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ABSTRACT
Anthropogenic activities have significantly altered land cover on a global scale. These changes often 
have a negative effect on biodiversity limiting the distribution of species. The extent of the effect on 
species’ distribution depends on the landscape composition and configuration at a local and landscape 
level. To better understand this effect on a large scale, we evaluated how land cover and vegetation 
structure shape bat species’ occurrence while considering species’ imperfect detection. We hypothesize 
that intensification of anthropogenic activities in agriculture, for example, reduces heterogeneity of land 
cover and vegetation structure, and thereby, limits bat occurrence. To investigate this, we conducted 
acoustic bat sampling across 59 locations in southern Portugal, each with three spatial replicates. We 
derived fine-scale vegetation structural metrics by combining spaceborne LiDAR (GEDI) and synthetic 
aperture radar data (Sentinel-1 and ALOS/PALSAR-2). Additionally, we included land cover metrics and 
high-resolution climate data from CHELSA. Our findings revealed an important relationship between bat 
species’ occupancy and vegetation structure, particularly with vegetation canopy height. Moreover, 
forest and shrubland proportions were the main land cover types influencing bat species responses. All 
species’ best-ranking occupancy models included at least one climatic variable (temperature, humidity, 
or potential evapotranspiration), demonstrating the importance of climate when predicting bat dis
tribution. Our acoustic surveys had a species’ detection probability varying from 0.19 to 0.86, and it was 
influenced by night conditions. These findings underscore the importance of modeling imperfect 
detection, especially for highly vagile and elusive organisms like bats. Our results demonstrate the 
effectiveness of using vegetation and landscape metrics derived from high-resolution remote sensing 
data to model species distribution in the context of biodiversity monitoring and conservation.
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1. Introduction

Global land cover has undergone systematic changes in 
recent decades, and these changes frequently exert 
pressure on natural habitats and biodiversity (National 
Research Council 2007; Peñuelas et al. 2017). To fully 
understand the impact of these dynamics on biodiver
sity, a comprehensive and detailed picture of land cover 
composition at a wider landscape level is required. 
Horizontally classifying land cover composition, in 
other words two-dimensional classification (e.g. agricul
tural land and forest), is only part of the requirement. The 
vertical structure of the vegetation communities, a third- 
dimension classification, also shapes the quality of habi
tats (Dubayah et al. 2010). The complexity of vegetation 

strata drives distribution patterns of different species 
and their diversity locally and on a broader scale (Díaz 
et al. 2005; Guo et al. 2021; Marques et al. 2016; Moudrý 
et al. 2023). This horizontal and vertical mapping is 
crucial for decision-makers to develop sustainable poli
cies to enhance the resilience of biodiversity and ecosys
tem services (Lehrer et al. 2021; Starbuck et al. 2014; 
Weller 2008), especially in cultural landscapes where 
horizontal structure encompasses remnants of natural 
forests, croplands, agroforestry systems, and tree planta
tions (Shapiro et al. 2020).

Traditionally, large-scale assessments of vegetation 
structure relied on forest resource inventories, which 
typically employed systematic sampling of trees 
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rendering cost, labor, and time challenges, as well as 
expensive spatial analyses (Barreiro and Tomé 2017; 
Rice et al. 2014; White et al. 2016). Remote sensing 
stands as a rapidly evolving set of tools that help 
overcome these challenges and provide systematic 
and consistent measurements of ecosystem structure 
(Guo et al. 2021; White et al. 2016). Modern space
borne missions effectively acquire multi-source data, 
proving to be valuable for estimating key forest com
position and structure metrics (Schulte To Bühne et al.  
2018; Ustin and Middleton 2021; Valerio et al. 2023). 
Multispectral sensors are frequently used to horizon
tally map land cover remotely (e.g., Chaves et al.  
2020), but their limitations emerge in complex land
scapes where different vegetation types exhibit simi
lar spectral signatures (Dwiputra et al. 2023; Karra 
et al. 2021). Here, integrating multi-source data, 
including multispectral, Synthetic Aperture Radar 
(SAR), and Light Detection and Ranging (LiDAR), sig
nificantly enhances mapping of both horizontal and 
vertical vegetation components (e.g., David et al.  
2022; Fagua et al. 2019).

LiDAR plays a crucial role in characterizing vertical 
vegetation structure, providing key metrics such as 
canopy height, cover, and density, as heterogeneity in 
terms of leaf area index (LAI) and plant area index (PAI) 
(Dubayah and Drake 2000; Naesset 1997; Tang et al.  
2012; Tang et al. 2016; Tian et al. 2021). While LiDAR 
deployment can be terrestrial, airborne, or spaceborne, 
only airborne and spaceborne platforms are suitable 
for large-scale studies (Melin et al. 2017; Moudrý et al.  
2023). Notably, the spaceborne Global Ecosystem 
Dynamics Investigation (GEDI) mission offers extensive 
LiDAR datasets for near-global coverage (Dubayah 
et al. 2020a). Optimized specifically for vegetation 
structure analysis, GEDI aims to elucidate the link 
between ecosystem structure and biodiversity (e.g., 
Hakkenberg et al. 2023; Schneider et al. 2020). 
However, GEDI data alone does not provide spatially 
continuous maps of canopy structure across broad 
areas (Schneider et al. 2020). This limitation requires 
the integration of other remote sensing data sources, 
enabling extrapolation to regions not directly sampled 
by GEDI. By integrating multi-source satellite data with 
LiDAR information, we can develop robust models of 
forest structure across large spatial scales. These multi
faceted remote sensing approaches ultimately 
enhance our understanding of the spatial distribution 
of wild species.

