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• The evaluation of total biomass in forests
is important for mitigation.

• High-resolution biomass mapping must
scope multiple biomass components.

• Weused airborne laser data andfieldmea-
surements over 2 million ha in Spain.

• Good estimation of belowground biomass
using aboveground for modelling

• Relations between litter, below-and
aboveground biomass depend on
forest type.
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Belowground components (biomass and soils) can stock as much carbon as the aboveground component of forest eco-
systems. In this study, we present a fully-integrated assessment of the biomass budget and the three pools evaluated:
aboveground (AGBD) and belowground biomass in root systems (BGBD) and litter (LD).We turned National Forest In-
ventory data, airborne Light Detection and Ranging (LiDAR) data actionable to map three biomass compartments at
25-m resolution over more than 2.7 million ha of Mediterranean forests in the South-West of Spain. We assessed dis-
tributions and balanced among the three modelled components for the entire region of Extremadura and specifically
for five representative forest types. Our results showed belowground biomass and litter represent an important 61% of
the AGBD stock. Among forest types, AGBD stocks were the dominant pool in pine-dominated areas while its lowers
contribution was found over sparse oak forests. The three biomass pools estimated at the same resolution were used
to produce ratio-based indicators to highlight areas where the contribution of belowground biomass and litter can ex-
ceed AGBD and where carbon-sequestration and conservation practices should acknowledge belowground-oriented
carbonmanagement. The recognition and valuation of biomass and carbon stocks beyond the AGBD is a must step for-
ward that the scientific community must support in order to properly assess living components of the ecosystem such
as root systems sustaining AGBD stocks and to value carbon-oriented ecosystem services related to soil-water dynamics
and soil biodiversity. This study aims at enforcing a change of paradigm in forest carbon accounting, advocating for a
better recognition and broader integration of living biomass in land carbon mapping.
uly 2023; Accepted 4 July 2023
1. Introduction

Aboveground biomass density (AGBD) is a flagship indicator for the
monitoring of climate change effects over forests and carbon cycle
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dynamics (Pan et al., 2011; Saatchi et al., 2011; Schimel et al., 2015; Cook-
Patton et al., 2020; Friedlingstein et al., 2022). Remote sensing is pivotal for
monitoring AGBD stocks (Demol et al., 2022; Dubayah et al., 2022) and
their accurate estimation is crucial to preserve forest biodiversity, to better
invest in forest restoration or to strengthen the credibility of carbon seques-
tration projects (Maselli et al., 2009; Masciandaro et al., 2018). Forest bio-
mass stocks are frequently expressed as AGBD only, and this excludes a
large portion of the biomass budget. For an integrated assessment of forest
biomass, we must start consistently informing on biomass in the below-
ground or in the forest floor. It is illogical from the optics of accounting to
ignore measurable biomass components that elevates the portfolio of total
forest biomass (Grassi et al., 2017; FAO, 2020; Gifford, 2020).

Global forest policies and monitoring systems should avoid the bias of
looking only at AGB estimates to inform on total forest biomass stocks
(Cook-Patton et al., 2020). Nowadays, it is mandatory for many countries
to document both aboveground and belowground carbon stocks (FAO,
2020; Smith et al., 2020; López-Senespleda et al., 2021). Studies relating
belowground biomass to measurable indicators of forest structure using re-
mote sensing are scarce (Roudier et al., 2017; Lopatin et al., 2019; Ding
et al., 2022). The increasing inclusion of belowground biomass data in
National Forest Inventories (NFIs - Gschwantner et al., 2016; Guerra-
Hernández et al., 2022) is a major support to maximize airborne laser scan-
ning data (ALS) and estimate simultaneously above- and belowground bio-
mass stocks, potentially improving maps derived from non-forest-specific
sampling designs (Powers et al., 2011; Orgiazzi et al., 2018; Beland et al.,
2019; Huang et al., 2019; FAO, 2020). For instance, the scale of 30 m - fea-
sible and operational in contemporary AGBD maps supported with ALS
data - exceeds the possibilities of coarser, global products for soil biomass
based on empirical measurements (Powers et al., 2011; FAO, 2020).

