual photons
within each laser pulse, often emitted in a grid pattern across the surveyed area. Due to its high sensitiv-
ity and ability to operate with low-energy pulses, photon-counting LiDAR can achieve greater range and
broader coverage [Mandlburger et al., 2019]. However, this method is also highly susceptible to noise from
ambient light or atmospheric conditions [Jiang et al., 2023]. An example of this technology is the ATLAS
sensor from the ICESat-2 mission, which employs photon-counting LiDAR [Smith et al., 2019].

Typically, the processing team of a company conducting an ALS scan over an area provides the point-cloud
data in .las files. A .las file is a standardized binary file format used to store LiDAR data, containing
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Figure 2.4: Various modalities of LiDAR detection [Neuenschwander et al., 2023]

detailed 3D coordinates (X, Y, Z) of laser return points, along with additional attributes like intensity,
return number, classification, GPS time, and color information5.

2.2 GEDI

The Global Ecosystem Dynamics Investigation (GEDI) is the first spaceborne LiDAR technology specif-
ically designed to globally measure and monitor the three-dimensional structure of the vegetation and
topography, providing crucial insights into Earth’s carbon storage, ecosystem structure, and biodiver-
sity [Dubayah et al., 2020]. Successfully launched from Cape Canaveral, GEDI was carried in the Dragon
capsule of SpaceX CRS-16 on a Falcon 9 rocket and subsequently installed in the Japanese Experiment
Module-Exposed Facility (JEM-EF) on the ISS in December 2018. GEDI measurements are conducted
day and night, continuously covering the Earth’s land surfaces between 51.6° N and 51.6° S latitudes,
encompassing the tropical and temperate forests of the Earth. As with all optical remote sensing, GEDI
observations cannot be made through dense cloud cover [Lefsky et al., 2002, Dubayah et al., 2020]. The
sensor employs a system with three main lasers, producing eight parallel beams (four ”coverage” beams
and four ”full power” beams) for surface readings. These beams illuminate an area on the Earth’s sur-
face equivalent to a circle of approximately 25 meters in diameter, known as the footprint. The laser
sensors used by GEDI are the High Output Maximum Efficiency Resonator (HOMER) with pulse length
of 15.6 ns and pulse repetition rate of 242 Hz, emitting a laser beam at wavelength of 1064 nm (near-
infrared) [Stysley et al., 2015, Duncanson et al., 2020], allowing for three-dimensional measurements of
the surface. The distance between each footprint center is about 60 meters along the flight direction, and
they are spaced approximately 600 meters across the track direction from each other (see Figure 2.5).

Due to the ISS not having a regular orbit, GEDI does not guarantee a revisit cycle for new acquisitions in
the same location [Dubayah et al., 2020]. Figure 2.6 demonstrates an example of GEDI track coverage.

In GEDI, an onboard telescope collects and records light reflected from the ground, vegetation, and, in

5https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml

https://www.loc.gov/preservation/digital/formats/fdd/fdd000418.shtml
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Figure 2.5: GEDI ground sampling pattern. The circles represent the GEDI footprints (with a diameter of
25 meters) https://gedi.umd.edu/instrument/specifications/.

Figure 2.6: Illustration of the GEDI coverage (left) and an example of a GEDI track on the Equator (right).
Adapted from [Dubayah et al., 2020].

many cases, clouds. The recorded light, representing the laser energy reflected by the surface of objects
within the footprint at different heights, is converted into voltage and recorded over time in 1 nanoseconds
(ns) intervals. Following this conversion, the height of objects is calculated by multiplying the recorded
time and the speed of light, producing the full waveform [Fayad et al., 2020]. Figure 2.7 demonstrates this,
the left plot of the figure represents a GEDI LiDAR full-waveform example. The orange area beneath the
curve represents the energy reflected back from the canopy, while the darker brown portion indicates the
return signal from the underlying terrain. The black line records the cumulative return energy, spanning
from the base of the ground return (normalized to 0) to the top of the canopy (normalized to 1). Relative
Height (RH) metrics provide insights into the height at which a specific quantile of the returned energy is
reached concerning the ground (center of the ground return). The accompanying diagram on the right of
Figure 2.7 visually represents the distribution of trees responsible for generating the waveform on the left.

From the waveform recorded in each footprint, a set of vertical structure metrics can be de-
rived [Drake et al., 2002, Tang et al., 2012]. These include vegetation canopy height, canopy cover, plant

https://gedi.umd.edu/instrument/specifications/
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Figure 2.7: Representation of a GEDI LiDAR full-waveform and its respective distribution of trees respon-
sible for generating such waveform. Adapted from https://gedi.umd.edu/data/products/.

area index and vertical foliage profiles, topography, as well as footprint-level and gridded Aboveground
Biomass Density (AGBD) besides others [Dubayah et al., 2020].

Specifically, GEDI offers seven main scientific data products, which encompass:

• L1A Raw Waveforms - Level 1A product contains fundamental instrument engineering and house-
keeping data as well as the raw waveforms of each footprint of 25m diameter and geolocation
information, used to compute higher level data products;

• L1B Geolocated Waveforms - Level 1B product provides geolocated corrected and smoothed
waveforms from L1A data. The L1B product contains 85 layers for each of the eight beams, including
the geolocated and smoothed waveform datasets and parameters;

• L2A Geolocated Elevation and Metrics - contains waveform interpretation metrics from each L1B
received waveform, including ground elevation, canopy top height and relative height (RH) metrics.
The L2A product contains 156 layers for each of the eight beams, including the metrics described
previously;

• L2B Canopy Cover and Vertical Profile Metrics - this product includes extracted biophysical
metrics from each GEDI waveform. These metrics are based on the directional gap probability profile
derived from the L1B waveform. Metrics provided include canopy cover, Plant Area Index (PAI),
Plant Area Volume Density (PAVD), and Foliage Height Diversity (FHD);

• L3 Gridded Level 2 Metrics - This dataset provides GEDI Level 3 (L3) gridded mean canopy height,
standard deviation of canopy height, mean ground elevation, standard deviation of ground elevation,
and counts of laser footprints per 1km x 1km grid cells globally within -52 and 52 degrees latitude;

https://gedi.umd.edu/data/products/
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• L4A Footprint Level AGBD - this product contains GEDI Level 4A (L4A) Version 2 predictions of
the aboveground biomass density (AGBD; in Mg/ha) and estimates of the prediction standard error
within each sampled geolocated laser footprint;

• L4B Gridded AGB Density - provides 1 km x 1 km estimates of mean AGBD based on observations
from 2019-04-18 to 2023-03-16. The GEDI L4A Footprint Biomass product converts each high-
quality waveform to an AGBD estimate, while the L4B product uses the sample present within the
borders of each 1 km cell to statistically infer mean AGBD.

One of the most crucial metrics included in GEDI Level 2 data products is the RH profile. The RH profile
represents the height distribution at which a specific percentage of the returned laser energy is reflected
by the vegetation and/or ground surfaces, ranging from RH0 (the ground level) to RH100 (the highest
detected return). For example, an RH50 of 7.5 meters indicates that 50% of the total energy from the
laser pulse was reflected by the surfaces below 7.5 meters. This metric provides insight into the vertical
structure of the vegetation canopy, helping in estimating canopy height and biomass.

The GEDI instrument was specifically engineered to measure vertical canopy profiles in conditions with
canopy cover reaching up to 95% and 98% for the coverage and power beams, respectively. Its design was
fine-tuned for optimal performance in measuring dense forests, drawing on over two decades of research
utilising airborne large footprint waveform LiDAR [Drake et al., 2002, Dubayah et al., 2020]. With a short
pulse length (Full Width Half Maximum, FWHM, of 15.6 ns), GEDI can effectively discriminate between
canopy and ground returns in forested ecosystems. However, it’s important to note that the instrument’s
design did not prioritise the characterization of short stature and discontinuous vegetation, although it
could offer valuable and accurate insights into the characterization of lower stature and discontinuous
vegetation [Li et al., 2023, Zhu et al., 2023].

2.2.1 Factors affecting GEDI canopy height estimates

Since GEDI is a spaceborne lidar system, its measurements are subject to several factors that can affect the
accuracy of canopy height estimates. Being mounted on the ISS, GEDI collects data from a higher altitude
compared to ALS systems, leading to greater susceptibility to geolocation errors and signal distortions.
Overall, there are seven main factors that can affect GEDI signal and, consequently, the accuracy of key
derived products, such as canopy height and terrain elevation (in the L2A product). These factors include:

• GEDI pre-processing algorithms - GEDI employs 6 different pre-processing algorithms to derive
L2A and L2B ground and vegetation metrics from the L1B received waveforms [Hofton et al., 2019].
These algorithms, collectively known as algorithm setting groups (SG), represent specific parameter
values for both smoothing and threshold settings used to interpret the received waveform under
various conditions (Figure 2.8). For instance, the results of the linear models comparing the on-orbit
GEDI canopy height measurements and ALS-derived canopy height were found to range varyingly,
depending on the algorithm employed [Lahssini et al., 2022];

• Slope - Terrain slope has a strong impact on large footprint LiDAR systems, where steep ter-
rains can broaden the LiDAR waveform, thereby affecting the accurate extraction of canopy
heights [Adam et al., 2020, Dhargay et al., 2022, Fayad et al., 2021, Wang et al., 2022]. It has been
reported that in complex terrain slopes (e.g. with slope >20%) the bias in canopy height estimations
significantly increases [Fayad et al., 2021];

• Canopy cover and height - GEDI exhibits its highest canopy height accuracy when both canopy
cover and height are within moderate levels; in low-canopy conditions the waveform energy is more
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likely to be reflected from the terrain surface rather than the canopy and vice-versa for high-canopy
conditions [Dhargay et al., 2022, Dorado-Roda et al., 2021, Zhu et al., 2022];

• Acquisition time (day or night time) - it is anticipated that measurements taken during the day are
less accurate than those conducted during the night due to additional radiance signal from sunlight
that could scatter into the GEDI telescope from the atmosphere and surface [Fayad et al., 2022];

• Beam Type - In dense forests, coverage beams, having less energy to penetrate towards the ground
when compared to power beams, are expected to yield inferior performance. Hence, the use of power
beams is generally recommended, even in night time conditions [Beck et al., 2021, Zhu et al., 2022];

• Sensitivity - Beam sensitivity, which can be interpreted as the GEDI’s penetrating capability for
ground detection, is affected by the strength of GEDI return signals and canopy cover, so an ef-
fect is expected on heights measured especially over areas of dense forests, commonly seen in the
tropics [Hofton et al., 2019, V.C. Oliveira et al., 2023, Hancock et al., 2019].

• Geolocation Errors - Geolocation errors in spaceborne LiDAR systems such as observed in GEDI, can
compromise the linkage between GEDI-measured vegetation height and/or terrain elevation with ALS
or field-based measurements (e.g. [Shannon et al., 2024]). In fact, geolocation errors is considered
one of biggest challenges in using GEDI data [Ruoqi Wang and Li, 2024].

Figure 2.8: List of algorithm setting groups with their corresponding threshold and smoothing values used
for interpreting the received GEDI waveform. σ represents the standard deviation of the background noise
in the received waveform.

2.2.2 GEDI Geolocation Correction Methods

Numerous studies evaluating the accuracy of GEDI data report a root mean square error (RMSE) rang-
ing from 2.03 m to 10.97 m, with R² values between 0.52 to 0.93 when compared with ALS-derived
canopy heights [Dorado-Roda et al., 2021, Potapov et al., 2021, Dhargay et al., 2022]. The RMSE quan-
tifies the average magnitude of the errors between predicted and observed values (for specific RH re-
turns) [Hyndman and Koehler, 2006], while R² (coefficient of determination) indicates the proportion of
variance in the observed data explained by the model, with higher values representing better predictive
accuracy [Glantz and Slinker, 1991]6. These variations depend on the specific forest ecosystems being

6The R² and RMSE equations are described with detail in Section 4.7
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analyzed. However, studies that incorporate geolocation correction consistently show lower RMSE and
higher R² values, indicating that correcting footprint locations significantly improves the assessment of
GEDI accuracy [Wang et al., 2022, Zhu et al., 2022].

Roy et al. [Roy et al., 2021], demonstrated that GEDI’s performance is highly sensitive to horizontal ge-
olocation accuracy, with geolocation errors in canopy height estimates being particularly pronounced in
areas with high vegetation heterogeneity within GEDI footprints. As of this study, GEDI Version 2 data
exhibits a horizontal geolocation accuracy of approximately 10.3 meters (compared to '20 meters in Ver-
sion 1) for calibrated final products, and a vertical accuracy of around 50 cm. Version 3, expected to be
released soon, aims to further improve horizontal geolocation accuracy, reducing the error to approximately
8 meters [Dubayah et al., 2020, Beck et al., 2021].

Despite the anticipated improvements in Version 3 data, its utility for many applications remains limited,
particularly in arid and semi-arid ecosystems characterized by low-stature, sparse vegetation and high
horizontal heterogeneity. In these environments, an 8-meter deviation from the true GEDI measurement
locations may hinder the ability to link field-based or ALS-derived AGB data with GEDI AGB estimates (L4
product) for validation tasks. Consequently, there remains a need for not only the continued application of
existing geolocation correction methods but also the development and testing of new approaches to further
enhance GEDI product accuracy, such as the case of this dissertation.