From an ecological perspective, bats are well-suited 
indicators for studying landscape composition and 
vegetation structure at large scales. Due to varied feed
ing strategies and adaptations, bat species are affected 
differently to habitat structure (Denzinger and 
Schnitzler 2013). Bats have been shown to respond to 
composition and structure (Froidevaux et al. 2016; 
Gehrti and Chelsvig 2003; Monadjem et al. 2007), vary
ing by season (Taylor et al. 2013), biome (Farneda et al.  
2020; Mendes et al. 2017a) and species (Fuentes- 
Montemayor et al. 2013; Mendes et al. 2017b). More 
precisely, different bat species have varied distribution 
patterns, ranging from locally restricted to widely dis
tributed (Russo and Jones 2003). Moreover, bats offer 
the advantage of being able to be sampled using 
increasingly affordable autonomous ultrasound detec
tors, which enhances the scalability of surveying echo
locating bats (Gibb et al. 2019; Hill et al. 2018). There is 
variability in the likelihood of acoustically detecting 
bats, influenced by factors such as the distance from 
the detector and the vegetation structure (Gorresen 
et al. 2008; Patriquin et al. 2003).

This study represents a significant advancement as 
we model species occupancy considering both horizon
tal and vertical habitat structures derived from a novel 
integration of spaceborne LiDAR (GEDI) and SAR data. 
We applied a modeling methodology to study bat occu
pancy using novel remote sensing tools while explicitly 
accounting for imperfect detection. Specifically, we 
aimed to a) assess how vegetation structure and density 
influence bat occupancy, and b) understand how land 
cover composition, as well as climate data, determines 
the spatial patterns of bat occupancy and detection. We 
anticipate species-specific variations but predict that 
cultural land cover will negatively affect bat species’ 
occupancy, while areas with more complex vegetation 
communities will have the opposite, positive effect on 
occupancy. Furthermore, we hypothesize that vegeta
tion metrics will be a determinant variable for modeling 
bat species occupancy.

2. Materials and methods

2.1. Study area

Given its diverse landscape composition and struc
ture, the Mediterranean biogeographic region pro
vides a favorable research context to explore the 
effects of land cover and vegetation structure on bat 
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occupancy. This study was conducted in the southern 
region of Portugal (Figure 1), and data collection was 
carried out within Natura 2000 network sites. The area 
is characterized by Mediterranean climate, with hot 
and dry summers and mild winters. The landscape 
exhibits a mosaic pattern comprising oak woodlands, 
shrublands, and human-influenced habitats, such as 
permanent crops (olive groves and cereal crops), pas
tures, and tree plantations (stone pines, eucalyptus, 
and maritime pines). Additionally, riparian vegetation 
associated with fresh-water habitats contributes to 
the diversity of vegetation structure in the area 
(Rainho 2007).

2.2. Bat sampling design

Bat occupancy and detection were sampled using 
passive and acoustic techniques during bats’ annual 
most active period, from May to October (Mendes 
et al. 2014). We visited 59 sites within the study area 
across two years (2020–2021), and to ensure optimal 

bat detectability during acoustic recording we con
ducted surveys only during nights with suitable 
weather conditions. These conditions included no 
rain as it can hinder bats from foraging, wind speeds 
below 3.5 m/s as it limits bat’s capacity to fly, and 
nightly temperatures above 10°C, as lower tempera
tures reduce bat activity, compromising the detect
ability of the species (Amorim et al. 2012; Dixon 2012; 
Ford et al. 2005; Russo and Jones 2003). We imple
mented three spatially replicated surveys at each site, 
ensuring a minimum separation distance of 1 km 
between replicates to guarantee their independence. 
Given the non-territorial behavior of temperate bats 
during flight, any replicate location within a suitable 
habitat has an independent probability of detecting 
the target species (Rainho et al. 2011). We used 
Audiomoth devices, stationary automatic ultrasound 
recording devices (Hill et al. 2018), set up on trees or 
poles with a microphone perpendicular to the sub
strate and at a minimum height of 1.5 m to minimize 
signal attenuation from ground-level vegetation 

Figure 1. Map with the location of bat acoustic sampling sites (n = 59) and their three spatial replicates, in the study area of southern 
Portugal. Ten land cover categories considered to derive land cover metrics. Insert shows Portugal’s location within Europe.

GISCIENCE & REMOTE SENSING 3



(Patriquin et al. 2003). Recordings were conducted at 
a mid-gain setting and with a sample rate of 256 kHz, 
a value at least twice as high as that of the highest 
sound frequency of bat species echolocation occur
ring in the region, whose frequency call’s range from 
9 kHz to 120 kHz (see Nyquist-Shannon sampling the
orem, Shannon 1949). During each sampling session, 
the devices recorded a nine-second sound file fol
lowed by a one-second pause, employing a quasi- 
continuous recording approach starting 15 minutes 
before sunset and ending four hours after sunset. 
This specific time window corresponds to the period 
of peak bat nightly activity (Rainho 2007; Russo and 
Jones 2003).