Harmonized maps of different forest biomass stocks are necessary in-
puts to properly guide forest restoration and conservation (Magnússon
et al., 2016; Luo et al., 2017; Anderson-Teixeira et al., 2018; Lopatin
et al., 2019; Venter et al., 2021). The potential for biomass sequestration
is frequently calculated using AGBD only assuming maximum biological
stock potentially achievable just for the aboveground (Bastin et al., 2019;
Pascual et al., 2021). In this study, we present an integrated evaluation of
above- and belowground biomass stocks over almost 2 million ha of Medi-
terranean forests in Spain. We used airborne laser data to model AGBD
using Spanish National Forest Inventory (SNFI) data of improved
geolocation accuracy. Relations between above- and belowground biomass
pools, and existing models to estimate litter biomass were used to map bio-
mass stocks consistently at 25 m supported by ALS-based forest structural
metrics. Selected forest types within the region were assessed to showcase
different balances in biomass among the three modelled components. We
calculated ratios at 25-m pixel scale to map areas where non-AGBD yield
comparable stocks as the amount stored in the AGBD component. These ra-
tios maps represent biomass dynamics and comprehensively inform on bio-
mass and carbon storage across heterogenous landscapes.

2. Material and methods

2.1. Study area

The study area is Extremadura region (Central-West of Spain near
Portugal) (Fig. 1), that covers 1.98 million ha of forest land (∼47.6 % of
the Extremadura region). These Mediterranean forests comprise old-
growth forests of oaks in sparse conditions, ecosystems with dominance
of Mediterranean pine trees or eucalypts, among others. Field measure-
ments of tree structural attributes are systematically collected in the Span-
ish National Forest Inventory (SNFI-4, MAPA, 2018). The SNFI-4
measurements for Extremadura region date from 2017. In this study, we
worked with all SNFI-4 dataset and a subset of plots of enhanced
geolocation to better estimate AGBD. Measurements of tree diameter at
breast height (dbh, cm) and tree height (m) were retrieved from the 768
plots, used for tree-level, species-specific aboveground biomass modelling
(Ruiz-Peinado et al., 2011, 2012), later upscaled at 25-m plot-radius and
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expressed as aboveground density (AGBD, units in Mg ha−1). The set of
plots ranged over 15 forest types according to the Spanish National Forest
Map (Table S1). Although the scope of the study is the estimation of total
biomass stocks in the region, we made independent calculations for repre-
sentative ecosystems (Table 1) represented with at least 50 samples in the
SNFI-4 dataset.

2.2. Mapping AGBD using airborne laser data

Region-wide airborne laser scanning (ALS) using LiDAR technology –
collected between October 2018 and July 2019 – was used to estimate
AGBD using the SNFI-4 set of plots for calibration. Data collection parame-
ters and properties of the LiDAR sensors can be found in Guerra-Hernández
et al. (2022) and Pascual et al. (2020). The prediction of AGBD was done
through ALS-based stratum-specific models (Table S2) using the
enhanced-geolocation of a subset of SNFI-4 plots within the different strata
of the Spanish Forest Map. At least one main tree species is represented in
all strata. Shrub-dominated areas not defined as forests in the Spanish For-
estMapwere not used for the AGBDmap – our AGBD estimates only inform
on forest woody vegetation. Models using ALS-based statistics over SNFI-4
samples are present in Supplementary 2 for the five selected forest ecosys-
tems. The strata-specific AGBD map at 25-m resolution is presented in
Fig. 2.