A substantial body of pioneering and valuable studies has investigated various approaches for
validating and correcting geolocation errors in spaceborne LiDAR systems [Luthcke et al., 2001,
Sirota et al., 2005, Harding and Carabajal, 2005, Filin, 2006, Magruder et al., 2007, Chunyu et al., 2017,
Wang et al., 2020, Zhao et al., 2022, Xu et al., 2023]. For example, Zhao et al. [Zhao et al., 2022] and Xu
et al. [Xu et al., 2023] provide clear overviews of this topic, highlighting two primary methods for spaceborne
geolocation correction: terrain matching and waveform matching. The terrain matching method corrects
footprint location by minimizing the difference between ground elevation derived from a high-resolution
Digital Elevation Model (DEM) and the ground elevation reported by the spaceborne LiDAR sensor for
that footprint. Specifically, after testing different footprint locations by shifting the footprint along various
x and y horizontal coordinates, the position that yields the lowest RMSE between the DEM’s true ground
elevation and the sensor’s reported terrain elevation is selected. The waveform matching method, on the
other hand, uses the shape of the waveform to correct geolocation errors by comparing the sensor’s reported
waveforms with reference waveforms simulated by systems such as ALS. Pearson’s correlation between the
reported and simulated waveforms has been employed as a criterion [Hofton et al., 2019] to determine the
true footprint location. Similar to the terrain matching approach, the objective is to test multiple potential
footprint locations and select the one with the highest correlation. This method, the waveform matching
using Pearson’s correlation, is the one implemented within the GEDI Simulator tool.

2.3 Parallel Programming

Parallel programming is a technique that allows multiple calculations or processes to be carried out simulta-
neously, significantly reducing the runtime of large-scale tasks. In modern multicore systems, this approach
is crucial for handling computationally intensive workloads in fields like scientific simulations. As software
and hardware evolve, and the number of cores and processors increase, parallelization has become increas-
ingly critical [Grama et al., 2003, Herlihy and Shavit, 2008, Rauber and Runger, 2010]. The evolution of
the concept has been driven by the stagnation of CPU clock speeds, leading to the widespread adoption of
multicore processor architectures. Consequently, parallel programming is now a necessity for fully utilizing
the capabilities of modern hardware across a wide range of applications, from scientific research to everyday
business tasks.
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However, despite its numerous advantages, parallel programming poses several challenges. It requires a
deep understanding of concurrency, memory management, and synchronization mechanisms when common
issues arise like race conditions, deadlocks, and data consistency across multiple processes and/or threads.
These challenges make parallel programming a complex, but essential, discipline for efficient computation
in modern systems.

2.3.1 General Overview

The first step in parallel programming is designing a parallel algorithm or program for a given appli-
cation. This design begins with the decomposition of a large-scale problem into smaller, independent
parts called tasks, which can be executed in parallel across the cores or processors of the parallel hard-
ware [Rauber and Runger, 2010].

These tasks are then implemented in a parallel programming language or environment and assigned to
processes or threads. This assignment, known as scheduling, determines the order in which tasks are
executed. Additionally, parallel programs require synchronization and coordination of these threads and
processes to ensure correct execution. The method by which information is exchanged between processes
depends on the task’s organization and the memory architecture used in the system.

2.3.2 Serial and Parallel Processes

A serial process refers to a process that is executed by a single core of a single processor, where tasks are
carried out one after the other as they appear in the code. In contrast, a parallel process divides a task
across multiple cores in a processor or across multiple processors. Each subprocess may operate on its own
set of memory while sharing data with other processes as needed. To fully utilize the capabilities of modern
multicore systems and supercomputers, parallelization strategies must be employed to distribute workloads
efficiently across these resources [Barney and Frederick, 2024].

There is also a distinction between threads and processes. A key distinction in parallel programming lies
between multithreading and multiprocessing. Multithreading refers to running multiple threads within a
single process, where threads share the same memory space. Multiprocessing, on the other hand, involves
multiple independent processes, each with its own memory space. These processes can run on separate
CPU cores, allowing for better utilization of hardware resources.

2.3.3 Types of Parallelism

Parallelism in programming can generally be divided into two broad categories: data parallelism and task
parallelism:

• Data Parallelism - involves distributing data across multiple processing units where each unit per-
forms the same operation on different chunks of the data. This type of parallelism is especially
effective in scenarios where large datasets need to be processed, such as in image processing, matrix
operations, or large-scale simulations;

• Task Parallelism - refers to the execution of different tasks or operations concurrently. Unlike data
parallelism, where the same operation is applied across various data elements, task parallelism assigns
different operations or parts of a problem to different processing units.
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Figure 2.9 illustrates Data and Task parallelisms. Both types of parallelism can be combined in hybrid
systems, depending on the complexity and structure of the problem at hand.

Figure 2.9: Types of parallelism

The choice between data parallelism and task parallelism depends on the nature of the workload and the
architecture of the system. One common application of parallelism is in scientific simulations like fluid dy-
namics, climate modeling, and astrophysics, where vast amounts of data must be processed simultaneously
to simulate physical phenomena [Gropp and Smith, 1990, Jacob et al., 2012, Schaller et al., 2024], in such
simulations, the dataset can be partitioned across multiple processing units, with each unit responsible for
processing a different region of the data space. Similarly, neural networks and machine learning models
rely heavily on data parallelism to train models on massive datasets, particularly when leveraging GPUs to
process large matrices [Li et al., 2020].

2.3.4 Performance Measurement

Evaluating the performance of parallel programs is essential to understand how well the parallelization
strategy scales and utilizes hardware resources. Two widely used metrics are speedup and Amdahl’s Law
speedup, both of which compare the parallel program’s execution time to that of its sequential counterpart.

Speedup. Speedup (S) is defined as the ratio of the time it takes to execute a task on one processor
(Tsequential) to the time it takes on n processors (Tparallel):

S =
Tsequential

Tparallel
(2.2)

This gives insight into how much faster a program runs when parallelized across multiple processors. In an
ideal scenario, the speedup increases linearly with the number of processors, i.e. doubling the processors
would halve the runtime. However, due to overhead by the Operating System or communication between
processors, speedup is often sub-linear in practice.
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Amdahl’s Law. Amdahl’s Law [Amdahl, 1967] provides a theoretical limit to the speedup that can be
achieved by parallelizing a program, based on the proportion of the program that can be parallelized. If
P represents the fraction of a program that can be parallelized, then the remaining 1 − P must still be
executed sequentially. The maximum achievable speedup, as per Amdahl’s Law, is given by:

Smax =
1

(1− P ) + P
N

(2.3)

As N (the number of processors) increases, the term P
N shrinks, but the sequential part 1− P remains a

bottleneck, limiting the overall speedup. This law highlights that even with infinite processors, speedup is
limited by the portion of the program that is inherently sequential.



3
Frameworks

The systems supporting this work are essential for analysing and correcting the geolocation errors in GEDI
data. This chapter delves into the design and functionality of the two primary frameworks employed: GEDI
Simulator and GEDICorrect. First, the GEDI Simulator [Hancock et al., 2019], an existing tool, is explored,
with its standard geolocation correction methods analyzed to establish a performance benchmark for the
newly introduced framework. GEDICorrect, in turn, brings novel footprint-level correction methods and
incorporates parallel processing to enhance performance and scalability.

Understanding the foundations of both frameworks is crucial for their application in the experiments de-
scribed in Section 4.8. By grasping how these systems operate, it becomes evident why they are central
to improving the accuracy of GEDI data, particularly in areas where geolocation errors significantly impact
canopy height and biomass estimations.

21
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3.1 GEDI Simulator

The GEDI Simulator1 is a set of programs designed to simulate GEDI-like waveform
data [Hancock et al., 2019]. It generates vegetation and terrain metrics by leveraging small-footprint
datasets, such as ALS point cloud data, which consists of individual laser returns from vegetation and
terrain. ALS data is often characterized by high spatial resolution and provides precise 3D point clouds of
the surveyed area. This section introduces the tool and its separate programs for simulation and metrics
extraction.

3.1.1 Overview

The GEDI Simulator is designed to replicate the waveform generation process of the GEDI mission using
the method proposed by Blair and Hofton [Blair and Hofton, 1999]. The simulator mimics the GEDI
instrument by generating a full-waveform from the discrete-returns ALS data. To do that, the simulator
aggregates individual ALS returns within a large circular footprint, similar in size to the GEDI footprint
(25-meter diameter). These discrete returns are then ”binned” along the vertical axis to create a continuous
waveform, which represents the distribution of energy reflected by the vegetation and terrain surfaces within
the footprint. Each waveform bin, corresponds to a specific height above the ground and the relative energy
in each bin, representing the density of the scatterers (leaves, branches, or ground) at that height.

To produce a GEDI-like waveform, the simulator incorporates key characteristics of the actual GEDI in-
strument, such as i) adding the instrument’s noise to the simulated waveforms to better reflect real-world
observations; and ii) calculating GEDI-specific Relative Height (RH) metrics (e.g. RH100, RH95, RH75,
etc), which represent the height below which a certain percentage of waveform energy is returned. These
metrics are crucial for understanding the vegetation vertical structure. Besides the RH profile, the simulator
also generates terrain elevation information by analyzing the waveform’s return from the ground, where the
waveform’s significant last return usually corresponds to the ground level. A key feature of the simulator
is the collocateWaves program, which aligns or ”collocates” the reported GEDI waveform with the ALS
simulated waveform using a correlation method introduced in Blair and Hofton [Blair and Hofton, 1999].
This ensures that GEDI-reported waveform accurately reflects the vegetation structure and topography
captured in the ALS data.

In summary, the simulation technique involves translating the discrete-return ALS point cloud data, acquired
in a set of footprints, into a waveform that mimics the resolution and FWHM (for GEDI, FWHM = 15 ns)
of a GEDI footprint [Hancock et al., 2019]. This simulation will generate the RH metrics (from RH0 to
RH100) and terrain data, which can be used to calculate key parameters such as canopy height, vegetation
density and terrain elevation.

The following section focuses on the internal mechanisms of the framework, organized into distinct pro-
grams. Each program handles a specific step in the overall simulation process. For instance, gediRat
simulates GEDI-like waveforms using ALS data, gediMetrics extracts metrics and RH profiles from either
reported GEDI or simulated GEDI footprints, and finally collocateWaves aligns GEDI-reported waveform
with the simulated waveform derived from the ALS data. This alignment is an attempt to correct the GEDI
footprint geolocation error, which is estimated to be around 10.3 meters in GEDI Version 2 data.

1https://bitbucket.org/StevenHancock/gedisimulator/src/master/

https://bitbucket.org/StevenHancock/gedisimulator/src/master/
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3.1.2 GEDI Simulator Programs

The GEDI Simulator is composed of three key programs, which are detailed below.

gediRat

The gediRat program is responsible for simulating GEDI-like waveforms from ALS data (.las files) by
converting the dense point cloud into a continuous waveform representation. The program allows the user
to specify the locations of GEDI footprints by introducing Latitude and Longitude coordinates in the same
CRS as the input ALS data. It outputs the simulated waveforms in either HDF5 or ASCII format. The
HDF5 file follows the same file structure and hierarchy as GEDI L1B data products.

Some of the most important command options for gediRat include:

• -inList - Specifies input file in ASCII format of a list of the absolute paths to the .las files

• -hdf - Declares that the output file will be in HDF5 format;

• -output - Specifies the output filename. If the -hdf command is selected, output filename must
have the .h5 extension;

• -ground - Includes the ground portion of the waveform in the output;

• -aEPSG - Defines the target EPSG for the input ALS data;

• -coord $lon $lat - Simulates a waveform at a single set of Longitude and Latitude coordinates.
These coordinates must be in the same CRS as the input ALS;

• -maxBins - Describes the maximum number of height bins (Z) in which to make the simulation.
Defaults to 1024 bins;

• -listCoord - Specifies a list of Longitude and Latitude coordinates in ASCII format file.

In addition, the user can specify instrument parameters such as Pulse Width, FWHM, Footprint Width,
though these default to the GEDI instrument’s characteristics.

The output of gediRat is an HDF5 file with the simulated waveforms at specified coordinates. An HDF5
file is a hierarchical data format2 used to store large amounts of structured data, allowing for efficient
storage and access of complex datasets. It organizes data into groups and datasets, enabling flexible
management of diverse data types, including multi-dimensional arrays and metadata, making it well-suited
for handling the large volumes of waveform data produced by GEDI simulations.

After simulating the GEDI L1B waveforms product for the selected footprints, the output of gediRat can
be read in the gediMetrics program for extracting relevant metrics such as the RH profile, ground height,
and other structural information, which are essential for further analysis and comparison with GEDI data
products (e.g. L1B and L2A).

It is worth noting that the simulated waveforms do not have noise (unlike real GEDI footprint waveforms,
which have small fluctuations in waveform amplitude) and are extended to the default maximum of 1024
height bins. This number can be adjusted by providing a number of bins to the -maxBins command.

2https://www.hdfgroup.org/

https://www.hdfgroup.org/
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gediMetrics

gediMetrics processes real or simulated GEDI L1B data to produce standard waveform metrics. These
metrics include ground slope and elevation, canopy cover, leading and trailing edge extents, RH profile
metrics using three algorithms (Gaussian, Inflection and Maximum), FHD and Leaf Area Index (LAI)
[Hancock et al., 2019, Beck et al., 2021]. The program also generates metrics that are unavailable in
official GEDI data products, such as ground elevation from ALS, ground slope, ALS cover, RH profile using
the true ground from the ALS data, ALS point density and ALS beam density within each footprint. This
process mimics the transformation of GEDI L1B to L2A and L2B data products.

When processing each waveform signal from the input, the data is first denoised by removing points above
a threshold of mean+5σ and smoothed with 0.75 times the pulse width (pσ) [Hancock et al., 2019]. After
this preprocessing, there are three main methods for processing the signal:

• Gaussian Fitting - This method fits the waveform to Gaussian curves using the Levenberg-Marquardt
optimisation [Levenberg, 1944]. It selects ground and vegetation returns by calculating the percent-
age of waveform energy. The resulting variables include ”rhGauss”, ”gHeight” and ”gaussHalfCov”;

• Maximum - This method identifies the lowest maximum point in the waveform and assumes it as
the ground return, using the raw waveform without further fitting. The resulting variables include
”rhMax”, ”maxGround” and ”maxHalfCov”;

• Inflection Points - This method identifies the lowest two inflection points in the waveform. The
ground return is then determined by calculating the center of gravity between these points. The
resulting variables include ”rhInfl”, ”inflGround” and ”inflHalfCov”.