2.3. Acoustic analysis

Due to the recording devices’ substantial volume of 
sound files, a semi-automatic approach was 
employed for acoustic bat identification using 
Kaleidoscope Pro (Wildlife Acoustics, Massachusetts, 
USA). We implemented the auto-classifier algorithm 
within Kaleidoscope Pro to filter audio files, distin
guishing those containing bat calls from those with
out calls. Subsequently, all files classified as 
containing bat calls were manually reviewed and 
identified using the same software to ensure the effi
ciency and accuracy of the file tagging process. The 
bat species’ acoustic identification was based on 
Barataud (2020) and Rainho et al. (2011). In cases 
where multiple species’ echolocation calls were pre
sent within an audio file, this was duplicated, and 
each copy was assigned a distinct species identifica
tion. Bat calls that could not be assigned to a species 
or species group were not considered for analysis. We 
considered a bat species as present during a survey if 

its echolocation calls were recorded and positively 
identified at least once during the night and absent 
if the species was not acoustically recorded.

2.4. Predictors

In this study, four types of predictor covariates were 
employed to model bat occupancy and detection in 
southern Portugal: a) vegetation structure and den
sity, b) land cover metrics, c) climate data and d) night 
conditions (Table 1).

2.4.1. Vegetation structure and density
As a vegetation structure predictor variable, we 
derived from the spaceborne LiDAR system GEDI 
a vegetation canopy height (VCH) metric (Table 1). 
For this, the GEDI L2A Elevation and Height Metrics 
data product (Version 002) was used. The L2A product 
provides latitude and longitude information, quality 
metrics of the geolocated waveform, ground eleva
tion, canopy height, and metrics of reflected energy 
(relative heights: RH0, RH10, RH20, . . ., RH100) from 
different surfaces within the 25-m laser footprint 
(Dubayah et al. 2020a). As GEDI only provides samples 
and transects over the landscape and cannot produce 
spatially continuous LiDAR measurements (e.g. Ngo 
et al. 2023), it is crucial to extrapolate these footprint- 
level data to areas without GEDI coverage by integrat
ing them with other types of remote sensing data (e.g. 
Ghosh et al. 2022; Liu et al. 2022; Ngo et al. 2023; 
Potapov et al. 2021; Sothe et al. 2022; Wang et al.  
2023). Considering that Synthetic Aperture Radar 
(SAR) signal is sensitive to vegetation structure (e.g. 
Flores-Anderson et al. 2019), we developed 
a predictive model by integrating Sentinel-1 C-band 
and ALOS2/PALSAR2 L-band data. This model aimed 

Table 1. Summary of data, sources, and usages of covariates for occupancy modeling.
Covariate Data source Source Purpose Predictor type

Vegetation Canopy 
height

GEDI L2A search.earthdata.nasa.gov (GEDI02) Occupancy  
and Detection

Vegetation
Sentinel-1 and ALOS2/PLASAR2 Google Earth Engine

Enhanced vegetation 
Index

Sentinel-2 browser.dataspace.copernicus.eu  
(Sentinel-2)

Occupancy Vegetation

Proportion of Land Cover Orthophoto dgterritorio.gov.pt (COS 2018) Occupancy Land cover
Edge density of Land 

cover
Occupancy Land cover

Distance to water Occupancy and 
Detection

Land cover

Climatologies CHELSA chelsa-climate.org Occupancy Climate
Moon phase NASA’s Scientific Visualization 

Studio
svs.gsfc.nasa.gov. (Moon Phase) Detection Night

Land surface temperature Sentinel-3A/SLSTR browser.dataspace.copernicus.eu (Sentinel-3) Detection Night
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to generate a spatially continuous GEDI-derived VCH 
metric. In addition to SAR data, three topographical 
variables – elevation, slope angle, and slope aspect – 
were computed and employed as predictor variables 
for VCH, resulting in a total of 51 analyzed variables 
(Table S1). The relative importance of each predictor 
variable in estimating vegetation canopy height was 
assessed by calculating the percentage increase in 
mean squared error (%IncMSE), where higher % 
IncMSE values indicate high importance of the pre
dictor variable. Based on this integrated model that 
estimates the VCH, a map representing the continu
ous vegetation height for each 25 × 25-meter pixel 
was generated across the study area (Figure 2).

Details on the methodological steps employed to 
generate the VCH metric can be found in the 
Supplementary Material. As a proxy of vegetation 
density, we computed the Enhanced Vegetation 
Index (EVI) from the Sentinel-2 multispectral data 
(Table 1). Both VCH and EVI metrics were produced 

at a resolution of 25 × 25 m. To enhance our ability to 
capture fine-scale information within both VCH and 
EVI and understand their influence on bat occupancy 
spatial patterns, we calculated the mean, median, 
variance, standard deviation, minimum, and maxi
mum values for these variables at four different buffer 
sizes (500, 1000, 1500, and 2000 m).