2.3. Models for belowground biomass pools

2.3.1. Belowground biomass density (BGBD) estimates using SNFI-4 data
The 4th version of the SNFI includes plot-level estimates of root biomass

(BGBD) using the allometric equations presented in Ruiz-Peinado et al.,
2011; Ruiz-Peinado et al., 2012) for the main forest tree species in Spain.
Some authors have used the approach of simultaneously calibrating
AGBD and BGBD using remote sensing data (Ding et al., 2022; Venter
et al., 2021). Others advocate for empirical relations to estimate the below-
ground (López-Senespleda et al., 2021). We followed the later as i) coppice
systems or agro-forestry management for oak forests (dominant forest type
in the region) have altered natural biomass accumulation dynamics across
the region, and ii) we rely on the good performance of ALS-based estima-
tion for the aboveground. Hence, we used a simple non-linear regression
model (Eq. 1) to estimate root biomass (BGBD) as a function of AGBD.

BGBD ¼ a AGBDb ð1Þ

where BGBD is the root biomass estimated in SNFI-4 plots, AGBD is the
aboveground biomass measured over the same plots (both expressed in
Mg ha−1) while a and b are the optimized model parameters in the regres-
sion fitting. We modelled five forest ecosystems independently and all
SNFI-4 plot-data available (2142 samples) to provide a general region-
specific model. We used all SNFI-4 plots available to increase the degrees
of freedom during the fitting as co-registration between ALS and field posi-
tions does not affect the relation between biomass pools measured and
SNFI-4 estimated. To measure the accuracy of the assumed relations, we
used the relative root mean squared error (rRMSE) and adjusted R-
squared (R2).

2.3.2. Models for litter density (LD) estimation
The study fromMontero et al. (2020) presents a collection of models to

estimate LD in Spanish forests using structural predictors that can be de-
rived from ALS point clouds. Forest cover (FC) is an example of a metric in-
tegrated in these LDmodels, derivable fromALS surveys andwidely used as
predictor of stocking variables such as basal area, volume and AGBD
(Pascual et al., 2020; Guerra-Hernández et al., 2022). We used Montero
et al. (2020)’s models (Eq. 2) using forest-type specific coefficients for the
listed forest types in Table 2,

LBD ¼ a eðb sin−1
ffiffiffiffiffiffiffiffi
FC
100ð Þp� �

ð2Þ



Fig. 1. Study area, SNFI-4 sampling plots and available aboveground carbon density map for region (25 m spatial resolution) built with ALS-based inference using SNFI-4
plots published by the authors in (Guerra-Hernández et al., 2022).
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whereLD is the amount of biomass litter expressed inMg ha−1 measured in
organic layers of the forest floor (fine wood debris, litter and humus)
starting from the organic-upper layer (20 - 30 cm), FC is forest cover in
the plot. The ALS-based calculation of FC is as follows: the ratio of ALS
points ranging above 2 m and classified as first return (i.e., first hit of the
laser pulse in the forest canopies) is expressed over the total number of
ALS first returns ranging within the extent of each 25-m raster cell. We
used it here to power Montero et al. (2020) model set and estimate LD at
25-m resolution for the entire region for which ALS data coverage is com-
plete. Two general models for conifer and broadleaf tree species were
Table 1
Summary table of the forest types evaluaed in this study in the training set of
768 plots. The table shows all strata and the five stratum for which the number of
samples was more than 50.

Code Forest type (FT) main species and description Area (103 ha)

101 Quercus spp. – sparse old-growth oak forests (Dehesas) 1323.26
102 Quercus ilex subsp. Ballota (Desf.) Samp – less sparse conditions

(Encinares)
196.05

103 Pinus pinaster spp. hamiltonii –Mediterranean resin pine forests 76.99
107 Eucalypts spp. –non-native eucalypts in different stages of

development.
57.39

109 Pinus pinea L. – Mediterranean stone pine forests 30.66
All The 15 stratum represented in the training data. See Annex I. 1973.65
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available in Montero et al. (2020). We used those two models to estimate
LD for the forest types not modelled independently (Table 2) but repre-
sented in the region of Extremadura.