Some crucial command options for gediMetrics include:

• -input - Specifies input waveform file from either gediRat or reported GEDI L1B data;

• -readHDFgedi - Informs the program that the input file is in HDF5 format;

• -outRoot - Specifies output filename root string. The output will always be a ”metric.txt” file;

• -ground - Informs the program that the ground should be read from the input file;

• -varScale - Selects variable noise threshold scale (multiple of standard deviation above mean to set
threshold);

• -sWidth - Selects smoothing width after denoising the waveform;

• -rhRes - Selects the percentage energy resolution of the RH Profile;

• -laiRes - Selects the vertical resolution of the LAI profile in meters. It defaults to 10m.

collocateWaves

The collocateWaves program is responsible for finding an optimal placement of GEDI footprints by
aligning them with ALS data, thus correcting for geolocation errors. The goal is to find an optimal (X,Y, Z)
placement vector that maximizes the correlation between the reported and simulated GEDI waveforms for
the entire orbit of the input file. For this, the simulator describes three modes of operation:
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• Bullseye - This mode tests a grid of (X,Y, Z) transformations and calculates the correlation between
points and finds the highest correlated simulated point, similar to the one described in Blair and
Hofton [Blair and Hofton, 1999], where the best fit is found through exhaustive searching on a grid
of possible transformations.

• Simplex - The simplex algorithm is an optimization technique to find the optimal (X,Y, Z) along
an error surface. Starting with an initial guess for the footprint placement (which should be within
approximately 20 meters of the true location), it adjusts the placement iteratively. The algorithm
then explores the error surface and shifts the position in the direction where the correlation improves,
stopping when no other optimal placement is found.

• Annealling - This is a hybrid method that combines both the Bullseye and Simplex approaches.
First, a grid search is performed using the Bullseye method until the best candidate is found. Then,
the Simplex algorithm is employed from the best position of the grid to refine the placement and to
achieve a higher level of precision in the alignment.

Figure 3.1 illustrates these modes of operation, with the green circle representing the reported GEDI
footprint location, while the blue circle refers to the potential best geolocation of the reported footprint
inside the figure.

Figure 3.1: Illustration of collocateWaves Bullseye (a), Simplex (b) and Annealling (c) modes of operation
used in GEDI Simulator.

In all modes, the comparison between reported and simulated GEDI waveforms is performed using the
Pearson Correlation. Overall, the program stores each footprint’s correlation (ρ) in an array and calculates
the mean correlation of the entire orbit:

• For the bullseye mode, it selects the highest correlated simulated point from the initial position and
saves the affine transformation with the correlation value.

• In simplex mode, this mean correlation is returned by a function where the
gsl_multimin_fminimizer intervenes. This function allocates a Minimizer3 procedure that

3https://www.gnu.org/software/gsl/doc/html/multimin.html

https://www.gnu.org/software/gsl/doc/html/multimin.html
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minimizes the error surface expressed as (1− ρ), resulting in the optimal affine transformation with
the highest mean correlation for the orbit.

After finding the optimal simulated points, the program outputs two files: the corrected position footprints
in HDF5 format (structured similarly to the output of gediRat), and a Text file that contains details about
the offset used and the mean correlation of the orbit. The HDF5 file can also be introduced as input to
gediMetrics, producing their respective simulated waveform metrics.

The most crucial command options to run collocateWaves are as follows:

• -listAls - Specifies an ASCII file containing the absolute paths to the ALS data files;

• -listGedi - Specifies an ASCII file containing the absolute paths to the input GEDI L1B data
product files that need correction;

• -readHDFgedi - Informs the program to read the GEDI files in HDF5 format;

• -aEPSG - Sets the EPSG code for the ALS data;

• -solveCofG - Defines a center of gravity to match vertical offsets (matches ALS ground discrepancy
with GEDI data);

• -geoError $expError $correlDist - Adjusts rapids geolocation by defining the expected geolo-
cation error and the correlation distance;

• -minDense - Specifies minimum number of ALS beams/m² to create simulations;

• -minSense - Selects footprints with specified minimum sensitivity;

• -writeWaves $outFile - Outputs corrected waveforms in HDF5 format with specified output file-
name;

• -simplex - Uses the Simplex algorithm;

• -anneal - Uses the Annealling algorithm.

3.1.3 Performance of Geolocation Correction in collocateWaves

The geolocation correction algorithm, as implemented in collocateWaves, has proven to be highly ineffi-
cient. More specifically, initial tests using the Simplex mode required ≈90 hours to complete, and resulted
in an R² of 0.52 when comparing the reported RH95 values with the simulated RH95 (see Section 5.1).
This level of performance is far from ideal, considering the amount of time and resources required for such
modest correlation.

Despite the framework’s functionality, the initial tests revealed clear limitations in both performance and
ease of use. Several improvements could be made to address these issues:

1. Parallel Execution - Currently, parallel processing is only possible by executing multiple bash com-
mands (using the & command) to run the programs. This requires multiple setup steps, such as
dividing the desired study area into smaller chunks, which complicates the user experience and re-
duces research efficiency. Therefore, a more parallelized implementation of the core algorithms could
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significantly reduce its runtime. Specifically, optimizing the codebase for multi-threading or GPU-
based processing would speed up operations without compromising accuracy. This would involve
adapting the framework to incorporate modern solutions, such as using locks, atomic operations, or
CUDA for parallel execution.

2. Memory Allocation - The performed tests consumed ≈35GB of RAM due to loading all input GEDI
files and ALS data into memory at once. Executing N multiple parallel processes under this approach
would result in 35×N GB of RAM allocation. This excessive resource demand limits the program’s
usability on most standard personal computers. To address this, memory allocation issues should
be identified and optimized, and memory management techniques, such as freeing unused memory
should be integrated.

3. New methods for GEDI geolocation correction - Currently, the GEDI geolocation error correction,
performed within the collocateWaves program, relies solely on the waveform matching method using
Pearson’s correlation as the metric. The correlation between GEDI-reported waveform and simulated
waveform is used to determine the best location of GEDI measurements, i.e., the location where the
reported and simulated waveforms show the highest correlation. Introducing additional methods, such
as terrain matching and RH profile matching, along with different criteria (e.g. correlation-based,
distance-based, and divergence-based) and metrics (e.g. Pearson, Spearman, divergence index), could
improve the alignment of GEDI-reported waveform with the simulated waveform. This would result
in a more accurate GEDI geolocation correction.

Moreover, correcting GEDI footprint geolocation at the orbit level is not ideal for study areas with high
heterogeneity. As pointed out in Section 1.1 of this dissertation, the core assumption of the collocateWaves
program is that there is a constant systematic offset along the orbit, which is likely unrealistic due to the
high-frequency errors associated with GEDI [Tang et al., 2023]. A footprint-level approach to correcting
geolocation errors, which assumes that each footprint has its own unique offset rather than a uniform error
across the orbit, would better account for local variability and improve geolocation accuracy.

The described performance issues, along with the program’s lack of flexibility in memory management,
parallelization, and code structure, highlight the need for a more advanced approach. The newly proposed
framework, GEDICorrect, addresses these shortcomings by providing a more efficient and user-friendly
solution.

3.2 GEDICorrect

The proposed framework, GEDICorrect, is developed to address the limitations identified in the GEDI
Simulator (see Section 3.1.3). While GEDI Simulator uses an orbit-level correction approach, GEDICorrect
introduces a footprint-level correction method which is particularly beneficial in areas with significant
horizontal variability in tree height and cover. Figure 3.2 shows a visual representation of the GEDI
footprint geolocation correction, where the green-colored footprints are the reported GEDI footprints and
the blue-colored are the optimal geolocation for each reported footprint. While collocateWaves shifts the
entire orbit, GEDICorrect’s correction method consists of simulating random points around each reported
footprint (Figure 3.2(a)). To accelerate waveform simulation and metrics calculation, the framework
supports parallel processing and is designed to be scalable, making it a faster and more flexible solution
than the GEDI Simulator.

More specifically, GEDICorrect was designed to:

1. Parallelization: The framework supports both sequential and parallel execution of the geolocation
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Figure 3.2: General overview of the footprint geolocation correction method of both frameworks.

correction process, ensuring scalability for large datasets;

2. Efficient Memory Management: It employs efficient memory practices, such as utilizing structured
data formats (e.g., pandas DataFrames) and limiting read/write operations to when necessary;

3. New methods for GEDI geolocation correction - It introduces new methods for footprint geolo-
cation correction, such as Terrain Matching and RH Profile Matching, providing improved accuracy.

3.2.1 Framework Design

The framework is composed of 4 main units: i) input; ii) simulation; iii) scoring; and iv) output (see
Figure 3.3). The simulation unit is mostly handled by subprocesses that call gediRat and gediMetrics.
The sections below describe the design of GEDICorrect in further detail, focusing on the improvements
made to enhance the framework’s performance over existing methods.

Figure 3.3: The GEDICorrect Framework
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Unit 1: Input

The input to GEDICorrect consists of the merged GEDI L1B and L2A data products along with a directory
containing the corresponding ALS (.las) files. To ensure proper functionality, the framework performs an
initial sanity check on all input files, which will be described below.

First, each .las file is read and parsed, and a bounding dictionary is created with the structure presented
in the following example:

{'ALS000001.las': Polygon(...),
'ALS000002.las': Polygon(...),

... }

Two methods are available for generating these bounds:

• Simple Bounding Box - This method is the fastest and uses the minX, minY, maxX, and maxY
coordinates from the ALS header to create a simple rectangular boundary around the point cloud
data;

• Convex Hull Algorithm - Generates a convex hull [Andrew, 1979] around the point data to create
a tight-fitting boundary, which ensures a better spatial representation of the ALS data. This method
is both more accurate and time-consuming.

If this is GEDICorrect’s first run with the ALS data, it will save the bounds in Shapefile (.SHP) format,
which will be used in subsequent runs. This unit marks the beginning of Efficient Memory Management,
addressing a key limitation of the GEDI Simulator, which reads the entire ALS dataset into memory during
each run. By storing the bounds, GEDICorrect optimizes memory usage for future processes. Once the
ALS bounds are created, the framework loads all the GEDI files by reading them from Geopackage (.GPKG)
files, which is a compressed format of a dataset containing geospatial information4. For each footprint in
each GEDI dataset, a square buffer is generated around the centroid to identify intersections with the ALS
data. In this project, each square buffer is set to 50 meters, which ensures the size of two whole footprints
(which have 25 meters in diameter).

Any GEDI footprints and their corresponding buffers that are not entirely inside the ALS bounds are
discarded to ensure the correction process focuses only on valid areas where simulation is possible (see
Figure 3.4). If any files are corrupted or missing, the sanity check will fail, prompting the user to provide
a new set of inputs.

After the sanity check is completed, the output of this unit is a validated list, containing only footprints
within the ALS bounds, ready for further processing in the next unit. Figure 3.5 illustrates the pipeline of
this entire unit in detail.

4https://www.geopackage.org/

https://www.geopackage.org/
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Figure 3.4: GEDI footprint inside ALS bounds verification process. Any footprint and respective 50 meter
buffer that is not within ALS bounds is discarded for correction.

Figure 3.5: Input Unit of the GEDICorrect Pipeline where the input GEDI files and ALS data are passed
through a sanity check.

Unit 2: Simulation

For each verified GEDI footprint, a random set of N points is generated within a specified radius around
the footprint centroid, with a maximum distance of 12.5 meters from the reported centroid and a minimum
distance of 1 meter between generated points. These parameters, however, are configurable based on the
study area or user preferences.

Once the points are generated, their respective latitude and longitude coordinates are saved in an ASCII file,
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which serves as input to the gediRat program. The gediRat program simulates waveforms from ALS point
cloud for each of the generated points, producing an HDF5 file (simulated.h5). Next, the gediMetrics
program is executed to produce waveform metrics and RH profiles for each of the N generated points,
generating a Text file (metrics.txt). Both programs, gediRat and gediMetrics, are run using the
subprocess Python library.

Both output files, HDF5 and TXT, are parsed into pandas DataFrames and then concatenated into a
unified dataset. A DataFrame is a two-dimensional, tabular data structure commonly used in data analysis,
where data is arranged in rows and columns, similar to a spreadsheet. Each column in a DataFrame can hold
different data types, and it provides flexible indexing5. To ensure proper geospatial representation between
subsequent operations, the concatenated DataFrame is transformed into a geopandas GeoDataFrame by
adding geometry in the form of latitude and longitude coordinates for each generated point.

Additionally, a filtering task is applied to account for time differences between the GEDI and ALS data
acquisition. If the vertical offset between the two datasets (Reported GEDI and Simulated GEDI) exceeds
a threshold of 10 meters, it is flagged as a discrepancy, potentially indicating vegetation changes over time
between the GEDI and ALS data acquisition or inaccurate simulation results.

The final output from this simulation unit is a filtered and concatenated GeoDataFrame, which contains
the simulated points and their associated metrics. This dataset is appended to a final simulation list, where
all of the simulated footprints are located. When this Simulation Unit finishes processing, the result list
will be passed onto the Scorer Unit. Figure 3.6 illustrates this unit in detail.

Figure 3.6: Simulation Unit of the GEDICorrect Pipeline.

5https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
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Unit 3: Scoring

While the Waveform Matching method implemented in the GEDI simulator relies solely on Pearson’s
correlation analysis between the reported and simulated waveform energy values, GEDICorrect introduces
two additional methods: Terrain matching and RH profile matching. Figure 3.7 illustrates the methods.
These additions represent one of the major improvements over GEDI Simulator: New Methods, Criteria
and Metrics.

Figure 3.7: Flowchart illustrating the methods, criteria, and metrics tested for GEDI geolocation correction.

Waveform Matching. In addition to Pearson’s correlation, the Spearman’s Correlation formula was also
implemented for waveform matching, which is more suitable for non-linear data, such as GEDI waveforms.