2.4.2. Land cover metrics
We derived landcover metrics from the 2018 Land 
Cover Map of Portugal (Table 1). This land cover 
map covers the entire geographic extent of mainland 
Portugal and has a minimum cartographic resolution 
of 1 hectare per polygon and a minimum of 20 m 
between lines (Direção-Geral do Território, 2019). In 
this study, we considered ten land cover categories: 
“Built-up area,” “Agriculture,” “Pasture,” “Agroforestry 
areas,” “Forests,” “Forests excluding Eucalyptus spp.,” 
“Shrubland,” “Non-vegetated area,” “Wetlands,” and 
“Water bodies” (Figure 1). These categories were 

Figure 2. Methodological workflow to estimate the VCH values in a two-step process. LiDAR GEDI data acquisition a) and Sentinel-1 
C-band and ALOS2/PALSAR2 L-band data integration b); Predictor variables used for occupancy and detection model building c). 
VCH – vegetation canopy height; EVI – enhanced vegetation index; LST – land surface temperature.
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vectorized and classified based on visual interpreta
tion of orthophotos with four spectral bands (blue, 
green, red and near-infrared) (Direção-Geral do 
Território, 2019). Buffers of two sizes (500 m and 
2000 m) were selected to examine the scale depen
dence of bat occupancy concerning land cover vari
ables (Ferreira et al. 2022; Smith et al. 2021) and were 
established around each of the 177 sampling points. 
Within these buffers and at the two focal scales, we 
calculated the proportion of land cover for each of the 
ten categories mentioned above (Table 1). We also 
calculated the edge density of the respective land 
cover categories (Pauli et al. 2017) (Table 1). The 
proportion of land cover classes was computed in 
QGIS v3.30.0 software (QGIS.org 2021) by quantifying 
the area of land cover within the buffer in square 
meters, while the edge density was calculated using 
the R package “landscapemetrics” (Hesse et al. 2012). 
Edge density quantifies the configuration of a land 
cover category within a buffer zone. It is calculated 
dividing the total length of the land cover category’s 
edge (in meters) by the total area of that land cover 
category within the buffer (in square meters) as 
defined by Hesse et al. (2012). As we conducted the 
occupancy analysis at the site level with three repli
cates, we obtained the average value from the three 
sampling points to represent the site. We included the 
distance to rivers and water bodies as covariates to 
account for spatial heterogeneity between the spatial 
replicates, as water availability has been demon
strated to have a strong influence on bat distribution 
and diversity in a drought-prone Mediterranean land
scape (e.g. Amorim et al. 2018).

2.4.3. Climate data
We obtained 12 bioclimatic indicators from CHELSA 
(Climatologies at high resolution for the earth’s land 
surface areas) (Version 1.2, Karger et al. 2017) 
(Table 1). These included variables of temperature, 
precipitation, humidity, and primary productivity 
(Table S3). The climatic variables were used to 
model occupancy as they have been reported as 
determinant to assess bat species’ range (Amorim 
et al. 2014; Rebelo et al. 2010; Tuan et al. 2023) We 
conducted a normality test to detect strong devia
tions from the normal distribution and a correlation 
analysis to verify multicollinearity between indicators. 
Among the variables that exhibited Pearson’s correla
tions of higher than 0.7 with others, we selected those 

that held ecological relevance to bat occupancy. 
These indicators, with a resolution of approximately 
1 × 1 km, have demonstrated good predictive capa
city when used in Species Distribution Models, includ
ing models of bat distributions (Karger et al. 2017; 
Tuan et al. 2023). We averaged the value of each 
climatic indicator at the two previously mentioned 
buffers (500 and 2000 m) for the 59 sites.

2.4.4. Night conditions
We hypothesized that nightly variables would impact 
bat detectability during acoustic sampling (Smith 
et al. 2021). Thus, we incorporated julian day of the 
sampling night into the detection component of our 
models to capture the seasonal variability of bat activ
ity. To account for variability in night temperature, we 
extracted, at each sampling point, land surface tem
perature (LST) data for the surveyed night provided 
by the Sentinel 3 mission (Sentinel-3 team 2013) 
(Table 1). We also examined the influence of the 
moon phase on bat species detection, obtaining the 
percentage of disk illumination data from NASA’s 
Scientific Visualization Studio (Blanco and Garrie  
2020) (Table 1).

2.5. Statistical analysis

We assessed the effects of land cover, vegetation 
structure, and climate on bat occupancy and detec
tion using single-species occupancy models under 
a Bayesian approach. We used the R package 
spOccupancy (Doser et al. 2022) in R version 4.1.2 
(R Core Team 2023), which follows a data augmenta
tion strategy for an improved parameter estimation 
(Polson et al. 2013). In this statistical approach, two 
sets of latent auxiliary variables follow a Pólya-Gamma 
distribution, resulting in occurrence and detection 
regression parameters in occupancy models. We indi
vidually tested the effect of each covariate on the 
estimated parameters by building univariable models 
with linear and quadratic terms to uncover possible 
unimodal relations. Before the analysis, all variables 
were scaled in the model specification. We summar
ized univariate models, and if the 95% Bayesian cred
ible interval of the logit link function did not overlap 
zero, we considered this variable as having unequi
vocal meaning and so considered it for the next step 
of the multi-variable model construction (Burnham 
and Anderson 2002). Once the meaningful variables 
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were selected, we built a multi-variable model for 
detection, followed by a multi-variable model for 
occupancy. We adopted a backward elimination strat
egy where all the meaningful predictor variables were 
initially included in the multi-variable model and were 
removed one at a time. This method is preferred over 
forward variable selection (Heinze et al. 2018) and 
allowed us to better select covariates based on biolo
gical meaning while avoiding over-fitted models. 
Model selection was based on comparing the relative 
support of candidate models using Widely Applicable 
Information Criterion (wAIC) (Burnham and Anderson  
2002) and predictive performance from using k-fold 
cross-validation (Hobbs and Hooten, 2015) as wAIC 
may not always be reliable for occupancy models 
(Broms et al. 2016). Using posterior predictive checks, 
we applied the goodness-of-fit test to the candidate 
models. Models with a ΔwAIC value of less than two 
units from the top-ranked model were accounted as 
plausible alternatives, as this difference is not consid
ered statistically significant according to ΔwAIC scor
ing (Kéry and Royle 2016). Using the best candidate 
model of each species, we tested the residual spatial 
autocorrelation in species distributions. Residual 
autocorrelation is tested through the Nearest 
Neighbor Gaussian Process that accounts for unex
plained spatial variation in species occurrence across 
the region of interest (Datta et al. 2016). The best 
candidate models resulting from this selection pro
cess were used to generate posterior predictive sam
ples and occupancy probability species maps.