2.4. Ratio maps to map the importance of biomass components

The three biomass components modelled were aggregated to compute
the total biomass density (TBD). Mean and total values for the region
were computed for all forest types and for the five selected showcases.
The contribution of each biomass component was calculated at pixel-level
(25-m resolution) and mapped for the entire region. The three ratio maps,
one for each biomass component, represent insightful relative contributions
of biomass.

3. Results

3.1. Estimation of root belowground biomass density (BGBD) using SNFI-4 data

The forest-type specific estimation of BGBD showed good predictive
performance (Fig. 3, Suppl. 3). Combining all 2182 SNFI-4 observations
for modelling turned out a low 0.36 value for R2 and 20.6 Mg ha−1 as
RMSE. However, forest-type specific results increased model performance
above 0.8 R2 for all forest type individually except for eucalypt stands.
The later showed a weak linear relationship between predictor and re-
sponse variable, aligned with general model using all SNFI data. Coppice



Fig. 2.Map of aboveground biomass density (AGBD, Mg ha−1) available for Extremadura region created using airborne laser scanning data and National Forest Inventory
data. The resolution of the AGBD product is 25 m. The models used to build the map is presented in Supplementary 2.

A. Pascual et al. Science of the Total Environment 897 (2023) 165364
rotation systems and abandonment might have an influence for eucalypts
as later discussed.

The presented models were applied over the 25-m AGBD product to
predict BGBD over the study area using the boundaries as defined in the
Forest Map of Spain. The average conditions for BGBD ranged between
around 10 to 20 Mg ha−1. The general model was applied for all 25-m
AGBD pixels not ranging within the boundaries of the five selected forest
types but within the region of Extremadura. Density functions comparing
AGBD and BGBD predictions were computed to show the distribution of
biomass (Fig. 4).

3.2. Prediction of litter biomass density (LD)

Model predictions for LD reached a maximum of 35 Mg ha−1 (Fig. 5).
Differences between ecosystems were narrow: mean values ranged from
Table 2
Model coefficients used to predict litter biomass density (LD, Mg ha−1) in the re-
gion. The general model for conifers and broadleaf tree species was used unless a
foresty -type specific model was available in the set presented in Montero et al.
(2020). Estimate values and the standard error reported by the authors are pre-
sented for both model parameters a and b included in Eq. 1.

Parameter a b

Forest type Estimate Std. Error Estimate Std. Error

101 and 102 3.507 1.5833 1.166 0.4202
103 6.605 2.0093 0.757 0.2991
109 4.380 1.1832 0.978 0.2576
Conifer 3.808 0.4836 1.718 0.1115
Broadleaf 4.025 0.7025 1.073 0.1643

4

13.7 Mg ha−1 for Pinus Pinea forests (109) to 17.7 Mg ha−1 for the case
of sparse Quercus ilex forests (forest type 101, Table 1) that is the most rep-
resentative forest type in the area. The total litter biomass in the region was
estimated in 41.8 million Mg - average value of 21.20 Mg ha−1.

3.3. Total biomass density in the forest ecosystem

The aboveground component stocks 61.9 % of all biomass modelled,
followed by belowground biomass (28.5 %) and litter (9.6 %). These
percentages accrue 62.5 million Mg for aboveground biomass and 38.5
million Mg for the combination of belowground and litter biomass. Mean
and total biomass estimates are presented in Table 3. The contribution
of AGBD represents 52–68 % of all biomass in the forest types individu-
ally assessed. For instance, pine-dominated strata (forest types 103 and
109, Table 1) showed the largest contributions of AGBD: 68.3 % and
64.9 %, respectively. On the other hand, the lowest contribution from
AGBD stocks was found for dense Quercus ilex stands (forest type 102)
(52 %), showing the importance of belowground and litter biomass for
this ecosystem. For themost represented forest type, open forests ofQuercus
ilex (forest type 101), the contribution of the aboveground biomass stock
was estimated in 63 %.