For the distance-based criteria between waveform energies, the Curve Root Sum Squared Differential
Area (CRSSDA) [Zhou et al., 2016] metric was implemented, an area-based measure that assesses curve
similarity by calculating the area between a reported (r) and a simulated (s) waveforms. The method first
determines the squared difference between the two waveform curves at each height bin (Z), sums these
differences across all bins, and takes the square root to obtain the waveform curve similarity between the
start and end (n) locations of the waveform. Equation 3.1 describes how to calculate CRSSDA. A smaller
value of CRSSDA indicates a higher curve similarity between two waveforms.
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CRSSDA =

√√√√ n∑
i=0

(ri − si)2 (3.1)

For the divergence-based criteria, the Kullback–Leibler (KL) metric was used. KL measures the similar-
ity between two probability distribution functions [Kullback and Leibler, 1951]. KL has been successfully
applied in fields such as image pattern recognition, hyperspectral image classification, and waveform match-
ing [Olszewski, 2012, Zhou et al., 2016]. Since a waveform can be normalized as a probability distribution
function, the KL divergence metric was used to assess the similarity between the reported (r) and the
simulated (s) waveform using Equation 3.2. A smaller value of KL indicates a higher curve similarity.

KL =
n∑

i=0

log(ri/si) ∗ ri (3.2)

Terrain Matching. For the terrain evaluation, the difference-based criteria involves matching the ground
elevation from the reported GEDI to the ALS simulated ground elevation (Equation 3.3). The absolute
value of the smallest elevation difference is granted a higher score.

Z_DIFF = |Z_Groundr − Z_Grounds| (3.3)

RH Profile Matching. Regarding the RH profile matching method, an adapted CRSSDA equation
from 3.1 was implemented to create a distance-based metric between the reported and simulated RH
values at different intervals. The evaluation begins at RH25, increasing by 5% increments, up to RH100,
capturing the whole RH profile of the vegetation and its internal structure. The adapted CRSSDA metric is
described in Equation 3.4, where rRHi represents the reported RH value at interval i, and sRHi represents
the simulated RH value at the same interval.

CRSSDA_RH =

√√√√ n∑
i=0

(rRHi − sRHi)
2 (3.4)

Essentially, this metric measures the area between the reported and simulated RH profile curves (see
Figure 3.8), with a CRSSDA_RH value close to zero indicating perfect alignment between the reported
and simulated waveforms.

Once all input footprints have been simulated, the data is passed to the Scorer class, where it identifies the
optimal simulated footprint that best aligns with the corresponding reported GEDI footprint. Figure 3.9
illustrates the process.

The Scorer class, contains all of the required functions to calculate the previously described metrics. The
available criteria are represented as a list of strings within the class, allowing the user to select the desired
metric, or a combination of metrics:
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Figure 3.8: Example plot of the entire RH Profile. The adapted CRSSDA is calculated for the entire RH
profile at intervals of 5%, from 25% to 100%.

• 'wave' - Spearman’s correlation;

• 'wave_distance' - Distance based CRSSDA for the waveforms;

• 'kl' - Divergence based KL metric for the waveforms;

• 'terrain' - Difference between reported and simulated terrain elevation;

• 'rh_distance' - Distance based CRSSDA for the entire RH profile.

To select multiple metrics, the user can provide an option by adding a ’+’ sign between desired metrics.
Each metric has an individual score ranging from 0 to 1, where 1 represents the highest score (indicating
greater similarity with the reported footprint) that a simulated footprint can achieve. After computing
the scores for all selected criteria, the Scorer class updates the GeoDataFrame by adding a column for
each metric, along with a final_score column. The final score is calculated by summing all of the selected
individual metric scores and dividing by the number of selected metrics, as shown in Equation 3.5, where
metrici is an individual metric score, and n_criteria is the total number of selected metrics for scoring.
Since each metric score ranges from 0 to 1, the final score will be ranging from 0 to 1, with 1 being the
highest score a simulated footprint can obtain.

final_score =
∑

metrici
n_criteria (3.5)

In summary, both Unit 2 (Simulation) and Unit 3 (Scoring) were designed to be executed sequentially or in
parallel, which represents a clear improvement over GEDI Simulator by enhancing the geolocation correction
process through parallelization. The methods for parallel implementation are described in Section 4.5.1.
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Figure 3.9: Scoring Unit of the GEDICorrect Pipeline.

Unit 4: Output

Programatically, the output of the Scorer class from Unit 3 consists of a list of GeoDataFrames containing
both the simulated footprints and their respective scores (scores ranging from 0 to 1, for each metric and
final score). The pipeline offers the option to save the scored simulated footprints in three operational
modes: i) all simulated points generated around each reported footprint; ii) the highest-scored simulated
footprints; and iii) simulations at the original locations of the reported footprints. Figure 3.10 illustrates
these output operating modes.

The selection of the best location for each reported footprint is performed by sorting the GeoDataFrame
regarding the final_score column (previously added during the Scoring Unit) and selecting the simulated
footprint with the highest final score. The selected best footprint (with the highest score), which is
expected to represent the ”true” geolocation of the reported GEDI measurements, is chosen for output (see
Figure 3.11). The final output can be saved in both Shapefile (.SHP) and Geopackage (.GPKG) formats,
enabling easy visualization in spatial analysis GIS tools such as QGIS.

If multiple GEDI files were introduced during Unit 1, the framework repeats the geolocation correction
process from Unit 2 (Simulation) for each subsequent GEDI file, repeating Units 3 and 4, until all files have
been processed.
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Figure 3.10: Saving modes in Unit 4 of the GEDICorrect Pipeline. Files are either saved to Shapefile or
GeoPackage.

Figure 3.11: Output Unit of the GEDICorrect Pipeline



4
Methods

Having established the key components and design of GEDI Simulator and GEDICorrect, this chapter
outlines the methodology, including the integration of these frameworks with the dataset and the specific
experimental setup. Firstly, the Study Area is presented, along with the Data Collection conducted.
After this, the usage of both frameworks is described. Finally, to evaluate the performance of the newly
implemented framework, a set of experiments are defined to evaluate the GEDI geolocation correction
method of GEDICorrect.

4.1 Geographic Study Area

The Study Area (named Abrantes) covers an area approximately 51.2 km long and 1.1 km wide in central
Portugal located mainly in the district of Santarém (lat. 39.6 degrees N, long. 8.2 degrees W) and has
approximately 4065.66 ha of forest, with a diverse land cover, characteristic of Mediterranean landscape.
Dominant tree species include Hardwood forests (45.66%), Agriculture (19.61%), and Sparse Vegetation
(10.90%).

37
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Figure 4.1: Study Area in Central Portugal. The bounds show the available ALS data.

4.2 Data Collection

4.2.1 ALS Data

The ALS data utilized in this project was acquired as part of the FUEL-SAT1 project in November 2021,
and has a nominal laser pulse density of 13.33 points/m². The data collection was conducted using a
RIEGL VQ-1560i2 sensor operating at 1064 nm (near-infrared) mounted on an Aero Commander 690A
aircraft. The maximum pulse repetition rate was 2000 kHz, with a maximum scanning angle of ± 58.52°,
and the average altitude during scanning was 936 meters above ground level. The company responsible for
the ALS data acquisition, TOPCAD Ingeniería S.L.3, provided the classified point cloud files in .las and
.laz (compressed .las) formats. Figure 4.2 shows the point cloud distribution by elevation values after

1https://fuelsat.uevora.pt/
2http://www.riegl.com/nc/products/airborne-scanning/produktdetail/product/scanner/55/
3https://www.topcadingenieria.com/

https://fuelsat.uevora.pt/
http://www.riegl.com/nc/products/airborne-scanning/produktdetail/product/scanner/55/
https://www.topcadingenieria.com/
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automatic classification. Automatic classification refers to the process of categorizing or labeling the point
cloud data captured by LiDAR sensors into distinct classes (e.g., ground, vegetation, buildings). Each point
is classified with respect to its relative height, intensity, point density and return information (which help
distinguish between vegetation and buildings based on the number of returns).

Figure 4.2: Visualization of the point cloud by elevation values (top) and after automatic classification
(bottom).

In total, 118 .las files, with the Coordinate Reference System (CRS) set to the EPSG code of 3041, were
used for geolocation correction methods.
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4.2.2 GEDI Data

For the geolocation correction methods, both L1B and L2A (Version 2) data products from the GEDI mission
were downloaded, clipped to fit the study area and extracted relevant variables. The L1B product provides
geolocated corrected and smoothed waveforms and the L2A product provides waveform interpretation and
derived products from each L1B received waveform, including ground elevation, canopy top height, and
relative height (RH) metrics.

For this project, intersected GEDI orbits on our Study Area between 2019 and 2021 (from 01/01 to
31/12) were downloaded using the GEDI-Pipeline [Corado and Godinho, 2024]. This repository4 provides
an unified workflow for searching, downloading and processing GEDI data using NASA’s Land Processes
Distributed Active Archive Center (LP DAAC) through NASA’s Common Metadata Repository (CMR),
which simplifies the entire process into a single command.

The delivered GEDI data from the NASA’s repository in HDF5 format was subsequently clipped to the
Study Area for further analysis. The output of GEDI-Pipeline included 47 intersected GEDI orbits in
Geopackage (.GPKG) files for each selected data product (L1B and L2A), resulting in a total of 97 files.
The following command was used to execute the GEDI-Pipeline:

$ python3 gedi_pipeline.py --dir ./FUELSAT --product GEDI01_B --version 002 --start
2019.01.01 --end 2021.12.31 --roi 39.661139,-8.212886,39.199983,-8.139717↪→

This same command was repeated for the ”GEDI02_A” data product by adjusting the --product parameter.

Although the ALS data was collected in 2021, the inclusion of GEDI data from previous years not only
increased the dataset size to benchmark the different frameworks, but also allowed for a more comprehensive
study of forest structure through time and ensured that anomalies in the dataset (e.g. changes caused by
natural or anthropogenic factors) were accounted for further analysis and filtering.

Considering the noise and uncertainty in GEDI data, a preprocessing step is required to ensure that only
high-quality footprints will be used for the geolocation correction.

Preprocessing of the GEDI Data

The framework implemented in this dissertation requires a merged dataset comprising both the L1B and
L2A data products. Since each footprint is unique and contains an identifier (shot_number), the merging
process involved aligning the filtered outputs from GEDI-Pipeline based on the shot_number variable and
selecting the complete RH profile from the L2A product. This process resulted in 47 merged files, which
will be referred to as GEDI_CorrectTest for the remainder of the study. Additionally, the full code for the
applied data processing and merging both L1B and L2A is provided in Appendix A.2.

Each footprint’s waveform (rxwaveform variable) consists in a list of values at each height bin (Z), which
Z is calculated by subtracting the highest elevation return (Z0) to the ground return (ZG). The size of this
list is the number of elevation bins (described by the rx_sample_count).

To ensure the use of only high-quality GEDI footprints, a set of quality metrics developed and suggested
by the GEDI Science Team and community were used:

4https://github.com/leonelluiscorado/GEDI-Pipeline

https://github.com/leonelluiscorado/GEDI-Pipeline
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• degrade_flag == 0 - indicates a low probability of degraded geolocation under suboptimal operating
conditions [Roy et al., 2021];

• quality_flag == 1 - indicates that the given footprint meets quality criteria in terms of energy,
sensitivity, amplitude, and real-time surface tracking [Hofton et al., 2019];

• solar_elevation < 0 - This metric is utilized to determine whether GEDI footprint acquisitions occur
during night or day. Only the nighttime acquisitions were retained for analysis, as indicated by a solar
elevation angle less than 0 [Beck et al., 2021];

• sensitivity > 0.9 - Sensitivity refers to the maximum canopy cover that the GEDI laser shots can
penetrate, considering the Signal to Noise Ratio (SNR) of the waveform. Based on previous studies
that assess the impact of sensitivity on GEDI footprint accuracy [V.C. Oliveira et al., 2023], in this
work, only footprints with a sensitivity greater than 0.90 were selected;

• (RH95 >= 5 && num_detected_modes == 1) - This custom filter ensures that in all footprints
representing forests (RH95 higher than 5 meters), the waveform generated by GEDI measurements
exhibits more than one mode. Typically, a tree’s waveform contains at least two modes: one corre-
sponding to the canopy and another to the ground;

• RH95 <= 30 - This custom criterion aims to eliminate erroneous canopy height measurements
resulting from various factors (such as electric lines, aerosols, etc.) that interact with the GEDI
LiDAR signal. For this case in Portugal, trees above 30 meters are rare, if they exist at all;

• | elev_lowestmode - digital_elevation_model | <= 50m - To eliminate footprints with erro-
neous ground detection, all footprints with an absolute difference between the elevation of the lowest
mode (elev_lowestmode) and the TanDEM-X elevation at the GEDI footprint location (digital_ele-
vation_model) greater than 50 meters were excluded from the analysis.

After applying these filters to the GEDI_CorrectTest dataset, a total of 1956 footprints were retained for
the subsequent analysis. This represented a reduction of approximately 63.11% compared to the original
dataset. Some orbits (files) were entirely excluded for not meeting the required conditions, leaving a total
of 18 files in the final dataset. Figure 4.3 provides a visual comparison between the original data with the
GEDI_CorrectTest dataset. Finally, for the entire GEDI_CorrectTest dataset, the geolocation coordinates
of each footprint were adjusted to match the CRS of EPSG:3041, ensuring that both CRS from GEDI
and the ALS’s data are aligned.

The final structure of the GEDI_CorrectTest dataset consists of 18 files, containing a total of 1956 high-
quality footprints, ready for further geolocation correction and analysis in GIS tools. Additionally, the
dataset was converted into HDF5 format, mimicking the hierarchy from the originally downloaded GEDI
data (as provided by NASA LP DAAC), which is designed to serve as the input for geolocation correction
frameworks such as the GEDI Simulator’s collocateWaves. The HDF5 version of the dataset merged the
18 .GPKG file into 1 .H5 file.