3. Results

3.1. Predictive model for VCH

Among the relative heights (RH) metric combination 
tests made (Table S2), it was observed that the com
bination of RH98 for trees (forests, orchards, and olive 
groves), RH75 for shrubs (scrubland and vineyards), 
and RH70 for pastures achieved the highest coeffi
cient of determination (R2 = 0.69) (Figure S1). The 
model that uses the RH98 metric for all types of 
vegetation resulted in lower performance with an R2 
of 0.66, suggesting that RH98 may not be the best 
option to represent vegetation height for low-stature 
vegetation types, such as shrubs, vineyards, and pas
tures. We ranked the relative importance of 51 inde
pendent variables for estimating vegetation canopy 

height. This ranking showed the mean texture of 
Horizontal-Vertical polarizations (HV_mean) derived 
from ALOS2/PALSAR2 as the most important among 
the tested variables, followed by elevation (3.41%) 
and the texture variance of HV polarizations 
(HV_var) (2.53%) (Figure 3). The list of the top 6 
most important variables is completed with the 
mean and variance texture variables calculated from 
Sentinel-1 August Vertical-Vertical (VV), Vertical- 
Horizontal (VH), and September VV polarizations, 
with relative importance of 2.44%, 1.98%, and 1.96%, 
respectively (Figure 3). From the group of the top 6 
most important variables, information derived from 
the L-band of ALOS2/PALSAR2 had a combined rela
tive importance of 7.11%, while those derived from 
the C-band of Sentinel-1 represented 6.38%. This indi
cates that the L-band produces better results than the 
C-band, which can be explained by its greater pene
tration capacity through the canopy (Huang et al.  
2018; Naidoo et al. 2015). Overall, these results indi
cate that the combination of both SAR bands (L and 
C) plays an important role in estimating vegetation 
height, which is consistent with other studies (e.g. Li 
et al. 2020; Morin et al. 2022; Nandy et al. 2021). 
Regarding the use of texture variables derived from 
the L-band, this study also demonstrated, similar to 
what was observed in Huang et al. (2019), that texture 
metrics calculated from HV, Horizontal-Horizontal 
(HH), VV, and VH polarizations contribute more to 
estimating vegetation height than the original back
scatter values from both sensors (Sentinel-1 and 
ALOS2/PALSAR2). This result may suggest that SAR 
image texture measurements have a greater capacity 
to discriminate spatial information, as well as to 
reduce speckle noise in SAR data (e.g. Laurin et al.  
2017; Sarker et al. 2012). The Random Forest model 
estimated values for VCH ranging from 0.58 m to 24.6 m 
(Figure 4).

3.2. Bat occupancy modelling

Over 177 sampling nights 47,652 bat call records were 
collected, identifying nine distinct species. Modelled- 
average occupancy estimates varied (Table S4), with 
Rhinolophus ferrumequinum having the lowest value 
at 0.19 (Bayesian credible interval [BCI] 0.02–0.84) and 
Pipistrellus pipistrellus the highest at 0.86 (0.52–0.98). 
Notably, Pipistrellus pygmaeus and Nyctalus leisleri also 
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presented high mean occupancy estimates of 0.82 
(0.32–0.99) and 0.75 (0.47–0.93). P. pipistrellus and 
Pipistrellus kuhlii, displayed suboptimal model good
ness of fit (~0.2) (Hobbs and Hooten, 2015), and their 
results are only presented in the supplementary 
materials (Table S4). Four species’ models revealed 
evidence supporting the impact of vegetation 

structure, mainly vegetation canopy height (VCH), 
on bat occupancy (Table 2). Furthermore, occupancy 
models indicated moderate to strong support for 
bats’ presence in forest and shrubland land cover 
types. While the occupancy models had a moderate 
to strong association with climate variables, the 
responses varied among species (Figures 5, 6).

Figure 3. Ranking of the relative importance of the 51 independent variables tested in the Random Forest model. Relative importance 
of each variable was assessed by calculating the percentage increase in mean squared error, where higher values indicate higher 
importance for vegetation canopy hight estimation. Sentinel-1 (S1) variables were derived between January and December 2019. 
Texture features (Mean, Variance [var], and Homogeneity [hom]) were computed from the Vertical-Vertical (VV), Vertical- Horizontal 
(VH), Horizontal- Horizontal (HH), and Horizontal-Vertical (HV) polarisations. The vertical red dashed line represents the average Mean 
Squared Error of the 51 predictors.
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3.2.1. Vegetation structure
Regarding vegetation structure, four species 
responded to VCH (Table 2); notably, Barbastella bar
bastellus was positively associated with the variance 
of VCH (Figure 5), suggesting a preference for areas 
exhibiting higher heterogeneity in terms of canopy 
structure. This heterogeneity is known to contribute 
to a diversity of microhabitats, providing resources for 
some bat species (Russo and Jones 2003; Vehviläinen 

et al. 2008). The other three species exhibited 
a significant relation with the minimum VCH values 
(Table 2). Contrarily and unexpectedly, Tadarida tenio
tis showed a negative relationship with the minimum 
VCH. Both Myotis daubentonii and Rhinolophus hippo
sideros demonstrated a positive relation with the 
minimum VCH, implying that as the minimum VCH 
value for an area increases, the likelihood of occu
pancy for these two bat species also increases 

Figure 4. Spatial distribution of vegetation canopy height (VCH) values estimated from the Random Forest model. Snapshots (1, 2 
and 3) of aerial pictures and corresponding estimated values of VCH in the study area.