3.4. Ratio-based maps for forest carbon-oriented management

Our interest was to quantify areas where AGBD mostly contributes
to the biomass areas and areas where AGBD is below 50 % of the total
TBD – showing the importance of belowground biomass and litter
(Supplementary 4). We estimated that the contribution of AGBD ex-
ceeds 50 % of the total biomass in 41 % of all raster cells ranging within
open forests of Quercus ilex. The value was higher for pine-dominated



Fig. 3. Predicted versus measured belowground biomass (Mg ha−1) stored in roots. Non-linear models are presented in the scatterplots together to fitting statistics. The
relation was captured combining all NFI plots and separately for each of the five forest types selected.
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forests: AGBD was the dominant contributor in Pinus pinea forests
(62.8 %) and Pinus pinaster (54.9 %). These ratio maps help to identify
patches and transitions between forest area showing different balances of
biomass accumulation (Fig. 6).

4. Discussion

Our study evaluates and modelled aboveground, belowground and lit-
ter biomass using allometries built with reference data and ALS data. The
ratio between above- and belowground biomass was species-specific and
values were retrieved from official SNFI-4 reference plot data. The correla-
tions (0.884–0.946) were strong as expected (Enquist and Niklas, 2002;
Niklas, 2005; Cheng and Niklas, 2007; Hui et al., 2014). For instance, a
study over a semi-arid woodland ecosystem (Handavu et al., 2019),
which is structurally similar to sparse oaks, showed that the best model to
predict BGBD was the one using the AGBD as predictor (R2 = 0.939). We
found a weak relation in eucalypts (R2 = 0.364, Montero et al., 2020)
and this can be explained by the abandonment in terms of silviculture or
the switch to coppice systems that alters the natural accumulation of bio-
mass (i.e., AGBD stocks is removed while roots keep growing). For the as-
sessment of LD estimates, we looked at the data distribution of the
training data used to calibrate the models from Montero et al. (2020): our
mean estimates for forest types 102–109 ranged between 4.95 and
8.43 Mg ha−1, similar to the values reported in the study. A good agree-
ment was also observed for sparse oaks for which authors reported an aver-
age of 5.6 Mg ha−1, close to our estimate (4.35 Mg ha−1). Differences,
although small, could be explained by discrepancies between field-based
estimates of forest cover and the ALS-based estimates used here, or the lim-
ited sampling in Montero et al. (2020). We averaged model predictions
over the whole extent of each forest type covering the complete gradient
of FC, from 5 to 100 %, accurately captured with ALS data. Studies on the
5

litter biomass in Mediterranean region, and in particular for the Dehesas
ecosystem are scarce in the literature (e.g. Andivia et al., 2013).

Other studies have simultaneously estimated above- and belowground
biomass pools. For instance, Luo et al. (2017) showed high agreement be-
tween biomass pools on an attempt to characterize total biomass supported
by discrete airborne lidar data for the aboveground. The addition of cli-
matic variables such as precipitation, temperature or time-series of water
stress indicators are frequently explored as auxiliary data to improve the
characterization of biomass dynamics as previous studies have tested
using coarser scales (Saatchi et al., 2011; López-Senespleda et al., 2021;
Ding et al., 2022). We preferred to use a simple, robust model between
AGBD and BGBD – better model performance compared to i.e., Ding et al.
(2022) and in line with in Luo et al. (2017) - without accounting for other
auxiliary variables. We followed studies that have reported good perfor-
mance using non-linear models to model relations between above- and be-
lowground biomass (Soares and Tomé, 2012; Koala et al., 2017) while
accounting for differences between forest types (Magnússon et al., 2016).
The recent study from Devos et al. (2022) over Norway showed systematic
differences between regions and eco-zones. The latter study reports mean
root biomass values - expressed as C and not as biomass - of around 20
tons per ha, doubling our values.