This dual-format approach, with both GPKG and HDF5 versions, allows for flexibility in subsequent analysis
and ensures that the dataset is suitable for integration into various workflows.

Figure 4.4 depicts the variables extracted for one footprint from the GEDI_CorrectTest dataset, including
both L1B (e.g., rxwaveform) and L2A variables (e.g., rh metrics).



42 CHAPTER 4. METHODS

Figure 4.3: Visual representation of the footprints over the top part of the Study Area from the original
downloaded data (a) and the filtered GEDI_CorrectTest dataset (b).

4.3 Infrastructure

Before describing the execution details of both frameworks, a brief detail of the infrastructure is needed.
The programs and experiments were tested using the NIIAA Cluster. The machine is equipped with two
Intel(R) Xeon(R) Silver 4110 processors, featuring a total of 32 CPU threads distributed across 16 cores (8
cores per processor with 2 threads per core), operating at a base clock speed of 2.10 GHz and a maximum of
3.00 GHz. The system’s memory capacity totals 88 GB and the operating system used was Ubuntu 22.04.4
LTS (GNU/Linux 5.15.0-116-generic x86_64). Additionally, tmux was employed to manage multiple jobs
across sessions.

4.4 Usage of GEDI Simulator

This section focuses on the compilation and execution instructions for GEDI Simulator, that were used in
initial tests and the main experiments described in Section 5.
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Figure 4.4: Example footprint (shot_number: 51860500200152196) from the GEDI_CorrectTest dataset.
The L1B variables (e.g. rxwaveform) are merged with L2A variables (e.g. rh)

4.4.1 Compiling GEDI Simulator

There are three ways to compile the project:

• Singularity Container - Uses a script provided by the repository that sets up a container with all
the programs installed;

• Compile from Source - Clones the repository and installs the required packages manually;

• Bash Compilation Script - Automatically runs the step Compile from Source and creates the
necessary directories.

Singularity5 is a containerization platform that allows the user to create portable and reproducible environ-
ments. Each environment acts as an isolated operating system that can be shared across a multitude of
systems. The Singularity Setup script sets up this container by downloading and configuring all the required
packages encapsulated in a Docker image based on Fedora 28. GEDI Simulator’s repository contains a

5https://docs.sylabs.io/guides/3.5/user-guide/introduction.html

https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
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makeSingularity.txt6 file which contains a set of instructions to create the container. Although this method
is fail-proof, the created environment is outdated and may contain security vulnerabilities, which could
compromise the performance and the accuracy of the experiments.

In the case of compiling from source, the process requires to manually clone the repository and install each
required package on the system. The required packages are:

• GNU Scientific Library [Gough, 2009]
• Geotiff [Niles Ritter, 2000]
• HDF5 [HDFGroup, 1987]
• GDAL [Rouault et al., 2024]
• CMPFIT [Craig B. Markwardt, 2022]

Additionally, it requires the installation of C-tools7 and libClidar8 from Steven Hancock’s repository.
Depending on the user’s operating system, it may require installation from specific package managers
and compilation steps for compatibility purposes. Once the required packages are installed, the final step
consists of making use of the available Makefile to compile and install each program in the project.
While this method offers flexibility, it requires more manual effort to configure the environment correctly.
Fortunately, a script that automates such process is available, significantly reducing setup time.

For this study, the bash compilation script was used. The following code demonstrates on how to fetch the
compilation script, give it executable permissions and running the script:

$ wget https://bitbucket.org/StevenHancock/gedisimulator/src/master/installGedi.bash
$ chmod +x installGedi.bash
$ ./installGedi.bash

During the initial execution, the installation script failed to set up properly due to an incorrect path specified
for the HDF5_LIB variable, which is from a required package HDF5. Updating this variable to point to the
host’s HDF5 installation resolved the issue. Appendix A.1 provides the updated bash script used for the
experiments. After this adjustment, the installation completed successfully, and GEDI Simulator was ready
for use.

4.4.2 Executing GEDI Simulator

The GEDI Simulator repository provides example commands and descriptions of each program’s options,
previously detailed in Section 3.1.

gediRat

The gediRat program simulates GEDI-like waveforms at specific coordinate locations using the input ALS
point-cloud data. The following command demonstrates how to simulate a GEDI-like waveform at a single
coordinate (in the same CRS as the ALS data), with the waveform cropped at 500 height bins:

6https://bitbucket.org/StevenHancock/gedisimulator/src/master/makeSingularity.txt
7https://bitbucket.org/StevenHancock/tools/src/master/
8https://bitbucket.org/StevenHancock/libclidar/src/master/

https://bitbucket.org/StevenHancock/gedisimulator/src/master/makeSingularity.txt
https://bitbucket.org/StevenHancock/tools/src/master/
https://bitbucket.org/StevenHancock/libclidar/src/master/
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$ gediRat -inList alsList.txt -coord 595208.08 4269772.19 -maxBins 500 -output
waveform.txt↪→

The next command demonstrates how to simulate multiple waveforms from a list of coordinates, outputting
the results in HDF5 format:

$ gediRat -inList alsList.txt -listCoord coords.txt -hdf -output waveform.h5

The list of coordinates is provided in an ASCII file, with each set of coordinates separated by a newline.
An example structure for the coordinates file is shown below:

595208.08 4269772.19
595208.08 4269784.22
595210.78 4270001.75

...

Both output files (waveform.txt and waveform.h5) can be processed with the gediMetrics program to
extract relevant waveform metrics such as ground slope, elevation, canopy cover, and, most importantly,
the RH profile. The RH profile is used in the CRSSDA method described in GEDICorrect Unit 3 (see
Section 3.2.1).

gediMetrics

The gediMetrics program generates waveform metrics from real or simulated GEDI L1B data (produced
by gediRat), offering a high level of customization. For the initial experiments, default settings were used
for parameters such as -varScale, -sWidth, -rhRes, and -laiRes (as described earlier in Section 3.1.2).

The following command demonstrates the command used to extract waveform metric information from a
simulated waveform file generated by gediRat:

$ gediMetrics -input waveform.h5 -readHDFgedi -ground -varScale 3.5 -sWidth 0.8 -rhRes 1

The output of gediMetrics can be further processed into structured formats, such as a pandas DataFrame
or a CSV file. However, GEDI Simulator does not provide tools for parsing these results, leaving it up to the
user to organize the output as needed. Additionally, gediMetrics can be used after collocating footprints
with the collocateWaves program, allowing for the simulation of corrected footprint data.

collocateWaves

The collocateWaves program is GEDI Simulator’s approach to footprint geolocation correction. Its
objective is to find the optimal (X,Y, Z) placement vector that maximizes the correlation between reported
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and simulated GEDI waveforms for an entire orbit. To use this program, the user requires two inputs: GEDI
data files in HDF5 format and a list of ALS files covering the target area, provided in an ASCII file with the
absolute paths of the .las files. The following command demonstrates the most efficient way to identify
the ground offset between GEDI and ALS, aligning the GEDI files with ALS data using the Bullseye mode:

$ collocateWaves -listALS alsList.txt -listGedi gediList.txt -readHDFgedi -aEPSG 4328
-solveCofG -geoError 30 5 -writeWaves simulated.h5 -minDense 3 -minSense 0.9↪→

For the initial Baseline Assessment experiments (described in Section 5.1), the HDF5 version of the
GEDI_CorrectTest dataset was used with the following command:

$ collocateWaves -listALS FUELSAT_AREA.txt -listGedi GEDI_FUELSAT_FILES.txt -readHDFgedi
-aEPSG 32629 -simplex -solveCofG -geoError 30 5 -writeWaves COLLOCATED_FUELSAT.h5
-minDense 3 -minSense 0.9

↪→

↪→

This command executes collocateWaves in Simplex mode, as detailed in Section 3.1. The output
(COLLOCATED_FUELSAT.h5) was subsequently processed using gediMetrics with the following command:

$ gediMetrics -input COLLOCATED_FUELSAT.h5 -readHDFgedi -ground -varScale 3.5 -sWidth
0.8 -rhRes 1 -outRoot "FUELSAT_"↪→

4.5 Implementation of GEDICorrect

GEDICorrect was implemented in Python 3.12 within an Anaconda-managed virtual environment to ensure
consistent dependencies across different systems. Key libraries used include numpy and pandas for data
manipulation, geopandas for handling geospatial data, shapely for geometric operations such as creating
buffers and laspy to read the ALS data.

File handling and external program execution are managed using the os and subprocess libraries, while
the multiprocessing library and its Pool class were employed to enable parallel execution of the footprint
simulations, optimizing performance for GEDICorrect. Additionally, careful memory management practices
were implemented, such as using del to remove unnecessary dataframes and output lists between input
GEDI files, ensuring efficient resource utilization during the entire execution. Finally, for plotting results in
the following sections, the matplotlib and seaborn libraries were used.

4.5.1 Parallel Techniques

To enhance efficiency and reduce the overall runtime, the framework incorporates parallel processing tech-
niques, ensuring that multiple footprints can be processed at the same time.

Since this geolocation correction method operates at the footprint level, each footprint undergoes through
Unit 2 (Simulation) and Unit 3 (Scoring) described in Section 3.2.1. For this, a multiprocessing pool
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was implemented for parallel processing. This pool spawns N processes, assigning to each one an equally
divided block of input footprints to process. To do this, the pool.imap_unordered() function is used.

The user can also select the desired number of processes. If no number is selected but parallelization pro-
cessing is, the framework selects the maximum number of processes minus 2 to keep the system responsive
(using OS.CPU_COUNT()−2).

In the Simulation Unit, for I/O handling across multiple calls to the GEDI Simulator programs (gediRat
and gediMetrics), a TemporaryDirectory is created, where each process handles its own processed files.
This approach prevents program output conflicts, ensuring that data generated by one process does not
interfere with another. For example, the Latitude and Longitude coordinates needed by gediRat are saved
in a unique temporary location for each process. Moreover, each output file is prefixed with the process ID,
which further ensures the data being isolated from other process. After processing, the temporary directory
is deleted. An example of the temporary directory structure is shown in Listing 4.1.

temp_dir/
alsList.txt
3001/

3001.metric.txt
3001_simulated.h5

3002/
...

3003/
...

Listing 4.1: Example of TemporaryDirectory structure

Finally, each process begins with a unique random seed for generating points around the footprint, ensuring
that the same random seed from the master process is not passed down to child processes9). This approach
guarantees that no two or more processes produce the same distribution of candidate geolocation points.

Once the simulation step is completed, the Pool merges the simulation results into a list, so that the results
from each process are introduced in the Scorer class for further processing. The same mechanism used in
Pool is also used in the Scoring step, where each process is assigned a set of simulated footprints to score.

By implementing these simple parallel techniques, GEDICorrect can achieve a significant reduction in
processing time, allowing for the geolocation correction of large GEDI datasets within a more reasonable
timeframe, without compromising the accuracy of the results.

4.6 Usage of GEDICorrect

The execution of the newly implemented framework is managed through a single Python script
(gedi_correct.py), which creates a GEDICorrect object and applies the selected geolocation correc-
tion method based on user-defined settings. These user-defined settings, also referred to as program
arguments, allow for customization of the correction process.

Some of the most important command options for gedi_correct.py include:

• --granules_dir - Specifies merged L1B-L2A GEDI input file directory for batch correction;
9https://github.com/numpy/numpy/issues/9650

https://github.com/numpy/numpy/issues/9650
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• --input_file - Specifies a single merged L1B-L2A GEDI input file for correction;

• --las_dir - Specifies the directory of .las files required for processing and simulation which must
overlap with the input granule file(s);

• --out_dir - Specifies the directory in which to save the corrected input granules and simulated
points;

• --save_sim_points - Flag option to save all the simulated points around each footprint;

• --save_origin_location - Flag option to save the original location simulated footprint;

• --criteria - Enumerates the set of criteria for best simulated footprint selection, based on the list
["wave", "rh_distance", "kl", "terrain", "wave_distance"], or the ”all” to select all criteria;

• --n_points - Specifies the number of points to simulate around each input footprint, which defaults
to 100;

• --radius - Specifies the maximum distance for radius to simulate points around each original foot-
print, defaulting to 12.5 meters;

• --min_dist - Specifies the minimum distance between simulated points around each original foot-
print, defaulting to 1 meter;

• --parallel - Flag option to run GEDICorrect in parallel with ”--n_processes” processes. If no
number is defined, it defaults to all available system’s processes minus 2;

• --n_processes - Specifies the number of processes to use for parallel processing, if the
”--parallel” option is activated. This is optional but it allows users to control the number of
processes used.

In summary, the default settings for the standard geolocation correction method in GEDICorrect are as
follows: i) 100 points simulated around each reported footprint; ii) points simulated up to 12.5 meters
from the reported footprint; iii) a minimum spacing of 1 meter between simulated points.

The following command demonstrates how to execute the gedi_correct.py script in parallel with 16
processes, using all available criteria:

$ python3 gedi_correct.py --granules_dir /FUELSAT_FULL_TEST_FILTERED/ --las_dir
/data/lcorado/ALS/las_com_CRS/ --out_dir /data/lcorado/FUELSAT_CORRECTED
--save_sim_points --criteria "all" --parallel --n_processes 16

↪→

↪→

For this work, this command was extensively modified to suit each experiment’s specific requirements.
Additionally, the full code for the gedi_correct.py script is provided in Appendix A.4.

4.7 Accuracy Assessment Metrics

In order to evaluate GEDICorrect’s performance, a range of metrics will be used to assess both the geolo-
cation correction accuracy and computational efficiency. The following metrics will guide the evaluation
steps described in the next section (Section 4.8):
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• R-squared coefficient (R2)
• Root Mean Squared Error (RMSE)
• Mean Average Error (MAE)
• Speedup (S)
• Amdahl’s Law

Given the simulated RH95 values of the corrected footprints (RH95sim) and the reported RH95 values for
each respective footprint (RH95orb) the following metrics were used.