GISCIENCE & REMOTE SENSING 9



(Table 2, Figure 6). As small forest-dwelling bats, these 
two species are best adapted to maneuverable flight 
in vegetated areas (Bader et al. 2015; Motte and Libois  
2002). In addition, R. hipposideros was positively 
related to enhanced vegetation index within the buf
fer of 500 m (Figure 6).

3.2.2. Land cover
Occupancy for both B. barbastellus and M. daubentonii 
demonstrated a pronounced positive relation with 
the proportion of forest patches (Table 2, Figure 5). 
Occupancy for N. leisleri displayed a positive quadratic 
relationship with the shrubland proportion Figure 5). 
This species can be found in various habitats, favoring 
forested habitats with lower levels of vegetation clut
ter, especially for foraging (Ferreira et al. 2022; 
Shapiro et al. 2020). P. pygmaeus stood out as the 
sole species with a positive occupancy association 
concerning other land cover types, precisely edge 
density of built-up areas, agriculture, and water 
bodies (Figure 5). This species has been previously 
identified as positively associated with urban environ
ments, possibly exploiting these areas as supplemen
tary feeding grounds due to high prey availability 
(Avila-Flores and Fenton 2005; Mendes et al. 2014).

3.2.3. Climate
Best-fitting models for B. barbastellus, N. leisleri, and 
P. pygmaeus included mean evapotranspiration 
within a two-kilometer radius, displaying different 
responses (Table 2, Figure 5); B. barbastellus exhibited 
a negative relation with evapotranspiration, while 
both N. leisleri and P. pygmaeus showed a positive 
quadratic response, indicating that occupancy rates 
are lowest at intermediate levels of evapotranspira
tion (Figure 5). Moreover, occupancy estimates for 
N. leisleri, R. ferrumequinum, and T. teniotis were 
related to mean annual air temperature (Table 2). 
N. leisleri and R. ferrumequinum‘s occupancy exhibited 
a positive quadratic relationship with temperature, 
characterized by lower occupancy at median tem
perature values, whereas the occupancy of T. teniotis 
was inversely related to temperature (Figures 5, 6).

3.3. Bat detection modelling

Detection probabilities for all bat species studied were 
significantly lower than one, ranging from 0.19 (0.02– 
0.84) for R. ferrumequinum to 0.94 (0.19–0.96) for P. kuhlii. 
Detection rates for all species were influenced by at least 
one nightly environmental covariate, land surface 

Table 2. Top-ranked models for occupancy (Ψ) and detection probability (p) for seven bat species. Widely Applicable Information 
Criterion (wAIC), delta Widely Applicable Information Criterion (ΔwAIC) and k-fold cross-validation (k-fold). ΔwAIC and k-fold were 
used for model comparison and assessment.

Species Model wAIC ΔwAIC k-fold

B. barbastellus Ψ(VCH variance + evapotransp.); p(moon phase2 + VCH25m2) 154.62 0 156.4
Ψ(VCH variance); p(moon phase2 + VCH25m2) 154.58 0.04 158.6
Ψ(VCH variance + forest proportion); p(moon phase2 + VCH25m2) 156.16 1.55 163.9

M. daubentonii Ψ(forest proportion + humidity); p(water distance + land surface temp.2) 180.43 0 187.2
Ψ(VCH minimum + forest proportion + humidity); p(water distance + land surface temp.2) 180.75 0.32 190.8

N. leisleri Ψ(shrubland proportion2 + evapotransp.2); p(water distance + land surface temp.2) 207.23 0 214.5
Ψ(shrubland proportion2 + temp. mean + evapotransp.2); p(water distance + land surface temp.2) 207.55 0.33 216.8

P. pygmaeus Ψ(agriculture edge2 + built up edge + temp. wettest quarter2 + water edge2 + evapotransp.2); p(moon phase2) 188.24 0 190.
Ψ(agriculture edge2 + built up edge + temp. wettest quarter2 + water edge2); p(moon phase2) 188.24 0.01 190.7
Ψ(agriculture edge2 + temp. wettest quarter2); p(moon phase2) 189.07 0.84 190.9
Ψ(temp. wettest quarter2 + evapotransp.2); p(moon phase2) 189.78 1.54 192.7

R. ferrumequinum Ψ(temp. driest quarter2 + water distance + primary productivity2); p(julian day2) 53.27 0 59.6
Ψ(rainfall + temp. driest quarter2 + water distance); p(julian day2) 53.05 0.69 72.6
Ψ(temp. avg2 + temp. driest quarter2 + water distance); p(julian day2) 53.97 1.02 73.4
Ψ(temp. avg2 + rainfall + temp. driest quarter2 + water distance + primary productivity2); p(julian day2) 54.30 1.14 75.2
Ψ(temp. avg2 + temp. driest quarter2 + primary productivity2); p(julian day2) 54.42 1.14 75.2