The showcased area in Spain is representative of the Mediterranean
basin and other forest biomes where belowground biomass and litter can
substantially contribute to total ecosystem carbon. To better understand
the different regimes in biomass accumulation for AGBD and BGBD in the
region, it is important to acknowledge land-use and forest policy in the re-
gion. The use of oak forests as suppliers of firewood is important in the re-
gion and this has altered the accumulation of biomass in roots compared to
the aboveground component, object of periodical removals to extract fire-
wood (e.g. Andivia et al., 2013). Approximately 0.75 million ha of the
Dehesa ecosystem (forest type 101) showed an AGBD ratio below 50 %,



Fig. 4.Distribution of 25-mpredictions of aboveground biomass density (AGBD) and belowground biomass density (BGBD) stored in roots across the study area. Both density
functions are expressed in Mg ha−1. Airborne laser scanning data and National Forest Inventory plots were used for calibration. Both density functions are presented for the
five forests selected modelled separately and for all forest land in the region of Extremadura.
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reflecting the importance of belowground biomass and litter on those areas,
which should be take into consideration when designing land-use manage-
ment policies. The study is based on ALS data and derived products such as
canopy height models which strongly support the understanding of vegeta-
tion dynamics across the entire region. The presented biomass maps are
Fig. 5. Estimated belowground biomass density in root systems (BGBD, left) and estimate
the second, models from Montero et al. (2020) were used for five selected forest type
Extremadura region.
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driven by NFI data of enhanced geolocation for the calibrations which is
key to model forest biomass with accuracy and reduce the impact of
geolocation errors between laser statistics and reference biomass measure-
ments. Our maps are tangible contributors to support environmental policy
on climate change mitigation and also on wildfire management: the
d litter density (LD, right) expressed inMgha−1 at the spatial resolution of 25m. For
s and a general model for conifers and broadleaf species for the rest of forests in



Table 3
Mean and total values of carbon biomass density computed over the three compo-
nents evaluated in the study; abroveground (AGBD), belowground (BGBD) and lit-
ter (LD). Results are presented for all forest area in Extremadura region (Spain)
and specifically, for 5 forest types evalaued separately. The codes for Forest type
definition are presented in Table 1.

Forest type Aboveground
biomass density
(AGBD)

Belowground
biomass density
(BGBD)

Litter density
(LD)

Mean
Mg ha−1

Totals
106 Mg

Mean
Mg ha−1

Totals
106 Mg

Mean
Mg ha−1

Totals
106 Mg

101 31.82 42.08 14.31 18.92 4.38 5.79
102 18.59 3.64 11.53 2.26 4.95 0.97
103 49.71 3.82 14.56 1.12 8.43 0.65
107 24.35 1.40 14.52 0.83 5.67 0.32
109 44.50 1.39 16.67 0.51 7.78 0.24
Ext (region) 31.63 62.52 14.59 28.79 4.85 9.7

A. Pascual et al. Science of the Total Environment 897 (2023) 165364
mapped biomass stocks are useful i.e., to sequence fuel treatments on areas
where aboveground stocks are high, and also to value C losses from wild-
fires on three biomass components.
Fig. 6. Contribution of aboveground biomass density (AGBD), belowground biomass den
Maps presented for the region of Extremadura in Spain and showcased for a 12-km2 trans
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5. Conclusions

We now have the science to map different biomass components. Air-
borne lidar is a solid support for the estimation of aboveground carbon
pools but also to belowground components as long as allometries are built
consideringmeasurablemetrics from the aboveground. Herewe showcased
one example in Spain tomodel three biomass components at the same scale
and making use of publicly available data. The very-much AGBD-focused
policies to promote restoration and responsible land stewardship must
start acknowledging belowground biomass stocks for a fair recognition of
the multiple biomass components in a forest. We hope belowground bio-
mass components become more and more included into global biomass re-
ports for a comprehensive and inclusive approach to model forest biomass
stocks.
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