R², depicted in Equation 4.1 measures the the proportion of variance in the dependent variable that can be
explained by the independent variable, varying (usually) from 0 to 1, with 0 implying no correlation; RMSE,
given by Equation 4.2, calculates the average magnitude of the error between two variables, penalizing larger
errors more severely, which could help identify significant deviations in geolocation; MAE, calculated through
Equation 4.3, represents the average of the absolute errors between reported and simulated RH95 values,
which is a more interpretable measure of the overall geolocation error. In the Equations RH95_sim is the
simulated RH95 of the vector of the corrected points, RH95_orb is the reported RH95 vector, mRH95_orb

is the mean of the reported RH95 vector and n is the size of both RH95 vectors.

R² = 1−
∑

(RH95_orbi −RH95_simi)∑
(RH95_orbi −mRH95_orb)

(4.1)

RMSE =

√∑
(RH95orb −RH95sim)2

n
(4.2)

MAE =

∑
|RH95orb −RH95sim|

n
(4.3)

To assess the improvement in runtime of GEDICorrect when it is executed in parallel with N processes,
the Speedup, given by Equation 4.4, can be calculated with reference to the program’s elapsed time (T ).
While S = 1 shows no speedup, S > 1 indicates an improvement in performance when parallelizing the
program.

S =
Tsequential

Tparallel
(4.4)

Finally, a theoretical speedup can be predicted using Amdahl’s Law [Amdahl, 1967], which calculates the
maximum improvement in performance given a portion of the program that can be parallelized, and is
expressed as Equation 4.5, where P is the proportion of the program that can be parallelized (between 0
and 1) and N is the number of processes or used for parallel execution.

Smax =
1

(1− P ) + P
N

(4.5)

According to Amdahl’s Law, even with an infinite number of processes, the speedup is ultimately limited by
the fraction of the program that cannot be parallelized (1− P ). Specifically, it assumes that a portion of
the program must still be executed serially, which limits the overall speedup. Therefore, this metric helps
determine how much parallelization will benefit GEDICorrect, and determine the extent to which each step
can be parallelized.
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4.8 Experiments

To test the newly designed system, a set of four experiments was defined to evaluate the accuracy and
performance of GEDICorrect and directly compare it to GEDI Simulator. The GEDI RH95 metric, which has
been utilized in several recent GEDI studies [Potapov et al., 2021, Roy et al., 2021, Lahssini et al., 2022],
was adopted as the representative measure of canopy height in this work.

The four experiments are as follows:

Baseline Assessment - The Baseline Assessment experiment will:

1. Evaluate the accuracy of on-orbit RH95 (RH95orb) by comparing it with the simulated RH95
(RH95sim) that was derived from the ALS data at the original GEDI location (i.e. without any
geolocation correction method);

2. Assess the improvement accuracy in RH95orb after applying the collocateWaves geolocation cor-
rection method;

3. Assess the improvement accuracy in RH95orb after applying the Pearson’s and Spearman correlation
criteria within GEDICorrect.

Criteria Assessment - The Criteria Assessment aims to test the feasibility of the newly proposed metrics
within the Scorer Unit (Unit 3). Specifically, this experiment will:

1. Evaluate the accuracy of each individual criterion by evaluating the highest R² between RH95orb and
RH95sim;

2. Perform a grid search across various combinations of criteria to identify the optimal configuration
that achieves the highest accuracy (i.e., the highest R² between RH95orb and RH95sim).

Efficiency Assessment - This experiment aims to assess the overall efficiency of GEDICorrect, focused
on both optimized coding practices and the use of parallelization for large-scale datasets. To carry out this
assessment, the experiment will:

1. Evaluate the runtime of both frameworks (GEDI Simulator and GEDICorrect) when run sequentially;

2. Quantify the theoretical speedup of GEDICorrect using Amdahl’s Law;

3. Measure the efficiency of the parallelization methods employed within GEDICorrect by performing a
grid search across a number of processors.

Points Distribution Assessment - Finally, the quantity and randomness of the simulated points around
each footprint are tested. This assessment is divided into two tests:

1. Simulated Points Assessment - Determine the optimal number of randomly generated points around
each footprint, considering the trade-off between accuracy and computational costs;
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2. Stochasticity Assessment - Assess the impact of the randomness in point generation on determining
the best geolocation for each footprint.

Each experiment builds upon the previous one, creating a progressive structure. Through these experiments,
the ultimate goal is to identify the optimal configuration and the most efficient method for geolocation
correction with GEDICorrect.





5
Results & Discussion

This chapter presents the main results obtained for each proposed experiment (see section 4.8). The
dataset used for the experiments, as previously described in Section 4.2, includes the ALS point cloud
data of the presented study area along with its corresponding cleaned and filtered GEDI dataset, the
GEDI_CorrectTest dataset. For all experiments, except ”Simulated Points Assessment”, the number of
generated points around each footprint was 100, which is GEDICorrect’s default option (see Section 4.6).

5.1 Baseline Assessment

The baseline test for this experiment using GEDI Simulator’s collocateWaves was performed with the
HDF5 version of GEDI_CorrectTest described in Section 4.2. The gediMetrics program was used to
extract the RH profile from the program’s output, and the results were formatted into a DataFrame for
further analysis. The goal was to assess the effectiveness of this standard geolocation correction process in
improving the accuracy of the GEDI footprints.

The results of this initial test show a moderate relationship (R² = 0.52) between the reported (RH95orb)
and simulated (RH95sim) GEDI canopy height at the original GEDI location, i.e., without any geolocation
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correction. This result highlights the impact of the geolocation error in GEDI data, which is estimated
to be around 10 meters [Dubayah et al., 2020]. This moderate correlation is similar to what have been
reported in other relevant studies focused on the assessment of the impact of geolocation error on GEDI
canopy height accuracy [Roy et al., 2021]. In areas where the landscape is dominated by heterogeneous
land cover types, such as the study area addressed in this dissertation, the impact of the geolocation error
on GEDI measurements is more evident. Figure 5.1 shows the relationship between reported (RH95orb)
and simulated (RH95sim) GEDI canopy height at the reported location.

Figure 5.1: Relationship between reported (RH95orb) and simulated (RH95sim) GEDI canopy height at
the original GEDI reported location.

The collocateWaves method, which represents the standard GEDI Simulator geolocation correction pro-
cess, showed no significant improvement in GEDI canopy height accuracy (R² = 0.52), indicating that
the orbit-level process in this study area is not a viable option for improving geolocation accuracy. This
result was also recently reported by East et al. [East et al., 2024], who found no significant improvement
in the accuracy of GEDI RH98 (used as canopy height metric) after geolocation correction using the
collocateWaves tool. They reported an RMSE of 5.32 without geolocation correction and 5.64 meters
with geolocation correction. Figure 5.2 shows the relationship between reported (RH95orb) and simulated
(RH95sim) GEDI canopy height after geolocation correction using collocateWaves.

One of the goals within this first experiment, was to compare the accuracy of GEDICorrect’s geoloca-
tion correction at the footprint level against the orbit-level correction of collocateWaves. For this, the
’wave’ Scoring criterion was used, testing two different correlation methods (Pearson and Spearman).
Surprisingly, and as can be seen in Table 5.1, the footprint-level correction approach implemented in GEDI-
Correct achieved a similar accuracy as observed in the GEDI Simulator geolocation correction method. The
footprint-level approach resulted in an R² of 0.5232 using the Pearson correlation metric, while the baseline
orbit-level GEDI Simulator produced an R² of 0.51. This result may be explained by the fact that when
using collocateWaves in a small study area, i.e., with only a few thousand GEDI footprints representing
limited terrain and vegetation conditions, the geolocation correction accuracy tends to be similar to that of
the footprint-level approach. It’s important to note that collocateWaves computes a constant (X,Y, Z)
offset that will be used to shift all the footprints according to this offset. Therefore, the larger the orbit
(i.e., the number of footprints), the less accurate this constant becomes for correcting footprints that are
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Figure 5.2: Relationship between reported (RH95orb) and simulated (RH95sim) GEDI canopy height after
geolocation correction using collocateWaves

representing a more diverse landscape. The experiment using Spearman’s correlation metric yielded a very
similar R² value compared to Pearson’s correlation (0.5161 vs. 0.5232), indicating that both metrics can
be applied for this task. However, while Pearson’s correlation is more suitable for linear relationships, this
is not typically the case for LiDAR waveforms. Based on available studies, there is no research specifically
focused on using Spearman’s correlation to assess LiDAR waveform similarity, although its use in other
waveform similarity studies (e.g. electrical current waveforms) has been reported [Rebonatto et al., 2017].
In summary, GEDICorrect defaults to using Spearman’s correlation for the ’wave’ criterion, as it is more
appropriate for non-linear data, such as waveforms.

Method Correlation Criteria R²
GEDI Simulator Pearson - 0.52

GEDICorrect Pearson wave 0.5232
GEDICorrect Spearman 0.5161

Table 5.1: Accuracy Assessment using different correlation based methods, Pearson and Spearman.

5.2 Criteria Assessment

GEDICorrect improves upon GEDI Simulator by adding additional criteria to compare simulated and re-
ported waveforms. In this work, four new criteria were introduced to improve the accuracy of footprint
geolocation. Table 5.2 presents the accuracy results of the GEDI canopy height (RH95) after applying the
implemented geolocation correction criterion.

It can be seen that the rh_distance criterion has the greatest impact on geolocation accuracy (R² = 0.86),
followed by the kl criterion (R² = 0.62), which also demonstrates the superiority of the KL metric
as a method for waveform curve similarity when comparing different waveforms (i.e., reported vs. sim-
ulated) [Zhou et al., 2016]. When comparing the waveform correlation-based matching (wave) approach
with the distance-based approach (wave_distance), it is evident that the distance-based method produces
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Criterion R² RMSE (m) MAE (m)
wave 0.5161 3.34 2.25

wave_distance 0.6020 3.29 2.40
kl 0.6232 3.19 2.31

terrain 0.5121 3.54 2.52
rh_distance 0.8604 1.68 1.09

Table 5.2: Single criterion evaluation on GEDICorrect

better results (R² = 0.60 vs R² = 0.52). This can be explained by the fact that the correlation method
captures the overall similarity between the two waveform curves rather than their alignment. The curves
may have a similar shape and produce a high correlation score, yet still be far from each other, meaning
they are not perfectly overlapping or aligned. In contrast, a distance-based criterion, which computes the
cumulative absolute difference between the reported and simulated waveform energy values, may be a more
direct approach to quantify the degree of waveform curve overlap. In summary, correlation-based methods
tend to capture similarity in the shape of two curves, while distance-based methods focus on their alignment
and magnitude differences (e.g. [Shirkhorshidi et al., 2015]). Finally, regarding the terrain criterion, the
results show no improvement in GEDI canopy height accuracy after applying the terrain matching geolo-
cation correction method. This outcome may reflect the impact of the initial data filtering process, where
all GEDI footprints with absolute differences greater than 10 meters between the GEDI-reported terrain
elevation (elev_lowest_mode) and the elevation from the SRTM Digital Elevation Model were removed.

GEDICorrect also supports combining multiple criteria for a more thorough evaluation, as described in
Section 3.2.1. When using multiple criteria, the final score of each simulated footprint is calculated as
the equally weighted mean of each criterion’s score. To identify the optimal combination of criteria, a
grid search was performed across all of the possible combinations. Table 5.3 displays the results of these
combinations.

The results show that the ’rh_distance’ metric positively impacts the performance of the geolocation
correction, consistently producing the highest R² values across both individual and combined tests. This sug-
gests that the RH profile is a reliable indicator of footprint geolocation accuracy, as the variability in RH val-
ues across the profile captures key aspects of the GEDI full waveform energy (e.g., [de Conto et al., 2024]).
Overall, these results confirm the usefulness of comparing reported and simulated RH profiles as a metric
of GEDI geolocation error, as observed in Jia et al. [Jia et al., 2024] who used the absolute difference
between reported and simulated RH profile to measure the impact of geolocation error on the reliability of
the GEDI Biomass product. However, the use of RH profile differences, such as the rh_distance metric,
as a criterion for GEDI geolocation correction has never been tested, highlighting the pioneering nature of
this work.

Although the highest performing observed combination is the individual rh_distance, the
kl+rh_distance combination was selected as the criterion for GEDI geolocation correction in this work
due to their complementary nature - kl focuses on waveform curves, and rh_distance targets the RH
profile. Figure 5.3 shows the relationship between reported (RH95orb) and simulated (RH95sim) GEDI
canopy height after geolocation correction using the kl+rh_distance criterion.

Additionally, Figure 5.4 illustrates the varying results produced by different methods for GEDI geolocation
correction. collocateWaves’s method slightly adjusts the original footprint location by approximately 1.5
meters. In contrast, the method proposed here, which combines KL-based waveform matching with the
CRSSDA on the RH Profile approach, shifts the original GEDI footprint by a more substantial distance of
7.6 meters, resulting in a high similarity between the original and simulated waveforms (see Figure 5.5).
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Criteria Combination R² RMSE (m) MAE (m)
rh_distance 0.86 1.68 1.09
rh_distance + wave_kl 0.82 1.91 1.20
rh_distance + wave 0.82 1.89 1.22
rh_distance + wave_kl + wave 0.81 2.00 1.26
rh_distance + wave_distance 0.80 2.02 1.30
rh_distance + wave_kl + terrain 0.80 2.07 1.32
rh_distance + wave_distance + wave_kl 0.79 2.11 1.35
rh_distance + wave_distance + wave_kl + wave 0.79 2.12 1.35
rh_distance + wave_kl + wave + terrain 0.79 2.11 1.35
rh_distance + wave_distance + wave_kl + wave + terrain 0.78 2.13 1.37
rh_distance + terrain 0.78 2.12 1.35
rh_distance + wave + terrain 0.78 2.12 1.36
rh_distance + wave_distance + wave + terrain 0.78 2.14 1.36
rh_distance + wave_distance + wave_kl + terrain 0.78 2.19 1.42
rh_distance + wave_distance + terrain 0.78 2.20 1.42
wave_distance + wave_kl + wave + terrain 0.64 3.02 2.16
wave_kl + wave + terrain 0.63 2.98 2.07
wave_distance + wave_kl + wave 0.63 3.07 2.16
wave_distance + wave_kl 0.62 3.23 2.35
wave_kl 0.62 3.19 2.31
wave_distance + wave 0.62 3.03 2.16
wave_distance + wave + terrain 0.62 3.05 2.13
wave_distance + wave_kl + terrain 0.62 3.22 2.30
wave_distance 0.60 3.29 2.40
wave_distance + terrain 0.59 3.30 2.37
wave_kl + terrain 0.59 3.34 2.37
wave_kl + wave 0.59 3.16 2.19
wave + terrain 0.58 3.20 2.22
wave_pearson 0.52 3.44 2.39
terrain 0.51 3.54 2.52

Table 5.3: Grid search on all unique combinations of criteria for GEDICorrect

When simulating the waveform at the reported GEDI footprint location, a clear disagreement between both
original and simulated waveforms can be seen, clearly showing a geolocation error in GEDI data (Figure 5.5).
The same pattern is observed where, even after applying the collocateWaves method, the misalignment
of both waveforms still persists. In contrast, after applying the combination kl + rh_distance criteria
approach, this disagreement was significantly reduced, consequently resulting in a smaller difference in the
RH95 metric (6.81 vs. 7.53 meters).