R. hipposideros Ψ(VCH minimum + EVI minimum + temp. wettest quarter2); p(water distance + land surface temprature2 + 
VCH25m2)

93.34 0 93.6

Ψ(EVI minimum + temp. wettest quarter2); p water distance + (land surface temp.2 + VCH25m2) 93.58 0.24 93.9
Ψ(VCH minimum + water distance2 + temp. wettest quarter2); p(water distance + land surface temp.2 + 

VCH25m2)
94.96 1.61 97.0

Ψ(VCH minimum + EVI minimum water distance2 + temp. wettest quarter2); p(water distance + land surface 
temp.2 + VCH25m2)

95.18 1.84 97.1

T. teniotis Ψ(temperature + rainfall seasonality); p(julian day + water distance2) 128.25 0 123.3
Ψ(VCH minimum + temperature + rainfall seasonality); p(julian day + water distance2) 128.51 0.26 123.7
Ψ(VCH minimum + temperature + rainfall seasonality + shrubland proportion2); p(julian day + water distance2) 129.27 1.03 124.6
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temperature, julian day, or moon phase (Table 2 and 
Figure 5). M. daubentonii, N. leisleri, and R. hipposideros 
demonstrated a negative quadratic response to land 
surface temperature, showing maximum detectability 
at moderate nightly temperatures. In contrast, detection 
of R. ferrumequinum and T. teniotis was related to the 

julian day, while detection of B. barbastellus and 
P. pygmaeus was associated with the moon phase. 
Detection covariates related to the spatial heterogeneity 
of replicates also played a critical role in the top-ranking 
model, with proximity to rivers or water bodies exhibit
ing a negative or negative quadratic relationship with 

Figure 5. Mean beta coefficients for four (B. barbastellus, M. daubentonii, N. leisleri, P. pygmaeus) bat species occupancy (left) and 
detection (middle). Points represent standardised estimates from the covariates on the best-fitting model. Black error bars show 
relationships in which 95% Bayesian credible interval (BCI) does not overlap zero, grey error bars indicate overlap between 95% and 
50% BCI and white points indicate the overlap within 50% BCI. Resulting map of occupancy probability estimates for the study area 
(right).
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detection for M. daubentonii, N. leisleri, R. hipposideros, 
and T. teniotis (Table 2). Furthermore, the mean VCH 
within a 25 m buffer notably influenced the detection 
of B. barbastellus and R. hipposideros, displaying 
a negative quadratic relationship.

4. Discussion

4.1. Landscape metrics

Our study’s occupancy models have disentangled 
the relationship between bat occurrence and the 
spatial dynamics of land cover types and vegetation 
structure across a regional scale. Our analysis 
revealed a robust relation between bat occupancy 
and vegetation metrics, notably vegetation canopy 

height (VCH). Critically, the minimum VCH metric 
present in the models highlights the necessary 
level of tree growth for the occurrence of certain 
bat species. This finding concurs with the under
standing that taller vegetation and trees promote 
biodiversity (Ausprey et al. 2023; Begehold et al.  
2015) and likely offer better roosting opportunities 
for forest-dwelling bat species (Bader et al. 2015). 
Several studies have corroborated the importance 
of vegetation characteristics in bat distribution and 
other taxonomic groups (Drapeau et al. 2000; 
McGarigal and McComb 1995), including studies car
ried out in the Mediterranean region (Novella- 
Fernandez et al. 2022). These authors identified that 
the distribution patterns of bats are predominantly 
influenced by forest variables, with roosting ecology 

Figure 6. Mean beta coefficients for three (R. ferrumequinum, R. hipposideros, T. teniotis) bat species occupancy (left) and detection 
(middle). Points represent standardised estimates from the covariates on the best-fitting model. Black error bars show relationships in 
which 95% Bayesian credible interval (BCI) does not overlap zero, grey error bars indicate overlap between 95% and 50% BCI and 
white points indicate the overlap within 50% BCI. Resulting map of occupancy probability estimates for the study area (right).
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being a critical factor. These findings collectively 
underline the significance of vegetation structure 
and composition in determining species occupancy 
and distribution.

As expected, land cover was shown to influence 
bat occupancy estimates, but contrary to initial 
predictions, built-up areas and agriculture land 
cover types were not key determinants in occu
pancy modeling. Previous research has often 
linked urban growth and agricultural intensifica
tion with adverse effects on bat populations (Li 
and Kalcounis-Rueppell 2018; Jung and Threlfall  
2018; Mtsetfwa et al. 2018). Nevertheless, our 
results indicate a clear preference among four bat 
species for forests and shrublands, reflecting their 
reliance on these habitats. This is particularly evi
dent for B. barbastellus and M. daubentonii, and in 
fact, both species frequently roost in forested habi
tats (Russo and Jones 2003; Ngamprasertwong 
et al. 2014). Consequently, the conservation and, 
where possible, restoration of mixed-type forests 
should be encouraged to sustain roosting and 
foraging opportunities for these and other animal 
species (Dietz and Kiefer, 2016; Popa-Lisseanu et al.  
2009).

Climatic variables, namely temperature-related 
metrics, were identified as crucial in determining the 
distribution of five bat species. Typically, temperate bat 
species tend to avoid excessively warm areas, as such 
environments can induce ecological stress, often asso
ciated with high drought frequency, adversely affect
ing bats and other mammal species (Santos et al. 2014; 
Valerio et al. 2023). In our research, we observed 
a pattern of spatial heterogeneity in detection prob
abilities related to the proximity of the sampling loca
tion to water sources. Our findings align with existing 
knowledge that, in dry environments, bats frequently 
exploit areas near water bodies. This habitat preference 
is reflected in bat activity (Russo and Jones 2003), 
leading to greater detectability of bat echolocations. 
Biogeographical patterns have provided evidence on 
the climatic response of bat populations, suggesting 
that Mediterranean species may exhibit higher toler
ance to temperature increases (Rebelo and Jones  
2010). However, it remains imperative to recognize 
that bat species are susceptible to the effects of climate 
change, and even in the presence of suitable habitats, 
such as riparian areas, adverse climatic conditions like 
drought that are expected to increase in frequency and 

severity, can exert temporal constraining effects on 
species occurrence (Amorim et al. 2018; Milly et al.  
2005).

4.2. Considerations of data integration and 
methodology

Our vegetation canopy height model results (VCH) exhi
bit some limitations (Figure S1), but we believe that 
these have a limited impact on our key findings. The 
VCH model shows a pattern of overestimation and 
underestimation of vegetation height in the intervals 
between 0–2 and > 20 meters, respectively, which has 
been reported in other studies (Dorado-Roda et al. 2021; 
Huettermann et al. 2022; Guerra-Hernández and Pascual  
2021; Potapov et al. 2021). In areas covered by sparser 
canopies or lower vegetation (e.g. vineyards, herbac
eous), spaceborne LiDAR systems, like GEDI and ICESat- 
2, are less able to measure vegetation height accurately, 
as photons reflected by the canopies can be incorrectly 
identified as ground or noise (e.g. Atmani et al. 2022). 
However, GEDI’s ability to estimate the height of shrub 
and herbaceous vegetation has not been extensively 
studied, making it necessary to develop more studies 
focused on comparing field data with measurements 
from this sensor (e.g. Leite et al. 2022; Li et al. 2023). On 
the other hand, the underestimation of vegetation 
height values for taller vegetation (>20 m) may be asso
ciated with denser canopy coverage, which can result in 
insufficient recording of ground-related photons, hin
dering the sensor’s ability to accurately determine 
canopy height (Dorado-Roda et al. 2021; Dubayah et al.  
2020b, 2020c; Hancock et al. 2019; Neuenschwander 
et al. 2020). The uncertainty associated with the 0–2 
meters vegetation height is unlikely to strongly affect 
the occupancy estimates as there is evidence that small 
insectivorous bats have stereotyped flight paths when 
foraging near vegetation and avoid flying very close to 
the ground (Hermans et al. 2023). On the other hand, 
areas covered by trees taller than 20 m are scarce in the 
study area and trees with such heights are only present 
in old pine and eucalyptus plantations.

4.3. Remote sensing in species distribution

Spaceborne LiDAR data is becoming more readily avail
able, with an improved spatial and temporal resolution 
(Aguilar et al. 2024; Hancock et al. 2019). The compre
hensive three-dimensional data provided by LiDAR 
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offers the means to generate distribution maps at 
increased spatial and temporal resolutions which, is par
ticularly important in the current scenario where climate 
change can drive changes in forest structure and, there
fore, impact specialized forest species at a regional scale 
(Novella-Fernandez et al. 2022). This predictive capacity 
is pivotal in the field of biodiversity monitoring and 
conservation, where such detailed and regular mappings 
are currently inadequately obtained (Schulte To Bühne 
et al. 2018). When implemented, predictions of future 
distribution and range shifts are often exclusively based 
on climatic scenarios under alternative socio-economic 
settings (Amorim et al. 2014; Rebelo et al. 2010) and, in 
a few cases, integrated with land cover (Mantyka-Pringle 
et al. 2015). Insectivorous bats and forest specialist spe
cies are predicted to be particularly vulnerable to the 
interaction between climate and land cover change 
(Tuan et al. 2023). Therefore, applying modeling techni
ques incorporating forest structure will likely significantly 
improve the precision and timeliness of biodiversity 
assessments, addressing a knowledge gap in current 
conservation practices. Consequently, management 
strategies focused on expansion of mixed-type and het
erogeneous forest patches that support high-quality 
habitats for diverse species will enhance the forest’s 
resilience to climate change (Jandl et al. 2019). 
Implementing these strategies could be instrumental in 
advancing the conservation of Mediterranean forests 
and their native wildlife on a broader scale.

5. Conclusion

Our research contributed to validating a method primar
ily based on remote sensing data, emphasizing the role 
of vertical vegetation structure in determining bat occu
pancy. Specifically, using bat species as an example, this 
study highlighted how GEDI LiDAR measurements can 
play a critical role in enhancing our ability to capture the 
spatial patterns of species occupancy across the land
scape. The approach of modeling species occurrence 
using GEDI-derived VCH can yield valuable insights into 
biodiversity distribution on a broad landscape scale and 
has the potential to reveal changes such as predicting 
shifts in species range in different forest management 
scenarios. On the other hand, future studies using other 
vegetation metrics can be useful in investigating species’ 
fine-scale response to forest management. Our work 
paves the way for the application of our methodology 

to a wider range of elusive species with imperfect detec
tion, for which it can be harder to produce sustainable 
land management guidelines and assure the resilience 
of wild species.
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