Moreover, to efficiently assess the combination of criteria, the grid search was performed in parallel using
16 processes, reducing the testing time to approximately 38 minutes per test. This significantly reduced
the computational time comparing to what would have been required for sequential execution.
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Figure 5.3: Relationship between reported (RH95_orb) and simulated (RH95_sim) GEDI canopy height
using GEDICorrect with kl+rh_distance criteria

Figure 5.4: Illustration of the geolocation correction using collocateWaves and GEDICorrect’s
kl+rh_distance criteria.

5.3 Efficiency Assessment

The framework enables parallel processing by creating a pool of processes that assigns blocks of footprints
for correction to each process. This approach optimizes runtime by distributing the computational workload
across multiple cores, leading to significant improvements in efficiency.
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Figure 5.5: Waveforms of the reported and simulated at the original location and corrected geolocation
footprints using collocateWaves and GEDICorrect’s kl+rh_distance. DN refers to the Digital Number,
or the amplitude of the waveform.

A baseline test was performed where both GEDI Simulator and GEDICorrect were executed using a single
process. Table 5.4 presents the real, user, and system times for these runs. The real time refers to the
total elapsed time, while user time accounts for the actual CPU time spent on the user’s code, and system
time measures the time spent on system-level operations, such as I/O processing1.

Test N Processes Real Time (min) User Time (min) Sys Time (min)
GEDI Simulator 1 5426.21 4736.58 646.28

GEDICorrect 1 258.51 216.5 42.1

Table 5.4: Baseline test comparison between GEDI Simulator and GEDICorrect

From the baseline results, it is evident that GEDICorrect is significantly more efficient than GEDI Simulator,
despite both being run sequentially. The real time for GEDI Simulator is approximately ' 90.5 hours
(5426.21 minutes), compared to just over ' 4 hours (258.51 minutes) for GEDICorrect. Additionally, the
user and system time highlights GEDICorrect’s more efficient use of computational resources and optimized
I/O operations during the geolocation correction process, respectively.

To calculate the theoretical speedup gained from this method of parallelization, Amdahl’s Law was used
(Equation 4.5). Currently, GEDICorrect employs the parallelization strategy at the Simulation and Scoring
steps (see section 4.5.1). To calculate S (Speedup, Equation 4.4), P = 0.9 (where P is the portion of the
program that is parallelizable) was calculated by portioning 10% where the program is run sequentially.

Figure 5.6 demonstrates this theoretical speedup achieved by the program when system’s resources are
1https://www.man7.org/linux/man-pages/man1/time.1.html

https://www.man7.org/linux/man-pages/man1/time.1.html
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increased. In theory, GEDICorrect could achieve a maximum speedup of 10× at 1024 processes.

Figure 5.6: Amdahl’s Law applied to GEDICorrect

Having established the baseline test and theoretical speedup, further experiments were conducted to evalu-
ate the parallelization capacity of GEDICorrect and select the optimal number of processes. The number of
processes was varied in powers of 2, starting from 2 and increasing up to the infrastructure (see section 4.3)
limit of 32 cores, as shown in Table 5.5. Additionally, a test with 64 processes was included to observe
whether increasing the number of processes beyond the available cores could yield further improvements or
result in performance saturation.

p Processes Real Time (min) User Time (min) Sys Time (min) Speedup
2 145.11 223.36 44.45 1.78
4 86.2 231.51 44.8 2.99
8 55.57 240.40 44.51 4.64
16 44.90 278.22 50.19 5.75
32 37.59 328.28 62.03 6.86
64 36.7 325.7 57.28 7.03

Table 5.5: Test search on optimal number of processes to use for parallelization processing of GEDICorrect

Increasing the number of processes consistently reduced the real time running GEDICorrect up to 32
processes, at which point the runtime reduction began to plateau beyond the point of 64 processes,
which indicated that the limit of parallel efficiency had been reached for the hardware infrastructure. This
saturation point is common in parallel processing, where the overhead associated with managing additional
processes begins to outweigh the benefits of parallelization, especially when the number of processes exceeds
the number of physical cores [Rauber and Runger, 2010]. This is further reflected in the increased system
time starting at 16 processes, which is higher than the elapsed real time.
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In practice, GEDICorrect’s speedup approaches the theoretical speedup previsions from Amdahl’s Law (see
Figure 5.6), which could be attributed to the high efficiency of its parallelization, as well as the framework’s
optimized memory management during the serial execution of the program.

5.4 Simulated Points Assessment

The geolocation correction process in GEDICorrect operates at the footprint level by simulating a set
number of points around each footprint, distributed up to 12.5 meters from the original footprint centroid,
with a minimum spacing of 1 meter between points. The purpose of this assessment is to identify the
optimal number of simulated points in terms of accuracy and computational cost.

Table 5.6 presents the results for different numbers of simulated points, starting at 100, up to 300 in
increases of 50.

N points R² RMSE MAE Elapsed Real Time (min)
100 0.82 1.90 1.20 37.59
150 0.84 1.81 1.12 48.05
200 0.83 1.82 1.13 59.35
250 0.84 1.79 1.12 72.87
300 0.84 1.80 1.10 94.96

Table 5.6: Test search on number of simulated points around each footprint for geolocation correction with
GEDICorrect

The results demonstrate that increasing the number of simulated points from 100 to 300 results in slight
improvements in accuracy. The highest R² value is achieved with 150 points (R² = 0.84), while using
further points does not lead to significant improvements but a rise in computation time is noticeable; for
example, the time to process 300 points for each footprint is nearly 2.5 times longer than for 100 points,
yet the increase in accuracy is relatively small. Figure 5.7 illustrates the spatial distribution of the simulated
points for different values of N, as outlined in Table 5.6.

5.5 Stochasticity Assessment

The final experiment aims to assess the impact of randomness in the distribution of simulated points around
each reported GEDI footprint and evaluate the reliability of GEDICorrect’s footprint-level correction method.
For this, an example footprint with shot number ’44230300200152148’ was selected for the study. Five
separate simulations were conducted for this footprint, with each simulation introducing random variability
in the location of generated points. Figures 5.8 and 5.9 illustrate the distribution of generated points for
each of the five simulations, and the highest scored footprint (footprint with highest similarity with the
reported waveform), respectively.

Table 5.7 presents the results of these tests, including the RH95 values for the optimal geolocation produced
by each simulation and the final score obtained from Unit 3 (see Section 3.2.1) The Final Score column was
calculated with respect to the combination of the rh_distance and kl criteria, ranging from 0 to 1, with
1 being the highest similarity a simulation can have in comparison to the reported footprint. The reported
GEDI footprint recorded an RH95 of 6.80 meters, whereas the collocateWaves resulted in an RH95 of
8.06 meters, demonstrating the effectiveness of GEDICorrect’s geolocation correction method. Figure 5.10
compares the simulated waveforms from each of the five simulation with the reported GEDI waveform,
alongside the waveform generated from GEDI Simulator’s optimal geolocation for the same footprint.
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Figure 5.7: Distribution of simulated points across different simulations where N is changed.

Test Simulated RH95 Final Score
1 7.22 0.96
2 6.98 0.96
3 6.67 0.94
4 6.82 0.94
5 7.75 0.95

Table 5.7: Stochasticity Assessment encompassing 5 different simulations

The results demonstrate that GEDICorrect successfully generates optimal points for footprint correction in
most cases but can still leave small positional gaps. These gaps could be reduced by increasing the number
of simulated points around each footprint, though this would come with a performance cost, as highlighted
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Figure 5.8: Generated footprint centroid points around reported footprints that span 5 different simulations
using N = 100.

Figure 5.9: Five different highest scored simulations for reported footprint (shot_number:
44230300200152148) and for collocateWaves (Hancock’s Method).

in Section 5.4 (see also Table 5.6). On average, the corrected footprints differ in distance by approximately
2 meters between simulations. The waveform plots in Figure 5.10 reveal a consistent distribution of energy
across simulations, except near the canopy top (around 195 meters), where the energy levels vary slightly,
which can be explained by the observed discrepancies in footprint location.Overall, a careful balance must
be maintained between accuracy and computational efficiency, particularly when increasing the number of
generated points around each reported footprint.

Moreover, it is possible to state that GEDICorrect consistently improves geolocation accuracy at the foot-
print level, particularly in areas with varying canopy heights. By leveraging parallel processing, efficient
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Figure 5.10: Waveforms plots for each of the different simulations (1 through 5), and for collocateWaves
(Hancock) optimal position.

memory management, and introducing new geolocation correction criteria, GEDICorrect proves to be a
faster, scalable and viable solution for improving GEDI geolocation error in complex landscapes.



6
Conclusion

This dissertation presents a comprehensive approach to improve the geolocation accuracy of GEDI footprints
through the development of the GEDICorrect framework; it introduces new geolocation correction criteria,
leverages parallel processing, and addresses critical limitations of existing methods. The key findings from
this work demonstrate the following significant advancements:

1. Enhanced Geolocation Accuracy: By comparing GEDICorrect to the standard GEDI Simulator’s
collocateWaves method, it is evident that GEDICorrect significantly improves geolocation accuracy,
particularly through the integration of the newly introduced criteria such as rh_distance and the
combination of kl and rh_distance. These criteria more effectively capture both the waveform sim-
ilarity and RH profile differences, which are critical indicators of geolocation accuracy. The results
showed an R² improvement from 0.52 with collocateWaves to 0.86 using RH profile differences in
GEDICorrect, highlighting the superiority of this approach.

2. Efficient Computational Performance: One of the most significant contributions of GEDICorrect
is its efficient parallel processing design, which dramatically reduces computational time. This par-
allelization strategy leads to a speedup of 20x compared to the standard sequential method, making
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large scale geolocation correction feasible. By optimizing memory resources utilization and reduc-
ing runtime from days to hours, GEDICorrect enhances scalability for processing large scale GEDI
datasets.

3. Pioneering Correction Criteria: The introduction and successful application of novel criteria, par-
ticularly the rh_distance metric, but also the KL index, underscore the innovative nature of this
research. By showing that the RH profile is a reliable indicator for geolocation accuracy, the work
here presented opens new avenues for further refinement of waveform-based geolocation correction
strategies in future studies.

Overall, the findings of this dissertation contribute to the ongoing efforts to improve the accuracy of
spaceborne lidar measurements, in particular by paving the way for more reliable GEDI-derived metrics,
which will have positive implications in forest monitoring, biodiversity assessments, and carbon accounting.

6.1 Future Work

While GEDICorrect has shown promising results, there are several areas that can be explored to further
enhance its functionality and efficiency, some of them are worth mentioning:

• Containerization - containerizing the system using Docker or similar technologies would simplify the
deployment process, making it easier to transfer and run the framework and required dependencies
on various platforms without compatibility issues;

• Adaptive Criteria Weighting - currently, all criteria in GEDICorrect contribute equally to the scoring
mechanism. Future enhancements could explore adaptive weighting schemes that prioritize certain
criteria based on study objectives, or even employ Machine Learning to dynamically adjust these
weights to optimize geolocation correction performance across various landscapes;

• GPU Processing - leveraging GPU processing to accelerate computations could significantly re-
duce runtime. However, this might require substantial adaptation of the current system, especially
considering the limitations of GEDI Simulator, which may not natively support GPU acceleration;

• Wall-to-wall Canopy Height Mapping - since GEDICorrect improves the accuracy of GEDI ge-
olocation, future research could focus on assessing how these corrections impact the generation of
wall-to-wall canopy height maps (which are spatially comprehensive maps of canopy height that cover
an entire region) by comparing them with ALS-derived canopy height models (CHM).



A
Developed Software

A.1 GEDI Simulator Installation Script

#!/bin/bash -f

HOMDIR="$HOME"

# set up environment variables
export ARCH=`uname -m`
export PATH=$PATH:./:$HOMDIR/bin/$ARCH:$HOMDIR/bin/csh
export GEDIRAT_ROOT=$HOMDIR/src/gedisimulator
export CMPFIT_ROOT=$HOMDIR/src/cmpfit-1.2
export GSL_ROOT=/usr/local/lib
export LIBCLIDAR_ROOT=$HOMDIR/src/libclidar
export HANCOCKTOOLS_ROOT=$HOMDIR/src/tools
export HDF5_LIB=/usr/lib/x86_64-linux-gnu
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# Setup library paths
envFile="$HOMDIR/.bashrc"
echo "export ARCH=`uname -m`" >> $envFile
echo "export PATH=$PATH:./:$HOMDIR/bin/$ARCH:$HOMDIR/bin/csh" >> $envFile
echo "export GEDIRAT_ROOT=$HOMDIR/src/gedisimulator" >> $envFile
echo "export CMPFIT_ROOT=$HOMDIR/src/cmpfit-1.2" >> $envFile
echo "export GSL_ROOT=/usr/local/lib" >> $envFile
echo "export LIBCLIDAR_ROOT=$HOMDIR/src/libclidar" >> $envFile
echo "export HANCOCKTOOLS_ROOT=$HOMDIR/src/tools" >> $envFile
echo "export HDF5_LIB=/usr/lib/x86_64-linux-gnu" >> $envFile

# set up directory structure
if [ ! -e $HOMDIR/src ];then

mkdir $HOMDIR/src
fi
if [ ! -e $HOMDIR/bin ];then

mkdir $HOMDIR/bin
fi
if [ ! -e $HOMDIR/bin/$ARCH ];then

mkdir $HOMDIR/bin/$ARCH
fi
if [ ! -e $HOMDIR/bin/csh ];then

mkdir $HOMDIR/bin/csh
fi

# Install CMPFIT
pushd $HOMDIR/src
wget https://www.physics.wisc.edu/~craigm/idl/down/cmpfit-1.2.tar.gz
tar -xvf cmpfit-1.2.tar.gz
popd

pushd $HOMDIR/src
git clone https://bitbucket.org/StevenHancock/libclidar
git clone https://bitbucket.org/StevenHancock/tools
git clone https://bitbucket.org/StevenHancock/gedisimulator

programList="gediRat gediMetric mapLidar collocateWaves lasPoints fitTXpulse"
cd $GEDIRAT_ROOT/
make clean

for program in $programList;do
make THIS=$program
make THIS=$program install

done

programList="gediRatList.csh listGediWaves.csh overlapLasFiles.csh filtForR.csh"
for program in $cshList;do
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cp $program $HOMDIR/bin/csh/
done

popd

A.2 Dataset L1B-L2A Merging Script

1 import geopandas as gpd
2 import os
3 import pandas as pd
4

5 l1b_dir = "/home/yoru/personal/GEDI-Pipeline/GEDI-Pipeline/
FUELSAT_TEST_L1B"

6 l2a_dir = "/home/yoru/personal/GEDI-Pipeline/GEDI-Pipeline/
FUELSAT_TEST_L2A"

7 out_dir = "./MERGED_L1B_L2A"
8

9 l1b_files = [f for f in os.listdir(l1b_dir) if f.endswith(".gpkg")]
10 l2a_files = [f for f in os.listdir(l2a_dir) if f.endswith(".gpkg")]
11

12 l2a_dict = {}
13

14 # Align each L1B with L2A filenames
15 for l1b in l1b_files:
16 l1b_ext = l1b.split("_")[2]
17

18 for l2a in l2a_files:
19 filename_ext = l2a.split("_")[2]
20

21 if filename_ext == l1b_ext:
22 l2a_dict[l1b] = l2a
23 break
24

25 for file in l1b_files:
26 l1b_file = gpd.read_file(os.path.join(l1b_dir, file), engine='pyogrio

')
27 l2a_file = gpd.read_file(os.path.join(l2a_dir, l2a_dict[file]),

engine='pyogrio')
28

29 # L2A variables to keep
30 cols_to_keep = ['shot_number', 'degrade_flag', 'quality_flag', '

elev_lowestmode', 'digital_elevation_model',
31 'num_detectedmodes', 'solar_elevation', 'sensitivity'

]
32

33 cols_to_keep = cols_to_keep + [f"rh_{i}" for i in range(1, 101)]
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34

35 rename_col = {}
36 for i in range(1,101):
37 rename_col[f'rh_{i}'] = f'rh_{i}'
38 rename_col['shot_number_x'] = 'shot_number'
39

40 # Introduce L2A data columns to final_df
41 l2a_file_to_merge = l2a_file[cols_to_keep]
42 l2a_file_to_merge = l2a_file_to_merge.rename(columns=rename_col)
43

44 # Align both data products by each footprint shot_number (since they
are unique)

45 merged_df = pd.merge(l1b_file , l2a_file_to_merge , left_on='
shot_number_x', right_on=[sn for sn in l2a_file_to_merge.columns
if sn.endswith('shot_number')][0])

46

47 # Quality flags
48 merged_df = merged_df.query('degrade_flag == 0 and quality_flag == 1'

)
49

50 merged_df = merged_df.query('sensitivity < 0.9')
51

52 merged_df = merged_df.query('solar_elevation < 0')
53

54 merged_df = merged_df.query('rh_95 <= 30')
55

56 merged_df = merged_df.query('rh_95 > 10 and num_detectedmodes == 1')
57

58 final_df = merged_df.loc[~((merged_df['rh_98'] > 5) & (merged_df['
num_detectedmodes'] == 1))]

59

60 if len(final_df) < 1:
61 print(f"Filtered merged df {file} is empty, skipping")
62 continue
63

64 print("Saving ", file)
65 final_df.to_file(os.path.join(out_dir, file), driver="GPKG")

Listing A.1: Script developed to merge both GEDI L1B and L2A as well as the filtering process

A.3 GEDICorrect Simulation Unit

1 """
2 Handles the simulation of points around footprints and contains functions

for processing the C program of gediSimulator
3 """
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4 import os
5

6 import multiprocessing
7 import numpy as np
8 import geopandas as gpd
9 import pandas as pd

10

11 import laspy
12 from shapely.geometry import box, Point
13

14 import subprocess
15 from .data_process import parse_txt , parse_simulated_h5
16

17 def init_random_seed():
18 '''
19 Initializes a random seed for each multiprocessing process. This

works to ensure
20 that no other worker process shares the inherited seed from the

parent process
21 '''
22 seed = multiprocessing.current_process().pid # Use process ID as the

seed
23 np.random.seed(seed)
24

25

26 def generate_random_points(centroid_x , centroid_y , num_points , max_radius
=12.5, min_dist=1.0):

27 '''
28 Generates a random number of ***num_points*** points around (x,y)

coordinates up to a
29 ***max_radius*** distance , at ***min_dist*** intervals between

generated points.
30 '''
31 centroid = Point(centroid_x , centroid_y)
32

33 # Define the boundary of the circle within which points will be
placed

34 boundary = centroid.buffer(max_radius)
35 points = []
36

37 # Keep trying until all simulated points are valid
38 while len(points) < num_points:
39 angle = np.random.uniform(0, 2 * np.pi)
40 distance = np.random.uniform(0, max_radius)
41 x = centroid_x + np.cos(angle) * distance
42 y = centroid_y + np.sin(angle) * distance
43 new_point = Point(x, y)
44
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45 # Check if the new point is at least min_dist meters away from
all other points

46 if all(new_point.distance(other) >= min_dist for other in points)
:

47 points.append(new_point)
48

49 # If the points list is filled and all are valid, exit the loop
50 if len(points) == num_points:
51 break
52

53 return points
54

55

56 def process_footprint(footprint , temp_dir, original_df , crs,
simulate_original=True, num_points=100, max_radius=12.5, min_dist=1.0)
:

57 '''
58 Core of GEDI Simulation footprints.
59 1 - Generates points around footprint centroid
60 2 - Runs the desired simulations from GediRat and GediMetrics from

Steven Hancock
61 3 - Parses and processes the output of the simulations to be returned
62 '''
63

64 idx = multiprocessing.current_process().pid # Get current process
unique id

65

66 # Shot number
67 shot_number = footprint['shot_number_x']
68 original_fpt = original_df.loc[original_df['shot_number_x'] ==

shot_number]
69

70 # Nbins
71 nbins = str(original_fpt['rx_sample_count'].values[0]+1)
72

73 ## Generate random points around footprint
74 rand_points = generate_random_points(footprint['geometry'].x,

footprint['geometry'].y, num_points=num_points , max_radius=
max_radius , min_dist=min_dist)

75

76 ## Generate txt list of coordinates from random point
77 with open(os.path.join(temp_dir , f"points_test_{idx}.txt"), "w") as f

:
78 if simulate_original:
79 f.write(f"{footprint['geometry'].x} {footprint['geometry'].y

}\n") # Write original footprint position as first point
80 num_points += 1 # Additional point
81 for point in rand_points:
82 f.write(f"{point.x} {point.y}\n")
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83

84 h5_file_dir = os.path.join(temp_dir, f"simu_wavef_{idx}.h5")
85 points_file_dir = os.path.join(temp_dir , f"points_test_{idx}.txt")
86 metric_outroot = os.path.join(temp_dir, f"{idx}_")
87

88 ## Simulate waveforms
89 exit_code = subprocess.run(["gediRat", "-inList", os.path.join(

temp_dir, "alsList.txt"), "-listCoord", points_file_dir , "-hdf", "
-aEPSG", "32629", "-ground", "-maxBins", nbins, "-output",
h5_file_dir], stdout=subprocess.DEVNULL)

90 exit_code = subprocess.run(["gediMetric", "-input", h5_file_dir , "-
readHDFgedi", "-ground", "-varScale", "3.5", "-sWidth", "0.8", "-
rhRes", "1", "-laiRes", "5", "-outRoot", metric_outroot], stdout=
subprocess.DEVNULL)

91

92 ## Handle each output
93 txt_df = parse_txt(footprint['shot_number_x'], metric_outroot+'.

metric.txt') ######## TODO: Transform shotnumber to string and csv
must display differently

94

95 try:
96 h5_df = parse_simulated_h5(h5_file_dir , num_points)
97 except ValueError as e:
98 return []
99

100 # Concat the TXT and H5 dataframes
101 all_df = pd.concat([txt_df, h5_df], axis=1)
102

103 # Filter out NaN and add Geometry
104 all_df = all_df.dropna(axis=0)
105 all_df['geometry'] = list(zip(all_df.lon, all_df.lat))
106 all_df['geometry'] = all_df['geometry'].apply(Point)
107

108 # Filter out special case footprints
109 if len(all_df) < num_points:
110 # Did not simulate all points, discard
111 return []
112

113 # Sanity check: Check if vegetation was cut with original rh95
114 original_rh95 = original_fpt['rh_95'].values[0]
115 rh95_simulated_position = all_df['rhGauss_95']
116

117 # If mean difference between RH95 of Simulated and GEDI
118 mean_diffrh95 = (rh95_simulated_position - original_rh95).mean()
119 if mean_diffrh95 < -10:
120 # If negative , possibly a vegetation cut and datum difference

between ALS and GEDI
121 return [shot_number]
122
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123 point_df = gpd.GeoDataFrame(all_df, geometry='geometry')
124

125 ## Return corrected footprint
126 return point_df

Listing A.2: Simulation Unit functions

A.4 GEDICorrect Execution Script

1 import os
2 import argparse
3

4 from src.correct import GEDICorrect
5

6 # --------------------------COMMAND LINE ARGUMENTS AND ERROR HANDLING
---------------------------- #

7 # Set up argument and error handling
8 parser = argparse.ArgumentParser(description='A script to correct GEDI

Geolocation at the footprint level.')
9

10 parser.add_argument('--granules_dir', required=False, help='Local
directory where all GEDI files ', type=str)

11

12 parser.add_argument('--input_file', required=False, help='GEDI File to be
processed and corrected', type=str)

13

14 parser.add_argument('--las_dir', required=True, help='Directory of .LAS
files required for processing. Must intersect with input granule file(
s)', type=str)

15

16 parser.add_argument('--out_dir', required=True, help='Directory in which
to save the corrected input granules and simulated points', type=str)

17

18 parser.add_argument('--save_sim_points', required=False, help='Option to
save all the simulated points around each footprint from the input
data.',

19 action='store_true')
20

21 parser.add_argument('--save_origin_location', required=False, help='
Option to save all the simulated reported locations for each footprint
from the input data.',

22 action='store_true')
23

24 parser.add_argument('--criteria', required=True, help='Set of criteria to
select the best footprint. Select from "wave", "rh", "rh_correlation"
and "terrain". \
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25 Select "all" to
evaluate all
simulated
footprints with
all the

possible
criteria', type
=str, default='
all')

26

27 parser.add_argument('--n_points', required=False, help='Number of points
to simulated around each input footprint', type=int, default=100)

28

29 parser.add_argument('--radius', required=False, help='Maximum value for
radius to simulate points around each original footprint', type=float,
default=12.5)

30

31 parser.add_argument('--min_dist', required=False, help='Minimum distance
between simulated points around each original footprint', type=float,
default=1.0)

32

33 parser.add_argument('--rh_match', required=False, help='Relative Height
metric to which make the Matching. Must require using "rh" criterion.'
, type=int, default=95)

34

35 parser.add_argument('--parallel', required=False, help='Use parallel
processing with "--n_processes" processes. If no n_processes are
defined, defaults to all minus 2 processes.',

36 action='store_true')
37

38 parser.add_argument('--n_processes', required=False, help='Number of
processes to use for parallel processing. If none are specified ,
defaults to all minus 2 processes.', type=int)

39

40 args = parser.parse_args()
41

42 # List Files and Create Output directory if needed
43

44 if not os.path.exists(args.out_dir):
45 os.mkdir(args.out_dir)
46

47 input_granules = None
48

49 if args.granules_dir:
50 input_granules = [os.path.join(args.granules_dir , f) for f in os.

listdir(args.granules_dir) if f.endswith('.gpkg')]
51

52 if args.input_file:
53 input_granules = [args.input_file]



76 APPENDIX A. DEVELOPED SOFTWARE

54

55 correct = GEDICorrect(granule_list=input_granules ,
56 las_dir=args.las_dir,
57 out_dir=args.out_dir,
58 criteria=args.criteria ,
59 rh=args.rh_match,
60 save_sim_points=args.save_sim_points ,
61 save_origin_location=args.save_origin_location ,
62 use_parallel=args.parallel ,
63 n_processes=args.n_processes)
64

65 results = correct.simulate(args.n_points , args.radius, args.min_dist)
66

67 print(f"[Correction] Correction of input footprints complete! All files
have been saved to {args.out_dir}")

Listing A.3: Script developed to execute the GEDICorrect framework
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